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E. Hopf discussed in details on ‘‘Burgers’ equation” in his famous
paper [5]. Since then, a great many papers on this equation and its
related topics have appeared. The present author, however, thinks that
there lies a very deep gap between the above equation and the system
of equations for compressible viscous fluids. This paper aims at
taking a step towards the latter, especially, from the view-point of
treating temporally global problems.
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§1. Introduction and Notations.

We have shown in [7], [8] the existence of a temporally local
solution of the system of fundamental equations for compressible viscous
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fluid:
.y 1 54 1
== A+=VF-div)v— (v F)v——7F p(p, 0)+f,
p 3 P
(v, velocity vector; p, density; 0, absolute temperature;
p, pressure; p, viscosity coefficient; f, outer force),
00
(1.1) W—C—[A9+<P(Vv)+pdlvv c,pv- V0],

U
(c,» specific heat at constant volume; x, heat conduc-

tivity; @®(Fv), dissipation function),

p.
o +div pv=0,

where u, x, and ¢, are assumed to be constants as functions in p and
0. The problem of the existence of a temporally global solution in
(1.1) presents very great difficulties because of the complexity in non-
linearity that the system (1.1) of differential equations contains in
itself. In view of such circumstances at present, we attempt in this
paper to discuss on the temporally global behavior of the solution of
a much simplified model of the system (1.1), i.e.:

2
12 [ L= Lt -t ) G (1)

ap 0 _ dp Op _ v
12?2 | Lo+l =0, (or Lroil=—p

where v is a scalar function and xeR!. We name the above system
(1.2) of differential equations the ¢‘generalized Burgers’ equation” after
the well-known Burgers’ equation

2 v
@ Sen ool

As we shall see in the course of discussing on the subject under
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consideration, it seems that the study of the generalized Burgers’ equa-
tion itself gives a great many suggestions on the treatments not only
of the system (1.1) but also of non-linear problems in general.

Notations. In this paper we follow chiefly the notations used in
[7]1, [8]. Generally speaking, the functions to be considered here are
defined in R! or R! x [0, T](0<T< + ) and as many times continuously
differentiable there as necessary.

lu(x)|@=suplu(x)|, |u(x)|®= sup M)——M,
xeR! x;;:',eRl [x—x'|*
XX
(1.4) (0O<a<l),
L= [u(x) —u(x')]
()l xari T x=x|
n di
lux) ™= 3 |7 uEo) |,
W4 § e =l + | ut|@,
G0 = () |+ | Lo u(x) |, (n=0,1,2,...)
dax®
[v(x, D= sup  Jo(x, 1),
(x,t)eR1'%x[0,T]
, 1 (2) = |v(x, t)—-v(x’, t)l
Iv(x )|x,1‘ (:;;r),.(x',szl)leklx[o,ﬂ Ix_xlla
XX
D)@ = lv(x, ) —v(x, )]
(1.5) [v(x, 8| gin'(x’ﬁgg{,x[o'n =7 ,
P

[v(x, P =v(x, DI+ [v(x, D,

(lo(x, 9)|{E), ete. are defined in an analogous way to
lu(x)| D).
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v ollp=_ % (DiDwle,  (D=G . D=go),

2r+s=0

ol gt = ol + 3 |DiD5v|E)y
2r+s=n

| Dy Dy v {42,
(1.5), 2r+s=max[n—1,0] ’

n n—1
<v>{r0= 3, |Dsvlf + DLl

vy Pd=<o>EmI4 <o>mY),

'<v> MO =|Dro|, (n=0,1,2,...),
where r and s are non-negative integers.

H" = {u(x):||lul|™ <+ oo},
Hu+at(or+L)E {u(x): I|u||(n+a(or+L))< + oo} ,
Hire={v(x, 1): ||| ¥ < + oo},

(1.6) Arre={v(x, 1): Kv>PtO< 4 o0},

By={o(x,1): 3 |DiDsoli <+ oo},
r+s=0

Brre={o(x,t): 3 |D;Dyo|{®<+ ¥ |DIDsvl{®< +oo}.
r+s=0 r+s=n

If notations, not described above, appear hereafter, then they
will be explained where they appear.

§2. A Fundamental Lemma.
We assume for (1.2) the following initial condition:
v(x, 0) =vy(x)E H2*¢,

(2.1)
p(x, 0)=po(x)€H!,  (0<p, (constant) <po(X)=<po=|pol‘*).
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Let (v, p) be a solution in HZ**x Bt of (1.2) satisfying the initial
condition (2.1), and X(t; x, t) be the solution curve of the characteristic
equation for (1.2)2 as a linear equation in p:

2 %2(1;3:, t)=v(x(z; x, 1), 1), (0<t<t<T),
(2.

X(t; x, )=x.

We note that, since = H3%"%, the solution curve for (2.2) starting at
an arbitrary point (x, t)eR! %[0, T] is unique. From (2.2), we have

o, g
(2.3) X(t; x, t)=i X(1; x, t)=eJ o EE im0,

0x

If v(x, )e H%3** is given in (1.2)?, then p(x, t) is uniquely determined,
being expressed by

p(x, 1)=po(X(0; x, ) X,(0; x, 1)
24 o
=p0(§(0’ X, t))e‘-[ ovx(x(r;x,t,)t)dt .

For simplicity’s sake, we put

2.5) [ o(z; x, =p(X(z; X, 1), 7),
‘ [ o x, =0(x(x: x, 1), 7, ete.

Directly from (1.2)!, we have

(2.6 053 % 09015 x, ) =pivge(T; %, 1), (05T

i
IIA
3

We remark here that
(2.7) 0(1; x, )X(7; x, 8) =po(X(0; X(7; x, 8), )
x e_j;E(:';i(r;x,z).:)dr' x e-j;F;(r';x,p)d:'
= po(x(0; x, )~ o™ = p (i, 1),

Therefore, by (2.6) and (2.7) we obtain a result that
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J p(x 00 5(x; %, ) =0(%; %, DRAT; X, )
(2.8)

d ... T (e % (-
l X-—‘FU(‘C, X, ) =uv,,(7; x, )X, (7; x, 1).
Hence, by integrating both sides of (2.8) over [0, ] we have:

Lemma 2.1. If (v, p) is a solution of (1.2) in H%**x B} satisfying
the initial condition (2.1), then the following equality holds, i.e.,

.9) il ol 3, 05,025 x, e
0

=p(x, r){v(x, 1) —vo(xo(x, t))}’
where

(2.10) Xo(x, )=X(0; x, 1).

§3. The Uniqueness of the Solution.

Now, let us direct ourselves towards the problem of uniqueness
concerning the system (1.2) of differential equations. We assume that
there exist two solutions (v, p,) and (w, p,) of (1.2) in H%**x Bl
satisfying one and the same initial condition (2.1). (N.B.: p is uniquely
determined by ve H%** under the condition (2.1).) Then, the follow-
ing equalities hold:

v;=LU

G.1)! Py
U(x, 0) =UO’ pv(x9 0) =p0,

xx " Uy, (P u)t + (p ,,v),,=0,

Wt=—p£— Wyx — WWy, (pw)t + (pww)x=07
(3.1)? "

w(x, 0)=UO, Pu(X, O)=p09 (OgtéTs xERl)'

The difference v—w satisfies
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(U_w)t= £ (U_W)xx'l' {(L—L)wxx'—v(v_w)x
(32) Pv Pyv Pw

—(v—w)-wx} , (v—w)(x, 0)=0.

We note here that v—wx € H3** and that £ and —#—EH%. Since it

v w

is known that the bounded solution of a linear parabolic equation is

unique, by use of the fundamental solution I'(x,t; y, 1) of the

Nz
linear parabolic equation
0 _p 02
(3.3) 7 W o OxZ Wi(x, 1),
v—w can be expressed as follows:
t
(v—w)(x, t)=S drg F(x,t; ¥V, T; K >
0 R! Py
(34) 1 {(Le =L )0 Dy =0 (0= ), = (0= w)wy .
(N.B.: [[{-+}I¥ < + o).

Lemma 3.1. The norm |v—w|{) (0<T,<T) is estimated from

above in such a way that

(a)
G5)  lo-wlysCy(To,| e DNRE D1,

(0)
+
T

2
Po

(N@, 9={+} in (3.4)),

where C.(Ty,...) is monotonically increasing in both arguments and
decreases monotonically to 0 as Ty\,0.

Proof. Calculating in the same way, for the case that the dimen-

(a))
T

sion of x is 1, as in [8], we have

P
P

(0)
+ U

s

D’;'F(x, t; ¢, 1; L)
Py

<c§(To,

T
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(36) « (t—‘[)_ l;m

exp{—af(m)————lxt:i| : },

(m=0, 1, 2),

where d(m)(m=0, 1, 2) have the form, respectively,

A - _ _
(3.7) d(m)=—#%, (N.B.: (1p,1$) " <p3' <|p3! 14,

polr

A(m)’s are positive constants

depending only on m).

Thus, for m=0, 1, it holds that

(8) D= =Co(To, | L

T

1+m

1
~ 7z _2
=C(‘,'"’(T0,...)|N|‘T%’< u )“‘S'(t—r) " d
0

d(m)

(0)

_ 1x—¢|2
x‘gtd‘cg (t—1)7 2 e M= yge
o Jrt

(@) ~
I
v
(0)
To

(0)

To

1
n —2— "
= i T NN (s ) 27 T4%

d(m)
(0) (a)
=c<m)<T, N ’L >N$m,
0 I + .l IN|$),
-
/ (m) — ¢~ (m) n ) com . T=1(m/2)
(3.8) (C™ = C (d(m) . T51m/2)),
Therefore, we obtain
(3.5) o—wllfY) <(C{Q+CEV)IN|EY
2o |9 L | 7o 1 ((0) 4 1 ()
=C(T,, #" r +l7): r “|NIFY, (C="Cy» +'C1).

Q.E.D.

Lemma 3.2, The following inequality holds:
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(

0)
, SCy[To; 0, wl-llo—w|fh),
o

(3.9) ‘ plv ~%

where C,[To]\0 as T,\0.

Proof. Firstly, we have an equality

1 1 Pw— P 1
—_— =W b= Xo(x,8); w
Po  Pw  PoPw pv'pw[{p"( olx: )3 W)

(3.10) —polxo(x, t; v))},e—_[:)w_x(t;x,t)dt_l_po(xo(x, t;v))

% {e—j 'ow—'x(r;x,t)dt_ e—j;ﬁ(t;x,t)dt}].

Therefore, we have the inequality

(=== ) 0| S B0y 2|02+ Tottmst 4162157

X |xo(x, 5 w) = x0(x, £; 0)|+ (po) ™"

(3.11) ,
x e2To(lwxl "+ loxl ) . ] So(w_x(r; x, ) —v,(t; x, )dz|,

, _ d
0=t=To =T, po=— Po(x)).
Now, we note that

%i(r; x, t;0)—=X(t; x, t; w)=v(X(t; X, t; v))

(3.12) 1 —wW(X(T: x, t; W) =0(X(c; X, t; 0)—v(X(T; X, t; W))

A+ {o(E(z; x, t; W) —w(X(t; x, t; W)}
Hence, it follows that
(3.13) |xo(x, 15 0) = Xo(x, £; W)| <[o—w[{Q)(eTol =l —1).

In the next place, we have an estimation that
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S;{w_x(t; x, ) —0(t; x, t)}dr‘

= || fa(xGes 5, 1500, D= 0R: 3, 15 0), D)
(3.14) °

+ ‘S;{w,(x(r; X, 13 b), 7)— 0 (R(: X, 13 V), 1)}dt|

(0)
Swaeel 1 o= wli (eToloxlr” — 1) + To| (v —w), %)

Thus, by (3.11), (3.13), and (3.14), we have finally

0)
|- | < Tp0) 2o l@reTotety s st

Po Pw'T

- et €0 (0
Gas) | Fee)TretTedlely i [0

- © ; )
x (eTolvxlz '— 1)+ (po) le- 2To(loxl DHIwsel " T,

X lo—w|)=C,[Ty; v, wlllv—w||5L),

where C,[Tp:...] is equal to [...], in the right-hand side of the
inequality in (3.15) and has the above-mentioned property.
Q.E.D.

Theorem 3.1. If (v, p) and (w, p*)e H3**x B} satisfy (1.2) and
(2.1), then (v, p)=(w, p*), (p=p*=p,).

Proof. We note here that

(0)

To

L

N X, t (0)§ Wax (0).
(3‘16) | ( )lTo I’LI lT pu P

+ 0§10 —w),I59) + Iw[§9 o — wliS).

Therefore, by the lemmas 3.1 and 3.2, we have

llo—wlfh) S CL(To) NI S C i (To) {lwerl o —wll§Y
(3.17) x Co[Tos .. T+ (105 + [x.$)}Hlo — wllty)

=C3[To; v, wlllv—wl,

where C; is defined by
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(3.17y Ci[Ty; .. ]1=C(TY)C,o[Ty: ... W, | L9
+Cy(To)([0]§” + w4l $)

and C3[To]\\0 as T,\\0. Since it holds that, for a sufficiently small

TIE((), T]’

(3.18) 0eC,[Ty; ... 1<,

we obtain

0=<(1—C5[T ]y llo—w||{) =0,
(3.19)
0<1-C,[T,]1=1.

Hence, it follows that

(3.20) llo—wli§) =0,

that is to say,

(3.20) v(x, ) =w(x, 1), O=t=T,<T).

According to the assumption of the theorem, we can continue this
procedure again by starting at t=T,. As a result we have

(3.21) ”0—117”2%-)1.5.7':)/\1-:0, (a/\b-_—min[a, b]),

where T§¥ is a number such that (3.18) holds for C; as (po)~! and
lp5|(® are replaced by [(p,) 71§ +1(p,) 1§ and [(p,)l$” +1(p.):l5,
respectively. In this way, after a finite number of repetitions of this
procedure, it is shown that the assertion of the theorem holds. (We
remark that T§ can be taken uniformly with respect to the repetitions
of the above-mentioned procedure.) Q.E.D.

§4. The Exisfence of a Temporally Local Solution.

In this section, we demonstrate the existence of a temporally local
solution of (1.2) satisfying the initial condition (2.1), in a way analogous
to that in (8). The method of demonstration is much simpler than in
(8), so that we restrict ourselves to giving just an outline of the de-
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monstration.

Let us take an arbitrary function o(x, t)eH3** satisfying (2.1).
Then, it is obvious that p,e B}, because it satisfies (2.1). Now we
define a non-linear mapping G; from

4.1) Sr={v: ve A", v(x, 0) =vo(x) € H2**}

into itself in the following way:
4.2) b(x, 1) =(G0)(x, t)=vo(x)+ S’ a’tS F(x, t;
0 R!

ya

s T,
y Py

d B - o
> {m vy (y)—ov(y, 1) ay v(y, ‘C)}dy,
(0<t<T; as for I', cf. §3).

We note that S;x¢, because u(x, t)=vo(x)eSs;. Referring ourselves
to §5 of [8], we have

(

1 L )
<v>‘T2'“’§C4<T,} £ > ’—vb’—v'vx + llvo |,
Py T Po T
(2,0) U H @
' <p> (R ng(T, AV vy —veoy| oy,
Py lliT Py T

p| —1[0 -1
; we note that |[p~!|{?)<p

Py

- &“‘”Jrl
T HiT

o (g

T

é(lpI‘T"’)“),

where C, and Cs are monotonically increasing in each argument,
Cu T, )N\O0 as TN\0, and Cs(T, )\,a certain positive constant inde-
pendent of |lu/p,lly as T\0. As for |lu/p,lly, it holds that

(0) (2/2)
s

T Py

(a)
s
x, T Pyv

(0)
4|
T Py

44 ”_ﬂ_ =‘&
( ) ’ Py T M‘ 6, T

g_%g eT 1oxly + u(po)~teTloxln +2ul{(56) 2" |p5|(®

+(0) L e2TIxIx - Tu, |9} + (pg) ' eT1o*lx ]
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= o
+2u[(po) ™ eTIoxln (14 0,1§9) + [0]§{5) "2
(0)
X 1o+ (p0) e Tlexlr - Tlo,, |§91],

since, for example, we have

@5) Lo -t ns |t Lt
v v v v

<L) sG] ) Gl

(0) (0)
<2ﬂ{|(p ) + | }|x_xr|«.
v

PylT
In (4.5) we have used the relation for a and b=0 and for y=[0, 1]

(0)>

(4.6) a’b'~?<max[a, b]<a+b.

We note also that

( ) 5= §+{po "X.(0; x, )}
P Po
“4.7) XS v.(1; x, )%(1; x, t)dr,
0
<L) _ P PUxHOP, Uy VP
ple  p? p? p o p?

Now, we take an arbitrary constant M, such that
4.8 ool <M< + oo,
and consider functions C¥(T; M,)i=4, 5) in T, such that

CH(T; My) =Cy(T, AT, My)){|v5|A(T, Mo)+ M3},

4.9) {
(i=4,5),

where
(4.10) AT, M) = {%w(s +2Mo)(po)‘1}eM°T+2u(l + M)

X {(80)72"|po| P+ (o)~ M2 MoTT}.
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By the property of C%, for a sufficiently small T, (0, T],
(4.11) Ci(Tys Mo)+ vl <M,

Thus, if we choose T from the beginning in such a way that T=T,,
and if we define S; by

(4.12) Sr={v: <o>P?<M,, veS;}(cSy),

then it is obvious that

(4.13) GrS;cS,cS;,.

For an arbitrary veS;,, we have

(4.14) <v>PDKCEHT; M) + vy |9 < + co.

Furthermore, defining S§ by

4.15)  SF={v: <v>PIVIM,, ' <v>PDSCHT; My) + |vy|@,
veSri(cSrcSycAztY),  (Sixd),

we have likewise an inclusion relation

(4.16) GrSFcSE.

As is easily seen, S§ is a convex set. Next, if we consider S¥ as a
subset of a Fréchet space H2*(f<(0, 1)) defined by a countable
system of seminorms

4.17) <v>}vf'T“ﬁ), (N=1,2,..),

where the suffix ‘N, T’ indicates that the supremum is considered on
{(x, 1): xR, t€[0, T], |x| SN+My(T—-1)} instead of R!x[0, T], then
it is shown that S% is a compact subset of HZ28. Finally, it is
demonstrated in the same way as in §5 of [8] that G, is a con-
tinuous operator from S%* as a subset of H% into itself. Thus,
we can apply Tikhonov’s fixed point theorem to the result obtained
above. Hence, we have the proposition that there exists at least one
v satisfying
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(4.18) 8(x, 1) =(Gy v)(x, )=0(x, ) Sk c A3te,

In virtue of Theorem 3.1 and the fact that p,=B}, we have:

Theorem 4.1. For some Te&(0, + o), there exists a unique solu-
tion of (1.2) in HE*Y*x BL, satisfying the initial condition (2.1).

Proof. We have only to remark that, for ve A3**, §=G-ve H3*",
Q.E.D.

§5. Preliminaries for the Temporally Glodal Problem.

The main purpose of this section is to demonstrate some pre-
paratory lemmas necessary for obtaining a priori estimates for v,, etc.
The well-known following lemma plays an important role here (cf. [4],
[11], etc.).

Lemma 5.1. (i) If a continuous function u(x,t) defined in R!
x[0, T] is bounded in modulus by A-exp{Bx2} for certain non-
negative constants A and B, and, moreover, if it satisfies regularly
the equation

0 02 i}
—u=a(x, t)gj—c—l;_—+b(x, t)a—Z—+c(x, Hu+f(x, 1),

(5.1) ot
(0<t=T),

where a(x, t), b(x, t), and f(x,t) are continuous in R'x[0, T] and
satisfy

0=a(x, ) =lalf? < + o0, [B]§?) < + o0, |c]{? < + oo,
(5.1)
|15 < + o0,

then it satisfies (5.1) uniquely in the class of functions having the
above-mentioned property. (ii). Especially, if B=0, then, for u(x, t)
satisfying (5.1), it holds that

(5.2) |l < {|uCx, )|+ T+ | 1§} -eT el

Directly, by the above lemma, we have:
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Lemma 5.2. If (v, p)e H3**x B} satisfies (1.2) and (2.1), then it
holds that

(5:3) oI5 < o] .
Proof. Put in (5.1)

a(x, t)=%, b(x, )=—v, c(x, 1)=0. Q.E.D.

If (v, p)e H3** x B} satisfies (1.2) and (2.1), then, by the lemmas
2.1 and 5.2, we have

()

(2/2)
+l£
x,T pP

IIA
=

(5.4) l]% (6)"!

(a) (0)
| |2

T plr p T

X |%(0; x, | +2172u{(po) 71 X.(0; x, )|

+(ﬁo)_2|l’6|(0)+%[v—Uo(xo(X, t))|(T°)} +2172u(po) !

X |%5(0; x, (1 + 0,1 + 615 {(50) 2| p5|©

+L—1v—vo(x0(x, DOTT < (5+2[0,18) (60) !

_ (0)
xexp{IS;vx(‘r; X, t)dt‘T }+4|v0|(°)(1 + |vo]®))

+24(00)721po 1O (1+[00] ) .

From (5.4), we know that, in order to have a priori estimates for

I

§5 and §6, we shall endeavor to have an a priori estimate for |v,|{®.

we have to obtain beforehand those for |v,]{®). Hereafter in

b

(@)
T

Now, we perform, under the same assumption as in Lemma 2.5,
a co-ordinates transformation such that

(5.5 xo =Xo(X, )=%(0; x, 1), to=to(x, D=1,

where we remark that X(t; x, f) is the solution curve of the charac-
teristic equation for (1.2)2 as a linear equation in p. Since ve HE*¢,
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this transformation is a one-to-one mapping from R! x[0, T] onto
itself. We call (xq, t,) the characteristic co-ordinates for (x, t). It
is obvious that x and t are inversely expressed by

(5.5) x=x(xg, to)=X(to: Xo, 0), 1=1(xg, lg) =1, .
If we define 9(x,, t,) by

(5.6) D(xq, to) =v(x(xg, to), t=1,),

then we see that v is expressed by use of # in the form
(5.6) v(x, ) =0(xq(x, 1), to=1).

From the relation

O0x, 0x, I 0x Ox 4
Ox ot 0x, 0t =8(xo, %o)
(5.7)
0t, -0 0ty -1 ot _ Ot -1
Ox ot 0x, Oty
1 0
0 1

where we remark that

0 0 - _
%=Et_o_ X(to; X0, 0)=0v(X(29; x0, 0), 20)

=v(X(xo, o), o) =D(Xq, to),

it follows that

Lemma 5.3,
(5.9) 55:; =exp{_g;5x(1; x, t)d'c} =(aax):) >—1



146 Nobutoshi Itaya
t=to -1
={1+S0 bo(o, DT} .
Proof.
d ... (e
—7 X(73 %0, 0)=0(%(7; X0, 0), T) =0(xo, 7) .
Hence, we have
(5.10) A5 (15 %0, 0) =Dy, (xo, )
. dt xo\l'> ~0» xo\V 0> ’
where, as for the differentiability of # in x,, we refer to (5.6) and the

theorems on inverse functions in general. Thus, the following equality
is obtained.

0x g —1 +S'°axo(x0, Ddt,  (N.B.: x5, (0; xo,
G.11) ) 9% 0
0)=1). Q.E.D.

For simplicity, we put
(5.12) (o, 1) =S; B, (X0, D).

By theassumption that ve H#*e,

“T-fouly ( Ox >_1= 1 T loxly
(5.13) O<e < e TFo(rg, ig) <e T .

Lemma 5.4. Under the same assumption as in Lemma 5.2, it holds
that

(5.14) B(xo, to) HE ™.

Proof. By (5.9) and the assumption that ve HZ**, we can easily
show that (xo)xx and x,,., exist and are expressed as follows:

(5.15)  (Xo)sw=—Fu(0; x, ,)-g om(t; x, DEL(; x, DdT,

t
0
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0 X0 _ }‘1_ Oxo \ 2
xxoxu ax { ax (x(xo, to), t—to) _+< ax>

0%x9 0x _ <3x0 0%xo _ (= (. _,
) 0x, ) 0x2 {5205 x, )}

| JEp—
xS V(75 x, 1)X.(7; x, )dt.
0

Furthermore, 9,,, 9,,.,, and 9,, exist, being expressed in the forms

0 o y_, Ox
axo v(x(xo, tO)a t—to)—”x axo s

(5.16) Dio(x0, 20) =

ﬁxoxo(JCOs tO) =aaTo.vx(x(x05 to), t=t0) aax)i)

axo) +v, ‘Xxoxo »

Big(Xo, f0) = 50— 0(x(o, fo)s 1=10) = by 040,

By making use of (5.7), (5.8), (5.9), (5.15), (5.16), and the assumption
that eHZ*e, it is easily shown that de HZ*e, Q.E.D.

Let us describe (1.2) in the characteristic co-ordinates under the
above-mentioned assumption. In a way analogous to (5.16), we have

(5'17) vx(x’ t)=76; 0(-"0()5, t), t0=t)=ﬁxo(x0’ tO) aéx;
=ﬁxo{] +60(x0, to)}_l, vxx(xs t) =“a—(ﬁxo aaxx?)

Oxo\? 02
D)+ 0n0 G

By Lemma 2.1 and (5.15),

(5.18) (x0)xx=—Po(x0) {1 + ®(xo, t5)} 2 D(xo, to)ﬂ- vo(x0)

@ po(d—1o) .

Xxono =1+ )y, =
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Finally, we have

5.19) b, =v,+ov, = m.—_l‘_(l_ﬂ{ﬁx (I )2
( ) o 7t P v po(xo) oro” (140)

A . _pO l -2 — }: # l
t Vs — r (I+ )" *(0—v) Po(xo) T4+ w(xo, to)

— -1
X Dagso— T Days P, )= polrolx, D)

=po(x0)(1+w)~1=p(x0, to),

where p is defined analogously to §. By the second relation in (5.18),
it holds that

YO Oy \"Po p_
(5.20) S Bao dxo—Sa 00 (0—vo)dxo,

where a is an arbitrary fixed constant. Thus, we have

(5.20y log (1 4+ w(x,, te))—log(1+w(a, ty))

X0
=Sa -p#—o(ﬁ—vo)dxo.

Let ‘us define ¥(xq, ty) by
X0
(5.21) ¥ (xo, 1) = L0 0xo, t0)dxo.

Then, ¥ satisfies

(52 LW xo, 1) =22 8, x0, to)dlxo = (14 0)
0 a a

Do (X0, 20)

X Dyoxo— (1+ w)"2(1+ w)xo'ﬁxo}dxo = 14+ w(xg, to)

_ 0.1: (a’ tO) _Sxo{ 0 _1}
i +°a)(a’ to) . axo (1 +(D) ﬁxodxo

—_ xo -2 . =M—
ga (1+w) (1+w)xo Dxdx0 I+ w(xo, 2o)
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_ by(a,t0) 1 (_M_.P )
l+w(a, ty) 1+o(xe,to) \po */xo

_ ﬁ.vco(a’ tO)
1+ w(a, ty)

Hence, we have

(5.23) Ffo”{lp(x‘” to) +log(1 + w(a, 1))}

- 1 o [m 0
" 1+ w(x, o) 0xo I:Po 0xo {#(xo, t0)

+log(1+w(a to)} |
The function ¥(x,, to)+log(l+ w(a, t,)) takes at t,=0 the value

(5.24)  ¥(x0,0)+1log(l + w(a, 0)) =¥ (xo, 0) =Sx°% vodxq .

Lemma 5.5. If (v, p)e HE** x B} satisfies (1.2) and (2.1) and, more-
over, if voeLY(R') and poe H'**, then we have for (1+w) !=(xq),
the following a priori estimates:

1 1
. ——NlpovollLt ki) S——r e
(5.25) CXP{ s 1Porvoll (R‘)} I+ w(xo, to)

1
§CXP{FHPO'UO”L‘(R1)} .

Proof. By Lemma 5.3, it holds that

[log (14 w(xo, 2))| < Tlv, |5,

= —1e—T|v,<I(T°)g [ 1
(5.26) (Po) = polxo) 14+ w(xy, ty)

<(po)teTIxlr,

Furthermore, by the condition for p, and by the fact that de HZ*®
we have

k
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' L B Pocga
(5.26) T+ by and T+ pl e Hj.

Next, we have, by Lemma 5.2 and (5.16),

(527)  [¥(xo, 1) +Hlog(1+ (@, 1)) | S P2 o] V]x—al

+ Tv,|$* é(%|v0|(°)+ Tlvxl(r")))e“"" .g2%2

Therefore, the first assertion of Lemma 5.1 guarantees that Y(x,, to)
+log(1+w(a, ty)) is to be expressed by utilizing the fundamental solu-
tion of the linear parabolic equation

(5.28) V,o=([_+/‘(.0_)70 on*o*ﬂ%% Vo

in the following way:
(5.29) ¥ (o, t0)+log(1+0(a, 10) = *(xo, 103 &, 0)
X W& 0dE={  I*(xo, 103 ¢, 0)
$p0€) | cenge
x {[5208D oy gnagfa,

where I'* is the fundamental solution for (5.28). By the well-known
property of I'*

(5.30) [, .o 103 8, 00 =1,
we have

©)
(5.31) |¥(x0, o) +1og (1 + w(a, 1)) =

xo_p_ov d
Sa T 04Xo

1
é?'“po'vO”L‘(R‘)-

Finally, by (5.30) it holds that
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(530 [log(1+w(xe, to))| = | ¥(xo, to)+log(l+(a, 1)
g L Uodxo| é—l"”PO'vo“Ll(ki)-
a H n
As a result, we have (5.25). Q.E.D.

§6. A Priori Estimates for |9, | and |v,[{®).

Lemma 6.1. Under the initial condition (2.1) and an additional one

Vo, 06a D(), ELI (Rl)a
6.1)

PoE H2+a’

|04 is bounded by a constant depending only on the quantities
appearing in (2.1) and (6.1) (but independent of T).

Proof. The procedure of the demonstration is divided into three
steps.

((1st step)). Firstly, we note that (5.25) holds by Lemma 5.5. Now,
we define Vy(xq, to) by

(6.2) Vi(xo, 10) = Dyo(Xo, L0)? +AB(xo, 10)?,

where A is a constant to be determined at a later time. The fact
that poe H?*** and D HZ** guarantees us that D} D3 9(2r+s=3 or
4; r and s, non-negative integers) exist in R! x (0, T], being continuous
there, since, by the fact that

(6.3) ;‘ I-iw , ?_l_lc’l‘)’ e H#*e, (cf. Lemma 2.1),
0

the well-known theorems on the differentiability of the solution which
are based upon the a priori interior estimates can be applied to this
case, (cf. [4], etc.). We note here that D, satisfies the equation

©6.4) Beodio = O+ (5

wxo

_i)—vo} _<1’)—uo
0—b0 ()= (S )xo(ﬁxo).
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Let # be defined by

6.5 P = U 1 32 ﬁ(xO, to)—vo 0
( ) pO(XO) l+(0(x0, to) 6X% + 1+w 3xo
0
+m.

Then, we have

- _ I 92 2 a2
(6'6) gVA(an 10) p0(|+a)) 6)(% (ﬁxo+’10 )
ML 2 2 i A2 2y —
+ (o Oxg (02, +402) + ot (02,+ 4D )=20,,
N _ M N b—vo (1
X |:(vx0)t° Po(l +Cl)) (vxo)xoxo+ { 1 +w <p0

). Jaa (52 e s

—_ 2p A 2 _ 22p Y
[ ottray s~ ity (0

2u _) . _7<5—Uo z:|'
(Gt ) Pt X 1557), 00
=—[-].

Now, we see that

- )=__u_<_&+ﬁ—vo)
Po 1+®/x l+w \p} w /)

<ﬁ_vo _ D=0 _ po(D—vy)2

(6.7)

I+w /x [+ o uwl+ow)
and that, for an arbitrary positive number e,

(6.8) ﬁxo'ﬁxoxoés(ﬁxoxo)“‘%(ﬁxo)z-

Hence, it follows that
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69)  LVi(xor to) S — =2 —(D,00) 2 — =2 __(0,)?

Po(1+w) Po(l+w)

2

— v __.(v—v ) }(9::0 2=1—-|%—5{_I=?_0

2 2 1 A
24~ J - —
+8Q°} (Pxoxg)* + I+w {48 Qo p
_A r 1 Pop_p)2 2 2 {_ 4
Ux0+UO+ u (9 UO) }(ﬁxo) = +o '2_50

2

600 Daged) + T s Qo= 2
}

+|5x0|(0)+|0 |(0) 4 2PollPol J” 4Po(|Uo|( )? (0, )z

We choose ¢=¢, in such a way that

u== )
(6.10) sos{ QoPo
I, (if|pol+1ve|©=0).

For such a fixed number gy(>0), it holds that

2 1 Ap )
< _4
(6.11) LVi(xg, ty) < o {480 Qo 5o + [, |

) 43 (0))2
+|vo|(0)+_9%_)_}(9x0)2_

Thus, if we take A=A, in such a way that

_bo 1 & 100) 4 1 1(0) 1 4Po
(6.12) do =20 L 0ot 10,19+ 06l + 27

x (|vo|<°>)2} :

then we have an inequality

P Qu=plofl @ (@0 +2l00] ©.

1 2
1) bl 24— 2L =~
1+ @ 0 {s(vxoxo) + 48 (ﬁxo) } 1+Cl) {ﬁxo

(if[po] + 0o %0),

153



154 Nobutoshi Itaya

(6.13) LV, (%o, to) <O.
For an arbitrary positive number N, we define Ny and S(Nj;) by

Nry=[-N, N]x[o0, T],
(6.14)
S(Np)={N}x[0, T]c{-N}x [0, T].

By (6.13) and the maximum principle, it holds that

6.15 max_ V, (xq, to) <max[ max V, (x,,0),
( ) (x0,t0)eNT AO( o 0) I:x.;,e[—N.N] lo( 0 )

max _ V. (xo, to)]<max[ max vp(xy)?
(x0,t0)eS(NT) xoe[—N,N]

+).0 max Uo(xO)z, max _ 5x0(x0, to)z
xo&e[—N,N] (x0,t0)eS(NT)

+24o max_ D(xg, 2g)%] <max[(Jvp|(®?)?
(x0,t0)eS(NT)

+A’0(|UO|(O))23 max _ ﬁxo(x09 tO)z
(x0,t0)eS(NT)

+20(Ivol @) 2T = (o] + A9 (1o]*)?

+{ max _ B,(xo, 20)}2, (cf. Lemma 5.2).
(x0,t0)eS(NT)

Thus, we obtain the result that

(6.16) max_ D, (xo, 2)2={ max_ [v,,(xo, 20)|}?
(x0,t0)eNT (xo0,to)eNT

< max_ V; (xo, 20) (|05 2+ A (Jve|()?
(x0sto)eNT

+{ max _ [D,,(x0, %0)|}2
(x0,t0)eS(NT)

((2nd step)). According to the assumption of the lemma, 9, ., satisfies
in 0<t<T the equation

_fu 1 _D—vg 4 }
(6'17) (ﬁxOXO)to_{pO l+(0 ﬁxoxo l+w vxoxoxo

_n 1 (i), — )
po 1+ow (Dxoxo)xoxe + 2 Po 1+w/x 14wl
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Yot (7).
X(ﬁ"°"°)"°+{ Po L+ @ /xoxe -2 1+ /xo uﬁ"°"°
_ ﬁ-vo) PO |
<l+(D X0%x0 ﬁ.’co_ pO I_I_w(ﬁxoxo)xoxo

+{"'}l(ﬁxoxo)xo [{ }u 1+w:|6xoxo

[ Iy
72 {200 00) (Dzy —05) — £ (0= 00)?

+(a—vo)3+ug}
111

We put

(6.18) F(xg, to) = l+w e

Since D& HE*?, |0,,4,/4° is finite. Therefore, by Lemma 5.1, which asserts
the uniqueness of the solution, ?,,,, is expressed by making use of the

fundamental solution I (xo, to; & 7) of the linear parabolic equation
(§'19) Wto 7,—(1—_,,—0,—) Wioxo+ {+ 1iWao+ {- W,

(N.B.: eHE |{HP+{ 1<+ o

_r
po(l+w)
(=1 or 11)),

in the following way:

A

(6.20) Droxalos t0)={ _ Fxo, 103 & 000

+ S%S F(xo, to; &, T)F(E, 1)dE.
0 R!

Analogously, 9,, is expressed by use of the fundamental solution
T(xo, to; & 1) of the linear equation
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620) V,=—Ht _y +{<ﬁ_ 1 —ﬁ_mO}V
7 po(I+w) = *oxe po l+w/x, T4+l >
_ f"”o) }
+{ 1+ /xo 4
in the form
(622) buolitor )= Fxor 03 € OW0p(Oe.

As is well known, I” is estimated as follows:

(6.23)

~ 1 _
0<F§A1(10—t)ﬂ2—exp{—A2 |xto i|2}
o—

(0)
}, (4, 4;>0).

conlil (352,

Therefore, since vy e L!(R!), we have

(6.24)

ﬁxo('tO)ELl(Rl): (tOE[Oa T]),
b.,(s to) is continuous on [0, T] in the topology of

LY(R').

Hence, the same assertion also holds for F(xq, t;). Thus, we have
the results that

(6.25)

)

(i) the proposition (6.24) as “‘0y,” is replaced by

“Deoxo holds, and
(ii) for an arbitrary positive number ¢, there exists a positive
number N(g) uniformly in t,&[0, T] such that

S |ﬁxoxo(x0s to)ldx0<3a (Ng N(S)) .
R1-[-N,N]

If we note that I” is estimated in a way analogous to (6.23), i.e.,

(6.26)

1

0<lF=<4, .
(Lo—1)2

— £l2
o)
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xexp {to {---}ul?}, (44, 42>0),

then the assertion (6.25) (ii) is ascertained in such a way that
621 | [BeaxoFos 20)ldx0 5 | dxq
R!'-[-N,N] R!-[-N,N]
x| Fxo, 103 €, Olog (D)ldE
+ axo"dc| Flxo, 103 & DIFE DldE
R!-[-N,N] 0 R1

§S |va'<¢)|dc§ Fxo, 103 & T)dxo
R! R!-[-N,N]

+(ax( 1pe, lac F(xo, t0; & 1),
0 R? R'-[-N,N]

sarexp{TI{-Jul®Y .y lob@lae

(441

% -exp {— A ——-—'xOI_éIZ dx,

X t
SR‘-[—N,N] 0 0

— 2
+SRl_[__);_,_lzv_]|v6’(€)]d€Sklto‘%‘exp{—A’z bc%og—l—}dx
fpaef Ly g Ire el a0t

xexp |- 45 b‘_t;i}dx +! ai PRI G
X SR‘ @to— t)‘—;‘exp{—A'z B;%Ei—lz}dxo}
<rexpr7 bl {(, wsae

1
x(a x| _ erd
R1-[-VA5(N+&)/VT0,Y A5 (N-&) [yTol Y
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+

; ﬁs e o5 ©)lde]
fae’y

RI- (VA N+ &) [yia=i, Ay (N—&) [yie=1 € d Y

N[z

|F(E, T)|dé-(45) T
X

(%
]
|
b

) 97 (A’) f 1,177 Dlde} |

1
Ay 08l LRy (A2)7 2 S

R'-[~——(—)2 2?2 ]

evdy+( 2 )ﬁgt L@

2772

T
+ (45 -%SOHF( DL rnydt

o [ (e (deyhy e

+( )%-STd ( IR, Dlde
A L L o7
Now, we note that directly from (6.22) and (6.23) follows the inequality

[D,,(X0> to)|dxo <e(arbitrary number >0),
(6 27)/ R!-[-N,N] °
(N = Nj(e), uniformly in t,[0, T]),

and that a similar relation holds for F(&, 7). Furthermore, it is to be
noted that

(6.28) Do (X0» £0) — Dxg(X0» 20) =§  Broxo(X0» 20)dX0,
X0
and, therefore, that

(6.28) 1920(¥05 20) = Dxo (X0, 20)]
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x0
éS + Droxo(X0s 20)d X0, (x0=xp).
xo0

Thus, by (6.25) (ii), which is ascertained by (6.27) and (6.27), for an
arbitrary number &£>0, there exists a positive number N{'(¢) indepen-
dent of t,[0, T] such that

|ﬁxo(x09 to)"‘ﬁxo(x'o, t0)|<£s (lf xO and xi)ng)'(E)
(6.29)

or —N{y(e)).

Hence, from the fact that o,.(, f0)eL'(R)(t,<[0, T]), we have a
result that

(6.30) Dyo(X0, t0)—0 (as |xo|> + oo, uniformly in t,[0, T]).

Accordingly, from (6.16) it follows that for an arbitrary number £>0,
if N= Ny(e), then

(6.31)  { max .,(xo, 26)}> (|06]®)*+ Ao (|vo]*)? +e2.

(x0,t0)eN IT
Therefore, finally, we have
6.32) 182159 < {(106]€©)2 + g (log] @)} F .
((3rd step)). By (6.12) and (6.32), we have

(6.33) (192o142) 2 = (I06] €)% + 20 (|61 )2 = (|06 ] )2

+(Iool )7L L0y 1o 16004 [0

+ 42000l TV (ug 002+ Bo. 1y (@22

[ Qo g 014 4Polltal )7}
€0 u

+ L0 (0o 9)2 10,5 =ao + bo Dy, ¥,

= "ou

where
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a0 = (16612 + (Jro] )2 £-{ Doty @
(6.34)

- (0))2
+ 400('0;:| ) }, boz%qu(o))z.

Thus it holds that

1
2 5
(6.35) |f,x0|(T0)§bo+(b02+4ao)2 _
This completes the proof of the lemma. Q.E.D.

Lemma 6.2. Under the initial condition (2.1)~(6.1), as for the
solution (v, p) of (1.2) in HE**x BL, |0, is a priori bounded by
a constant depending only on the quantities appearing in (2.1) and
(6.1) but independent of T.

Proof. By (5.17), (5.25), and (6.35), it holds that

(0)

(6.36) [o(x, DIF D0 (x0, 26)|5 |m‘

1
bo+(b3+4a0) % . |7
5 2ot B80T oxp {20 gy )

which completes the assertion of the lemma. Q.E.D.

(2)

Thus, we have an a priori estimate for “%
T

Lemma 6.3. For the function p in (v, p)e HE** x B} satisfying
(1.2)-(2.1)—(6.1), the following inequalities hold:

(0) D D
6.37 L1 P2 bo {& v ,},
( ) l“ IT =" €Xp m Il OHL‘(R )

51

b0+(b(2)+4ao) 0) 1{' i)l(o)}
X 5 + (Jvo|©@+1) (00)?

1
<5 l't exp{po ”00|[L1(Rl)}+2l.ll:-——_
H Po
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D 2]vo|(®)
X exp {% HUOHL'(Rl)} +%} .

Proof. See (4.5), (4.6), (4.7), and the lemmas 5.4, 5.5, and 6.1.
Especially, remark that

Do
Po

(6.38) %= Q.E.D.

a)
The inequalities of (6.37) show that ”ﬂ( is also independent

pir

of T.

§7. A Priori Estimates for <v>{?*+%,

As for (v, p)€ H3** x B} satisfying (1.2), (2.1), and (6.1), it has
been shown in §6 that |v,|{?> is a priori bounded by a constant
depending only the quantities appearing in (2.1) and (6.1). Based on
this fact, here, we estimate |v|'*® in an a priori way from above,

utilising the fundamental solution F(x, ty, 15 %) of the linear equa-

tion (3.3). Since [v|{®’ and |v,|{» are already estimated, we need only
estimate lvlfﬁz), |v4l*), and ol {42,

In the same way as in [8], we have:

Lemma 7.1. For t=t'>r1,

(7.1) \F(x,t;y,t;%)—l"(x, t';y,r;%)l

(0) (a)
gcgo)(T; ‘ﬁl + ”ﬁ >(t—t’)(t’ —F
Pt p it

xexpl-a X=X @=v0d(0), 0<vo <),

el ) (e )
1+

scir(r £+ ] Yoo o
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x (t'—r)'%}exp{—a%} ,

where C{)(T; A)(i=0, 1) increase monotonically as each argument in-

creases.

Lemma 7.2. It holds that

(0)
(¢/2) < |2 £
(1.2) |vl{f =C7(T’ Iu ‘1 +“ P

(@)
OREI

(NE;: vy —vv,; C7(T; -)\O as T\,O),

v

where it is to be remarked that |N|® is finite.

Proof. By (3.6), Lemma 7.1, and the expression of v(x, ?)
! I
a3 owo={lac| (e e )R Ddy oo,
0 R1
we have, for 1=t >0,

(7.4) lo(x, ) —v(x, )| < ‘ S:dtSRI{I(x, 19, 1; %)
—F(x, vy, T; —t)‘—)}ﬁ(y, T)dy+ ‘S:'drgkxl"(x, t;

v, T; —ﬁ—)N(y, 'r)dy} gg:dtSRlIF(x, t...)

(x5 ) T {T (G, 13 ) +T(x, 5.0 F

x|N(y, Dldy+@—t)| N[

<N.B.:S F(x, t;y,T; -”—)dy=l)
R! P

<[l ([ e

x "d't @t —1) N e_ﬂx_”lz/('_')a’y
o Jrt
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)

+—r)T Tl_%]'|N|(T°)§(t—t’)_af[{C§°’<T; ‘

©
P

2 . (o)< l
x 2o e (1

N

»
p
+T“ﬂl-|mw

G

where
(0) (@)
7.5 C,=[], H‘ﬁ =|£ Hﬁ .
(1.5) el ST [ e
Q.E.D.
Lemma 7.3.
A6 ok s (wgl@)@lopl©) =+ €T3 | £]| iR
T

Proof. Remarking (4.6), we have

(77 Jox(x, D=0 (x,0)] S [vp(x) —vp(x"))|
#hel,

», r)l + |%F(X’, t;y, r)'}l_a'lﬁl‘r‘”dy

62 I" r . ’ * a I‘ .
5T (x ,t,y,r)(X~x)‘ ‘W (x,t;

=[x —x'|*[(vg | ©)=*(2lvp| @) 1=+ {CiP}e{2Ci V) 1=
X St (t— 1)"‘("/2)drg {e“'(z)J_x'r':ry -
0 R!

—_y|2 ’_
—anyE2E gy lE

2
+e = }dy-|N|®

sl = x'j<] (Iog @) (2ogl @)1=+ { ()= 2y 1
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2
l—a

e[ e

X

T @@ 224 ()] I |
A

where
(7.8) Cs={...}a
and Cg(T; a)\\0 as T\,0, and Cg decreases monotonically as a™\0.
Q.E.D.
Lemma 7.4. For |v,|{*}*), we have the following a priori estimate:
(7.9) e sCoT3 || £ 1R 15,

where Cy has the same property as Cg.

Proof. 1°). For t>1'>0 and t>2t (i.e., t'<t—1t', t<2(t—1t')), by
the relation

(7.10) v (x, 1) —vh(x)| = \g;d‘tgmrx(x, t:y, N, 1)

ofsci(r 1

>Stdtg (t—‘r)“e"““)’l%l'z‘
r/Jo  Jrt

x|N(y, Dlfdy = CE2n d (1)1 121112 NI,
we have
(71D [odx, D =0x, )] Sloa(x, =) +[oxx, 1)
—vp(x)| S C§V2(m[d(1) 2 {12 +1 12N |
S {20@=1)1 24 @ =1) 2 NI
S (=) 2 [CEV2n [d(1))2 (2 + DT ]| N

=(t—t’)°‘/2C9'1'|NI(T°), (C9,1=["']|)-
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2°). For O<t—t' <t (i.e., t<2t'<2f), we utilize the following ex-
pression of v.(x, t)—v.(x, t'):

(7'12) vx(x’ t) - vx(xa t') = {Ux(x9 t) - Ub(X)} - {vx(x’ t/)

t
—0p(x)} =Su,_tdfgmfx(x, t:y, DN(y, 1)dy
.
(" _as{ reriy 080, ody
2t —t R!

2'_
+S ' 'drg I{Fx(x,t;y, =T (x, t'; y, 1)}
0 R

x Ny, 0)ydy=J,+J,+J;.

As for J,, we obtain

(1.13) 1441 =ce(T; M%

Y- acf @-o
T R!

2t'—t

x g=d(1) Ixz_—ytl‘z‘dy=C(()”|1(7|(T°)(n/d(l))1/2°23/2(t—t’)1/2
=(t-)212C, (13| & YR,
. o llr

where

(7.14) Coy, =2312TU-012(|d(1))1/2-CEV.

In the same way, we have

(7.15) 3l S =)o (T || 2| )18 180,

T

It remains to estimate J;. By Lemma 7.1 and the formula
(7.16) (a+b)y*<a+b?, (a, b=20, and 0<y<1),

we have

(7.17) |J3| §(Cé—,]))7'(C(()”)'_V|FI|£[-O)' Szt'—xd‘cg {(t'—t')
R?
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Ata _2 _glxyl?
X(@—1)2+@—t) 2 ('—1) 3}re i

1x—y _ 1x—y|2
AT 1y

gy Lxoal?
x{@t—1)te 'V = L (t—1) e 1

2t —
0

ays2-@+ e R (" ar| (a-ry
R

X (t/_l-)—l—y_i_ (t_tl)y(l+a)/2(t/_ T)—l—(y/l)

—glx—=y|?

xe Tt dy, (d=vy'd(0) for some vy (0, 1)),
where it has been used that the inequality d<d(1) holds, since it is
known concerning the A(m)’'s in (3.7) that A(0)= A(1)>A(2) (e.g., cf.
[8]). Now, we put
_ o
(7.18) Ve (€0, D),
and asa result we have
’ o |
(1.18) ye<—2—,7>.
Hence, it follows that

2e' - -
(119) Wl S2ACK + L) IRy
0

X (t——t)‘/z(t’—t)“‘V+(t—t)1/2(t’—r)_1“—vfd1:

= |x—y|2
XS 1e'_" = ‘(t—1)"'2dy.
R
If we remark that

1
Y ’_ 2 1 _
(7.20) (t—r)l/z(t’—‘c)‘l’”=<£tt,—ttt—t>2(t’—t) z’

{14+ (1) 2t =) 12} (=) T

=t —1) 2 P =) (=) 1P,
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where f=v or y/2, then we have

(7.21) Sz"_‘(t— )2 (¢ — 1)1 Pd g(%— ﬂ)" TE"

wpre-nFrs{(Lop) eprE,
Therefore,

(7.22) T3 S =) 2RI 2CE0 +C40) (r))'2

Ay A (Y )

1
XT7E | —(t=0)2Cy 5| NI
I

<C9,3=[“']u, '}’=—1—:(_‘;>-

Thus, if we define

(7.23) Co=Cy,+Cq,+Co,+Cy 3,

then we obtain (7.9). Q.E.D.
From the lemmas 5.2, 6.2, 6.3, 7.2, 7.3, and 7.4 follows:
Lemma 7.5.

(7.24) loxll§** 9 C16L T; vo, po]

where C.o[T; ...} increases monotonically as T increases.
Thus, we have

(7.25) IR <C1iLTs vo, ol

where C,, has the same property as C,,.

By making use of the expression (7.3) and the inequality (7.25),
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we can estimate the other quantities constructing the norm of v in
Az*e (cf. [8)), i.e.,

(7.26)

Uxx gl“O) §Cvl 2<

L )11 + o1

<11+ € T ||
Py

)€l T5 06, 00,

vaxl )§C 2<

L)) 1R + o
v T

< log| 0+ Ci o

T>'C11[T§ Vo> Pol >

where each of C,, and C}, increases monotonically as each of the
arguments increases, and C,,\,0 as T\,0. From the discussions made
thus far follows:

Lemma 7.6. For the initial condition (2.1)~(6.1), if there exists
a solution (v, p)€ HE**x B} of (1.2), then |v||?*® +[p]% has a priori
bounds in T, where

(7.27) [p1 = i |D Dspli®, (r and s, non-negative integers).

Proof. We have only to note that
(7.28) (ol < €03+ Jo |2 = <v> P 4 <o> @)

()

()
27l 2+ ooy 2

The discussions having been made since §5 guarantee that each term
of the right-hand side of (7.28) has a priori bounds in T. Q.E.D.

§8. Main Theorems.

(I). Basing ourselves upon Lemma 7.6, we show here that there
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exists a temporally global regular solution, unique in a certain sense,
of (1.2). For this purpose, we prepare the following three lemmas.

Lemma 8.1. For the parabolic equation

g—;‘ (x, ) =al(x, t)aixzf u(x, t)+b(x, t)% u(x,t)

(8.1) +ex, hu,  (O<t<T),

u(x, 0)=uy(x)e HO,
if we require that

I ac HE, 0<ag<a(x,t)<l|alf®’ <+ (ag, constant),
(8.2)
| 16149 11615, < + 00, [cl$9) 4+ [c] @) < + oo,

then we can construct a fundamental sclution I'(x, t; & t; a, b, ¢)
of (8.1). [By Lemma 5.1, the fundamental solution is unique, so far
as bounded solutions, regular in R x(0, T], are concerned.]

Proof. E. g., see [4]. Q.E.D.

Lemma 8.2. For the inhomogeneous parabolic equation
u=a(x, Dug+b(x, tyu,+c(x, Du+f(x, 1),

63 [0<t<T; a, b, and c satisfy (8.2); |f(x, )| <4
.3) x exp{Bx2?}(4, B=0, t[0, T])],
u(x, 0)=uo(x)€H,,

if we require that

g f(x, t) is locally Holder-continuousin x with the exponent «o
8.4) in R'x [0, T], uniformly with respect to t,

then the function
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8.5) U(x, t)”=g l1"(x, t; £, 0; a, b, Quy(&)dé
R

+(lael e wa b one va
is the unique bounded regular solution of (8.3).
Proof. E.g., see [4]. Q.E.D.

In the next place, by virtue of the above-mentioned two lemmas,
we demonstrate:

Lemma 8.3. If (v, p) satisfies regularly in R'x[0, T], the initial
condition is (2.1)~(6.1), and, moreover, v and v, are bounded there,
then, (v, p)€ HZ** x Bt (more particularly speaking, pe B}**c B}), where
we define v (x, 0) and v(x, T) by the right derivative at (x, 0) and
the left one at (x, T) of v(x, t) in t, respectively.

Proof. By the assumption that v and v, are bounded in R!x
[0, T, it holds that

(0) = (0)
0<pg-e TIT < p(x, ) SPo-erTIxIT < + oo,

_— "T|Ux|(0)< u < (51
(8.6) 0<u(po)'e TSy SH(0o)

(0)
xetTlosl " < o,

By lemma 2.1, we have, e.g.,

®.7) | CRIRrIC)] | éz“"‘“”'“’”(%),“;m

(0)
+ |17}T §|X—x’lazﬂ{(ﬁo)—ZIPM(o)_'_zu_1|v|£ro)

+(p0)—‘eT"”"'(T°)}, (cf. 4.7).

Thus, it follows from the boundedness of v and v, that

P If ugyeH?*e, then U satisfies (8.3) regularly in R'x [0, T].
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(8.8) —Z—EH%.

By the assumption, v,, is continuous in R! x [0, T]. Therefore, —v-v, is
locally Hélder-continuous in x with an arbitrary exponent (0, 1), uni-
formuly with respect to 1. According to Lemma 8.2 (N. B.: (0, T]c [0, T])
u(x, t) is expressed in the form

8.9  o(x, t)=§RlI'<x, t: &, 0; ;‘U )vo(é)dé

i e £

t
- d S r( ’ t; ’ ; u >{ !l o N ’ }d ’
vo+30 tRl x, t;&, 1 ATD 05 (&) —vrvgpdl
where the fact has been used that v—uv, satisfies

[ =00 = 0=t (Lt —00,)
(8.9) Po Po

] (v—=1vo)(x, 0)=0,

and we note that N(& 1) has the same property as —vv. In the
same way as we did in §7, it is shown that

(8.10) I[|$+9 < + oo,
Thus, we have the result that

8.11) ve H#**, and pe Bi**c B}. Q.E.D.

From Theorem 3.1, the a priori estimates obtained in §7, and
Lemma 8.3 follows a theorem on the existence of a temporally global
regular solution of (1.2).

Theorem 8.1. For the initial condition (2.1)-(6.1), there exists a
unique regular solution (v, p) of (1.2) in R'x[0, + o) such that,
for an arbitrary Te(0, + ), v and v, are bounded in R'x[0, T].
Furthermore, it holds that
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(8.12)  [o(x, )| =[vo|®, 0<pgreMrorolleirb <p(x, #)

= ) 1t g!
<poellrovellrh

‘ 1
[v,(x, )] §K1<“00”L'(R‘)’ [[oo 1 Il poll E>< too,

where K,/ as each argument/. Thus, v and v, are bounded in
R %[0, + o) under the above-mentioned conditions.

The following theorems are variations of the above theorem.

Theorem 8.2. Besides (2.1) and (6.1), if a condition
(8.13) poEH3, wvy'e H*NL'(R')
is added, then, in addition to the assertion of Theorem 8.1, we have

(8.14) [0,x(x, t)|§K2(”UO||L‘(R1)a loo 122, 1lpo 2, (po)~1)

< + o, (K, as each argument /).

Proof. The assertion is ascertained almost in the same way as
in Theorem 8.1. In the course of demonstration, we have only to
consider the function W, defined by

(8.15) Wi(xo, t0) =(Drgxe)? +ADx,)?

instead of V, in (6.2). Q.E.D.

Theorem 8.3. For the initial conditions (2'1) and, instead of (6.1),

[vO—A, (vo—A), (vo—A)'€L'(R') for some constant
(8.16)
| Ae(=co, +o00), pocm?,

there exists a unique temporally global regular solution (v, p) of (1.2)
such that, for an arbitrary Te(0, + ), v and v, are bounded in
R x[0, T]. Moreover, we have

(8.17) [u(x, 1)] £|vel®), 0<pge!lrovollLirb < p(x, 1)
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Sporetllrovollcanls y (x, DI K ([logl",
lwo—AllLirrys 1Pl (po)™1) <+ oo,
where K,/ as each argument /.
Proof. We can rewrite (5.20) in the following way:

(8.18) log (14 w(xq, to)) =log(1+w(a, ty))

{7020 @0 ydeo 4§20 (4= vp)dxo.

It is easily to be seen that the function ¥* defined by
(8.19) W (xo, 1,) =log (1 + w(a, 15)) + Sxo%(ﬁ—A)dxo

satisfies the equation

VN < 7 )
fo I+ o Po xo,
(8.20)

W (x,, 0)=g" EHL(UO-A)de.

Seeing that d— A(€ H#**) satisfies

— = I _ _D=vo
(0—4),, ol + @) (00— A oo l+w(9 A)

X0°

(8.21)
(6= A)(xo, 0) =vo— A= H2**N L' (R"),

we have the boundness of [|po(0—A)( -, to)llL1(xry on [0, T]. Thus, by
Lemma 5.1 it holds that

(8.22) 1% (xo, 20)] g\

Lo (p,—4
u(o )

L‘(R')‘

Hereafter, the proecedure of the proof is analogous to that of Theorem
8.1. Q.E.D.

(II). In (1), we have demonstrated some theorems on the existence
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of a temporally global regular solution of (1.2) under the initial con-
dition (2.1)-(6.1). There occurs a question whether we have not any
such solution of (1.2) under other initial conditions. Here, we shall
discuss somewhat on it.

Theorem 8.4. For the initial condition
v(x, 0)=vo(x)E H?>**, 0,20,
(8.23) ( p(x,0)=po(x)€H™,  (0<po=po(x)=p=|po|®
<+ ),

there exists a unique temporally global regular solution of (1.2) such
that, for an arbitrary Te(0, + ), v and v, are bounded in R! x
[0, T]. Moreover, it holds that

le(x, DI=|vo]®, 0=0,(x, 2) <vp|©@,
(8.24) )
| 0<poe 1?1 T<p(x, 1) <|pol®.

Proof. First we estimate «v>$%*® a priori. By the assumption
and Lemma 8.3, (v, p) satisfying (2.1) and (8.23) in R!'x[0, T] belongs
to HZ*t*x B}, and, moreover, v, and v, exist in R!x(0, T], being
continuous there. Thus, v, satisfies the equation

09 =5 0u et {() =0} @ va(00),

(8.25)
0<t=T),

v(x, 0)=vp(x),
where, by Lemma 2.1,

(8.26) (%)x— v=—p{po(xo(x, 1)} ? po(xo(x, 1)) +vo(x0(x, 1))

It is obvious that

(8.27) 4 eH, K%)x—o|;°)+ |(%>x—v

(x)
<+ oo,
x, T
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[_le(TO)+l_vxI§ca,(}r< + oo,

Accordingly, we can construct the fundamental solution I'(x, t; y, 1)
of the linear equation

(8.28) v,=Ev 4+ {(,ﬂ_) _,,}.Vx_ux.y_
P P/x

We remark here that I'” is unique so far as bounded solutions, re-
gular in R!x(0, T), are concerned. By making use of I, v, is ex-
pressed in the form

(8.29) UNES t)=SR,F'(x, 15y, 0o (y)dy.

Hence, by the non-negativity (or, strictly, positivity) of I'’ and by the
non-negativity of v},

(8.30) v(x, 20, (0=<t<T).

We note that, if v5=0 and v{ =0, then v,>0. Moreover, clearly we
have

(8.31) [v(x, 1| Z|ve| .

Furthermore, by the theorem of comparison, v,(x, f) is bounded from
above by the unique bounded regular solution w(x, t) of the linear
equation

w,=H wn+{(£) —v}-wx, 0<t<T),
(8.32) P p/x

w(x, 0)=vp(x) (=0), (N. B.: —v,v,<0),
i.e., we have
(8.33) 0=<0v.(x, ) =w(x, 1) <|vp|©).

The procedure following this is analogous to those made in §5~§8(I).
Thus, we have the following a priori estimate for (v){P+o:

(8.34) (YR K[ T; v, pol < + oo, (K3 asT /).
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Therefore, the assertion of the theorem is completed. Q.E.D.

In (8.23), if v5<0 and =0, then —uv, satisfies
(835) (_vx)t =%(_ vx)xx+ {(%) —U} '(_vx)x'l' (— vx)z’

which suggests that v, may blow up in the course of a finite time.
This problem presents us a great interest and is worth while to be
solved. We give an example in which » and v, are not generally
bounded in x and, in some case, blow up in a finite time. If we
define v and p by

_ ax __a —
v(x, )= T+at (hence, v, = T4al and vy(x)=ax),
(8.36)
—ox 1 — %
PG )=P8 Tar (hence, po(x)=p%), 20),

where a is a constant and p} is a positive constant, then (v, p) satis-
fies (1.2). The behaviours of v, v,, and p in (8.36) vary according as
az0 or a<0, as is easily to be seen.

Finally, we add that, in the one-dimentional problem of (1.1), the
uniqueness of (v, 0, p) in HEt*x HZ**x B} under the initial condition

(8.37) (00, 0o, po) € H2He x H2+e x H 1+

is proved on the basis of a lemma similar to Lemma 2.1 and yet
more complicated. The details of the proof will be given on another

occasion.
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