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§ 1 .  Introduction

O n e  o f  th e  achievements of the Nevanlinna theo ry  for meromor-
p h ic  func tions w as the  recogn ition  t h a t  t h e  characteristic function,
T(r, f ) ,  is t h e  proper generalization fo r m erom orph ic  functions of
log M(r, f ) ,  w here M (r, f )  i s  the m axim um  m odulus function fo r  a
holomorphic f .

Recently [7] w e proved a  series o f  theorems o f a  "K oebe" type ,
connecting th e  grow th o f the  m axim um  m odulus a n d  th e  order with
w hich a holom orphic f  tends t o  0  o n  a  sequence o f  boundary arcs
in  th e  u n it  d is k .  F o r  convenience w e refer to  th is paper a s  R.

T he purpose o f  th is  p a p e r  is  to  show th a t th e  characteristic func-
tion  T (r, f )  can be substituted fo r  log  M (r, f) in  th e  theorems o f  a'
thereby effecting not only  a  generalization b u t  a ls o  an  ex tension  to
meromorphic f .  I n  o n e  coro llary  dealing  w ith  n o rm a l functions we
also im prove th e  corresponding result i n  R.

It is  d iff icu lt to  dec ide  w he the r to  dup lica te  m uch  o f  a '  o r  to
refer th e  reade r to  th is  paper. T he  second  saves space while th e  first
sav es  th e  read e r 's  san ity . O n  t h e  grounds that reader's equilibrium
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is  more important than brevity  w e shall try  to  m ake the paper as self
contained as is  rea so n ab le . W e  w ill k eep  the notation as close as
possible t o  t h a t  in a n d  clearly indicate w here duplication occurs.
In  o n e  o r  tw o  instances w e  d o  not reproduce lengthy calculations
whose absence will not be missed.

§ 2 .  Preliminaries

O ur basic concern is w ith sequences of Jordan arcs in the unit

d isk  D: < 1 , w hich tend t o  the boundary C : lz = 1 .  L et {y„} be
such a  sequence of Jordan arcs w ith each y„ entirely contained in  D.
Define a four tuple o f real numbers (R „, r,„ On , an), called  the parame-
ters associated with y„, as follows :

R,, =max z e y n ;
(2.0)

r„ zEy„.

If E„ is  the closed circular sector o f (z1 < R„ of minimum angle opening
an co n ta in in g  y„, th e n  En i s  o f th e  form

(2.1) 0 0„ argz_0„+a„, 0<0„<2.7r,

which defines 0„ and a„. For convenience we assume that always 0 <
ce„ 7r and th a t  {y„} i s  a  sequence o f  boundary arcs in that

(2.2)

For any given sequence ty„} with associated param eters {(R„, r„,
0„, an)} define

(2.3)F :  0  <  I < R„; On
-

2
œn)< arg z < 0„ + ( OE +

2
OE")

S o  .F1,1) i s  the circular sector o f  I < R „ o f opening a  which contains

the interior o f En in  a  sym m etric fashion. Finally put

(2.4) A"): -1
4 -r„ <1z1 <-1

, rn ; „— ( 1 <arg z<0„+(i +
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Then 14,1 ) i s  a  wedge-shaped domain o f  opening  c t  sym m etr ic  about2
th e  line bisecting th e  angle a n . S e e  F ig .  1  f o r  th e  various domains.

F ig .  1

W e w ill u se  th e  n o ta tio n  E„, F1,1 )  a n d  A" )  exclusively  in  se c tio n  4
a s  defined here a n d  alw ays relative to  a  given sequence {y„}. I t is
trivial but important to  note that because r n < 1, L(

nœ) is always contained
1within the  disk lz1<-2-, regardless of the sequence to which it is associat-

ed  a n d  regardless o f  our choice of Œ.
I f  lirn< 0 ,  then  {y„} i s  a  Koebe sequence. W e d o  not con-

sider such sequences b u t  will treat them i n  a  subsequent paper.
W e shall be interseted i n  sequences {y„} fo r  which a n .-4 ) , n-+ co,

a n d  which satisfy also a  non-Euclidean hyperbolic distance condition.
F o r  a,b E  D  put

1 11—c/51+1a-1)1 .p(a, b)-= log l la—b1

a n d  f o r  a  s e t  S  D  let

HD (S)= sup {p(a, b)} , a, b E  S,

which is th e  hyperbolic diameter o f  S.
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D efin ition  I. W e  c all a  sequence o f  Jo rd an  arc s  {y „}  i n  D  a
positiv e hy perbolic diam eter sequence, hereaf ter a  PHD sequence, if

(2.5) 0 <  lim  HD (y„) l i r n  HD (y„)< cc .
n —■ co n— oo

It is easy to show that fo r  a  PHD sequence an —>0, n—* co, although
th is is not sufficient. I n  f a c t ,  a  P H D  sequence can be characterized
b y  t h e  behavior o f  its sequence o f  associated parameters. To this
e n d  le t  u s  ca ll a  sequence o f Jo rd a n  a rc s  fy„} i n  D  with associated
parameters {(R„, r„, 0„, 00 } a  radial-like sequence if

i) 0< lim p(R„, p(R„, r„)< 00 ;

(2.6)
ii) lim p(R n ei° ,, , R n ei( 0  -4- an))< 00 ;

n-, 00

o r  a n  arc-like sequence if

i) lim  p(R „, r„)=0
n— oco

(2.7)
ii) 0 <lim p(R n ei° ,, , R n ei n+ 1 0 )<lim  p(R n ei'n, R n ei(°"+") <  oc.

n  o o n  co

( I f  y,, i s  the  segm ent of the  rad ius rel°0 defined by 1 — —2  <  r < 1 —  1  

then {y„} is  a  radial-like sequence; while if  {y„} is  the arc of 1z1= I —

defined by 0„< arg z + I  a n  easy calculation show s that this { y„}

i s  a n  arc-like sequence —  hence the nom enclature for each family.)
W ith this term inology we state P ro p o s it io n  1  o r  ,R  without its

proof which is a n  elementary case analysis.

Proposition I. A  sequence o f  Jo rd an  arc s  {y „}  i n  D  i s  a  PHD

sequence if  and only  i f  each subsequence contains either a  radial-like

subsequence or an arc-lik e subsequence (or both).

F o r  a  function f  defined in  D  a n d  taking v a lu e s  in  th e  extended
plane W  we want to define how fast f  tends to  z e ro  o n  a  sequence of
Jordan arcs,
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Definition 2. L e t  f  be def ined in  D  tak ing v alues in  th e  extended
p lan e  W . L e t {y„} be a  sequence o f  Jordan  arcs in  D , {A n }  a  sequence
of  positiv e  num bers, an d  s  W e  say  f  has s-ex ponen tial o rder
{A„} o n  {y „ } if

lf(z)1_< exp A n
(1-1z ) '

z ey „, n=1, 2, ... .

A s mentioned in the  in troduc tion  w e  w a n t to  com pare  the  order
o f  a  meromorphic f  o n  a  sequence o f  a rc s  {y „ } w ith  t h e  grow th of
t h e  Nevanlinna characteristic function o f  f  o v e r  v a r io u s  subdomains
i n  D .  I f  F  D  i s  a  d o m a in  f o r  w hich  t h e  characteristic function
exists f o r  a  meromorphic f  relative t o  a  p o in t  zo E F  w e denote this
function by T(z o , F, f ). Certainly i f  F  i s  a  subdomain o f  D  bounded
by  fin ite ly  m any  analy tic  Jo rdan  a rc s  (i. e. a  regular subdomain) the
characteristic function exists. W e shall have occasion to  co n sid e r the
characteristic function over slightly m ore  general subdomains b u t  we
will treat the  problem of existence a t th a t t im e . I f  F  is  the  subdomain
Izi <r,  0 < r < 1, a n d  zo = 0 ,  w e  u s e  th e  customary no ta tion  T(r, f ).

I t  is  e a s y  to  p ro v e , b u t w e  assume w ithou t p roof, th e  monoto-
nicity o f  T(zo , F , f )  in  th a t  if  F  a n d  G  a re  subdomains w ith F c G c D
a n d  zo E F  ( a n d  t h e  characteristic function exists f o r  e a c h  domain)
then

(2.8) T(zo, F, f)_ T(z o , f ) .

W e refer th e  read e r to  th e  b o o k  b y  Sario a n d  N oshiro [4] as  a
reference f o r  a  general treatment of value distribution theory, a n d  o f
course t o  Nevanlinna [3] fo r the  m ore  classical approach.

W e conclude w ith o n e  further definition followed by a comment.

Definition 3. A  sim ple con tinuous curv e  y  =y (t), 0  t<1 , ly ing  in
D  is  said  to  b e  a  boundary  path  if  lim ly (t)1=1; and  a boundary  path

t-
at  T E C  if  limy(t)= r.

O n e  further convention w e  a d o p t. M o s t o f  th e  a rg u m e n ts  used
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in  this w ork involve a  limiting process, and w e are not in terested  in
the first N ,  term s. R ather than keeping a score of the various indices
w e som etim es use the phrase relative to  so m e  se q u e n c e  "su c h  and
such  a  property holds eventually for the sequence" to  replace "there
i s  an  integer N o s u c h  t h a t  the p ro p e rty  is  tru e  for a ll m em bers of
the sequence with index greater than N o ." A s long as w e  use this
phrase o n ly  f in ite ly  o ften  an d  a re  otherw ise reasonably careful no
problem arises.

§ 3 .  A  form of the Schmidt-Milloux Theorem

W e shall need a  fo rm  of the Schmidt-Milloux theorem as one of
the cornerstones fo r o u r  main re su lt . I f  y  is a  boundary  pa th  a t
T E C  w e define w(z, y , D — y )  t o  b e  the harm onic m easure at z  of y
relative t o  D— y.

Theorem A .  L e t  y  b e  a  boundary path at a  p o in t  T e C .  I f
min !z1 = a  then f o r z ED —y,

E y

(3.0) co(z, y, D—y)> 1 - arcsin  (1 a 2 ) ( 1 — iz12
)  

rr 16

This formulation is ob ta ined  from  the usual form  in  w hich a =0

b y  the routine device of mapping D  o n to  D  b y  a  linear transforma-
tion  w h ich  takes y  o n to  a  boundary  pa th  w ith  a =0  a n d  using  the
conformal invariance of the harmonic measure. Some obvious estimates
then  produce the above inequality . F o r  a  nice statem ent o f th e  in-

equality in  the usua l fo rm  see  T su ji [12, Theorem VIII. 11]

W e need  a lso  the following result from the fo lk lo re . I f  {z„} and
{ 4 }  are two sequences in  D  such that

1) liM I Z  =11M 141 =1;
n-.00 n•-■co

2) lim p(zn , 4 )<  00 ;
n  co

then
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(3.1) 0 <  lim I — 1z.l <  l i m  l lz .l <  c o .

n-031 - 141 - 7, - 0 .
1 - 141

If in  add ition  lirn p(z., z'„)>O, so also

(3.2) o< iim  lzu— z ' n co<1 
 —  l z „ I — lz.1 

Because o f  th e  obvious symmetry in  this result, under suitable hypoth-
esis we may substitute one of the expressions for another in  any order
argum ent w ithou t hesita tion . F o r  a  p roo f see  am ong  o the rs  R ung
[6, pg. 45].

§4 . Main Theorem

Suppose w e  a r e  g iven  a  non-constan t meromorphic function in
D  w hich tends to  s o m e  value, a ,  o n  a  PHD sequence o f  a r c s .  Is
th e re  a  connection between the  possib le  grow th o f  t h e  characteristic
function a n d  th e  o rder w ith  w h ich  th e  function te n d s  t o  a  on the
PH D  sequence? This question was answered affirmatively i n  a  except
tha t the characteristic function was replaced by the less general log M(r).
Theorem  1 below  gives an affirm ative answ er f o r  t h e  characteristic
function.

O ur s itua tion  i s  t h i s .  W e  h a v e  a  meromorphic f  defined i n  D
which tends t o  a  value a ,  possibly infinite, o n  a  PHD sequence { y„},

1under the  order condition that f —  a (or i f  a =  0 0 ) has 1-exponential

o rd e r  {i1.} o n  {y.}. W e now  proscribe a  sequence o f  dom ains fl,a)

s u c h  th a t  F;,") D E . ,  w here  E „  i s  the  m in im um  wedge containing y..
[See (2.1), (2.3) a n d  (2.4).] Succinctly, we enclose each y, symmetrically
i n  a  p i e  shaped P." )  w h ic h  h a s  a  fixed angle  o p e n in g  a .  O u r  aim
is to  estim ate  log  jf(z)— a l  f o r  z  in  t h e  subdomain A O E

) i n  te rm s of
th e  quantities A „ a n d  T(z o , f ) .  T h e  ra ther obvious ro u te  i s  via
the Poisson-Jensen formula.

T he  next several section will be devoted to som e technical house-
work in  o rder to  fo rm  th e  proper Poisson-Jensen representation needed
fo r  Theorem 1.
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Let S  be a  subdomain of the extended plane W sufficiently well-
behaved to support a Green's function G(z, a, S )  with pole a t  a
It is  w e ll kn o w n  th at the Poisson-Jensen formula is  v a lid  fo r each
of the domains F;,1 ) . The explicit formula is  sta ted  fo r example in
Petrendo [5].

Let {a i } 1 a n d  {bi }f.„, be the zeroes and poles of f  in  F2 ) w ith
each point repeated a s  often as its multiplicity. Let z E F 1 )  be chosen
(assuming z  is not a zero or pole of f )  and parameterizing the boundary
of fl,Œ) b y  ((t), O < t I , w e  have

log If(z)I Ly-1
7c5. 0

1log+ f(C(())Idco(z, 40,n ° )

+ E G(z, b i , fli
a ) )11=1

(4.0) — g -r Vo log+  lx 1
(1)) ,  dco (z, C(t), 11,2))

+ E G(z, a i , F ) ]
i=1

= T(z, f)— T (z , F ( 2 )  1
n f ) •

I f  z  i s  a  p o le  o f  order )  th e n  the corresponding Laurent co-
effic ien t c  replaces f ( z )  in  th e  le ft s ide  o f (4.0) and the right side
contains the term -1 1 1Iog 1C(t) — z1c/co (z, C(t), F';,Œ))  instead of the Green's

2n 0
function with pole a t z . Since z  will always lie in ./4,1 )  th is  is  a  bounded
term. Our arguments will apply equally well i f  z  i s  a zero or pole
so  for simplicity of notation w e assume that z  is neither a zero  nor
a pole.

W e are interested in  applying the Poisson-Jensen formula t o  the
domains fl,a)

 — y„. Some difficulties arise because y „  is assum ed  to
be on ly a  continuous path . There are several ways around this dif-
ficulty; we adopt th e  simplest sufficient fo r o u r n eed s . W e  replace
11,a)

 — y„ b y  a  new domain o f sim ilar shape but whose boundary is
free of zeroes and poles of f  by form ing first a  subdomain 1-/;,1 )  o f
P „O E

) ,  whose radial sides are parallel to those o f P„a) ;  whose circular
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side is concentric w ith z = R„, and whose sides a re  a t  a distance e„
from the corresponding side of .F1,1 ) ,  with e„--+0, n-+ co.

Because of th is condition w e can  assume th at /41 )  c H;,2 ) a n d  by
our choice of the sequence {e„} we can also require that the sequence
{y:}, where y„ is that part of y„ in M 3

1 ) ,  is yet again a  PHD sequence.
W e now a lte r  y : slightly by replacing it w ith an arc y , ( if  n e c -

essary) so that
1) { y }  is  still a  PHD sequence;
2) f  is  free of zeroes and poles on each y ;
3) each y'„ meets 11;,OE) o n ly  a t  one endpoint and otherwise lies

entirely in  11;,Œ) ;
4) on {y}, f  has 1-exponential order 

{ i '  .

This is  a ll possible by elementary methods.
The Poisson-Jensen formula is n o w  applicable t o  11;,")  — r„. If

we continuously parameterize the boundary of this domain (remember-
in g  th at y;, has tw o sides) by =((t), O. 1 ;  le t (a 111= 1 ,  {1311/1=1 , be
the zeroes and poles of f  in  1-/;,OE)  — y; and choosing any z  1-1;,'‘)  — y;,
not a zero or pole, w e have

lo g lf(z )1=  L -
1

log+ if((t))1 dw (z, C(0, 11 (.")  —  'YOL2 '

+ E G(z, b1, 1-1 ) —4)1
i=1

(4.1) lo g  I I c i c o ( z ,  a t), I-1"œ)

2ir f(C(t))

+ G(z, a i , .11;;2) —4)1
1-1

1= T (z , M t
)
f ) + T ( z ,  H - 4 ,  —/ -) •

Utilizing th e  subharmonic properties o f th e  quantities above we
have for z  H („a)  — r„, the two important inequalities

(4.2) T(z, 1-1 („OE)  — y;,, f)ST(z, FL"
)
, f )

and for z P,,c( ) ,  with R„ =max e FLOE),
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(4.3) T(z, f ).T (z , R „, f ).

F o r  t h e  particu la rs w e  aga in  re fe r t h e  r e a d e r  to  N oshiro and
Sario [10].

N ow  (4.2) is essential in  keeping the notation as simple as possible.
Because o f  th is  inequa lity  w e  a r e  a b le  to  r e t a in  t h e  dom ains F („Œ)

and fl,a )  — y„ and  to  assume tha t ( i)  the Poisson-Jensen formula is valid
fo r  Ffil )  — y„; (ii) each y„ m eet f1,1 )  o n ly  a t  one endpoint a n d  is other-
w ise entire ly  contained i n  11,2) ; a n d  ( i i i )  f  has 1-exponential order
{A„} o n  {y„}.

W ith these housekeeping chores finished we a re  f re e  to give

Theorem 1. L e t  f  be  m erom orph ic  i n  D. S uppose {y„} i s  a
PH D sequence in  D  such that f o r som e a EW , f—  a has 1-exponential

order { A „}  o n  {y„} (or if  a=0 0 , —1 has 1-ex ponential order { .21„}  on

{ y„} ). I f ,  f o r som e O<OC<TC, an d  som e sequence {z„}, z,, / 2 )  (def ined
as  in  (2.4)),

• T ( z  F ( a) )h m  n ,  n  
A n

th e n  f =a. (N o te  if  T = 0  w e  assume A „-- + co.)

P ro o f : We divide the proof into two cases according a s  to whether {y„}
contains a  radial-like subsequence, o r  a n  arc-like subsequence. As
m entioned  before  w e w ill a s s u m e  n o  z „  is a  p o l e  o f  f— a. If
infinitely many z u a r e  zeroes of f— a  the re  is  no th ing  to  prove.

Case 1. {y„} conta ins a n  arc-like  subsequence, say  { yi }. We

c a n  assum e a  =O . A pplying the Poisson-Jensen form ula t o  F!ix) —y;

loglf (z i )1=T(z . -1-)

<T(z i , f ) - l o g +  f(ic) dco(z i , C, 
p (a )

 —yi).
B d ( F r— y j)

(4.4)

(4.5)

Since fo r  C eventually
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(4.6) log+  – log
f ( 1C)1 f ( C)

and is otherwise non-negative,

(4.7) log I ftz;)15 T(z i , P i a)  –  iy n  2 1 A i
• cico(z C, P t )  –" Ir

=-T(z i , Pi a) , f )–   A -1.
  

co(z • y • F(.1 ) –y •).1– r • "

(Now (4.7) can be thought o f  a s  a  kind o f  generalized two-constant
theorem for meromorphic functions.)

The remainder o f th e  proof for th is case consists in  estimating
w(zi , yi , P i a) y i )  exactly as is done in the proof of Case 1 of Theorem
1 of R  (from (4.4) to  (4.14)). The notation is identical. W e  sketch
the estimate procedures and leave the details in  R.

We first map 
F S

11471.< 1 and using the conformal invariance
o f th e  harmonic measure, th e  Schmidt-Milloux theorem in  amended
form (3.0), and some elementary but lengthy estimates we find that

co(zi , yi , Plc )  y .)>, —

2  
arcsin Ca (R i – r i )

(4.8)
C„(Ri – ri ).

If we put (4.8) into (4.7) we obtain

log I T(zj, P t ) , f ) – A i C „( R i –

1–r •
(4.9)

f  )1= – AJLC , „ j 'J

As 00, the first term in the brackets has a positive lower limit — by
th e  properties o f  a  radial-like sequence in  conjunction with (3.2).
The second term tends to  zero by hypothesis and so, since Ai –>+ 00

(4.10) lim log f(z . )i = – 00.

The sequence {z i } h as  a point of accumulation, Co, in IzI –‹ 12
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and so f(0) =0. But the Poisson representation shows th a t  a n y  point
in  a  small disk about Co i s  the lim it of a  sequence {z'f },  w ith z's,  close
t o  zi fo r which T(z'i , P i œ) —yi , f )  has the sam e order of growth as does
T(z»  —  y»  f )  s o  th a t  the hypothesis is satisfied for this sequence
and we conclude that f  is identically zero in D.

1If a  =00, then w e replace f  by and since T(z„, f )  and T(z„,

•Ti
f—) have the sam e order of growth the proof is com plete in the

radial-like case.
Case 2 . (y „ }  conta ins a n  arc-like subsequence, which we again

label (M .  As in Case 1  w e can assume a =0, an d  apply the Poisson-
Jensen formula t o  z»  a g a in  a ssu m in g  th a t z i  i s  n e i th e r  a  p o le  nor
a zero of f ,

loglf(z i)1 T ( z  f (»- y »  f )
(4.11)

1
— 27r

1 
1 ° g +  f ( C ) 1  

cod  (z i , C, — y
( )B d (F ai  - - y j )

By the identical argument as in Case 1  we obtain

(4.12) log If(z )1  T ( z »  P i a)  — y»  f )— co(z y  •  P.Œ) -1—r• P

W e  must now  estim ate  the harm onic m easure but instead o f  using
the deep Schmidt-Milloux result we can invoke sim pler ideas as  in  a.

W e modify the arcs (y.11 (as in a )  by selecting a  subarc y »  which
extends from  one radial boundary of E .  t o  the other, meeting these
boundaries on ly  a t its  endpoin ts. Note t h a t  {y;} i s  s t i l l  a n  arc-like
sequence. Let g (

i l ) a n d  g (
i

2 ) b e  the radial segments of the boundary
of Ei  ex tending  from  these  and points t o  z  = R .  (O n e  o r  b o th  of
these segments may reduce to a point.) Let G(»  be  the domain bound-
ed  by  the radial boundaries of F ;  the tw o arcs of I z I =R ;  from  these
r a y s  to  the rays bounding Ei ;  the segments g (11 ) ,  g 7 ) ; and y .  S e e
Fig. 2.
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Fig. 2

By Carleman's Gebietserweiterung

(4.13) co (z i, y G(t)).

I f  w e  le t  s;  b e  the arc o f R i  bounding E. an o th e r  ap p li-
cation of the Gebietserweiterung gives

(4.14) co(z  y  U  q (
i l ) u q (

i 2 ) ,  G )>  c o ( z s i ,

The additivity of the harmonic measure gives, with (4.14),

(4.15) a)(z
P
• y

P
' .  G

.!
( .1 ) ) . ( o ( z  s  F ( .2 ) ) — co(zi , q (

i
1 ) , G (t )—  co (z  q (

i
2 ) , G (

i ff) ).
. J J J

W e now  estim ate  each  o f th e  term s o n  th e  r ig h t w h ic h  is  d o n e  in
L em m ata  1  an d  2  o f  R.

W e outline the technique of these two lemmas and state  the results.
B y  the first lemma we obtain

(4.16) co (z i, s i , CŒ1Rieiei — R i ei ( 0 rfli) I,

where C c,  i s  a positive constant depending only o n  a  an d  th e  inequali-
ty  is va lid  for any z ;  V i 2 ) . T o  see  th is  f irs t m ap  F (; ")  o n to  th e upper
h a lf  d isk  o f rad iu s R i  b y  a  ro o t  transformation.

Reflect the harmonic measure across the rea l ax is  to  a ll o f  lz < R
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and use the Poisson formula t o  arrive at (4.16).
The second lemma says that given s> 0  th e re  is  an integer J = J(s)

such that if j>

co(z G(ia)) s(Ri— ri)
(4.17)

w ( z  g (
i

2 )  , G (
i ") ) _ e(Ri — r

H ere  w e  first use the Gebietserweiterung to  g iv e , se ttin g  Di  = 121 <R i ,

(4.18) co(zj, 0 1 ) ,  G(
i

2 ) )_co(z i , g (
i

1 ) ,  D _  q 1)).

One can  com pute  th is last harm onic  m easure  by  first m apping
D j  lin ea rly  on to  itse lf  so  tha t q (

j
1 ) i s  n o w  a rad ius and after taking

the square root, one is left w ith the same harmonic measure a s  appears

in  th e  classical Phragmen-Lindeli5f theorem. The arc-like property—
in particualr (2.7(i))— gives the proper estimate, w hich is duplicated

for g? ) .
Combining (4.15) with (4.16) and (4.17) gives

(4.19) co(zi, y ,  G(
i I ) ) (C2 - 2 )(R i —ri ).

If  w e  use this inequality in  (4.13) and th e n  re fe r  to  (4 .1 2 )  w e  have
for sufficiently large j

(4.20)
loglf(z j )! T ( z  j , f)— A i (C„— 2e)1Ri ei'i — R i ei 0 .1+1 .0 1

y  f  )1 .— A a.[(C — 28)(IR J e ff), _ R ied(0,+..o _T (z  F (J OE)  —
J A i

B y  the arc-like property and by choosing s  sm all w e obtain  that

(4.21) lim loglf(z j )( = — 00 ;

and our proof concludes as in Case 1.
Because of the inequality (2.8) and the equivalence o f th e  char-

acteristic function vis-a-vis the point chosen — so long as the points
lie in a compact subset of D , w e can replace T(z., f )  by  T(R„, f)

in  Theorem 1.
If f  tends to a value a E W on a boundary arc y with a certain order we



A  connection between the Nevanlinna characteristic 287

c a n  in fe r  in fe r  in fo rm ation  abou t its c h a ra c te r is tic  g ro w th  s in c e  a
boundary a r c  produces P H D  sequences i n  abundance.

Corollary 1. L et f  b e  meromorphic in  D ,  a n d  y  b e  a  boundary
arc  o n  which f  tends to w o e W .

I f  f  i s  o f  bounded characteristic i n  D  a n d  f o r  z  e y  satisfies

(4.22) wo " P Al —(1zIlz)!

where AC zi) - + + a s  lzH 1 ;  o r if  f  i s  a n o rm al f unc tion  in  D  an d
f o r  z e y satisf ies f o r  som e e > 0  an d  som e positiv e constan t Af ,

(4.23) I f(z)— exP (1  _ i4z11)

then f =w o . ( I f  wo  = oo , w e  m ak e  th e  u su al substitution of  f (
1
z )  f o r

f(z)— we.)

Remark 1. The definition of a  norm al function originates in  Lehto
a n d  Virtanen [2], although th e  ideas in  less com plete form  a r e  found
in  N oshiro [4], a n d  Seidel and  W alsh  [11].

Remark 2. T h e  first result generalizes t h e  theorem  f o r  bounded
functions proved by Gavrilov [1] while the second generalizes Corolla-
ry  7  in  th a t th e  boundary  path  is no t required  to  be  a  non-tangential
path.

P ro o f. In  both  cases we seek a  PH D sequence with proper order.
T hus select any sequences {R„} w ith  0 < R„ <R„ A. 1, n -+ 00 . I n  easy
fashion o n e  can determ ine a  P H D  sequence {y„} w ith  t h e  properties

i) yn ç y, a ll n;
(4.24)

ii) {7„} has associated parameters {(R„, r„)}.

Suppose f  has bounded characteristic, setting

=inf A(Iz1), z  y n ,
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w e have that 00, n  co . T h u s  f  has 1-exponential order {A n }  on
{y„} so Theorem  1 prevails and f = w0 .

If f  is  a  norm al function recall that

(4.25) T(r, , f )  C  f log  1 j r 2 , O< r <1,

(L eh to  a n d  V ir ta n e n  [2 , p g .  5 8 ] .  I f  w e  put A(Izi) =(1 —  I z )- E, th e n

f  has 1-exponential order i
( l r ) C

}  o n  {y„}, and

lim T(R„, f)(1 — r„)c 1 ,irn. C1  (log ) (1— r„) =0.

T h is  is  so  b e c a u se  o f  t h e  P H D  property and (3.1).
Thus Theorem  1 holds and  again we conclude  f = w0 .

§ 5 .  Behavior of f  away from its zeroes

T here  is  a  reasonably direct w ay  to  o b ta in  P H D  sequences in  a
meromorphic function f  tends t o  a  v a lu e  o n  a  sequence approaching
C  b u t  d o es  n o t tak e  o n  th e  lim it value "n ea r"  an y  p o in t  o f  th e  se-
q u en ce . T o  b e  p rec ise  d e fin e  f o r  a  s e t  A g D  a n d  a  p o in t  b ED,
p(b , A )=in f p (b , a ) ,  a E  A . A lso  le t  Z (f )={ z  ED If (z )=0}  and for 0 <
b<

K (f )={ z  E Z(f))> 6).

Suppose a meromorphic f  tends to  a value w E W along a  sequence
{z,J, with lim I z„1=1. Suppose a ls o  th a t  e v e ry  z E K (f  — w) ( o r  K 6

n  co

(  1

f
 )  if w = oo) Thus in  each disk N(z„, (5)={ zEDip(z„, z)<(5 },  f  omits

w .  T h a t is  f(N(z„, 5 ) )  i s  a  dom ain on  the  R iem ann  su rface  which

does not lie  over the  poin t w . By lifting a rectilinear segment t(f(z„) —

w)+w, 121 - < t  1 ,  in to  f (N (z „, (5)) —altering the  segm ent slightly to
avoid any algebraic branch points —  we obtain under f a  curve y„

in  N(z„, (5) which extends from z „ (o r  a  po in t c lose  t o  z „ if  f'(z„) =0)

to  the  boundary o f  N(z„, (5) a n d  s o  {y„} is certainly a  PHD sequence.

M oreover o n  each y„, f(z)—  !f (z ,,)— w . I f  w e  le t  R „=lz „I and

R'„ =maxlzi, z E y„, then
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R„<R;„ and  p(R,„ R;,) 6.

Enclosing each y„ in  its corresponding FLOE)  f o r  any choice o f  0<a<n,
w ith  n  sufficiently large, Theorem  1 can be reform ulated to give

Theorem  2. L et f  b e  meromorphic in  D .  F o r som e v alue  w  W
an d  som e v alue 0 <6 < co suppose { z„} i s  a  sequence such that

i) z„ E K (f — w) ( o r  K  (-17 )  i f  w =0.);

ii) lz„1— 1, and f (z ) -+w, n—> co .

S e t  A„= — (1 — iznDlogifizn) — (o r A„=( 1 - 1z„DloglAznY i f  W = 0  0  )
 

I f
A — ) + c o ,  n- ÷00, an d  f o r som e choice o f  0 <6 <n, and

u r n  T(C„, 11,2 ) , f ) _ 0 ,

then f

Rem ark. T his theorem fo r  holomorphic f  a n d  with T („ , ), f )
replaced by th e  logarithm of the  m axim um  m odulus occurs i n  Rung
[7, Theorem  1].

Ju st a s  in  Corollary 1, T(C„, FL2 ) ,  f )  can be replaced by T(R'„, f).
Further simplification i s  possible if T(r, f )  satisfies some growth con-
dition, say o f  th e  form

(5.0) T(r, f)_<( 
 1 -

1
r ) ,

 O s <  co.

Since p(R„, R'„)_< 6, one  can  replace T(R;„ f )  b y  T(Izn I, f).

Corollary 2. L et f  b e  a  non-constant meromorphic function satis-
f y ing  (5.0). Then f o r an y  v alue w  W , and  any  0 < 6 < 00 , there ex ists
a  positive constant C, depending on f, w , an d  6, such  that f o r  z E K6

( f —  w )(or z  E K,,( 1 )  i f  w  co)

i) i f  w is  f in ite , w e  hav e that

(1— lz ) s+1_ C > _ . ;
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while
ii) i f  w  = ,

(1—  lz )s+ 'log 1f(z)1 C <  co.

P ro o f . S uppose  w  si finite and  assum e  no  su ch  C  exists. T h e n
f o r  som e sequence {z} , a n d  som e va lue  0  <  <  cc , z„ 1(,(f— w), all
n  and

(5.1) (1 — 1z„Ds ± l log — cc , n—> 00

I f  w e  s e t  A „= —1znDloglf(z0— w l,  th e n  (5 .1 )  and (5.0) com bine
to give

o< T (1z „I, f  )  < lim 1  (  1  
n-00 A„ (1— iz „Ds —  iznIlogif(z0 —

a n d  so Theorem  2 im plies f  i s  constant contrary to assumption.
A s we noted earlier in (4.25) if f  is  a  norm al function then T (r, f )

log 
1 —

1

r 2 '  
0 < r < 1. S o  th e  characteristic function satisfies (5.0)

f o r  a n y  choice of 0 < s < cc , a n d  C o ro lla ry  4  h o ld s  fo r  a  n o rm a l
meromorphic f  f o r  a n y  s > 0, although th e  choice o f  th e  co n stan t C
depends now also upon s. This remark and  Corollary 4 both generalize
a n d  im prove Corollary 1 o f  Rung [8].

§ 6 .  Similar theorems near points on the boundary

T o  th is  p o in t w e  have  needed a n  estimate f o r  th e  characteristic
function o n  fa irly  large subdom ains of D .  Estimates o f  th e  charact-

eristic function near a  p o in t  o n  C  w o u ld  n o t b e  o f  a n y  u s e .  There
a r e  c a s e s  in  w hich estim ates o f  t h e  characteristic  function near a
p o in t  o f  C  a re  availab le . I f  a  function has a  non-tangential limit at
a  p o in t  o n  t h e  boundary  then  c learly  t h e  characteristic function is
bounded w hen restricted to a  dom ain bounded by two hypercycles at
this point, and it  is  true , as we shall prove, tha t a meromorphic normal
function has this property at every p o in t o f  C , whether o r  n o t it  h a s
a  non-tangential limit at the point.

W ith  little  e x tra  w o rk  w e  a r e  a b le  to  obtain identity  theorem s
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as in the prior sections, except relative to domains impinging on C  at
a single point instead o f a n  a rc  a s  previously required.

The p ro o f  o f C ase  1 o f T h eo rem  1 c o n ta in s  a ll th e  necessary
estimates and a ll tha t is  requ ired  is  to  change o u r point of view . W e
now  consider a  PHD sequence {y ; }  where each I) ;  is  c o n ta in e d  in  a
dom ain of the fo rm  F (; ) o n ly  th is  t im e  w e  suppose th a t  yi  is  c o n -
tained in F (? )  w ith  the exception of one endpoint which is at the origin.
T hen  tilt the P i a)  s o  t h a t  the vertex (and consequently the y';  s) ap-
proaches C  and w e have the situation of the theorems in  Gavrilov [1].

W e  are  no t be ing  en tire ly  accu ra te . A c tua lly  w e  find  it more con-
v e n ie n t to  use dom ains bounded  by  arcs o f circ les ra ther than  tri-
angular dom ains. Let us proceed to  the details.

F o r  a  com plex num ber a  and  r e a l values 0 < R < o o , 0< 0 <27t,
0 <a < ir , f irs t  p u t a' =a+ Rei°, th e n  le t  C ,  an d  C 2  b e  the distinct
circles of the sam e radius, each of which m eets a  and a '  and which
m e e t  a t  a  w ith  angle Œ. I f  B  i s  the perpendicular bisector of the
line  segment from  a  t o  a ' then  F (a , R , 0 , a)  w ill denote the domain

bounded by C 1 ,  C 2  and B , which contains the point a+ Aei°. We4
shall be concerned with sequences of such domains {F(a„, R„, 0„, a n )}.
In the sequel we restrict {R} and {a„} to  b e  constant sequences which
allows somewhat less complicated statements for the results.

Definition 4. L e t  {yn }  b e  a  sequence o f  Jo rd an  arc s  in  D  and
{F(a n ,  R ,  On ,  a ) }  a  sequence o f  dom ains a s  def ined abov e. W e say
th a t  {y „ } trav els i n  {F(a n ,  R ,  On ,  oc)} if

i) F(a„, R, On ,  a )g D , a l l  n;
(6.0)

ii) Fo r som e v alue E> 0 , yn gF(a n ,  R ,  On , ce —v),e), a l l  n,

except f o r o n e  endpoint w hich coincides w ith an .

Note th a t  {y „ } m ay travel in  many different sequences {F(a n , R ,
0 .,

Given such a F(a n , R, On , a) let AI )  be the subelomain of F(a n , R, On , ;-)
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z—a,, _ (  1  y/ 1'.between th e  circles z  — (a n  — ) œ l i c  a n d  
z — a n4 z —a'„ 2

These domains a re  equivalent to th e  corresponding domains L „ defined
in  (2.4) relative to  Theorem  1.

Theorem
On , Œ) F } .
weW, f—w

o rd e r i f  w=

3. L e t {y„} b e  a  P H D  sequence trav e lling  in  {F(a n , R ,
Suppose f  is  a  meromorphic f unction such that f o r some

7has ii--ex ponen tial order {A „ }  o n  { 7 }  (o r 7
1 h a s  t h i s

c o ) .  I f  f o r  som e sequence {z„}, z n e 4 a ) ,

(6.1) l i m  T (z „ , FL' ) , f )  _0
A„

then f=w .

Rem ark. T h a t th e  characteristic function exists over th e  domains
FLI )  is clear because they a re  conformal equivalents to th e  old domains
F („2 )  o f  Theorem 1. A gain w e need to  use the Poisson-Jensen formula
fo r  th e  domains F,OE) —y„ b u t  w e m ake th e  sam e arguments to justify
th is  a s  given prior to  Theorem  1. W e n eed  to  b e  a  b it  m o re  careful
i n  selecting a  slightly smaller domain — if necessary — because o f the
need to  preserve the travelling p ro p e r ty . If  th e  endpoint a „  o f  y„ is
a  singularity o f f  w e choose a  new  a rc  y'„ close t o  y„ a n d  satisfying
basically th e  sam e exponential order i n  o rd e r  to  o b ta in  a  new  FLOE)

contained in  the  orig inal and such that the  revised y'n s till trave l in the
n e w  F;,2 ) — although th e  v a lu e  s  may be different.

P ro o f . O u r  proof parallels th e  p roo f o f  Theorem  1  (and agrees
in  th e  m a in  w ith  th e  p roo f o f  Theorem 3  o f  .q). F o r  completeness
w e  sketch  the  pertinent ideas.

A s  u su a l w e  c a n  assum e w = O . C h o o se  a  subsequence ni = j  for
which th e  lim it  in  (6.1) holds. Thus

T(z
,
• F ( .2 )

,  
f ) 

— o
.1 

A .(6.2) lirn 

Let
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(6.3) r =mintz ,  z e y i .

W ith this value r ,  i f  z  yi ,  fo r  all j,

(6.4) log I f(z)1 )./. •

Now choose a  p o in t  b.; y i  such  tha t

(6.5) T1. HD (y b i) . HD (y i ) ,  a ll j.

This is clearly possible.
A pply the Poisson-Jensen form ula in P P  — T.; to  o b ta in , a f te r  the

usual estim ates including (6.4),

(6.6) log I f (z .i)1 T (z i , f , 024/ i n k ,  co(zi ,

W e proceed  just a s  in  C a s e  1  o f  th e  p roo f o f  Theorem  1  after we
obtained (4.7). T he nota tion  is identical w ith  C ase  1  a n d  th e  details
o f  th e  proof follow exactly th e  proof o f  Theorem 2  o f  M  where the
notation is  a lso  th e  sa m e . C a rry  p (t ) o n t o  Dw : I wl <1, by

1- 11./(z))(6.7) w (z )=  w(hi(z))— (i±h i(z ) 
+  1  - h i(Z )  )

where

(6.8) hi(z) = (e - i ( n - 1 )  ( z — a i T , a ' i =a i -FR ei°J, all j.

I f  Lo) : 1 <114, 1 < —1

'
• < arg w < '

3 2  t h e n  b y  t h e  definition o f  Vi a) ,4 2 4 4  

(6.9) L(?) =117 1 (L(" ) ), all j .

W e m ust again estim ate co(z, yi ,  P i Œ) —yi ) f o r z  L (I ) . Because ri —>1
eventually Vi a)  c — yi ,  a n d  w e assume th is  to  b e  the  case  fo r a ll j.

L e t  y',1! b e  t h e  subarc of w ( y )  which connects I wl = I w7(b; )1 to
13/4, 1= 1  a n d  lie s , except f o r  endpoints, i n  th is  a n n u lu s . T h e  Gebiets-
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erweiterung produces for w  D„, — wI(y; ) ,  and all j,

(6.10) co (w, w." O A D. —  wl(Y1)) yl, Dw — y1).

Observe that by our construction of L (1() ,  there is a  B , such that

(6.11) B,<1, all j.

B y  u se  o f  Theorem A , th e  conformal invariance of the harmonic
measure, and (6.10) and (6.11), it is true that

2 (1 —  Bi)(1 — 1111 (b i)1 2 )(6.12) co (z i , F(23— y arcsin 16

for zi  E L(I ) .
A  few calcalations yield

(6.13) _ iw (b i )1 2 b; — ai ) 21s/a]
1bi —

e
b —a'

Unlike case (i) o f  Theorem 1 the last term in brackets in (6.13)
contributes not at all to the order estimate because p(ai ,
implies bi — ai l —00, J - 4  0 0 , which in turn implies, because bi — ,

(6.14) 1 — bi — a;

bi —a,'.
21r/Œ 1

2 ' j  sufficiently large.

The first term  is crucial. By considering the geometry o f P i a )  (first

transform it by ( z  ( 1 0e it is  e a s y  to  s e e  th a t ,  s e t t in g

yo; = arg  (n-1))

(6.15)
R

a il r œ  sinC a\ b.; — )

> O f — a ir
.R 2a

The last estimate (and value e ) is obtained from th e  definition of
ty; }  travelling in {F(1 ) }. According to our definition o f  bi  i n  (6.5),
Lemma A  obtains and so eventually
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(6.16) laj—bil (1—lail)to, to > 0 .

tRow ith IC = roe sin 271  ,  ( 6 .1 2 )  is n o w  b e c a u s e  o f  (6.13), (6.14),

(6.15), (6.16), a n d  th e  property o f  arcsin

(6.17) y» F(t) —
7r2 ( 1 —16131 ) K G''' (1 — a zieL(f),

and j  sufficiently large.
O u r la s t s te p  is  to  notice because {y; }  is  a  P H D  sequence

(6.18) 1 —ler.p  (1 — ri )t i , t ,  >  0 , all j.

A nd s o  (6 .6 ) u s  affected by (6.17) a n d  (6.18) a n d  becomes eventually

f o r  zi  e Vi a) , after setting  c e —Ç —  B 2  )t1/
87r

log if(zi )l < — A; C„,e +T(z p  P i a) , f)= — Af[C„,c T(z »  Pt ) , f ) ] .

A ;

Because o f  (5.2) limf(z i ) =0, zi E L .  S i n c e  the  A " )  h a v e  a  "limit
dom ain" o f sim ilar form  in  D  than f  is identically z e ro  o n  this limit
domain a n d  so  m ust b e  zero throughout D .  This completes th e  proof.

T he  lim it in  (6 .1) cannot be  re laxed  to  a  positive value, nor can
th e  PH D property be om itted. Exam ples a re  found in [pg. 444-5].

T h e  various corollaries in  a ' a fte r  T heo rem  3  rem ain valid w ith
th e  function T  replacing N o te  th a t  th e  o rd e r  re la tion for f  on
th e  boundary a rc  y  in  Corollary 5  of m ust be changed a s  indicated
in  R ung [ 9 ] .  The form ulation in a  is foo lish .

§ 7 .  Applications to  normal functions

A  meromorphic function f  in  D  is norm al if and  only if

A f  (7.0) p(f)(z) z  D

w here p(f)(z)— 1 ±
1f i f

(z
( z

)
 1 2 .  D etails a r e  fo u n d  i n  L eh to  a n d  Virtanen

[2 , p . 5 5 ]. W e  sh a ll b e  c o n c e rn e d  w ith  a  le ss  restrictive hypothesis
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nam ely that f  b e  n o rm a l in  hypercyclic dom ains a t a  p o in t  T  o n  C,
i.e . dom ains o f  th e  fo rm  F(T, a, 0,, /3), 0_/3<n, a n d  where we choose
0 ,  so that  t +  Œe'°  = - ' r .  I n  th is  s itu a tio n  a  necessary a n d  sufficient

condition a k in  to  (7 .0 ) is tha t for each 0 <,0 <-2-7r , i f  z  eF(T , a , 0„ fi)

=H(1., 13),

(7.1) P(f )(z )(1- IzI)< °°.
2

See Lehto a n d  Virtanen [2, Theorem 5].
A s  prom ised w e show  th a t  i f  a  meromorphic f  satisfies (7 .1 ) at

a  poin t T E C  then the  characteristic function is bounded on  any H(T, 10).
Precisely we mean that viewing H(T, )0) a s  a  dom ain o f  th e  form  F(T,
Œ, 0,, 13), a n d  le tting  z  L ( i )  th e n  i f  f  satisfies (7 .1 ) at ' r E C, T(z, f ,
H(T, 13)) is f i n i t e .  I f  w e  m a p  H(T, /3) conformally onto  I 14,1 < 1  by
w =w*(z) defined i n  (6 .7 )  a n d  (6 .8 ) (with a =2, ai = - T i , a l l  j, a =/3,
a n d  R = 2 ) it  is  su ff ic ie n t to  show  th a t  th e  Nevanlinna characteristic
o f  g(w)=f(w* - '(w )) is  f in ite . W e  u se  th e  spherical fo rm , a n d  so we
want to estimate

(7.2) Sg(r)= p(g(w))2 dudv, w =u+ iv
IwI <r

U sing th e  inequality i n  (6.13) a n d  th e  fa c t  th a t  z e ll(r, 13 ) it  is
easy  to  show th a t i f  I w I < r ,  then  z =  w *'(w ) satisfies

(7.3) z1 <1 - ( 1 - K r)  ,

fo r  some constant K > 0.
Because o f  th e  conformal invariance of the  spherical area w e aim  to
estim ate S g ( r )  i n  1-1(T, fl), a n d  f o r  convenience we select T = 1. Let

11- I  H *(1, ,0, r) b e  t h e  d o m a in  b o u n d e d  b y  t h e  circle z 1- r 
11+ z I K  •

F o r  r  sufficiently c lose  t o  1 , a n d  refering t o  (7 .3 ) it  is  c le a r  th a t

(7.4) S 9 ( 0 S  1 1  ( p ( f ( z ) ) 2 dxdy, z =x+ iy
11*(1,f l,r)
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1—To evaluate the integral on  the right transform it by z —1+  '
C=tei 9 ,  and after some obvious estimates, including (7.1), obtain with
C(fl) a positive constant depending on ,6,

-#/2

Sg (r)
/3/2

1-r 

C(I3)t 
)  4 t  2  co s2

99dt 4,

1- r

— K (f3) dt
4cos 2

1

<  ,(3C(,6)  1 0

g

 (1—  
— 4cos 2 ,6/2 K

It is now clear that

S g(r)dr < co ,

and so T(z, f, H (t, ,q)) is finite for z E L().
We owe this theorem in  a  sense to Tsuji who proved it by heavy

computations for meromorphic f  which omit (the same) 3  values in
each H(t , fi), 0  f i . < rr, [12, Theorem V II. 12].

If f  satisfies (7.1) and hence (7.4), the counting function restricted
to H ( r, fi) must be finite and so (7.1) implies that for any value WE W,
and each 0  fi <rc

(7.5)( 1 - 1 z 1 ) < c o ,
zEz( f - }o n w ,p )

1counting multiplicities and as usual letting z E  Z(
f

)  n H(T, fi) if  w =00 •

Using (3.1), (7.5) and Hurwitz's theorem we can restate the above
observation as

Theorem 4 .  L e t  a  meromorphic f satisf y (7.1) f o r s o m e
Suppose {z„} is  a  sequence approaching t inside a  hypercyclic domain
a t  t  an d  such that
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i) f (z „)-)w EW , n-00;

ii) E ( 1
- 1z.1)=oe,

then w  i s  in  th e  c lu s te r s e t  along ev ery  curv e approaching T  in  a
non-tangential fashion.

We now return to PHD sequences to state th e  following theorem
which improves Theorem 5  o f  R.

Theorem 6. L et f  b e  m erom orphic i n  D .  L e t  {y„}  b e  a  PHD
sequence trav e llin g  in  { F(a„, R , 0„, a)} , 0<Œ<n, an d  su p p o se  a--T

EC, n - *co. If  f or som e wo e W  an d  some q > 0 , A > 0 , f  - w 0 (o r  —

1

f
i f  wo = co ) h as  ( 1 + 0  ex ponential order { A }  o n  {y„}, then either
f  =w0 ,  o r there ex ists a  sequence {z„}  approaching T  non-tangentially
with

(7.6) lim P(f )(;)( 1  - Izni)= c°
'

yr.co

Pro o f . T he geometry of travelling gives fo r  some 0< $o <iv, (with
6  given by Definition 4  travelling) that, f o r  n  sufficiently large,

(7.7) F(a„, R , on , a -  - 2 -
6 )gH (T , 13 ).

By choosing flo c lo s e  enough to it s o  t h a t  --< 1 + n ,  we can now
fio

begin by supposing that (7.6) does not hold, which is to say that (7.1)
does h o ld .  T h en  b y  (7 .7 ) t h e  characteristic function is uniformly

sbounded o n  F(a„, R , On , a — -f- )  for all n. Theorem 4 is then applicable

w ith  A„= A(1 -  lan D(R/ P 0)
-  (i+n), a n d  s o  f  =wo . Otherwise f  is n o t

norm al in Her, /30  and  the  ex istence  o f the  sequence {z„} is assured.

Remark 1. T h e  mirror result in  a  [Theorem 5 ]  added th e  con-
dition that p(y„, y n + i ) m , a ll n.

Remark 2. Except fo r  th e  above result, th e  theorems in  a  con-
cerned with norm al functions d o  not have generalizations v ia  Theorem
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3. The reason fo r  this (unhappy) state o f  affairs is that th e  hypothesis
a ll guarantee  that f  has angu la r lim it a n d  so  is  b o u n d e d  in angles.

Remark 3 . I t  w o u ld  b e  desireable t o  a b a n d o n  th e  requirement
i n  Theorem  3 ,  a n d  its  co ro lla rie s , tha t {y „ } m u st a p p ro a c h  r  in  a
travelling m a n n e r . I t  w o u ld  b e  n ic e  to  a llo w  th e m  to  a p p ro a c h  T
w ithin  som e hypercyclic region b u t  otherwise be. free  t o  assum e any
sh a p e  th e y  d e s ire . T h is  w ou ld  a llow  resu lts  o f  t h e  t y p e  g iv e n  in
Theorem 2  except now  relative t o  th e  characteristic behavior o n  hy-
percyclic dom ains. B u t  w e  have  n o t  b e e n  a b le  t o  sh o w  e ithe r the
necessary of the travelling condition nor to  p rove  T heorem  3  without
it. O n  this somewhat gloomy note we conclude.
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