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Introduction. It was proved in [3] that if D is any (non-
commutative) division ring, then there exist non-free projective
ideals in D[X, Y]. The aim of this paper is to study the set of
isomorphism classes of finitely generated projective modules over
D[X, Y], vhere D is a division algebra which is {inite-dimensional
over its centre. In §l. we prove a proposition on projective modules
over matrix rings and deduce (Cor. 1. 3) that if D is a finite-
dimensional central division algebra of dimension »® over K and L
a splitting field for D, then for any finitely generated projective
module P over D[X, Y], LQP is free over M,(L)[X, Y]. If we
choose a splitting field L for KD which is a finite Galois extension
of K with Galois group G and an isomorphism L(>§)D[X, Y™
M,(D)[X, Y], we get a cocycle f:G——Aut (x,vy-0, M. (L)[X, Y].
For any integer m>1, let Z'(n) denote the set of maps T:G—
Aut ,x.v )M, (L)[X, Y]", where T satisfies a suitable cocycle condition
and T(s¢) is f(o)-semilinear for every ¢G. We prove (Th.2.1)in
§2, that for m>1, the set of isomorphism classes of finitelygenerated
projective modules of rank m (where rank is defined in a suitable
manner) Is in bijection with a quotient set H'(n) of Z'(m) modulo

an equivalence relation. In §3, we show (Cor. 3.2) that the

1) We thank the referee for ;ritically reading the manuscript.
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isomogphism Z~K°(D)"~~K°(D[X, Y]) implies that the coho-
mologies H'(m) are ‘stably trivial. In §4, we give an explicit
description, in terms of matrices, of projective modules over H[X, Y],
H being the algebra of real quaternions. In the final section, we
prove (Prop. 5.1) that two projective modules of rank 1 over
H[X, Y] are isomorphic if and only if certain systems of equations
over R[X, Y] have solutions. In particular (Cor. 5. 2), a projective
module of rank 1 is free if and only if a certain diophantine
equation is solvable over R[X,Y]. Using this, we incidentally
prove that there exist infinitely many non-isomorphic projective
modules of rank 1 over H[X, Y.

All rings considered here are assumed to have unit elements
and all modules are unitary. By a module, we generally mean a

finitely generated left module.

§1. Projective modules over matrix rings.

Proposition 1.1. Let A be a ring such that every finitely generated
projective module is free. Then every finitely generated projective module
over M,(A) is isomorphic to @DA’, A" being the standard left
M, (A)-module. me

Proof. We have [1, p.69] an equivalence of categories
mod A——> mod M, (A4) given by M——A"® M, A" being considered
as a right A- and left M, (A)-module. Since :his equivalence preserves
projective modules, it follows that every projective module over
M,(A) is of the form A”®AP, where P is a projective A-module.

By our assumption on A, P is free. This proves the proposition.

Corollary 1.2. Let L be any field. Then any projective module
over M,(L)[X, Y]=M,(L[X, Y]) is isomorphic to a direct sum of
copies of L[ X, Y]".

Proof. Immediate from the above proposition, using Seshadri’s
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theorem on projective modules over L[X, Y].

Corollary 1.3. Let D be a finite dimensional central division
algebra over K and let L be a splitting field for D so that L®KD x
M,(L). If Pis any projective module over D[X, Y], then L®KP is
free over M,(L[X, Y]).

Proof. By Grothendieck’s theorem [, p.643], we know that
the inclusion D« D[X, Y] induces an isomorphism K°(D) ™~
K°(D[X, Y]), the inverse mapping being induced by the supple-
mentation D[X, Y] —— D defined by X+ 0, Y—— 0. Thus if
P is any projective module over D[X, Y] and m=dim ,(D D[@Y]P),
the image of P—D[X, Y]" in K°(D) is zero so that P—D[X, Y]"
=0 in K°(D[X,Y]). This implies that PPD[X, Y]'=xD[X, Y]"*
for some integer ». Tensoring with L, we get an isomorphism
LQYPPEM,(L[X, Y])' s M.(L[X, Y]D"*" of M,(L[X, Y])-modules.
ByKCorollary 1.1, we have L@KP is isomorphic to (L[X, Y]")"
Comparison of ranks over L[X, Y] yields sn+rn*= (n+r)n? L e.
s=m-n so that L@P:‘;G}(—}BL[X, Y]":(—PMn (L[X, Y]).

If P is a projective module over D[X, Y], the dimension of
D & P as a vector space over D is called the rank of P over
DLX,Y]

D[X, Y]. If m is the rank of P over D[X, Y], then LRPx
X
(M, (L[X, YD)

Remark. In [2, p.18], Bass states that the construction of
non-free projective modules over D[X, Y] given in [3, p. 504] holds
for any ring A in which there exist units a, b such that gb—ba is
a unit and over which free modules have well-defined ranks. This
statement, however, is not true unless A is a domain. Let us take
for instance A=M,(K), K being a field. Let a, beM,(K) be
invertible such that ab—ba is also invertible. Let P be defined by
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the exact sequence
0— P— M,(K[X, Y] M, (K[X, Y])— 0,

where ¢(1, 0) =X+a, ¢(0, 1)=Y+b. By Proposition 1.1, P is
isomorphic to @K[X, Y]" and a comparison of ranks over K[X, Y]
in the above ex:mt sequence shows that m=n. Thus Px@K[X, Y]
~ M, (K[X, Y]), i e. P is free. ’

For example, in the case where A=M,(Z.), a:((l) i), b=

(i (1)), ab—ba being 1, the projective module constructed as above

is isomorphic through the first projection to the ideal generated by

72
(1+X11§<+XY X+1);F+YXY) and (131 lf:Yz). This ideal in fact

72
is principal, generated by ((1+X) E;{:}—Y—I—XY) (1)), in view of the
equations
I+ X+Y+XY 1+Y _ 14+X° 1+Y %
1+X X+Y+XY I+ X+X?+X° X4+Y+XY

( 14+Y? 0
(I4+X)(X+Y+XY) 1
1+Y: 0 |\ _ 1 0
0 1+7?) “{(+X)(X+Y+XY) 1+7?) X
1472 0
((1+X) (X+Y+XY) 1)

§2. A classification of projective modules over D[X, Y].

In this section, we shall write A=D[X, Y], D a central division
algebra over K. If P is a projective A-module of rank m (in the
sense defined in §1), we know that PPA"xA"*" for some r. If
m>=3, since dim max K[X, Y]=2, it follows by the cancellation
theorem of Bass [1, p. 184] that Px A", i.e. P is free. Thus any
projective module over D[X, Y] is either free or is of rank <2.

Let L be a finite Galois extension of K which is a splitting field
for D. Let G=G(L/K) and ¢:L®KD’\; M, (L) be an L-algebra
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isomorphism. This gives rise to an L[X, Y]-algebra isomorphism
LA > M,(L[X, Y]). The group G operates on L and hence
onKM,,(L[X, Y]) entrywise. For each oG, the map f(o):
M,(L[X, Y])— M,(L[X, Y]) defined by f(6) =c7' 0o poo@®lo g™’
is easily checked to be an L[X, Y]-algebra automorphism of
M,(L[X, Y]). It is also easily seen that

flor) =77 0 f(0) ot o f(7) ; 0, TEG.

Changing the isomorphism ¢ is equivalent to altering f(s) in its

cohomology class. In what follows, however, we shall fix a ¢ and
therefore an f(s) once and for all.

Let P be a projective module over A of rank m and ¢:LQP
~M,(L[X, Y])" a ¢-semilinear isomorphism. The Galois group KG
operates on M,(L[X, Y])" in an obvious manner. For any ¢=G,
define

To(6) =07 0 poo®l o g
Clearly, T, (¢) is an additive map and for A€M, (L[X, Y1), z€
M,(L[X, Y])", we have
Ty (0) (Ax) =07" 0 ¢ 0 a@1 (7' (2) - ¢~ (x)) since ¢ is g-semi-
linear)
=07 0 P(e@1 (7' (1) 0@ (¢ (x)))
=07 (poo®logd™ (D)-Ppoa®log™(x))
=f(a) (A) - T: (o) (2).
In particular, T, () is L[X, Y]-inear. For s, &G,
Ty (07) = (07) "' 0 0 6@ 0§~
=27 0 Ty (0) o 70 Ta(c).

Thus for each oG, T:(o) is an f(s)-semilinear automorphism of
M,(L[X, Y]~ If ¢’:L®KPS M,(L[X, Y])" is another ¢-semi-

linear isomorphism and T7(s) =7 o ¢’ o 6@ o ¢'"', then
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goTr(0)=(p' o) o0aoTs(a) o (¢ o)}
=0ocoT:(s) o007,

where 0=¢’o¢™ is an M,(L[X, Y])-linear automorphism of
M,(L[X, Y])". In particular, changing P in the isomorphism class
of P amounts to changing 7> (¢) in the above manner.

For any integer m>1, let Z'(m) denote the set of all maps
T:G—— Aut ,x,v; M, (L[X, Y])" such that: (1) for every ¢€G,
T(o) is f{o)-semilinear and (2) for g,7€G, T(st)=1"" 0 T(a) o o T(7).
We define a relation on Z'(m) by setting T'~7" if and only
if there exists an M,(L[X, Y])-linear automorphism 6 of
M,(LTX, Y])" such that T'(¢) =(67' 080 o0a) o T(s) o 6~'. This is
an equivalence relation and we denote by H'(m) the quotient set
Z'(m) ) ~.

Theorem 2.1, Let P(m) denote the set of isomorphism classes of
projective modules of rank m over A. Let i be the map P(m)——
H'(m) given by i([P]) =[T:] where [T:] denotes the class of Te in
H'(m). Then i is a bijection.

Proof. We first check the injectivity of the map i. Let P,
P’ be projective modules of rank m over A such that [T,]=[T%].
Let 0 be an M, (L[X, Y])-linear automorphism of M, (L[X, Y])"such
that 0 0o T, (6) =000 0 Tr(s) o 07'. Let ¢:LQP A4 M,(L[X, Y]",
¢ LQP' T~ M,(L[X, Y])" be ¢-semilinear i:omorphisms such that
¢o o@gl o '=00Ts(0), ¢ 00@lo¢''=g0T,(s). The map ¢
0fo¢:LRQP—> LRP is LYD[X, Y]-linear and ¢'"' o 0o ¢oa®]
=o®l o ¢’f‘ 0o ' Thus gbx’“ ofo¢ induces a D[X, Y]-isomor-
phism of P onto P’, which proves the injectivity of 7.

We now prove the surjectivity of . Let [T] be an element
of H'(m) and Te Z'(m) be a representative. Define

P={zeM,(L[X, Y])" | a0 T (o) (x) =x, ‘e=G}.
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We will show that [P]e #£(m) and that {([P])=[T]. Set B=
M,(L[X, Y]). We regard A as a subring of B through the
isomorphism ¢ : LQA 7~ B and consider B in what follows as a
right A-module. {'he isomorphism ¢ induces a ring isomorphism

)
(Endg LY®A — End,(LQA)~— End, B,
K K
where ¢ is defined by ¢(g) =g ogo ¢!, for g Ends LQA. By the
K

normal basis theorem, Ends L is generated as a K-algebra by G and
L so that (EndsL)®A is generated by L®A and ¢!, s&=G.
X X

Thus End, B is generated by ¢(e®1) =0 o f(s), 6=G and B, where
B is regarded as a subring of End, B through left multiplication.

The relations between these generators are given by
g o f(0) -7 o f(r) =07 0 f(07)
oo f(g)b=0co f(o) (b)-0 o f(o); 0, r€G, bEB.

These relations are obtained from the relations between G and L
in End¢L and are therefore the only relations.

On the other hand, the elements 60T (s), 6&G belong to
End, B" and satisfy the relations

goT(c) ortoT(r)=0t0 T (o7)
and goT(c) ob=co f(c)(b) cg 0 T(s),

where B~;———>End,4 B" as left multiplications. We therefore have a
K-algebra homomorphism

« : End, B—— End, B",
defined by a(oo fl6))=00T(a),
a((b) =b.

Let .B" denote B" regarded as a left End, B-module through a.
By Morita equivalence applied to the pair (4, End, B) [, p.69],

we have an End, B-isomorphism

B@Homlﬁnd‘li (B$ aBm):) f!Bm
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induced by (b, g) ——b-g(l), beB, geHomEudA,,(B, B"). We
assert that under this isomorphism, HomEudA,,(B, .B") maps onto
the module P defined above. For, if geHomEndAB(B, .B"), then
60T (c) -g(1)=00 f(s)-g(l) (by the definition of the End, B-
module structure on ,B") =g(so f(s) (1)) (since g is End, B-linear)
=g(l), i.e. g(l)eP for every gEHomE“dAB(B, .B"). Conversely,
let x&P. Define g: B > B” by g(b) =bx for every beB. We
prove that g is End, B-linear. Since End, B is genérated by B and

oo f(6), 6€G, and since g is clearly B-linear, it is enough to check
that g((o 0 f(0)-b) =00 f(0)-g(b). Now g(ao f(o) -b) =g (o0 f(0)
b)) =00 f(6) () -x and g o f(a)-g(b) =0 o f(0)-bx=0 o T(s)-bx (by
the definition of module structure on ,B") =0¢ o f(0) () -0 o T(s) (x)
=¢ o f(¢) (b) -z, x being in P. Thus g is End, B-linear and g(1)
=2.

The module ,B™ over End, B is A-free and hence is End, B-
projective. (For example, through a choice of a basis of B over
A, we can identify End, B with M,(A). If 5: M,(A)"— .B" is
a B-linear epimorphism and ¢:,B" —— M, (A)’ is an A-linear section
to 7;,12 entey, e; being the standard basis of M,(A) over A,
is easil;ihecked to be an M,(A)-linear section of 7). Hence,
HomEudAB(B, .B") and therefore P, is A-projective. The inclusion
P<— B gives rise to an isomorphism ¢ :LQPxB". We prove
that 67 o 0o 6®1 0 ¢~ =T (o). Infact, for ZELI:xE P, ¢oo@®!(IRx)
=¢(a(1)Rzx)=0(l)-xz and 60T (0) o p({Q1) =00 T (o) (lx) =0(l)
60T (o) (x) (since T(g) is L-linear) =0 (/)-z. This proves the
surjectivity of ¢ and the proof of the theorem is complete.

§3. Stabilisation.

With the notation of the previous section, for integers m, m’>1,
we have a map a: P(m) X P(m’)— #(m+m’) given by ([P],
[P]) —— [PDP]. We also have a map 8: Z'(m) X Z'(m')—>
Z'(m +m'), given by (T, T) ——> THT', where TPT :G—
Autyx, M, (L[X, Y """ is defined by (T®T) (¢) =T (o) DT (0).
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Let T\~T, Ti~T;, T\, T:€Z'(m), Ti, T Z'(m’), and let 6,, 0, be
automorphisms of M, (L[X, Y])", M,(L[X;, Y])™ respectively, such
that ¢ o T,(¢) =60, 00 0 T,(¢) 0 6;', 6 0 Ty(c) =0,00 0 T;(c) o 8;*, for
every 6&G. Let 6 : M,(L[X, YD"*"""—M,(L[X, Y])"*"" be the
automorphism 8,P8f,. Then, clearly, ¢ o (T:@T:)(d)=00 g o (T'PT)
(6) o 07'. Thus the map B induces a map of the quotient sets

H'(m) x H' (m”") P >H (n+m"). We write 8([T1], [T:]) =[T.1DI[T-].

Proposition 3.1. The diagram

a
P(m) X P(m') — P (m+m’)
X1 7

3
H'(n) x H' (m”) LN H' (m4m")

is commutative i.c. [([POP]) =i([P])DiI[P]).

Proof. Let T, 7" be representatives in Z'(m), Z'(m’) respec-
tively of #([P]) and i([P]). Let ¢:LQKP ~ M,(L[X, Y]",
¢ LQP ™~ M,(L[X, Y])" be ¢-s}elnilinéarkisomorphisms such that
oo go (0@1) 0 ¢ =T(0), 6™ 0 ' 0 (4®1) o ¢/~ =T"(0).

We have a string of isomorphisins
4 9Dy’ :
LR (POP) = LOPBLRP ™5 M, (LLX, Y1) ®M. (LLX, Y])™
=M,L[X, YD"*",
where 1 is canonical. Let ¢”"=(¢@¢’) o 4. It is easily checked

that 670 ¢/ 0co@l o’ '=(67"0o¢poa®lo¢g™, 67 o’ oa®l o' ™)
=T(¢)PT"(s). This proves the proposition.

Corollary 3.2. For any Te Z'(m), T@®f*~f"*% where for any
integer k, f'e Z'(k) is difined by f*(¢)=f(a)': M,(L[X, YD'—s
M.([LLX, YD"

Proof. For the free module D[X, Y]*=F of rank %, taking
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¢=¢" we see that T:(¢) =f(s)". On the other hand, for any
projective module P over D[X, Y], of rank m>1 we know that
POD[X, YI’sD[X, Y]"**. Hence T,@f*~f"*.

§4. A description of projective modules over H[X, Y].

Let H denote the division algebra of quaternions over the field
K of either real numbers or rational numbers. Then L=K() is a
splitting field of H. The Galois group G=G(L/K) is generated by
the automorphism ¢ which takesi to —i. An L-algebra isomorphism
o :L@HQJ, M, (L) is given by

¢ O (a +ib+jc+kd)) = ( )( _‘;Iz‘c’; Zf’j)

so that ¢7' is given by

¢-1 (21 +l:12; ﬂx‘l‘l/lz) — 1®( A +ﬂ +Z A

—0; ,Uz'l'Vz
vi+ivy, 0, 410, i g 2 )

2“ 2

+i ®( '22+52 2,'271 +j _&2&_;.]3 :f‘é__”l)

The map ¢ induces an L[X, Y]-algebrai somorphism ¢ :L®KH[X, Y]

™~ M;(L[X, Y]). Then f(6)=0"'o¢oa®!o¢*=Inta, where

Int a denotes the inner automorphism of M;(L[X, Y]) given by
0 -1

)

Let P be a projective module of rank two over H[X, Y]. Let
¢ LQP ™ M,(L[X, Y])* be a ¢-semilinear isomorphism and
let T’&cr) =¢'ogoa®lo¢g™. The map T(s) : M:(L[X, Y])*—
M,(L[X, Y])? is wuniquely determined by its values on the
standard basis (e, e.) of M,(L[X, Y])? since it is semilinear. Let
T (o) (e;) =Ane,+Aune, i=1,2; A;e M, (L[X, Y]) ; Then

T (o) (hei+Ae.) =aha™- (Ane +Arze:) +ala™' (Anei+Aze,),
Ay EM(L[X, Y]).
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The cocycle condition for T'(¢) gives Id=T(¢°) =67" 0 T(¢) 0cd 0 T(a),
so that
ey=co ld(e,) =T (6) oo 0o T(ag)(er)
=T(0') (Allel +A12€2)
:aAua-l . (A“el +A12e2) +aA12a—l * (AZIel +A2262) b

where bar denotes the effect of . Also

e;=0 o Id(e;) =T (0) o 0o T(0) (e2)
=aA-zxa_l (Auex +A12€2) +atzlzza_1 (AZIel +Azzez) 5

We thus have
a0 A:u 412 a0 Au Alz _ Id 0 (1)
0 a A21 Azz O a-l A21 Agz - O Id .

All AIZ

Conversely, every block matrix (Am Az

fying the above condition gives rise to a cocycle 7. The cocycle
f* which corresponds to the free module of rank 2 over H[X, Y]

ﬁll iﬂ) and

), A,‘,’E]\lz (L[X, Y]) Satis‘

gives the matrix (Iod Iod) Two such block matrices (

(IB;“ g‘z) give rise to equivalent 7" if and only if there exists an
21 22

invertible 2x 2 matrix (C,;) with entries in M,(L[X, Y]) such that

An Ap _[a 0\(C. Ci - a'to B, By (?u CIZ (2)
Az; Azz —\0 a C21 sz 0 a_l 321 Bzz C21 sz .
Thus the set of isomorphism classes of projective modules of rank

2 over H[X, Y] is in bijection with the set of classes of matrices
<§“ ﬁ”), A;EM,(L[X, Y]) satisfying (1) with the equivalence

relation given by (2).

Remark. The result on stabilisation proved in §3 applies in
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this particular case to show that given any block matrix (ﬁ“ A")
21

22’
Au A 0 10
Am Azz 0 ’ lzz(o 1>,
0 0 1,

A, e M,(L[X, Y]) satisfying (1), the matrix

1,0 O
is equivalent to {0 1, 0 |.
001,

We now consider projective modules of rank 1 over H[X, Y].
Let P be a projective module of rank 1 over H[X, Y] with
an isomorphism gb:Lg()P_"\_-/,Mz(L[X, Y]), which is ¢-semilinear.
Then, T(s) =06 ooo@®lo¢™: M (L[X, Y])— M,(L[X, Y]) is
uniquely determined by T'(¢) (1). Let T'(¢) (1) =A. Then T(¢) () =
f(@) (A T(o)(l)=aiaA for every A& M,(L[X, Y]). Id=T(¢*) =
60T (e) oo 0T (s) gives the following condition on A :

ada™*A=1d. 3)

Conversely, any Ae M,(L[X, Y]) satisfying the above condition
represents some 7. The cocycle f which corresponds to the class
of free modules of rank 1 over H[X, Y] gives the identity matrix

((1) (1)) Two matrices A, B satisfying the above condition represent

equivalent 7" if and only if there exists an invertible matrix ve

M:(L[X, Y] with
B=au'a'Aa. @)

Thus, the set of isomorphism classes of projective modules of rank
1 over H[X, Y] is in bijection with the set of equivalence classes
of matrices Ae M, (L[X, Y]) satisfying (3), the equivalence being
defined by (4).

Remark. As in the rank 2 case, given any matrix Ae

A0 O
M,(L[X, Y]) satisfying (3), the matrix {0 1, O) is equivalent to

00 1,
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§5. Some explicit computations for rank 1 projective
modules over the polynomial ring over the real
quaternions.

Let Ae M,(C[X, Y]) such that ada'=A"". Then
det A-det A=1, i.e. det A=¢", 0 real. The matrix B=au"'a"'Aa,

/4 0\ . : i
where u= 0 e/4 is equivalent to A and has determinant I.

Thus to find out whether two matrices are equivalent in the
sense defined in §4, we may and do assume that the matrices have

determinant 1.

Let A=(j g) with det A=1. Then clearly A satisfies (3) if

and only if a=a, d=d, b=¢, (bar denoting complex conjugation);

1. e., the matrix A has the form (Zl—ibz Z‘_I_ibz) with ay, by, b, d,E
1 1

R[X, Y]. Conversely, any matrix A of the form (Z‘ b 2,+ib2)
1 2 1

with det A=1 satisfies (3). If B= (?—z’f {‘_Hfz) is another such

matrix which is equivalent to A, we know that there exists an inver-

tible matrix u= (ﬁiiifj g:‘i_;(il’)EMz(C[X, Y]) such that condition

(4) is satisfied. Since det A=det B=1, detu is real. By replacing

u by u'= *l — u, we assume that det u=+1. We have
Vldet x|
det U= (21 +Z’Zz) (61 +i52) - (/.ll +iﬂ2) (Ul +Z‘V2)'
= A0, — 20, — pvr + oV, ®)

since det u is real. Equating the real and imaginary parts of matrix

entries in equation (4), we get the following sets of equations :
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dy,=— e fh + (ﬁ _bx) A+ (f'z +b2) Az
diy, = e+ (fz —bz) A— (ﬁ +b1) A2 (6)
dio,= hA— (f1 +b1)ﬂl + (fz +b2) Uz
di0;=—h, 2+ (ﬁ ‘bz)/ll + (fl —bl)llz

and

a b= e — (f; +b1)91 — (f; +b2) 123

a, A= —e,0,— (ﬁ—bz)yl‘l' (ﬁ—bx)vz (6 )

ath = —h1”1 + (f; —b1)51 - (f; +b2) 0z *

a s = hiv, — (fz_bz)ax‘“ (ﬁ+b2)51 .
Since det A= det B=1, we have a,d,=1+bi+b} and e, =1+ fi+ f.
In particular, d, and A, are non-zero. Using these facts, one can
verify that (64) is a consequence of (6). We shall show, for in-
stance, how one obtains the first equation of (64) from (6).

di{ed— (i+b)vi— (fo+02) v} =edioy — (fi+b)dw — (fa+b2)div,
=e; (A — (i+b) i+ (o +02) )
— (fi+b) {—eis+ (fi—b) A+ (fo+D2) 42}
— (fot+b2) fespro+ (fo—=02) A — (fi+b1) &},

using (6).
Thus, we have

d {6151 — (fl +b1)V1 - (ﬁ +b2) Vz} = (elhl —'ff""bf —f§+b§) A =adi.

The first equation of (6«) now follows by cancelling d, in the above.
Substituting for di, d;, v, v, from (6) in the equation (5) and
using the fact that e, —fi—fi=1, we get

hd, det u= A —fll-ll +ﬂ#2)2 + (ke —f2/l1 —ﬁﬂz)z +{l§ + /lg @)

Proposition 5.1. A necessary and sufficient condition that the

by +ib, __ (€ f;+if; . _
: )’ B_<f;_if‘2 hx with det A—-det B

=1 are equivalent is that there exist A, X, p, =R[X, Y] such
that the four expressions on the right hand side of (6) belong to the
ideal generated by d, and such that

. _[a;
matrices A= (b1 —ib,

Shldl = (’1|21 _ﬁﬂl +ﬁﬂ2)2+ (]11'22 —ﬁ#l _ﬁ#2)2+#f+#§)
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where e==+1.
(Note that at the most one of +hd, can be written as a sum of
four squares in R[X, Y])).

Proof. The remarks preceding the proposition prove the
necessity of the conditions. Suppose conversely that the conditions
of the proposition are satisfied. Then, we can solve for v, v, 0, 0

A+ik #1+1#2
vi+iv, 0,41i0;

=Asa. Further, by the very choice of u, equation (7) is satisfied.

from (6) and the matrix u:( ) clearly satisfies aua™' B

Hence h,d, detu=h,d,e which implies that det #=¢ and « is inver-
tible.

Corollary 5.2. The matriz Bz(j; if ;:‘-I_if") with det B=1
1 2 1

is equivalent to the identity matrix if and only if the diophantine

equation
ehy= (A _fxﬂl +f2ﬂ2)2 + (M —fth _lelz)z + ﬂf‘l‘#g
is solvable for A, 2, p, t=R[X, Y].

The exact sequence

0—P—SH[X, Y- H[X, Y]— 0,

where 7(1, 0) =f+i, (0, 1)=g+j, f, gER[X, Y], gives rise to a
projective module P of rank 1 over H[X, Y]. We compute the
matrix A corresponding to P. It is easily seen that P is generated
by (1-4(f+Dk(g+7), +(f+iDk (f+i)) and (—3(g+Nk(g+s), 1+
F(@+Nk(f+7)). The first porjection of H[X, Y]* onto H[X, Y]
maps P isomorphically onto a left ideal a of H[X, Y] generated
by 1—%(f+0k (g+j) and —%(g+7)k (g+j). Under the isomor-
phism ¢:C(B>§H[X, Y™ M,(C[X, Y]), the image of C@a in

M, (C[X, Y]) is generated by(l_‘;’g; i %Q;if))and(lﬂgz lbl-gz).
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The equations

(1+z’f g(l—if))=<1 0 )(1+if fz )X

—g(1+if) 1—if —g ¥ (1—if) )\ —ig(1+if) T—ifg’
(l—ifg2 g(1+ifg?) )
ig(T4+if) —ig"(1+if) —2

(o 1+g2)=(—%ig(l+fg) 3i (14if) )X

I+g* 0 sig(1—fg) +(2+ig—fzH)
(1+if fe—1 (l—ifg2 g(1+ifg") )
—ig(1+if) +1 —ifg*)\ig(1+if) —ig*(1+if) -2

show that C®a is contained in the principal left ideal of
R

M.(C[X, Y]) generated by C=(ilgzli]—pf:f) g_(}g—zi-(i{{zf) _22-)

On the other hand,

c(f+i 0 .)Z(Qfg . fg’—f—g'+if‘g2>( g 1)

0 f=i/7\-20+if) —g(+if)? -1lg

shows that ceimage of C®a. Thus the image of C®a in
M,(C[X, Y]) is the principal Bleft ideal generated by c. HenZe the
isomorphism ¢ :C@a_’l’,Mz(C[X, Y]) is given by the composite
map C®Ra—¢—>M2(C[X, YD. ¢l M,(C[X, Y]), where j(c)=1.
We shall now compute A’=T(s) (1)=0c7'0 ¢o a®lo ¢ '(l)=

67 0j o dogo®lo g (c). Noting that for any [* #| e M,(C[X, YD),
¢ ¢ g )

), we have,

Mol

o {19 4

,_ _ (g (A —if) + 2, ig(1 —if)
w=T0) (1) =0 05 (¥ DL FOZD)

_(—%i(4+g:(1+f”)) —4i(fe (e + D +ig(1+f2g2)))_
—4i(fg(g"+1) —ig(14+f%")) —4i(1+/%")

Taking out the scalar —47, we get a matrix

_ (4+g2(1+f2)_ fe@+1) +ig(1+f’g2))
fg@®+1) —ig(1+ /%" 1+/%" ’
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which represents the projective module P.

Proposition 5.3. The projective modules P, and P, constructed
as above with f=X, g=Y" and f=X, g=Y" are not isomorphic if
n+m, n=0, m>0.

Proof. Let m<n. The matrices corresponding to P, and P,
are respectively

A=1 447" (14X XY"(14+Y%) +iY" (14+-X°Y*")
TAXY (YD) =Y (1 XY 1+ XPY
and
B=1 447" (1+X% XY " (14Y") +iY" (1 +X2Y*)
XY (147" Y (1 4+ XY) 1+ X°Y" )
We shall show that there cannot exist A, A, p, tz, € R[X, Y]
satisfying
e(14+XY*") (14 X°Y") = (hA — fips + fo)®

+ (nde = fopn— fipe)* + i+ 165, ®
where h,=1+XY", d,=14XYV'", A=XY"(14Y*), fi=Y"(1+
X?Y*). Suppose there exist A, g, 4, po satisfying (8) ;then e= 41
and each of A — fipt+ fapte, Pide — fopts — fitte, 1, o 1s of X-degree< 2
and Y-degree < 2m+2n. Let u=b+0.X+6,X°, p.=co+6,X+0.X%
hid— fipn+ fote=do+ 6: X+ $: X%, hide — fopts — fipe =e0+ ¢ X + . X?, where
bos Coy doy €0, ¢iy 0; are all polynomials in Y of degree < 2(m+n) ;
comparing the degrees of X and Y in the last two equations, we
see that X-degree of A4<<2 and Y-degree of A<n+2m, i=1,2.
Let 4 =g +g X+gX’ A=gi+gX+gX? where g, gi are polynomials
in Y of degree<n+2m. From (8) we have

(T+XY") (1 4+ XY") = (do + 3 X + 6. X"+ (o + 0. X+ 6. X°)* +
(bo+ 0, X+ 0, X+ (co+ 0. X +60,X%)*

Treating both sides as polynomials in X and comparing the constant
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terms and the coefficients of X', we get, do, €5, by, coER and ¢y =
dzyz(n+m)’ ¢4 :eZYZ(n+m), 03 =b2Y2(n+m), 04=C2Y2(n+m)’ dZ; ez, bz, CzE Ro

Comparing the coefficients of X?, we get

G+ G+ O+ =Y"+Y*" —2Y*"* " (dod, +eoes +bobz +cocs) -

This implies that degree ¢,, degree 6, are<2n and Y*" divides each
of ¢, and 0, i=1,2. Let ¢,=Y*"¢}, 6,=Y*"6}, i=1,2. Substituting
these expressions in 7,4 —fisti+ fapre and hide— fop, — fipz, we have

(T+X*Y*) (g0 +8: X +8:.X") =XV (1 +Y™) (bo+ 0. X +5, V"™ X*)
FY (1Y X?) (ot X+ 0V VX)) =do+ . X+, Y X7 (9)
(1+X°7*) (g4 X +1XD) =Y (1 4+ V" X%) (bo+ 0, X +5, 7" X7)
—XY" (14 Y") (et X+ Y™ X%) =60+ 6, X+, Y X*  (10)

n+2m n+2m

Let g,= _Zo LY, gi= Z}o kY'. We regard (9) as a polynomial
equation i'r: X and corr;l;are the coefficients of various powers of
X. Equating the terms independent of X, we get gy=d,—c,Y".
Comparing the coefficients of X', go=—cY"**" ; comparing the

coefficients of X° we have

2m+n

Y X LY —b.Y* (14Y%) +0.=0. (11
i=0

Since deg 0,<2n, Lniw=by ;=0 for i=n+1,....2m+n—1.

Comparing the coefficients of X, we have
(5 1Y 40Y77) =B (1Y) +0.Y =,
i=0

Since Y*" divides ¢, comparing the terms of degree <m, we get
;=0 for {=0,1,....m. Thus,

”

2 LY b, Y —b Y (14 Y*") +6,Y" =4¢.. (12)

i=m+1

Substituting for 6, from (11), we get

= 3 LY Y Y b Y Y (ST LY.
¢

i=m+1 i=m+1
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Since Y?" divides ¢,, Y*" divides i} LY —bY" L. e. f‘_‘ LY = ’; LY".

f=m+1 i=m+1 i=2m

Hence,

i=2m i=2m

p= 3 l,-Y"—|-2b2Y“”—boY"—boYa"—Y2"< 5 z,r).

Since deg ¢,<2n, equating to zero terms of degree>max (2n, 2m

+n), we get —boY°”—Y2’< 5 l,Y”):O, ie. 3 LY'=—bY" Thus
i=2m i=2m

we haVe ¢1 = _2boY" +2b2Y2m+n, 02 :bZYZm +boY2n, g1 = —boY" +b2§”+2mo

A similar comparison of coefficients in (10) gives
¢2= _2C0}rn +262):2m+u’ 01 — ‘*CoYz" '—CzYZ"', giz —(‘oY” +C2Y" {-Zm.

Substituting these values of 8, ¢,, g and gi in (9) and (10) and
equating the coefficients of X% we get

doYZ'l +2can +2C217'n+2m :dzlfzm ,
eY? —2b,Y" —2b,Y" " =e, Y. (13)

We now consider two cases.

Case (1). m=0. From (13), we get, c,=—co, bo=—by, d:=d,
=e,=¢,=0. Substituting these values in (8) and equating the
coefficients of X?, we have bi+ci=1 and 12 (bi+c3) =0, a contra-
diction which proves the proposition in this case.

Case (2). m=0. If, either n<2m or n>2m, from (13) we
get dy=d;=cy=c;=e,=e,=b,=b,=0. Substituting in (8), we get
0=(14+X?Y*") (14+X*Y*"), a contradiction again. If n=2m, from
(13), we have dy= —2¢;, d;=2co,e0=2b,, ¢;= —2b,. Substituting these
values in (8) and equating the constant terms, coefficients of X*,
of X? and of X, we get Bi+ci+4bi+4ci=1, bi+ci+4bi+4ci=1,
boc;—byco=0 and coc; +bob, =0, 1. e. we have bi+ci=bi+ci=1/5 and
o€z +bobe =0=boc; —boco.  This 1s impossible. This proves the proposi-

tion.

Corollary 5.4. The projective module P corresponding to f=X,

g=Y", n>1 is not free.
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Proof. By the above proposition, P is not isomorphic to the
projective module P, obtained by taking f=X, g=Y°=1. Since P,
‘comes from’ the projective module over H[X] (defined as the

kernel of the map H[X]ZL H[X], ne) =X+i, nle.) =1475), it is
free. This proves the corollary.

Remark. The results of this section are valid for the quater-

nion algebra over the field of rationals, with suitable modifications.
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