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Introduction

Let D be a Siegel domain of the second kind in CV. In the case
where D is homogeneous, Tanaka [7] showed that there exists an
imbedding h of CN onto an open subset of a certain complex homo-
geneous space G /B such that every holomorphic transformation of D
can be extended to a holomorphic transformation of G./B. One of
the purposes of this paper is to obtain the same results as Tanaka's
without the assumption of homogeneity of D, which is discussed in
§2 and §3.

By using the imbedding h, we shall prove in §4 that every holo-
morphic transformation of D which leaves the Silov boundary of D
invariant is an affine automorphism of D. This fact is stated in
Pyatetski-Shapiro [5] in the case where D is of the first kind.

Finally, in §5, we shall see that D is a symmetric homogeneous
domain if and only if the space G./B is compact.

The author expresses his thanks to Prof. N. Tanaka for valuable
advices.

§1. The automorphisms of Siegel domains

1.1. Let R (resp. W) be a real (resp. complex) vector space of finite
dimension. Denote by R, the complexification of R. For every vector
zeR,, we denote by Rez the real part of z and by Imz the imagi-
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nary part of z. Let D be the Siegel domain of the second kind in
R_ x W associated with a convex cone V in R and a V-hermitian form
F on W ([5]). Denote by Aff(D) (resp. by GL(D)) the closed sub-
group of the complex affine transformation group Aff(R.x W) (resp.
of the general linear group GL(R.x W)) of R.x W which consists of
all elements of Aff(R.x W) (resp. of GL(R,x W)) leaving D invariant.
Then GL(D) is a closed subgroup of Aff(D). An element f of GL(R,x
W) belongs to GL(D) if and only if f has the form: f(z, w)=(4z,
Bw), where AeGL(R), Be GL(W), AV=V and AF(w, w)=F(Bw, Bw')
for all w, w'eW ([5]). We denote by p (resp. by o) the correspond-
ence: f-op(f)=A (resp. f»o(f)=B). Then the mapping p (resp. o)
is a homomorphism of GL(D) into GL(R) (resp.into GL(W)). Let
g* be the Lie algebra of Aff(D). For every aeR (resp. for every ce W)
we denote by s(a) (resp. by s(c)) the element of g* induced by the
following one parameter group (with parameter f):

(z, w) —> (z+ta, w)
(resp. (z, w) — (z+2/ = 1F(w, tc)+ /= 1F(tc, tc), w+tc)).

Then the correspondence: a+c—s(a)+s(c) gives an injective linear
mapping s of R+ W into g% and the following equalities are easily veri-
fied:

(1.1 1) [s(a), s(b+¢)]=0 (a,beR,ceW).
2)  [s(c), s(c")]=4s(Im F(c, c')) (c,c'eW).

We denote by g° the subalgebra of g° corresponding to the subgroup
GL(D) of Aff(D). Then the following equality holds:

(1.2) [g, s(a+c)]=s(px(g)a+o4(g)c) (geg® a€R,ceW),

where p, (resp. 6,) is the homomorphism of g° to gI(R) (resp. to
gl(W)) induced by p (resp. o). Let E (resp.I) be the element of g°
induced by the following one parameter group in GL(D):

(z, w) —> (e72'z, e™'w)
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(resp. (z, w) — (z, eV=T'w)).

Clearly E and I are in the center of g° and the following equalities
hold:

(1.3) [E, s(a)+s(c)] = —2s(a)—s(c)
[I, s(@)+s(c)]=s(/—1c)  (aeR,ceW).

1.2. We denote by Aut(D) the automorphism group of D, ie.,
the group of all holomorphic transformations of D. Let g be the Lie
algebra of Aut(D). Then g°={Xeg;[E, X]=0}. Moreover the fol-
lowing theorem is known:

Theorem 1.1 (Kaup-Matsushima-Ochiai [2]).

(1) g=g2+g '+g°+g'+g% as a graded Lie algebra where
g*={Xeg; [E, X]=AX}.

(2) g°=g"2+971+g°% g7 2={s(a); aeR} and g~' ={s(c); ce W}.

Remark 1. In the earlier paper [4], the author showed that g!
and g2 are determined algebraically from g°.

§2. Tanaka’s imbeddings

2
2.1. Let g= Zzg‘ be the graded Lie algebra given in Theorem 1.1
A -_—

and let g, be the complexification of g. We denote by G, the adjoint
group of g, Since g is centerless ([2]), we identify the Lie algebra
of G, with g,. Define linear endomorphisms P and P of g;! by

Q2.1 P(X)=%(X—\/:—1[1, X7) for Xeg!,

P(X)=—;—(X+\/——_l[l, X7) for Xeg:!.

It is easy to see the following equalities hold:
22 P([1, X))= /- 1P(X),

P([I, X])=— —1P(X).
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Therefore P(g;!)=P(g~') and P(g;')=P(g~'). Both P(g~!) and P(g™!)
are complex subspaces of g;! and g;'=P(g"')+ P(g"!). We put

(2.3) n=g;2+P(g"")

b=P(g7!)+92+g! +g2.

Lemma 2.1 (cf. [7]).

(1) g.=n+b (direct sum).

(2) n is an abelian subalgebra of q..
(3) b is a subalgebra of g..

Proof. (1) is clear. Proof of (2) is the same as in [7]. We can
also verify P(g™!) is abelian. Since I is in the center of g2, P(g™!)
is invariant by adg?. Thus we obtain (3). q.e.d.

Define a closed subgroup B of G. by B={aeG,; ab=Db}. Since
b is a complex subalgebra, B is a complex Lie subgroup. It is not
difficult to see that the Lie algebra of B coincides with b (cf. [7]).
We denote by n the projection of G, onto the homogeneous space
GB. Let us define a mapping /i’ of n to G./B by

h(X)=mexp X (Xen).

Then h' is a holomorphic imbedding of the complex vector space n
onto an open set of the complex homogeneous space G./B ([7]).
2.2. Let h" be the mapping of R.x W onto n defined by

h"(z, w) =s(z)+ P(s(w)) (zeR, we W),

where s is the mapping of R+ W onto g 2+g~! given in §1 and is
extended to a mapping of R.+ W onto g-2+g~! in a natural fashion.
Since  P(s(/=Iw)=P([I, s(w)])= /= IP(s(w)) by (1.3) and (2.2), h"
is a biholomorphic mapping (linear isomorphism) of R_x W onto n.
Then the mapping h=h'-h" is a holomorphic imbedding of R x W
onto an open set of G.B. The imbedding h was first introduced by
Tanaka [7] in the case where D is homogeneous. We call it Tanaka’s
imbedding.
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We denote by G (resp. by G,) the identity component of Aut(D)
(resp. of Aff(D)). For every aeG, there exists a unique element t(a)
of G, such that AdaX =t(a)X (X eg). Since G is centerless ([2]), the
mapping T is an injective homomorphism of G into G, Let veV
and let K be the isotropy subgroup of G at (\/—‘lv, 0). We denote
by K©° the identity component of K and by f the Lie algebra of K.

Lemma 2.2 (cf. [7]).
() wk)h(y/=Tv,0)=h(/—=1v,0) (ke K?)
(2 wth({=Tv, 0)=h(1(y/=1v,0))  (1€G,).

Proof. (1) Let X be an element of f. We write X=X"2+X"1+
X0+ X1+X2 X*eg* (cf. Theorem 1.1). Then from [2] we know
X‘2=—;—(ads(v))2X2, X"'=adl ads(v)X! and ads(v)X°=0. It follows

Ad(exp(— /= Ts@)X
=XT24+ X X0+ X+ X2 - (/= 1([s(v), X']+[s(v), X2])

——(ad s(v))2Xx?
=X"1— /=1[s5(t), X']=0  (modb),
because P(X~1)=P(./=1[s(v), X']) holds. Then
1(exp X)h( /= 1v, 0)
=nexp X exp (y/—1s(v))
=nexp (y/ — Is(v))-exp [Ad (exp (= /= 15(2)))X]
=nexp (/= 1s(v)).
Therefore we get Assertion (1). Proof of (2) is the same as [7]. q.e.d.

If we put K,=K n G,, then we have

Lemma 2.3. G/K=G,/K,.
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Proof. It is known ([2]) that dimG-dimK=dimG,—dimK,.
Therefore G,/K, is an open set of G/K. Being a submanifold of D,
G/K has a Riemannian metric invariant by G and hence by G,. As
a result, the open orbit G,/K, of G, coincides with G/K. g.e.d.

Next we verify the following

Lemma 2.4 (cf. [7]). For every feG and for every peD, h(fp)=
©(f)h(p).

Proof. For every peD, there exist teG, and veV such that
((/=1v,0)=p. Then by Lemma2.2 h(p)=t(h(\/—1v,0). We can
choose a neighbourhood # of e(=the unit element) in G having the
property that every element of  n K can be expressed as expX, X ef.
There exists a neighbourhood %, of e in G such that " '%7'% tcu.
We put #,=%,0nG, which is an open set of G,. Then the subset
%, of G defined by #,={ge%,;gpe#,p} is open in G by Lemma
2.3. For every fe%,, there exists ge#, such that fp=gp. Then
t'g~'fte n K and by Lemma 2.2,

(=g fh(/ = Tv, 0)=h(/—Tv, 0).

It follows
1(f)h(p) =t(gp)h(/ —1v, 0)
=h(g(\/—1v, 0))=h(fp),

because gte G,. Thus the mapping: f—-t(f)h(p) of G to G./B is real
analytic and coincides on %, with the mapping: f—h(fp). Therefore
we conclude h(fp)=1(f)h(p) for all feG. q.e.d.

In what follows we identify the space R.x W with an open sub-
manifold of G,/B by the imbedding h. We also identify the group G
with a closed subgroup of G, by the injective homomorphism <.

2.3. We denote by o the origin of R, x W. Then the space R, x W
is the orbit of the group exp(g;%+P(g™!)) through o. Let T be the
union of all singular orbits of exp(g;2+ P(g™')). Then T is a proper
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analytic set of G,/B which is locally defined by a single equation and
G./B—T=R.x W ([7]). For Xeg, denote by X the holomorphic
vector field on G_/B generated by X. It is easy to see that the cor-
respondence: X—X of g, into the space of all holomorphic vector
fields on G,/B is injective. We sometimes identify X with X.1

Lemma 2.5. Let peG.B and f be a holomorphic function defined
on a connected neighbourhood U of p. Assume that there exists a
neighbourhood % of e in G such that f is constant on UnN%p. Then
f is constant on the whole U.

Proof. We put U;,=Un%p. Then Xf=0 on U, for all Xeg.
Since f is holomorphic, Xf=0 on U, for all Xeg.? Therefore the
first derivative of f is zero on U,;. The same argument shows that all
derivatives of f vanish on U, and hence f is constant on U. q.e.d.

Let S be the real submanifold of R.x W defined by
S={(z, w) e R, x W; Imz— F(w, w)=0},

which is a subset of the boundary of D and is called the Silov bounda-
ry of D. It is easy to see that each element of Aff(D) leaves S in-
variant and that the group exp(g™2+g~!) acts simply transitively on S.

Lemma 2.6 ([7]). Let aecG and peS. If apeR.x W, then apeS.

Let M be the orbit of G through o, i.e., M=G/GnB. Since
dimM =dimg 2+dimg™!, S is an open submanifold of M. Moreover
we obtain

1) We consider g. as the Lie algebra of left invariant vector fields on G,. Thus
~ s =
[X, Y]=—[X, Y].

2) Considering g.=g+J(g), where J is the complex structure of G./B, we have
only to show that Xf=0 implies (JX)f=0 (Xe&g). Let z,...,z, be a local

coordinate system (z;=x,4+y—1y,). For any vector X= Y a’ 2 +Zb/—a— (a?,
7ox, T 9y

beR), JX=3a"-0 _ 5.9 Then Xf=0 (f=u+y—Iv) implies T/~ Y + 364
T 0y, § 0xy ’ 7

0x;
du v D) . . .. du v
=0 and J b =0. =
3y, an g:a 3z, +§ 3y, 0. Since f is holomorphic, 9%, 7, and
—gi—=—-ﬂ—. Thus by a direct calculation we have (JX)f=0.
Y3 dx,
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Proposition 2.7. M is a closed submanifold of G,B and M=
S, where S is the closure of S in G,/B.

Proof. We shall show that for any point p of G,/B there exists
an R-valued real analytic function f defined on a neighbourhood U
of p such that MnU={qeU; f(q)=0}. If peR,xW. Then we can
take Imz—F(w, w) as f, because MNR_x W=S by Lemma 2.6. Next
we consider the case where pe T. We assert that there exists an ae G
such that ape R,x W. In fact, suppose Gp=T. Let f'=0 be a local
equation of T at p. Then by Lemma 2.5 f'=0 on a neighbourhood
of p. This contradicts the fact that T is a proper analytic set, proving
our assertion. We choose a neighbourhood U of p such that aUc
R_xW. Then the function (Imz—F(w, w))ea defined on U has the
desired property by Lemma 2.6. As a consequence M is closed. By
Lemma 2.6 M—ScT. Let f'=0 be a local equation of T. Then the
restriction of the equation f'=0 to M defines the subset M—S. Clearly
there is no open set U’ of M such that f' vanishes on U’ by Lemma
2.5. It follows immediately that S is an open dense subset of M.
q.e.d.

§3. Equivalence of Siegel domains

3.1. Let D be the Siegel domain of the second kind in R x W
associated with a convex cone V in R and a V-hermitian form F on
W. We use the notations given in §1 and §2.

Let D’ be another Siegel domain of the second kind. For an
object A such as a space, a group, etc., with respect to the domain
D, we denote by A’ the corresponding object with respect to the domain
D’. We now assume that the two domains D and D’ are holomorphi-
cally equivalent, i.e., there exists a biholomorphic mapping ¢ of D
onto D’. The mapping ¢ induces an isomorphism ¢ of G, onto G.
in a natural manner. Clearly

d(a)=¢ap~! (aeG).

For each q €GB, we put
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h,={Xeg.; X,=0}.

Let peD and p' =¢(p)eD’. We assert that the following equality
holds:

Dy =P4b,.

Indeed, (P4X), =¢«X, for Xeg. (We can regard ¢,X as a holo-
morphic vector field on G./B'.) Since the mapping &, and ¢, are
complex linear, our assertion is clear. We can choose aeG, (resp.
a'€G’) such that ao=p (resp. a'o’=p’). We put &(c)=a'~!®(aca')a’
for each ceG,. Then the mapping & is an isomorphism of G, onto
G.. Since Adab=Adab,=h, and Ada'b’'=Ada'by =b,, we get d,b=
Ada’~'®,Adab=b". Therefore &(B) is a closed subgroup of G’ with
Lie algebra b’, and hence ®(B)cB'. By considering the inverse of ¢
we conclude #(B)=B'. As a result, there exists a biholomorphic map-
ping ¢ of G/B onto G./B' such that @om=n'ed. For any x=cp
(ceG), we get o(x)=d(c)p(ao)=a'®(a 'ca)o’=n'a’ B(a~")P(ca)=a’
&(a~")P(x). Thus the biholomorphic mapping @& =a’od(a"1)ed of
G./B onto G,/B’ coincides with ¢ on the orbit of G through p. By
using Lemma 2.5, we can easily verify that @ coincides with ¢ on
the whole D. Thus we have proved

Proposition 3.1 (cf. [7]). Every biholomorphic mapping of D onto
D' can be extended to a biholomorphic mapping of G.B onto G./B'.

Let ¢ be a biholomorphic mapping of D onto D’. Denote by the
same letter ¢ the extended biholomorphic mapping of G./B onto G./B'.
It is easy to see that @(cx)=®(c)o(x) for all ceG, and xe G, /B. We
now verify the following theorem. The proof is almost similar to
the one in [7].

Theorem 3.2 (cf. [2], [7]). Let D (resp. D') be the Siegel domain
of the second kind associated with a convex cone V (resp. V') in R
(resp. in R') and a V- (resp. V'-) hermitian form F (resp. F') on W
(resp. on W'). Assume that there exists a biholomorphic mapping ¢
of D onto D'. Then
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(1) dimR=dimR’ and  dim W=dim W’

(2) ¢ can be written as @=c'yc, where ceG,, c'eG and Y is
a complex linear isomorphism of R, x W to R,x W’ satisfying the fol-
lowings: Y(R)=R', y(W)=W’', Y(V)=V' and Y(F(u, w)) =F' (Y (u), ¥(w))
for all u, weW.

Proof. We can easily verify that there exists a point peS such
that ¢(p)eS’ ([7]). Choose ceG, and c¢'eG, such that co=p and
c¢'o’=¢(p). By considering c'~l!ogpoc instead of ¢, we may assume
@(0)=o0'. Since ¢@(ao)=®P(a)p(o)=P(a)o’ for any ae G, we have (M)
=M'. Furthermore ®(B)=B’, because @(b)o’ =P(b)p(0)=qp(bo)=0" for
every beB. Therefore we get @om=n'o®. Clearly g°+g'+g? (resp.
g'%+g't+g’2) is the Lie algebra of Gn B (resp. of G'n B’). It follows

1) @,(a°+g'+g*)=g'%+g""' +g'2.

Since 7,(¢g~").=T,M)nJT,(M), where J is the complex structure of
G./B, and 7'y(g'" 1), =T, (M')nJ'T,(M'), we have

2) @,97'=g""'(modg°+g''+g'2).

For any s(c)eg™' (ceW), pumill, s(c)]e=p4mss( \/ch)e =J'pumys(c). =
J' 5 (Pes(c)) =h([I', Pys(c)])e:. On the other hand, @,m,[I, s(c)].=
y(Py1, 5(¢)]).r. Thus we get

3) .l X]=[I', #,X] (modg’®+g'' +g'?)

for all Xeg™!.

From 1) and 2), we obtain #,E=E’' (modg'!+g'?) ([7]). Hence we
can write ®,E=E+X' (modg'2?), X'eg'!. Then Ad(expX') d,E=E’
(mod g’2). Therefore there exists X2eg'? such that Ad(expX!)PLE=
E'+2X2. It follows Ad(expX?) Ad(exp X\)®,E=E'. We put Y=
exp X2oexp X1op. And denote by ¥ the induced isomorphism of G,
onto G,. Then it is clear Y,E=E' and hence ¥,g*=g'* (—2<1=52).
Therefore dim R=dimR’ and dim W=dim W’'. By considering the
equality: Y,g~!'=g'"!, we get from 3)



On Tanaka’s imbeddings of Siegel domains 543
Y[, X]1=[I', ¥.X] for Xeg!.

As a result, P,P(X)=P'(¥,X) for Xeg~!. Recalling the definition of
Tanaka’s imbeddings, we get

Y(z, w) =y(exp [s(2) + P(s(w))]o)
=¥(exp [s(z) + P(s(w))])o’
=exp [Vxs(2) + P(¥ys(w))]o".

The above equality shows that there exist linear isomorphisms A4; of
R onto R’ and A, of W onto W' such that y(z, w)=(4,z, 4,w).
Clearly A,V=V'. And by a simple calculation, we get A,;F(u, w)=
F'(Ayu, A,w). g.e.d.

Applying Theorem 3.2 to the special case where D'=D, we get
Corollary 3.3. Aut(D)=G'GL(D).

Proof. Let @€ Aut(D). Then by Theorem 3.2, we can write ¢=
c'Ye, where ¢, ¢’e G and Yy e GL(D). It follows @ =c'ycy~ 'y and clearly
Yey~leG. q.e.d.

§4. The Silov boundary S and the group Aff (D)

4.1. Let D be the Siegel domain of the second associated with a
convex cone ¥V in R and a V-hermitian form F on W. And let D,
be the associated Siegel domain of the first kind, ie., D;={xeR,;
ImzeV}. We denote by g (resp. by t) the Lie algebra of Aut(D)
(resp. Aut(D,)). Then by Theorem 1.1, g=g"2+g ! +g°+g'+g? and t=
t~2 41412, Since g 2+g°+g? is the subalgebra corresponding to the
subgroup {fe Aut(D); f leaves D, x (0) invariant} ([2]), there exists a
homomorphism «: g 2+g%+g2—>1t"2+1°+12 (as graded Lie algebras).

Lemma 4.1. The homomorphism a is injective on g~2+g2.

Proof. Clearly « is an isomorphism on g72. Let X eg2? be such
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that o(X)=0. Then for any Yeg 2, «[Y,[Y, X]])=0. Since [Y,
[Y, X]]eg 2 we get [Y,[Y, X]]=0. This implies X =0 ([4], [8]),
g.e.d.

Lemma 4.2. Let Xeg'. If [[I, X], X]=0. Then X=0.

Proof. By a direct calculation we have
0=[Y, [Y, [[1, X1, X111=2[[I, [Y, X]], [Y, X]1]
for Yeg 2.

Since [Y, X]eg !, we have [Y, X]=0 for all Yeg=2.3) Therefore we
get X =0 ([4], [8D). g.e.d.

4.2. Let H be the subgroup of Aut(D) which consists of all ele-
ments f of Aut(D) leaving the Silov boundary S invariant, where f
should be regarded as a holomorphic transformation of G.B. Clearly
H contains Aff(D). Since each element of Aut(D) leaves M invariant
(cf. Proof of Theorem 3.2) and since S is open dense subset of M,
H is a closed subgroup of Aut(D).

Lemma 4.3. The Lie algebra of H coincides with the Lie algebra
of Aff(D).

Proof. Denote by L) the Lie algebra of H. Since b contains the
element E, §) is a graded subalgebra of g, i.e.,

b=b"2+h™' +10+b! +b7, h=hng.

Let Xeh2. Then expa(X) leaves the Silov boundary of D, invariant.
It is known in [5] that a holomorphic transformation of a Siegel
domain of the first kind which leaves the Silov boundary invariant
is an affine transformation. Therefore we get a(X)=0 and hence X =0
by Lemma 4.1. It follows h2=0 and hence h'=0 by Lemma 4.2.

q.e.d.

3) Identifying g;%®+g~! with R, X W by the map s, we have from (l.1) and (1.3)
(1, 2], Z]1=4F(Z, Z) for Zeg-'.
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Theorem 4.4. The group H coincides with Aff(D).

Proof. Let feH. Then foeS and hence there exists ce G, such
that c¢fo=0. We put ¢ =c¢f and denote by @ the induced isomorphism
of G, by ¢. Then @,(g°+g'+g?)=g%+g'+g2. We recall that &(a)=
pap~!. Since peH, we get P (g 2+g '+g°)=Adp(g 2+g 1+g°)
=g"2+g"1+g° by Lemma 4.3. It follows ®,g°=g°. By considering the
equation ¢,E=E (modg!+g2?), we conclude ®,E=E and hence ®,g*=
g*. Now from the Proof of Theorem 3.2, it is clear that ¢ is an
element of GL(D). q.e.d.

Corollary 4.5. Let fe Aut(D). Assume that f and f~' are continuous
in D, where D is the closure of D in R,x W. Then fe Aff(D).

Proof. By Lemma 2.6 and by Corollary3.3, we know feH.
q.e.d.

§5. The compactness of C./B

5.1. Let D be the Siegel domain of the second kind as in §1.
Assume that D is a symmetric homogeneous domain. Then it is well
known that the Lie algebra g is semi-simple. Therefore g, is semi-
simple. We also define linear endomorphisms P and P of g! in the
same way as in (2.1), i.e.,

POX) =—- (X~ /=1L, X),

P(X)=-é—(X+\/—_l[l, X1)  for Xeg!.

We put s7'=g;2+P(g7"), s°=P(g"")+92+ P(g') and s'=P(g!)+g2.
It is easy to see that g.=s"!+s%+s! is a graded Lie algebra. According
to [6] there exists an involutive automorphism 6 of g, (as a real Lie
algebra) associated with a certain Cartan decomposition of g, such that
O(s~!)=s! and O(s°)=s°. Let G, be the Lie subgroup of G, cor-
responding to the subalgebra {Xeg.: 0(X)=X}. Clearly the orbit of
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G, through the origin o is open and compact in G./B and hence coin-
cides with G,/B. As a result G./B is compact.
The purpose of this section is to prove the following

Theorem 5.1. Let D be a Siegel domain of the second and let
G./B and G/Gn B be homogeneous spaces constructed in §2. Then the
following conditions are equivalent:

(1) D is symmetric.

(2) G./B is compact.

(3) G/GnB is compact.

52. We put b=g°+g'+g2 Let m=dimg and n=dimb. De-
note by Q(m, n;R) the grassmann manifold of all n-dimensional
subspaces of the m-dimensional real vector space g. Since the subgroup

GNB of G leaves b invariant, we can define a mapping n of Go=
G/GNnB to Q(m,n;R) by

n(ao) =Adab (ae@G).
Lemma 5.2. Let veV and let 19={Xeg®; [s(v), X]=0}. Then we
have
lim n(exp ts(v)0) =0+ [s(v), b]  (in Q(m, n; R)).
t— o0
Proof. We put n,=dimg' and n,=dimg®+g2 Let X'eg!.
Then
Ad(expts() X' =X +1[s(v), X1].

Since the mapping: X!—[s(v), X'] of g! to g~! is injective (cf. [8]),
we have

lim Ad(expts(v))g' =[s(v), ']  (in Q(m, n;; R)).»

4) Let X,,..., X,, be a base of g!. Put Y,=[s(v), X;]. Then Y,,.,Y,, are linear-
independent. Thus the subspace Ad (exp fs(v)) g' is generated by —1—X1+ Y,..,

Xt Ya,
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Let X2eg? and X%°eg®. Then
Ad (expt s(0)X? = X2 +1[5(v), X21+5[s(0), [s(2), X21]
Ad (exp t s())X° =X°+[s(v), X°].

If we put Y°=—£—[s(v), X2], then

Ad(exp ts(v) X 2 = X2 +%[s(v), X 2]+ Ad(exp ts(v)) YO..
Therefore
Ad(exp ts(v)) (g +9°)
={x2 +Ls0), X715 X2 eg?)

+{X+1[s(v), X°]; X°eg°}.

Since the mapping: XZ2-[s(v), [s(v), X2]] of g% to g2 is injective
(cf. [8]), we know [s(v), g21 Nt =(0) and hence

lim Ad(exp ts(v)) (a2 +g°)
t— 00

=[s(v), g2 +¢°]1+f  (in Q(m, ny; R)).

q.e.d.

We can now prove Theorem 5.1. Suppose that G./B is compact.
Then by Proposition 2.7, G/Gn B is compact. Thus we have only to
verify that (3) implies (1). Suppose that G/GnB is compact. Then
n(G/GnB) is compact. Therefore by Lemma 5.2, there exists aeG
such that Adab=[s(v), b]+f. Clearly [E, AdablcAdab. Then
[Ad a ' E, b]<b. If we write Ada~!' E=X"2+4+ X! (modb), X~2 eg2
and X 1eg™!. Then [Ada 'E, E]=2X"24X"1'=0 (modb). Therefore
X-2=X-1=0 and hence Ada~'Eeb. As a result EcAdab. Thus we
can write E=Y+Z (Yet9, Z e [s(v), E]). We denote by TradX (X eg)
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the trace of the linear endomorphism adX of g. Since 0 is compact,
TradY=0. Clearly TradZ=0. And hence TradE=0. This implies
dimg~2=dimg? and dimg !=dimg'. Therefore g=2=(ads(v))>¢? and
hence the domain D is homogeneous (cf. [8]). On the other hand,
from [2] we know g is semi-simple. Then by Borel [1] or Koszul
[3] we can conclude that D is symmetric.
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