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§1. Introduction

One of the achievements of the Nevanlinna theory for meromor-
phic functions was the recognition that the characteristic function,
T(r, f), is the proper generalization for meromorphic functions of
logM(r, f), where M(r, f) is the maximum modulus function for a
holomorphic f.

Recently [7] we proved a series of theorems of a ‘“Koebe” type,
connecting the growth of the maximum modulus and the order with
which a holomorphic f tends to 0 on a sequence of boundary arcs
in the unit disk. For convenience we refer to this paper as .

The purpose of this paper is to show that the characteristic func-
tion T(r, f) can be substituted for logM(r, f) in the theorems of %
thereby effecting not only a generalization but also an extension to
meromorphic f. In one corollary dealing with normal functions we
also improve the corresponding result in 2.

It is difficult to decide whether to duplicate much of £ or to
refer the reader to this paper. The second saves space while the first
saves the reader’s sanity. On the grounds that reader’s equilibrium
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is more important than brevity we shall try to make the paper as self
contained as is reasonable. We will keep the notation as close as
possible to that in £ and clearly indicate where duplication occurs.
In one or two instances we do not reproduce lengthy calculations
whose absence will not be missed.

§2. Preliminaries

Our basic concern is with sequences of Jordan arcs in the unit
disk D: |z|<1, which tend to the boundary C: |z]=1. Let {y,} be
such a sequence of Jordan arcs with each y, entirely contained in D.
Define a four tuple of real numbers (R,, r,, 0,, 0,), called the parame-
ters associated with y,, as follows:

R,=max|z|, z€Yy,;
(2.0)

r,=min|z|, z€y,.

If E, is the closed circular sector of |z|<R, of minimum angle opening
o, containing 7y, then E, is of the form

2.1) 0<|z|<R,, 0,<argz<f,+a, 0<0,<2m,

which defines 6, and o,. For convenience we assume that always 0<
a,<n and that {y,} is a sequence of boundary arcs in that

22) %gr,,—q, n—co.
For any given sequence {y,} with associated parameters {(R,, 7,

6,, .} define

2.3) F®: 0<|z|<R,; en—(i‘:ih)< argz<0,,+(a+2a").
So F{ is the circular sector of |z|<R, of opening a which contains
the interior of E, in a symmetric fashion. Finally put

1

. 1 1., _<P‘_ ﬁ) <_°1 a_n)
2.4 L. 4r,,<|z|<2r,,, 0, a2 <argz<0,+ 4+2 .
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Then L{ is a wedge-shaped domain of opening % symmetric about

the line bisecting the angle o, See Fig.1 for the various domains.

Fig. 1

We will use the notation E,, F and L exclusively in section 4
as defined here and always relative to a given sequence {y,}. It is
trivial but important to note that because r,<1, L is always contained

within the disk |z|<-é—, regardless of the sequence to which it is associat-

ed and regardless of our choice of a.

If lim «,<0, then {y,} is a Koebe sequence. We do not con-
sider such sequences but will treat them in a subsequent paper.

We shall be interseted in sequences {y,} for which «,—0, n—oo,
and which satisfy also a non-Euclidean hyperbolic distance condition.

For a,b € D put

_ 1, Il—abl+]a—b|.
pla, )= 10g|1—al§|—|a—b| ’

and for a set ScD let
HD(S)=sup{p(a, b)}, a, bES,

which is the hyperbolic diameter of S.
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Definition 1. We call a sequence of Jordan arcs {y,} in D a
positive hyperbolic diameter sequence, hereafter a PHD sequence, if
(2.5) 0<lim HD (y,)<lim HD (y,) < oo.

It is easy to show that for a PHD sequence a,—0, n—co, although
this is not sufficient. In fact, a PHD sequence can be characterized
by the behavior of its sequence of associated parameters. To this
end let us call a sequence of Jordan arcs {y,} in D with associated
parameters {(R,, r,, 0,, «,)} a radial-like sequence if

i) 0<lim p(R,, r,)<Ilim p(R,, 1,)<oo;

n=c n=wo
2.6)
i) T p(R,ef, Ryef9r+4) < oo
n-o

or an arc-like sequence if

i) lim p(R,, r,)=0

n—o
.7
ii) O0<lim p(R,ei®", R,ei®=+an)<lim p(R,ei’", R,ei(?n+an)< oo,

n—*oo n—ow

(If 9, is the segment of the radius ref?o defined by 1—%3 rsl——’lz—

then {y,} is a radial-like sequence; while if {y,} is the arc of |z|=1—-’11—

defined by 6,,3argz$90+% an easy calculation shows that this {y,}
is an arc-like sequence — hence the nomenclature for each family.)

With this terminology we state Proposition 1 or £ without its
proof which is an elementary case analysis.

Proposition I. A sequence of Jordan arcs {y,} in D is a PHD
sequence if and only if each subsequence contains either a radial-like

subsequence or an arc-like subsequence (or both).

For a function f defined in D and taking values in the extended
plane W we want to define how fast f tends to zero on a sequence of
Jordan arcs,
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Definition 2. Let f be defined in D taking values in the extended
plane W. Let {y,} be a sequence of Jordan arcs in D, {A,} a sequence
of positive numbers, and s>0. We say f has s-exponential order

{4,} on {v} if

|f(z)|$exp(l+fz"|)—s, zey,, n=1,2,....

As mentioned in the introduction we want to compare the order
of a meromorphic f on a sequence of arcs {y,} with the growth of
the Nevanlinna characteristic function of f over various subdomains
in D. If F€D is a domain for which the characteristic function
exists for a meromorphic f relative to a point zoF we denote this
function by T(z,, F, f). Certainly if F is a subdomain of D bounded
by finitely many analytic Jordan arcs (i.e. a regular subdomain) the
characteristic function exists. We shall have occasion to consider the
characteristic function over slightly more general subdomains but we
will treat the problem of existence at that time. If F is the subdomain
|z|<r, O<r<1, and zy,=0, we use the customary notation T(r, f).

It is easy to prove, but we assume without proof, the monoto-
nicity of T(z,, F, f) in that if F and G are subdomains with FcGc D
and zoeF (and the characteristic function exists for each domain)
then

(28) T(ZO’ Fa f)ST(ZO’ G’ f)

We refer the reader to the book by Sario and Noshiro [4] as a
reference for a general treatment of value distribution theory, and of
course to Nevanlinna [3] for the more classical approach.

We conclude with one further definition followed by a comment.

Definition 3. A simple continuous curve y=y(t), 0<t<1, lying in
D is said to be a boundary path if lim |y(¢)|=1; and a boundary path
t—1
at 1€C if limy(t)=t.
=1

One further convention we adopt. Most of the arguments used
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in this work involve a limiting process, and we are not interested in
the first N, terms. Rather than keeping a score of the various indices
we sometimes use the phrase relative to some sequence ‘‘such and
such a property holds eventually for the sequence” to replace ‘‘there
is an integer N, such that the property is true for all members of
the sequence with index greater than N,.” As long as we use this
phrase only finitely often and are otherwise reasonably careful no
problem arises.

§3. A form of the Schmidt-Milloux Theorem

We shall need a form of the Schmidt-Milloux theorem as one of
the cornerstones for our main result. If y is a boundary path at
teC we define w(z, y, D—y) to be the harmonic measure at z of y
relative to D—1y.

Theorem A. Let y be a boundary path at a point t€C. If
min |z| =a then for zeD-—y,

zey

(3.0) o(z, 7, D—y)z% aresin . ‘”2)1(61 —z[?)

This formulation is obtained from the usual form in which a=0
by the routine device of mapping D onto D by a linear transforma-
tion which takes y onto a boundary path with a=0 and using the
conformal invariance of the harmonic measure. Some obvious estimates
then produce the above inequality. For a nice statement of the in-
equality in the usual form see Tsuji [12, Theorem VIIL. 11]

We need also the following result from the folklore. If {z,} and

{z;} are two sequences in D such that

1) lim|z, =lim|z,|=1;
n—*o n—oo

2) limp(z,, z})<oo;
n—oo

then
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G.1) 0< lim I =12l o L= 12l o o

n—'ool—lz;ll_n—*aol_lz;l '

If in addition lim p(z,, z,)>0, so also

n—ow

3.2 0<]im|zn_z;l m'zn_zln|<oo‘

(3.2) e L= [z, S M7z,

Because of the obvious symmetry in this result, under suitable hypoth-
esis we may substitute one of the expressions for another in any order
argument without hesitation. For a proof see among others Rung
[6, pg. 45].

§4. Main Theorem

Suppose we are given a non-constant meromorphic function in
D which tends to some value, a, on a PHD sequence of arcs. Is
there a connection between the possible growth of the characteristic
function and the order with which the function tends to @ on the
PHD sequence? This question was answered affirmatively in £ except
that the characteristic function was replaced by the less general log M(r).
Theorem 1 below gives an affirmative answer for the characteristic
function.

Our situation is this. We have a meromorphic f defined in D
which tends to a value a, possibly infinite, on a PHD sequence {y,},

under the order condition that f—a (or % if a=o0) has I-exponential

order {4,} on {y,}. We now proscribe a sequence of domains F(
such that F®2E, where E, is the minimum wedge containing 7,.
[See (2.1), (2.3) and (2.4).] Succinctly, we enclose each y, symmetrically
in a pie shaped F{* which has a fixed angle opening «. Our aim
is to estimate log|f(z)—a| for z in the subdomain L{ in terms of
the quantities 4, and T(zo, F, f). The rather obvious route is via
the Poisson-Jensen formula.

The next several section will be devoted to some technical house-

work in order to form the proper Poisson-Jensen representation needed
for Theorem 1.
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Let S be a subdomain of the extended plane W sufficiently well-
behaved to support a Green’s function G(z, a, S) with pole at aeS.
It is well known that the Poisson-Jensen formula is valid for each
of the domains F{. The explicit formula is stated for example in
Petrendo [5].

Let {a;}%.; and {b;}!., be the zeroes and poles of f in F{ with
each point repeated as often as its multiplicity. Let z&F{® be chosen
(assuming z is not a zero or pole of f) and parameterizing the boundary
of F@ by {(={(t), 0<t<I1, we have

log|1(2) = [ 5= log* I/LIdwz. LO.F{)
+ 2.6 b, F)|

4.0 rrdw(z, (1), F)

~[ 283 o8
+i=Zk; G(z, a;, Ff,“))}

- T(z, F®, f)— T(z F@), 1).

If z is a pole of order A then the corresponding Laurent co-
efficient ¢, replaces f(z) in the left side of (4.0) and the right side

1
contains the term ZLnS log|¢(f) —z|dw (z, {(f), F¥) instead of the Green’s
0

function with pole at z. Since z will always lie in L{® this is a bounded
term. Our arguments will apply equally well if z is a zero or pole
so for simplicity of notation we assume that z is neither a zero nor
a pole.

We are interested in applying the Poisson-Jensen formula to the
domains F{—y,. Some difficulties arise because y, is assumed to
be only a continuous path. There are several ways around this dif-
ficulty; we adopt the simplest sufficient for our needs. We replace
F@_—y by a new domain of similar shape but whose boundary is
free of zeroes and poles of f by forming first a subdomain H(® of
F{), whose radial sides are parallel to those of F{; whose circular

n
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side is concentric with |z|=R,, and whose sides are at a distance ¢,
from the corresponding side of F®, with ¢,—0, n—oco.

Because of this condition we can assume that LCHY and by
our choice of the sequence {¢,} we can also require that the sequence
{y*}, where y* is that part of y, in H{?, is yet again a PHD sequence.

We now alter y¥ slightly by replacing it with an arc y,, (if nec-
essary) so that

1) {y,} is still a PHD sequence;

2) f is free of zeroes and poles on each y.,;

3) each y, meets H{” only at one endpoint and otherwise lies

entirely in H{;

4) on {y,}, f has l-exponential order {‘éﬂ}

This is all possible by elementary methods.

The Poisson-Jensen formula is now applicable to H@ —y,. If
we continuously parameterize the boundary of this domain (remember-
ing that y, has two sides) by {=((r), 0<t<1; let (a;}%-;, {b;}t-;, be
the zeroes and poles of f in H{¥—y,; and choosing any zeH{® —vy,
not a zero or pole, we have

loglf(2)| = | 5= log* Al dw(z, (o), HE —7,)
+ 3, Gz by HE =73 |
i=1

@.1) - [2_1n§1 log*

0

1 (a) _ oy
+ 3 GGz, a Hf;”—v;)]
i=1
— (&) _ (@) _ 1
= T(z, H¥ —v,, f)+T<z, HY —y', ——f>.

Utilizing the subharmonic properties of the quantities above we
have for ze H{” —y,, the two important inequalities

“4.2) T(z, H® —,, ) <T(z, F, f)

and for zeF{®, with R,=max|¢|, E€F®,
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4.3) T(z, F®, f)<T(z, R, f).

For the particulars we again refer the reader to Noshiro and
Sario [10].

Now (4.2) is essential in keeping the notation as simple as possible.
Because of this inequality we are able to retain the domains F{
and F{ —y, and to assume that (i) the Poisson-Jensen formula is valid
for F® —y,; (ii) each y, meet F* only at one endpoint and is other-
wise entirely contained in F!?; and (iii) f has 1-exponential order
{4} on {r.}.

With these housekeeping chores finished we are free to give

Theorem 1. Let f be meromorphic in D. Suppose {y,} is a
PHD sequence in D such that for some acW, f—a has l-exponential

order {A4,} on {y,} (or if a=co, ?L has 1-exponential order {A,} on

{y.). If, for some O<a<m, and some sequence {z,}, z,EL!® (defined
as in (2.4)),

(a)
(4.4 lim &AL_Q =0

n—+o

then f=a. (Note if T=0 we assume A,—+ o0.)

Proof: We divide the proof into two cases according as to whether {y,}
contains a radial-like subsequence, or an arc-like subsequence. As
mentioned before we will assume no z, is a pole of f—a. If
infinitely many z, are zeroes of f—a there is nothing to prove.

Case 1. {y,} contains an arc-like subsequence, say {y;}. We

can assume a=0. Applying the Poisson-Jensen formula to F{ —y;

1Oglf(zj)| =T(Zj, F_(fa)—Yja f)—T<Zj, Ff,'“)—}’j’ '}-—)
(4.5)
s 1 1 a
<) FP =15 )= 5| log* | 7 |de (2, £, FS—3)).

BAd(FS¥ -y

Since for {€y;, eventually
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4.6)

tog* | 7755 =108 | 5| > 1 255
and is otherwise non-negative,

) o _ _ 1. _4;
4.7 log|f(z)| <T(z;, F¥ —y; f) 7 -7,

Sy.dw(zja C’ F‘(ia)—‘)’j)
J

A
=T(Zj, FS'“)s - l—Jrjw(zj’ Vi FS'“)—'Y;)-

(Now (4.7) can be thought of as a kind of generalized two-constant
theorem for meromorphic functions.)

The remainder of the proof for this case consists in estimating
o(z;,v;, F{ —v;) exactly as is done in the proof of Case 1 of Theorem
1 of 2 (from (4.4) to (4.14)). The notation is identical. We sketch
the estimate procedures and leave the details in 2.

We first map F{® onto |w|<1 and using the conformal invariance
of the harmonic measure, the Schmidt-Milloux theorem in amended
form (3.0), and some elementary but lengthy estimates we find that

o(zy, v, F$ —y)> l arcsin C(R;—r))

(4.8)
>C,R;—r)).

If we put (4.8) into (4.7) we obtain

logl2)| <TG, F, N—a,C. (§=12)
“4.9)
_ Rj—ri\_T(z;FP, f)
__Aj[c, o )— 7 ]
As j—oo, the first term in the brackets has a positive lower limit— by
the properties of a radial-like sequence in conjunction with (3.2).
The second term tends to zero by hypothesis and so, since A;—+ oo

(4.10) limlog|f(z)| = — co.
Jj— oo

The sequence {z;} has a point of accumulation, {,, in |z| S%
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and so f({,)=0. But the Poisson representation shows that any point
in a small disk about {, is the limit of a sequence {z/}, with z; close
to z; for which T(z}, F —y;, f) has the same order of growth as does
T(z;, F®—v;, f) so that the hypothesis is satisfied for this sequence
and we conclude that f is identically zero in D.

If a=o, then we replace f by —}— and since T(z,, F*, f) and T(z,,,

F@), —lf—> have the same order of growth the proof is complete in the
radial-like case.

Case 2. {y,} contains an arc-like subsequence, which we again
label {y;}. As in Case 1 we can assume a=0, and apply the Poisson-
Jensen formula to z;, again assuming that z; is neither a pole nor
a zero of f,

log|f(z)| <T(z;, F —7;, f)
(4.11)

‘EIES log* l—j,%'dw(zj, {, F—y).

Bd(F{¥-yj)

By the identical argument as in Case 1 we obtain

A.
(4.12) log|f(z)| <T(z;, F®—vj, f)— I_Jrjw(zj, 5 F@ —7v)).

We must now estimate the harmonic measure but instead of using
the deep Schmidt-Milloux result we can invoke simpler ideas as in £.
We modify the arcs {y;} (as in #) by selecting a subarc y;S7v; which
extends from one radial boundary of E; to the other, meeting these
boundaries only at its endpoints. Note that {y;} is still an arc-like
sequence. Let g{ and ¢{ be the radial segments of the boundary
of E; extending from these and points to [z|=R; (One or both of
these segments may reduce to a point.) Let G{ be the domain bound-
ed by the radial boundaries of F{; the two arcs of |z|=R; from these
rays to the rays bounding E;; the segments g{", ¢{¥; and y;. See
Fig. 2.
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Rl 7))

Fig. 2

By Carleman’s Gebietserweiterung
(4.13) o(zj, v FP—yp=20(z; ) GP).

If we let s; be the arc of |z|=R; bounding E; another appli-
cation of the Gebietserweiterung gives

(4.14) w(z;, Y;UqPUq?, GP)>w(z;, s;, F).
The additivity of the harmonic measure gives, with (4.14),
(4'15) CO(Zj, ylp Gfia))zw(zj, sjs Ffia)) —CU(Zj, q.(il)’ GS—a))—CO(Zj, 43'2), Gg_a))'

We now estimate each of the terms on the right which is done in
Lemmata 1 and 2 of £.
We outline the technique of these two lemmas and state the results.
By the first lemma we obtain

(4.16) o(zj, sj, F{®)>C,|R;ei®% —R el 0],

where C, is a positive constant depending only on « and the inequali-
ty is valid for any z;€L{®. To see this first map F{* onto the upper
half disk of radius R; by a root transformation.

Reflect the harmonic measure across the real axis to all of |z|<R;
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and use the Poisson formula to arrive at (4.16).
The second lemma says that given ¢>0 there is an integer J=J(g)
such that if j>J

o(z;, 49, GP)<e(R;—r))
4.17)
o(z; 47, GY)<e(R;—r)).

Here we first use the Gebietserweiterung to give, setting D;=|z|<Rj,

(4'18) CO(Zj, 45'1), Gfia))sw(zj, q.(il)a Dj_qg‘l))'

One can compute this last harmonic measure by first mapping
D; linearly onto itself so that q§" is now a radius and after taking
the square root, one is left with the same harmonic measure as appears
in the classical Phragmen-Lindelof theorem. The arc-like property—
in particualr (2.7(i))—gives the proper estimate, which is duplicated
for ¢®.

Combining (4.15) with (4.16) and (4.17) gives

(4.19) o(z; v G)=(C,—2e)(R;—r)).

If we use this inequality in (4.13) and then refer to (4.12) we have
for sufficiently large j

log|f(z)| < T(z, F =3, )= A{C,—26)|Ryei® = Ryl 05+
(4.20)

(@) _ » .,
——4 ,.[(ca-zs)(m et —Rei0srap)) T2 F £ f )] ,
i

By the arc-like property and by choosing & small we obtain that

(4.21) limlog| f(z;)| = — oo;

and our proof concludes as in Case 1.

Because of the inequality (2.8) and the equivalence of the char-
acteristic function vis-a-vis the point chosen —so long as the points
lie in a compact subset of D, we can replace T(z,, F\?, f) by T(R,, f)
in Theorem 1.

If f tends to a value a W on a boundary arc y with a certain order we
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can infer infer information about its characteristic growth since a
boundary arc produces PHD sequences in abundance.

Corollary 1. Let f be meromorphic in D, and y be a boundary
arc on which f tends to woeW.
If f is of bounded characteristic in D and for zey satisfies

(422) 1@ —wol < exp(—AL2D),

—lz|

where A(|z|)> + o as |z|-1; or if f is a normal function in D and

for zey satisfies for some £>0 and some positive constant Ag,

(4.23) |£(2) = wo| < exp< (1—|‘Z)T>

for

then f=w,. (If wo=o00, we make the usual substitution of ——

f@)=wo.)

f()

Remark 1. The definition of a normal function originates in Lehto
and Virtanen [2], although the ideas in less complete form are found
in Noshiro [4], and Seidel and Walsh [11].

Remark 2. The first result generalizes the theorem for bounded
functions proved by Gavrilov [1] while the second generalizes Corolla-
ry 7 in that the boundary path is not required to be a non-tangential
path.

Proof. In both cases we seek a PHD sequence with proper order.
Thus select any sequences {R,} with O<R,<R,,;—1, n—o. In easy
fashion one can determine a PHD sequence {y,} with the properties

i) y,S7, all n;
4.24)
ii) {y,} has associated parameters {(R,, r,)}.

Suppose f has bounded characteristic, setting

A,=inf A(|z|), zey,,
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we have that 4,— o0, n—»oo. Thus f has 1-exponential order {4,} on
{7y} so Theorem 1 prevails and f=w,.
If f is a normal function recall that

(4.25) T(r, f)<C/log O<r<li,

1
1—r?

(Lehto and Virtanen [2, pg. 58]. If we put A(|z[)=(1—|z[)7% then

f has 1-exponential order { on {y,}, and

=

limT(R,, f)(1—r) < limC, <log 1 >(1—r,,)5=0.

n—o I—Rr%

This is so because of the PHD property and (3.1).
Thus Theorem 1 holds and again we conclude f=wj.

§5. Behavior of f away from its zeroes

There is a reasonably direct way to obtain PHD sequences in a
meromorphic function f tends to a value on a sequence approaching
C but does not take on the limit value “near” any point of the se-
quence. To be precise define for a set ACD and a point beD,
p(b, A)=infp(b, a), acA. Also let Z(f)={zeD|f(z)=0} and for 0<
d<oo

Ky(f)={zeDlp(z, Z(f))=5}.

Suppose a meromorphic f tends to a value we W along a sequence
{z,}, with lim|z,|=1. Suppose also that every z,eKyf—w) (or K,

(#) if w=co) Thus in each disk N(z,, 6)={z€D|p(z, z)<5}, f omits
w. That is f(N(z,, 4)) is a domain on the Riemann surface which
does not lie over the point w. By lifting a rectilinear segment t(f(z,)—
w)+w, 0<t,<t<l1, into f(N(z, 0)) —altering the segment slightly to
avoid any algebraic branch points — we obtain under f~! a curve y,
in N(z,, 6) which extends from z, (or a point close to z, if f'(z,)=0)
to the boundary of N(z,, 6) and so {y,} is certainly a PHD sequence.
Moreover on each 1y, [|f(z2)—w|<|f(z,)—w|. If we let R,=|z,| and
R, =max|z|, z€y,, then
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R,<R;, and p(R,, R},)<3.

Enclosing each y, in its corresponding F{* for any choice of O<a<m,
with n sufficiently large, Theorem 1 can be reformulated to give

Theorem 2. Let f be meromorphic in D. For some value weW
and some value 0<d<oo suppose {z,} is a sequence such that

i) z,,eK‘,(f—w)<or K,,(—}) ifw=oo>;
i) |z,—1, and f(z,)->w, n—ooo.

Set A,=—(1-|z,)log|f(z,)—w| (or A,=(1-|z,Dlog|f(z,)| if w=oo). If
A,— + o0, n—soo, and for some choice of 0<d<m, and {,€L®,

lim T F2.1) g,

n—+oo n

then f=w.

Remark. This theorem for holomorphic f and with T({,, F, f)
replaced by the logarithm of the maximum modulus occurs in Rung
[7, Theorem 1].

Just as in Corollary 1, T(, F, f) can be replaced by T(R,, f).
Further simplification is possible if T(r, f) satisfies some growth con-
dition, say of the form

(5.0) T, f)s(l—lr)’, 0<s< oo.
Since p(R,, R,)<d, one can replace T(R,, f) by T(|z,|, f).

Corollary 2. Let f be a non-constant meromorphic function satis-
fying (5.0). Then for any value we W, and any 0<d<oo, there exists
a positive constant C, depending on f, w, and 8, such that for zeK;

(f—W)(or zeK(%) if w=°o)

i) if w is finite, we have that

(1—[z])*! log|f(z)—w|=> —C> — o0}
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while

i) if w=oo,
(1—|z])y*log|f(z)| KC< + oo.

Proof. Suppose w si finite and assume no such C exists. Then
for some sequence {z,}, and some value 0<d<oo, z,EK,f—w), all
n and

.1 (L—1z,])** Hog| f(z,) —w|—> — o0, n—co.

If we set 4,=—(1—|z,)log|f(z,)—w|, then (5.1) and (5.0) combine
to give

s Tz, f) o 1 ]
0< lim 21%n < lim ( >=0’
= v (1= z,)* \T=1z,[log[ /(z,) —w|

and so Theorem 2 implies f is constant contrary to assumption.

As we noted earlier in (4.25) if f is a normal function then T(r, f)
<C; log i,
for any choice of O0<s<oo, and Corollary 4 holds for a normal

0<r<l1. So the characteristic function satisfies (5.0)

meromorphic f for any s>0, although the choice of the constant C
depends now also upon s. This remark and Corollary 4 both generalize
and improve Corollary 1 of Rung [8].

§6. Similar theorems near peints on the boundary

To this point we have needed an estimate for the characteristic
function on fairly large subdomains of D. Estimates of the charact-
eristic function near a point on C would not be of any use. There
are cases in which estimates of the characteristic function near a
point of C are available. If a function has a non-tangential limit at
a point on the boundary then clearly the characteristic function is
bounded when restricted to a domain bounded by two hypercycles at
this point, and it is true, as we shall prove, that a meromorphic normal
function has this property at every point of C, whether or not it has
a non-tangential limit at the point.

With little extra work we are able to obtain identity theorems
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as in the prior sections, except relative to domains impinging on C at
a single point instead of an arc as previously required.

The proof of Case 1 of Theorem 1 contains all the necessary
estimates and all that is required is to change our point of view. We
now consider a PHD sequence {y;} where each y; is contained in a
domain of the form F{ only this time we suppose that y; is con-
tained in F{® with the exception of one endpoint which is at the origin.
Then tilt the FS-"" so that the vertex (and consequently the y;s) ap-
proaches C and we have the situation of the theorems in Gavrilov [1].
We are not being entirely accurate. Actually we find it more con-
venient to use domains bounded by arcs of circles rather than tri-
angular domains. Let us proceed to the details.

For a complex number a and real values O<R< oo, 0<6<2m,
O<a<m, first put a’=a+Re'® then let C, and C, be the distinct
circles of the same radius, each of which meets a and a’ and which
meet at a with angle «. If B is the perpendicular bisector of the
line segment from a to a’ then F(a, R, 0, «) will denote the domain

bounded by C,, C, and B, which contains the point a+%e”’. We
shall be concerned with sequences of such domains {F(a,, R,, 6, o,)}.

In the sequel we restrict {R,} and {o,} to be constant sequences which
allows somewhat less complicated statements for the results.

Definition 4. Let {y,} be a sequence of Jordan arcs in D and
{F(a,, R, 0, ®)} a sequence of domains as defined above. We say
that {y,} travels in {F(a,, R, 6, o)} if

i) F(a, R, 6, o)cD, all n;
(6.0)

ii) For some value ¢>0, y,ZF(a,, R, 0,, a—¢), all n,

except for one endpoint which coincides with a,.

Note that {y,} may travel in many different sequences {F(a,, R,
O @)}

Given such a F(a,, R, 0,, ®) let L{¥’ be the subdomain of F (a,,, R, 0,, %)
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z—a,

_( 1Y/ z—a,| _( 1\~
z—a, _<—4—> and ’z—a;‘_(7>
These domains are equivalent to the corresponding domains L, defined
in (2.4) relative to Theorem 1.

between the circles‘

Theorem 3. Let {y,} be a PHD sequence travelling in {F(a,, R,
0,, )=F®}. Suppose f is a meromorphic function such that for some

weW, f—w has %-exponential order {A,} on {y,} (or% has this

order if w=oo>. If for some sequence {z,}, z,€L?,

(6.1) lim T(z_mj;iﬂzo

n—+o n

then f=w.

Remark. That the characteristic function exists over the domains
F{® is clear because they are conformal equivalents to the old domains
F@® of Theorem 1. Again we need to use the Poisson-Jensen formula
for the domains F{¥ —y, but we make the same arguments to justify
this as given prior to Theorem 1. We need to be a bit more careful
in selecting a slightly smaller domain — if necessary — because of the
need to preserve the travelling property. If the endpoint a, of y, is
a singularity of f we choose a new arc y, close to y, and satisfying
basically the same exponential order in order to obtain a new F®
contained in the original and such that the revised 7, still travel in the
new F{) — although the value ¢ may be different.

Proof. Our proof parallels the proof of Theorem 1 (and agrees
in the main with the proof of Theorem 3 of £). For completeness
we sketch the pertinent ideas.

As usual we can assume w=0. Choose a subsequence n;=j for
which the limit in (6.1) holds. Thus

(6.2) lim "LTF“)_f_) -0,

Jo o J

Let
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(6.3) rj=min|z|, z€y;.

With this value r;, if zey;, for all j,

A
(6.4) log| f(2)| < (ETPEE
Now choose a point b;ey; such that
6.5) —Al‘—HD(yj)Sp(aj, b)) <HD(y)), all j.

This is clearly possible.

Apply the Poisson-Jensen formula in F{*—y; to obtain, after the
usual estimates including (6.4),

A

(6.6) l°g|f(2j)lST(Zj, £ F(ja))—(T—TJ')"T o(zj, v Fj—)’j)-

J
We proceed just as in Case 1 of the proof of Theorem 1 after we
obtained (4.7). The notation is identical with Case 1 and the details
of the proof follow exactly the proof of Theorem 2 of £ where the
notation is also the same. Carry F{® onto D,: |w|<1, by

; (l+hj(z) 2
“\1-"hi(2)
(6.7) W}"‘(Z)=W(hj(z))=w)——z
where
6.8 hio=(e" P (ZZUW ay—a,+ Retos, all j
(6.8) @=(e T EE) " gy=a;+ Re®, all ).
1 1 o 3a .
(@) « 2 . x ket (a)
If L®; 7 <|w|<2 ;g <argw<—r, then by the definition of LY,
6.9) L@ =h1(L®), all j.

We must again estimate w(z, y;, F{ —y) for zeL{. Because r;—1
eventually L\ c F{—y;, and we assume this to be the case for all j.

Let y*¥ be the subarc of w¥(y;) which connects |w|=|w¥(b))| to
|[w/=1 and lies, except for endpoints, in this annulus. The Gebiets-
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erweiterung produces for we D, —w*(y;), and all j,

(6.10) w(w, wi(y;), D,—wi(y¥) = w(w, y%, D,—v%).
Observe that by our construction of L{, there is a B, such that
6.11) WAL < B, <1, all J.

By use of Theorem A, the conformal invariance of the harmonic
measure, and (6.10) and (6.11), it is true that

(1-BH(A - wh(®))1?)
16

(6.12) w(zj, v, F@— )>i arcsin

for z;e L.
A few calcalations yield

(6.13) 1—|wk(b,)|?>Im [(?Laj)e—i(n—i)]n/a[l_ 2n/a].
b;j—aj;

Unlike case (i) of Theorem 1 the last term in brackets in (6.13)
contributes not at all to the order estimate because p(a; b;))<K,

bj—a;
— ,.
i—aj

implies |b;—a;|—0, j—»oco0, which in turn implies, because |b;—a}|> I; ,
.—a.|2n/a

(6.14) b; a,’ 2L, j sufficiently large.
j"‘aj 2

The first term is crucial. By considering the geometry of F(“’ (ﬁrst

z—aj\ "D\ L.
transform it by( al )e > it is easy to see that, setting
Jj

bi—a; —l(n")
o= (3250), )
im(przg)e )= (PR sn(7)
bJ_aJ
(|b1 ajl)/asn___

The last estimate (and value &) is obtained from the definition of

(6.15)

{y;} travelling in {F{®}. According to our definition of b; in (6.5),
Lemma A obtains and so eventually
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(6.16) [aj—b1|2(1—lal|)t0, t0>0.

with Ka's=—%<%’—)n/¢sing—:, (6.12) is now because of (6.13), (6.14),

(6.15), (6.16), and the property of arcsin

1— B?
(6.17) (1)(2 Vs F(a) 71)> ( 5 )Ka,e(l—aljl)n’/a’ ZjEL(ja)’

and j sufficiently large.

Our last step is to notice because {y;} is a PHD sequence
(6.18) 1—la|=(1-r)ty, t,>0, all j.

And so (6.6) us affected by (6.17) and (6.18) and becomes eventually
— R2
for z;eL{®, after setting C,,e=<l 8B1)t’f/“ K,.>0,

log |f(z))| < — 4,C,,+T(z;, F, f)=— A4, [C—W} .

Because of (5.2) 11m f(zj) 0, z;e L. Since the L\ have a “limit
domain” of similar form in D than f is identically zero on this limit
domain and so must be zero throughout D. This completes the proof.

The limit in (6.1) cannot be relaxed to a positive value, nor can
the PHD property be omitted. Examples are found in £ [pg. 444-5].

The various corollaries in % after Theorem 3 remain valid with
the function T replacing .#. Note that the order relation for f on
the boundary arc y in Corollary 5 of # must be changed as indicated
in Rung [9]. The formulation in & is foolish.

§7. Applications to normal functions

A meromorphic function f in D isnormal if and only if

(7.0 r(N@)<

, zeD

As
1—|z|

where p(f)(z)=1—_'|_-%(f(z—3;|—2. Details are found in Lehto and Virtanen

[2, p. 55]. We shall be concerned with a less restrictive hypothesis
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namely that f be normal in hypercyclic domains at a point 7 on C,
i.e. domains of the form F(r, «, 0, B), 0<B<mn, and where we choose
0, so that t+oae’®=—7. In this situation a necessary and sufficient

condition akin to (7.0) is that for each 0< ﬂ<—2n—, if zeF(z, a, 0, B)
=H(z, p),

(7.1) EP(f)(Z)(l —lz[)<oo.

See Lehto and Virtanen [2, Theorem 5].

As promised we show that if a meromorphic f satisfies (7.1) at
a point € C then the characteristic function is bounded on any H(t, f).
Precisely we mean that viewing H(t, ) as a domain of the form F(r,
a, 0, B), and letting zeL® then if f satisfies (7.1) at t€C, T(z, f,
H(z, )) is finite. If we map H(z, f) conformally onto |w|<1 by
w=w*(z) defined in (6.7) and (6.8) (with a=1,a;=—1;all j, a=p,
and R=2) it is sufficient to show that the Nevanlinna characteristic
of g(w)=f(w*~'(w)) is finite. We use the spherical form, and so we
want to estimate

(7.2) S,() = gg p(g(w))? dudo, w=u+iv
| <

|w|<r

Using the inequality in (6.13) and the fact that zeH(r, B) it is
easy to show that if |w|<r, then z=w*"'(w) satisfies

(1.3) |z|<1—(1;<’),

for some constant K>0.
Because of the conformal invariance of the spherical area we aim to
estimate S, (r) in H(t, f), and for convenience we select 7=1. Let

* - . [1—z| 1-—r
H*(1, B, r) be the domain bounded by the circle ¥z = K

For r sufficiently close to 1, and refering to (7.3) it is clear that

(1.4) S(n< Sg (P(f(2))? dxdy, z=x+iy

H*(1,8,r)
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1-¢
1+¢°
{=tel*, and after some obvious estimates, including (7.1), obtain with

To evaluate the integral on the right transform it by z=

C(B) a positive constant depending on p,

1-r

-B/2 K
sin< | g %drdgo
f1z2 1
1-r
—pcp) | ar
< cos?f /2 S T
1
BC(B) 1—r
S4cosZﬁ/2 log< K )

It is now clear that
1
g S,(Fdr < co,
o

and so T(z, f, H(z, B)) is finite for ze L®,

We owe this theorem in a sense to Tsuji who proved it by heavy
computations for meromorphic f which omit (the same) 3 values in
each H(r, f), 0<f<m, [12, Theorem VII. 12].

If f satisfies (7.1) and hence (7.4), the counting function restricted
to H(t, f) must be finite and so (7.1) implies that for any value we W,
and each 0<fi<n
(7.5) 2 (1—]z]) <oo,

zeZ(f—-w)NH(z,p)

counting multiplicities and as usual letting zeZ(%)nH(r, B) if w=oo.

Using (3.1), (7.5) and Hurwitz’s theorem we can restate the above
observation as

Theorem 4. Let a meromorphic f satisfy (71.1) for some ze€C.
Suppose {z,} is a sequence approaching t inside a hypercyclic domain
at © and such that
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i) f(z)»weW,nooo;
ii) Z(1—|z,))=o00,

then w is in the cluster set along every curve approaching t in a
non-tangential fashion.

We now return to PHD sequences to state the following theorem
which improves Theorem 5 of £.

Theorem 6. Let f be meromorphic in D. Let {y,} be a PHD
sequence travelling in {F(a, R, 6,, )}, O<a<n, and suppose a,—>T
eC, n»oo. If for some woeW and some n>0, A>0, f—wy (or %
if wo=00) has (1+n) exponential order {A} on {y,}, then either

f=wq, or there exists a sequence {z,} approaching t non-tangentially
with

) lim p(£)(z) (1~ |2,y =>.

Proof. The geometry of travelling gives for some 0<pf,<m, (with
¢ given by Definition 4 travelling) that, for n sufficiently large,

a.n F<a,,, R, 0, a—%); H(z, By).

By choosing B, close enough to m so that T <1+n, we can now

]
begin by supposing that (7.6) does not hold, which is to say that (7.1)

does hold. Then by (7.7) the characteristic function is uniformly

bounded on F(a,,, R, 6, oz——;-) for all n. Theorem 4 is then applicable

with A,=A(1—|a,|)*/#2-*n and so f=w, Otherwise f is not
normal in H(z, B,) and the existence of the sequence {z,} is assured.

Remark 1. The mirror result in # [Theorem 5] added the con-
dition that p(y,, V,+1)<m, all n.

Remark 2. Except for the above result, the theorems in £ con-
cerned with normal functions do not have generalizations via Theorem
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3. The reason for this (unhappy) state of affairs is that the hypothesis
all guarantee that f has angular limit and so is bounded in angles.

Remark 3. It would be desireable to abandon the requirement
in Theorem 3, and its corollaries, that {y,} must approach 7 in a
travelling manner. It would be nice to allow them to approach <7
within some hypercyclic region but otherwise bz free to assume any
shape they desire. This would allow results of the type given in
Theorem 2 except now relative to the characteristic behavior on hy-
percyclic domains. But we have not been able to show either the
necessary of the travelling condition nor to prove Theorem 3 without
it. On this somewhat gloomy note we conclude.
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