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Introduction.

The notion of the universal higher differential algebras of
commutative rings was defined by Berger in [1] and Kawahara-
Yokoyama in [6] and they developed the general theory on them.

The purpose of the present paper is to discuss properties of
complete discrete valuation rings of unequal characteristic, conce-
rned with higher derivations, using above notion. Important results
in this paper are Theorem 6,1 and Theorem 7.1. In Theorem
6.1 we prove that five fine properties of complete discrete
valuation rings of unequal characteristic related to higher diffe-
rentials are equivalent to each other and by means of it we can clas-
sify those rings into two classes, differentially good and differentially
bad. The differentially good class contains all tamely ramified
ones and those with perfect residue fields. Although in this
theorem the equivalence among (i), (ii) and (iii) and that between
(iv) and (v) are proven in routine ways and analogous to facts in
differentials of order 1 (Neggers [7], Suzuki [10], [11]), the analogy
of the equivalence between these two groups of statements are
not true in case of order 1. In Theorem 7.1, it is proven that if
a valuation ring R is in the differentially good class, the ideals

f (@ f

(f (=), - ) n'(]), ) are independent of the choice of a
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coefficient ring of R and a prime element z for n=1, 2 ..., where
f is the Eisenstein polynomial over this coefficient ring, satisfying
f(@)=0. In case of differentials of order 1, we proved an
analogous fact in [10], that is, if R satisfies conditions analogous
to (iv) and (v) in Theorem 6.1, the ideal (f’) is invariant. We
also proved the converse of this fact in [11]. However, the con-
verse problem of Theorem 7.1 itself is still open.

A fairly large portion of the present paper (§l, §2 and §3) is
devoted to studying basic properties of higher differential algebras.
Especially, in order to make up the lack of basic discussions on
differentials of unramified regular local rings of unequal characteri-
stic in [1] and [6], we start with a general argument on differentials
of formally smooth algebras. In these parts we use a definition
of higher derivations by Heerema in [3], which are higher deri-
vations with multi-indices, for the sake of generalization.

As an effective tool to discuss differentials of complete discrete
valuation rings of unequal characteristic, we extend in §5 the
notion of Neggers' number appeared in [7], [10] and [I1].

Throughout this paper, all rings will be assumed to be commu-
tative and have identities. The term “discrete valuation rings”
will refer exclusively to discrete valuation rings of rank one.

1. Generalities.

Let Z be the set of integers. Let N, be the set of non-
negative integers,

Let a=(ay...,a,) and b=(B,..., 8.) be elements in Z"=
ZX ... XZ, and let o be an integer. We define a+b=(a,+8,
ce@u+B,) and ha= (hay, ..., ha,). a<b means that «,<g; for
all =1, 2,...,m. We denote 0=(0,...,0) and |a|=i2yj1 a.

Definition 1.1. A subset 4 of N," € Z" is called an index
domain if the following conditions are satisfied.

1) A+¢.
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i) If a4, b€ N," and b<a, then be
Let P be a ring. Let R and S be P-algebras.

Definition 1.2. (Heerema [3]). A sequence of P-linear
maps 0= {0"}.c« of R into S is called a higher P-derivation with
index domain 4, if o satisfies the following conditions.

1) ol=1

i) o°(@y)= Y 0°x.0%, for all , yER and ac .
b+e=a
b,ec4

In Definition 1, 2, ¢° becomes a P-algebra homomorphism
and we can define an R-algebra structure in S through 4°. In
case P=Z. we simply call ¢ a higher derivation of R into S with
index domain /4. In case m=1 and A=N,, we omit “with index
domain 4.

Let ¢#,... t. be indeterminates. If a=(ay,..., a,) €Ni, ¢
denotes the monomial ¢{'... fi». By &, we denote an ideal of
the power series ring S[[¢,... ¢.]] generated by all monomials ¢
with a4 Let ¢o: R—>S[[ty... 2.]1]1/IJ4 be a P-linear map.
We write as

o) = 2 (0°x)t* with 0°2€S for xER,
ac 4

where % denotes the class of ¢ modulo {, for each /=12 ...
m. Then 8= {6"}.cs is a higher P-derivation of R into S with
index domain A if and only if ¢ is a P-algebra homomorphism.

Definition 1.3. Let A be a P-algebra. Let d={d"}.c. be a
higher P-derivation of R into A. A is called the higher differential
algebra of R over P with index domain 4 and d is called the
canonical higher derivation and we denote A=A;7(R), d=d» and
d*=d3%s, if they have the following universal property :

For every higher P-derivation d= {6°}.c. of R into an arbitrary
P-algebra S with index domain /, there exists a unique P-algebra
homomorphism f:A——S such that 8°=fod"* for every ac.

When we refer to an R-algebra structure of A7 (R), we always



28 Satoshi Suzuki and Jun-ichi Nishimura

mean that the structure homomorphism is d3/ .

In case P=Z, we simply write as A*(R), dr and di instead of
A? (R), dijp and d%,s, respectively. In case m=1 and A=N, we
write as . A,(R) instead of A7 (R).

Let ¢:R——>R’ be a P-algebra homomorphism, then ¢ induces

canonically a P-algebra homomorphism :

Af(R) —— A7 (R).

For the proof of each statement in Proposition 1. 1, we refer to
Berger [1] and Kawahara-Yokoyama [6].

Proposition 1.1. 1) A} (R) ahvays exists and 1is deternmined
uniquely up to R-algebra isomorphisms.

2) A?f(R) is a multi-graded R-algebra. Ai(R) =E|—%m Ar(R),
where if xEA3(R) and yeAL(R), then zysA:**(R), R z';E iosomorphic
to Ay(R) and A% (R) is the R-submodule of A#(R) generated by the
elements (d*'x,) ... (d*x,) such thatxy, ..., 2, €ER,as...,a,€4-0 and
a+ ...+a,=a for a®o.

3) Ife,=(0,.. 0,1, 0,..., 0)isin A, then As*(R)
~%,-(=the module of P-differential of R).

4) If Wis an ideal of R and R=R/, then we have A} (R)=
AP (R) /R, where B is the ideal of Af(R) generated by the elements
die x with x€W and acs .

5) If R is a P,-algebra and P, is a P-algebra, then we have Ap,
(R) =A7 (R) /R, where Y is the ideal of A (R) generated by the elements
diey with yE P, and ae d-o.

6) If R, and R, are P-algebras, then we have

A (Ri(®:-R:) =AL (R) R:A7 (R2).
Moreover, it holds that

A7 (RiQR:) = .+®= AL (R) QAL (R:) for every aeNg.
7)Y If {R.).er is a direct system of P-algebras and R =Ilm R.,

a
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it holds that {A?(R.)}.er forms a direct system of P-algebras and
A R) = lim AF(R.).

8) Let R=P[X.].er be a polynomial ring over P in indeterminates
X., then we have A} (R)=R[X..].erecs-. a polynomial ring over R
in indeterminates X, ., where dz;p X, corvesponds to X, . for every a€ -0
and 1.

9) If Ri=R[X.l.er is a polynomial ring over R in indtemrinates
X., then we have A7 (R)) ~A}(R)[X. ].er..ca a polynomial ring over
A7 (R) in inaeterminates X, ., where die X, corresponds to X,. for
every (=1 and ac /.

§2. Differential algebras of some important algebras.

Proposition 2.1. Let P be a ring with a lnear topology. Let
R be a P-algebra with a topology induced by that of P. We consider
a topology in Ar (R) which is also induced by that of P. Then R is a
Jormally smooth P-algebra (Grothendieck [2]) if and only if A7 (R) is
a formally smooth P-algebra.

Proof. Let E be a discrete P-algebra and let € be an ideal
of E such that 8*=(0). Let 2: E—E/G be a canonical projec-
tion. First assume that A7 (R) is a formally smooth P-algebra
and a continuous P-algebra homomorphism ¢ : R——E/€ is given.
Let p: A7 (R)—A7 (R)/@® A7(R) =R be a canonical projection,
which is continuous. Thue;; by the formal smoothness of A7 (R),
there exists a continuous P-algebra homomorphism ¢ : A7 (R)—
E, satisfying the commutative diagram:

AL(R) i E

S
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Since podi,»=1id:, we have 20(podis) =@ which proves the
formal smoothness of R. Next, assume that R is a formally smooth
P-algebra and a continuous P-algebra homomorphism ¢ : A7 (R)
——E/C is given. Let J, and {4 be ideals in the formal power
series rings E[[ty ... t.]] and (E/€)[[t,. .., t.]], respectively,
generated by monomials ¢*s with aEN;, a&#Ad. Let & be
the kernel of the natural projection x: E[[ty..otn]]/Js—
(E/C)[[tys++e twll/§ 4, where we regard both rings as discrete P-
algebras. Then we have & =(0). We denote by ¢; the class of ¢
in both rings for each /=12 ...,m. We define a P-algebra
homomorphism g: R——(E/C)[[ty, .-+ t.11/F by g@) :..év":, dodis
(x)¢'* for xER. Since ¢ is continuous, the di,, are P-linear and
R and A7 (R) have induced topologies, we see that g is continuous.
Therefore, by our assumption there exists a continuous P-homo-
morphism g: R——E[[ty... tn]]/J4, which induces g. Let o=
{0°}ec4 be a higher P-derivation of R into E such that g(x):ZA
(0°x)t’® with 6°x€E for r&R. Then we have a P-algebra hox;leo-
morphism ¢: A7 (R)——E such that d°=¢ o di, for every ac/.
It is easily seen that ¢ induces ¢. iSince A?(R) is generated by
dz»(R) (aeA) and has an induced topology, we see that ¢ is

continuous. This proves the formal smoothness of A} (R).

Proposition 2.2. Let R be a P-algebra. Let S be a formally
smooth R-algebra with respect to the discrete topology. Then the canonical
S-algebra homomorphism 2 : SQAr (R) —> A} (S) is left inversible
(that is, there exists an S-algebra homomorphism p: A7 (S)—SRA?
(R) such that po A=identity).

Proof. Let ¥, and &, (h=0,1,2, ...) be ideals of SR:A7 (R)
such that

Ja =0@S®RA;(R) and \thl@S@RA;(R)'

>h

We put T=SR:AR)/Js [Ji=S04+0/F0 (R=0,1,2, ...) and
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T=1limT/§,. If we introduce multiplications in PS®.As (R)
e a4
and in [T SR A%(R), in the understandable way, we have
ac 4
T~@® SR:AR) and T~IT SR:A%R).
ac4 ac 4

T has an R-algebra structure ¢ defined by ¢ (@) = (1QdEex) ac1s
zE€R and we consider an R-algebra structure for 7/, induced
by ¢ for every Ah=0,12,.... Since we have an R-algebra
isomorphism T/$,~S and S is a formally smooth R-algebra, the
identical map ¢,: S——>S~T/§, can be successively lifted to R-
algebra homomorphisms ¢,: S—7/§, (h=0,1,2, ...). Take the
projective limit ¢ : S——7T of ¢, Then we have a commutative

diagram:

S > T~ 11 S ®A°
: 1S @43 R)

v

} ¢
R

, where v is the structure homomorphism of the R-algebra S.
Give the co-ordinate wise expression of ¢, ¢(x) = (0°2).c4, TES.
Then 6= {0"}.c. is a higher P-derivation of S into S®:A7 (R)

with index domain 4 and we have commutative diagrams

‘)a
s e s @R
A P
| e
u‘ -
] ) e 1 @(l;/n for acs/,
R~

and 0° is the structure homomorphism of the S-algebra SR:A7 (R).
Therefore, if we denote by g the S-algebra homomorphism of
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A?(S) into S®eAZ(R) such that 6°=pod;, for a=4, we have
a commutative diagram:

)z
A7 (S) S X4 (R)
A 24

S ®:Ar (R)
, which proves our proposition.

Corollary. Let k be a field. Let K be a field containing k.
Let L be a field which is a separable extension of K. Then the canonical
homomorphism ;

1t LRANK) —AL (L)

is left inversible.

Proof. Since L is a formally smooth K-algebra (Grothendieck

[2]), our assertion is a direct consequence of Proposition 2,2,

Proposition 2.3. Let P be a ring with a lknear topology. Let R
be a P-algebra with a topology induced by that of P. Assume that R is
a formally unramified P-algebra (Grothendieck [2]). Then, for every
open ideal N of R and ac A-o it holds that

AL (R) CAAL(R)
and we Fave a canonical isomorphism :

Az (R) /A7 (R) =R /.

Proof. The last assertion is an immediate consequence of the
first assertion. To prove the first assertion, it is enough to prove
that for every a=/4-0 we have diRCUA;(R), because AZ(R)
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is generated by the di,»R. Assume that there exists an ac /-0
such that d;,RZAAL(R). We may assume that |a|=h is the
least integer with this property. Let ¥ and & be two ideals of
A?(R) such that Y= ,;f:‘:.A;(R) and &= |§»A;(R)' We put

E=A7 (R)/AA? (R)+8& and €=J+AA? (R)/AA? (R) + 8.

Then we have €°=0 and E/€~ R/A. Let ¢ and ¢ be two P-
algebra homomorphisms of R into E;

¢o=di, mod. A (R)+8R, U= die mod. AAZ (R) + 8.

1T<h
Since R has an induced topology, it is easy to see that ¢ and ¢
be continuous when we regard E as a discrete P-algebra. On
the other hand, ¢#¢ by our assumption and both induce modulo
€ the canonical surjection R——>R/A. This contradicts the formal
unramifiedness of R over P.

Corollary. Let R be a formally unramified P-algebra with respect
to the discrete topology. Then we have A; (R) =A;(R) ~R.

Proposition 2.4. Let R be a P-algebra. Let S be a formally
étale R-algebra with respect to the discrete topology. Then we have a
canonical isomorphism :

SXAr (R) =A7 (S).

Proof. By Proposition 2, 2, SK:A7 (R)——A7 (S) is left inversi-
ble. By the corollary to Proposition 2. 3, we have Az (S)~S. There-
fore our assertion follows from Proposition 1.1, 5).

Corollary 1. Let y be a multiplicatively closed subset of R. Then
we have a canonical isomorphism :

Ry A# (R) =A% (Ry).
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Proof. This follows from Proposition 2.4, because Ry is a
formally étale R-algebra (Grothendieck [2]).

Corollary 2. Let k be a field. Let K be a field containing k.
Let L be a separably algebraic extension of K. Then we have a canonical

isomorphism :

LA (K) ~Af (L).

Proof. If L is a finite extension of K, L is a formally étale
K-algebra (Grothendieck [2]). Hence our assertion follows from

Proposition 2.4 and Proposition 1,1, 7).

§3. Differential algebras of regular local rings.

For the proof of the following proposition, we refer to Berger
[1] or Kawahara-Yokoyama [6], although for the case of charac-
teristic 0, it is an immediate consequence of Proposition 1. 1, 8),

and Corollary 1 and 2 to Proposition 2.4,

Proposition 3.1. Let K be a field. Let {c.}.er be a transcen-
dence base of K in case the characteristic of Kis 0 and a p-

independent base in case the characteristic of K is p#0. Then we have
AA (K) =K[daC:]aeA—oIIEI'
, where the right hand side is a polynomial ring over K in distinct

indeterminates d°c,.

Let R be a local P-algebra. Let mt be an ideal of R. We

—_ .
denote by the symbol the m-adic completions of R-algebras.

Proposition 3.2. We have a canonical isomorphism :

AR =AT(R).
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Proof. Leti:R——R be the canonical embedding. 7 induces a
canonical homomorphism of A7 (R) to A7 (R), which is extended to
a homomorphism ¢: A7 (R)——A7(R). ¢ is surjective, because
A#(R) and A#(R) are generated by d3/R and di,R. (as A1), respe-
ctively, and the d,, are continuous (in m-adic topology). By the
continuity of the d5,, they are extended to a higher derivation
of R into m). Hence we get a homomorphism of A#(R) into
A#(R), which is extended to a homomorphism ¢ : Af (R)—A# (R).

It is easy to see that ¢ o p=identity.

Lemma 3.1. Let A and B be R-algebras, such that

1) A is a formally smooth R-algebra with respect to W-adic
topology,

2) B/w'B is R/wm"-flat for all n >0 and

3) there is an R-algebra isomorphism f,: A/mA——>B/mB.
Then the following assertions a), b) and c¢) hold.

a) There exist R-algebra isomorphisms f, : A/m"A——B/m"B  for

n=1,2,..., making the following diagram commutative :

/e
A/]]["‘A — - 13/111"13
|
Tn 1 o ]
¢ |
v Fues v
A/m"'A — -—> B/m"'B

, where the w, and the w’, are natural projections.
b) We have an R-algebra isomorphism A~ B.
¢) Every R-algebra homomorphism of A into B which induces fr, is

an isomorphism.

Proof. b) follows immediately from a). We prove a) by
induction on n. Assume that we obtain f,,..., f,_, with the said

property. Let y,: A——A/m"A be a natural projection. Then
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by the formal smoothness of A there exists an R-algebra homomor-

phism g,: A——B/m’"B satisfying the commutative diagram :

A
7 &
A/mA B/m"B
z, 7’y
A/mmt B/m*'B
Joo

g, Induces an R-algebra homomorphism f, : A/m"A——sB/m’'B,

which satisfies the commutative diagram in a). The surjectivity of

ﬁl
fo is clear.  Assume that 0—K—A/m"A——B/m"B——0 is
an exact sequence of R/m"-modules. Then we have an exact

sequence :

«..—Tor®"(B/m", R/m""")

>KQprm» R/m"'—A/m" ' A

—B/m""'B——0.

>

Since B/m" is R/m’-flat, we have Tor®™ (B/m", R/m"™") =0.
Therefore it holds that K®gm» R/m""'=0, hence we have K=0
by Nakayama’s lemma for nilpotent ideals. Hence we have A/m"A

~B/m"B. The assertion c¢) is clear from the above argument.

S

Proposition 3.3. Let P be a discrete valuation ring with a prime
element p, where p is a prime integer. Let {c.}.cr be a set of repres-
entatives of a p-independent base of P/pP. Let Z, .=, ac A-0) be

indeterminates. Then we have a P-algebra isomorphism :

—_—

/A\
A (P) :P[Zl.ﬂ]lEr.HEA-o

S
, where the symbol denotes p-adic completions and the dic, are
mapped to the Z, ..
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Proof. We denote by the ¢, the classes of the ¢, modulo pP
and by the Z,, those of the Z,, modulo pP[Z, .]. Then by
Proposition 3.1 we have a P-algebra isomorphism: A* (P/pP) =~
P[Z..1/pP[Z..], where the dic, correspond to the Z, (&I,
ac A-0). On the other hand, since dip=0 for every ac A-o, it holds
that A“(P/pP)=A"*(P)/pA*(P) by Proposition 1.1, 4). Hence we
have an isomorphism @:A* (P)/pA*(P)_~,P[Z..]/pP[Z..]. Since
P is a formally smooth Z,-algebra, A*(P) is a formally smooth Z,-
algebra by Proposition 2. 1. Since P is a Cohen ring, P is a flat
Z,-algebra (Grothendieck [2]). Hence, P[Z..]/p"P[Z...] is a flat
Z,/p"Z,-algebra for every n>0. Therefore by the above lemma,

o~ —
there exists a Z,-algebra isomorphism ¢ : A*(P) _~,P[Z. .].cr. ec1-or
On the other hand, we have a P-algebra homomorphism
¢:P[Z,..]—>A*(P) such that ¢(Z..) =dic. for c<=I', ac A-0, which
induces a homomorphism gZ:P/[-Z,\,,]——>A"/(F). Since ¢ induces
the isomorphism ¢~', ¢ is surjective and ¢ o ¢ induces the identical
isomorphism of P[Z,,.]/pP[Z...]. We apply again the above lemma
on ¢o¢ and get that ¢ o¢ is a Z,-algebra isomorphism. Hence ¢

1s an isomorphism.

Theorem 3.1. Let R be an unramified regular local ring with
maximal ideal m. Let
D) zy... x, be a regular system of parameters in case R is of
equal characteristic, and
2) Py Ziy... x, be a regular system of parameters in case R is of
unequal characteristic, where p is the characteristic of R/m.
Let {c.}.cr be a set of elements in R such that the set {¢.}.cr of
their residue classes modulo m  are
a) a transcendence base of R/m in case the characteristic of R/m
is 0, and
b) a p-independent base of R/m in case the characteristic of
R/m is p+0.
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Then we have :
~ —
At (R) =R [da(::,dbxi]:Er,l;iSn,a,bEA -0

, where the latter is a completion of a polynomial ring over R in distinct

—_—
indeterminates d°c.’s and d’xz;’s, and the symbol denotes the -

adic completions.

Proof. This is a consequence of Proposition 3.1, Proposition
3.2, Proposition 3.3 and Proposition 1.1, 8).

Corollary. We retain notations and assumptions as in Theorem 3.1.
Let S be an R-algebra and complete in m-adic topology. A higher
derivation 0= {0"}.c. of R into S with index domain A, where 0° is the
structure homomorphism of S, is uniquely determined assigning values of
o°c,, 0°x; (cel’y 1<i<n, a, bE A-0) arbitarily in S.

Proof. Since every R-algebra homomorphism of A“(R) into S is

T
uniquely extended to an R-algebra homomorbhism of A“(R) into

S, our assertion follows from Theorem 3,1 and Proposition 1. 2.

§4. Differential algebras of complete discrete valuation rings.

We list below some of notations and conventions which are
common in §4, §5, §6 and §7.
R: a complete discrete valuation ring of unequal characteristic.
m: the maximal ideal of R.
: a prime element of R.
: the valuation of R.
: the residue field of R.
: the characteristic of K.

® N A_ Q@ ¥y

: the ramification index of R.
P: a coefficient ring of R.
{¢.}.er: a p-independent base of %.

c.(cel') : a representative of ¢, contained in P.
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S: the polynomial ring P[X] in an indeterminate X over P.

fX)=X"+p(a... X'+ ... +ao) : the Eisenstein polynomial over
P such that f(z) =0.

A: a segment {0, 1,2,...,/} of Ny, where [/ may be oo in which
case 4=N.,.

: a symbol for the p-adic completion of a P-algebra. (If

the P-algebra is considered as an R-algebra, - represents also the
m-adic completion.)

¢: the canonical R-algebra homomorphism: R&,A* (P)—>
A*(R).

. . /\

¢: the canonical R-algebra homomorphism : R®,A* (P)—>
~
A (R).

dix ((€4,z€S) : the canonical image of dixz (€A4'(S)) In

. /\

RR®sA* (S) or in RQ.A*(S).

Ziy U,;(>1,0< e-1,j>1) ¢
independent variables over R.
Zy W, 621, cel’, i>1):

We assign weight Z,=weight W, ,=i for every (e[, i=1, 2,..

When we say that a grade preserving R-algebra homomorphism
o of a graded R-algebra H into a graded R-algebra K, is left
inversible, we mean that there exists a grade preserving R-algebra
homomorphism o of K into H such that wo p=id,.

By Proposition 1.1, 8), A7 (S) is a polynomial ring S[d5,,X]ics-.
in distinct indeterminates ds,,X (i€ 4-0). We have a formula for
every n=1, 2,... (Ribenboim [8]):

)
) dif 0 =5/, B, dirXee X
ax;
, which follows from the fact:

d;/p X" = Z d.'s/r X. ds/P

;( )X 2 diveX. .. dieX

|1+ t, n
1giy ¥
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= (X™)O , ,
=2 . Y dieX...dg.X for every
i= i+ tijen
A5 A

m=1, 2,...
By a slight modification of the above proof, we can obtain a
relation for every n=1,2,...:

(X)

2) dif(X) =2 f ’] T deX...dyX+

! i tig=
1ige ey

pG.dsX, diX,...; dsay, diaoy . . wdsa,.\, dia. 1y . .)
, where G,(Zy, Zsy .+ oy Usty Unz, o ooy Ueorr, Uilyizy -+ 2) 1s a polynomial

of the same weight n and has no terms of monomials of only
Z/'s.

Since R~S/(f(X)) and A'(S) =A*(P)[d:X]ic4
~ (P[X]I®:A*(P)) [dsX])ics-., we have:

A'R) = (R®-A" (P) [d'X]iga-o/ @ f(X))rga-o
, where (R®:,A*(P))[d'X]ics-. i1s a polynomial ring over R®),A"
(P) in {d'X}ica-on

Take m-adic completions of both hand sides and we have by
Proposition 3, 3:

P T .
AY(R) = (RQA* (P)) [d'X]iga-o/ (@ (X)) rga-0)

//\
—_ ;
~ R[d'c.)eer. iga-o[d' X]iga-o/ (d"f(X))ga-0)
, where R[d'c.].cr.ica-» is a polynomial ring over R in {d'c.}.crica-o-
r . . . /\
Expressing the d'a; by the d'c., we get a relation in RQsA* (S)
for every ned-o0 from (2):
. G)
(3) d"f(X) =zfj# S dnX...diX+
i=1 | i+ Fii=a
1

i iy

119G dX, X, o dice. . )

, where (1) G,(Z, Zsy--.5 ..oy Woiy...) Is a linear combination
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of monomials of Z/'s and W.,’s of the same weight n with coeffi-
cients in R, (ii) for every positive integer ¢ all but a finite number
of coefficients of G, are in m' and (i) G, has no terms of

monomials of only Z/s.

Proposition 4.1. A higher derivation 0= {0"},cs of R into an
-adic complete R-algebra T with index domain A such that & =the
structure homomorphism of T, is uniquely determined by assigning values
of dc, and o'n (¢t ', i€ A-9) in T, satisfying conditions :

o (6}
@) L@ s G FidpGa(@m, P de, .. ) =0

i=1 ]! ipterkig=a
I<ig i

for all n=1,2,..., 1

Proof. By the condition that ¢°=the structure homomorphism
of T, 0 is uniquely determined by an R-algebra homomorphism g :
A*(R)—>T. Since T is complete, g is uniquely extended to an

T
R-algebra homomorphism g :A*(R)——T. Hence our assertion

follows from the above argument.

§5. Extended Neggers’ numbers 47(x).

Multiplying (f'(z))*~* on both hand sides of (3), we obtain a
relation for each ned-o0:

(3) (f/(n_))%—zdnf(X) — (fr(n_))2»:—1d,,‘>(_|_jg:2 f(i}!(ﬂ'l (f/(n))i—z

(f @M dX . (f @) d X+ pH, (f (o) d' X,

'y

F @)X, oos. 0 dicy,..)

, where H,(f (m)d' X,ee 5 ooy dcopee) = (f (@) 3G (d' Xyeor 5 vvey diciyend) .
Letting the left hand side of this relation equal 0, we can
successively solve (f' (z))* 'd"X and obtain the following relation

. /\ . .
in A*(R) for ned-o, where we denote the canonical images
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of the diX (i€ 4-0, zER) in A{(E) by the same symbols.
*) (f @) dsx=F,(..., dic,,...)

, where F,(...,W.;,...) is an R-linear combination of countably
many monomials of the W.,,(tel', 1<i<n) of the same weight
n. Then from Proposition 4.1 and the fact that R is an integral

domain and f’(zx) #0, we can easily deduce the following.

Proposition 5.1. A higher derivation 0= {0"}.c4 of R into R
with index domain A such that o° =the structure homomorphism, is uniquely
determined by assigning values of d'c, and o'nr (I, ic4-0) in R,

satisfying conditions

@) (f@)*'0a=F,(..., 0ciy...) for all n=1,2,..., L

Definition 5.1. We define:
43 (z) =min v(coefficient of F,)-(2n-Dv(f (z))
for n=1, 2,..., where we understand that

min v(coefficeint of F,)=oco if F,=0.
We call 4;(z) then-th Neggers' number for(P, =).

Remark 5.1. It is easy to see that J.(x) is the Neggers'
number defined in Suzuki [10], which originally appeared in
Neggers [7].

Remark 5.2. If 2 is perfect, I' is empty, hence 4;(x) =00

for n=1,2,....

Proposition 5.2. J:(7) is independent of the choice of {c.}.er

Jor each n=1,2,....

To prove Proposition 5.2, it is enough to give an alternative
definition of 4;(z) without using {c.}.cr, which is given in the

following proposition.
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Proposition 5.3. Let n be a positive integer. Then 43 (z)=h
if and only if for a sufficiently large integer t it holds that, for every
higher derivation 0= {0°=ids, 0',..., 0"} of R into R with index domain
{0,1,..., n} such that v(3'b) >ti for all b€ P and 0<i<n, we have
v(0"n) >tn+h and there exists a higher dertvation 0 with this property

such that min v(0"x) =tn+h.

Proof. If k is perfect, our assertion follows from Remark 5,2
and Proposition 5. 1. Hence we may assume that %2 is an infinite
field. We put s=min v (coefficient of F,). Let ¢ be a fixed
positive integer. If w,,(¢cel’,i=1,2,...,n) are elements in R
such that v (w, ;) >ti, we have v(F,(... W, iy...))>s+tn. As it
will be shown in the lemma below we can choose w, 's such that
v(F.(..uw,i...)) =5+t n. We choose t sufficiently large so that
Li(x) +t7>0 for every j=1,2,...,n. Then each of equations for
the o'z

@ 0n=F,(..ow.is...) (GJ=1,2,...n)

can be solved in R. Our assertion follows from these arguments

easily.

Lemma 5.1.  Assume that k is an infinite field. Let F(...,
W..i...) be a linear combination of countably many monomials of W.,,
of the same weight n with coefflicients in R such that for every positive
integer r, all but a finite number of coefficients of F are in m’. We
put s=min v(coefficient of F). Let t be a non-negative integer.
Then, there exists a set of elements {w..}.gr.ier..... in R such that
v(w, )2t for e€l’and i=1,2,..., and v(F( ..., Wi iye..)) =s+tn.

Moreover, if t=0, we may choose the w,,; from P.

Proof. We may assume that s#oco. Let H(..., W.,,...) be a
polynomial consisting of all terms of F(..., W,,,...) such that the

values of their coefficients under » equal s. Then we can write
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as H(..,. W, ,..0)=H, (.. ,W, s ..), where H, is a non-zero
polynomial in the W, such that all non-zero coefficients of H, are
units in R. Let H, be a polynomial over &, induced by H, modulo
n. Then by our assumption, there exists a set of elements {a,;}
«er.i=1y 2 +++ In k such that Hy(..., @.iy...)#0. Then for an
arbitrary set of representatives {u..}.cricne... of {a@..}.er i-ie....
in R, Ho(.eooy tiy...) 1s a unit in R. We put w,,=x"u,;
for cel', i=1,2,... . Then v(H(..,w. u...))=v@ " Hy (...,
U, iy+..))=s+tn Since the values of the other terms of F(...,
W, ...) are always greater than s+¢»n, we have v (F (..., w.iy...))
=s+¢tn, which proves our first assertion. In this argument, we can
choose the u,, from P. Therefore, if t=0, w,,€P for =TI,
i=1,2,....

Theorem 5.1. The following three conditions are equivalent.

(1) 43 (x)=>0 for all ne A-o.

(1) Every higher derivation 6= {6'=id,, 6',...} of P into P with
index domain A is extended to a higher derivation 0= {3°=id,,d",...}
of R into R with index domain A.

LERY . . —/\

(ii1) The canonical R-algebra homomorphism ¢ : RQA* (P)—>

A/"(7€) is left inversible.

Proof. We shall prove our theorem in the three steps, (ii)
== (1), (I)==(iii) and ()= (ii).

()= (@1). If & is perfect, we have 4;(x) =c0 for n=1,2,....
Hence we may assume that 2 is an infinite field. Let n be an
arbitrary integer in A4-0. By Lemma 5.1, there exists a set
of elements {w,.}.cr.i=1.z.... in P such that v(F,(.. ,W,,...)) =
min v(coefficient of F,). Let d={d° d',...} be a higher derivation
of P into P with index domain A4 such that é°=id, and d'c.=w..;
for ¢, ieA-0. Let 0={0"=id, 0',...} be an extension of ¢ to
R. Then we have (f(z))*'0"z=F,(..., w.i...) by Proposition
5.1. Hence 0<v(@m)=vFW(. vy Weis-»))-2n-Dv(f(n)) =
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min v(coefficient of F,)-(2n-1)v(f (z)) =4;(x), which proves our
assertion.

(1)==(i1). It was proved in §4 that

o
AA(R) - (R®PAA (P) [d‘X]ieA—o/(d.f(X))'tEA-0)‘

Since 4;(x) >0 for all n A-0, we can define an R-algebra homo-

_ .
morphism p: RQ,A (P) [d'X]ica-o—>R&.A* (P) such that p(d'c.) =

I ..
WTF"(. . ey 1®dpc,, .o .).
Then we have p(d"f(X)) =0 for every n€ 4-o. Therefore p indu-

n Py — T

ces an R-algebra homomorphism ¢ : A*(R)——>R®-A" (P) such that
~ /\
¢ o p=the identical homomorphism of R®,A*(P).

(ii)==(ii). Assume that ¢ is given. Since ¢°=id,, there exists
a P-algebra homomorphism 4 : A*(P)——P such that §"=h od; for

—_— /A\
ned. Let 1:RR,A*(P)—>R®:A*(P) and p: A'(R)—A'(R)
be canonical homorphisms. Since R is complete, I® h : RKA"
. . S~ — T
(P)——R induces an R-algebra homomorphism 1®h: RQ:A"(P)
" P — T .

——R. Let ¢:A*(R)—R®,A*(P) be a homomorphism such that

1Qdsc. for cel’y, i€ A-0 and p(d'X) =

A . . 5 .
¢ o p=identity. We put g=1Qhodoyu. Then we have a commu-

tative diagram:

@ g
R®,A* (P) A“(R) R
I
2 )z T
R®.A*(P) A B RR.A" (D).

Since ¢ogp=identity and @zol:l@h, we have gop=1RA.
Therefore, the higher derivation d={0"},z« of R into R with index
domain A such that ¢"=god;(n€ 4), is an extension of 4.
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Definition 5.2 (Neggers [7]). (i) A higher derivation d=
(0°=ids, ¢',...} of R into R with index domain A is called “in-
ducing”, if "mcCm for every ne 4, that is, if 6 induces a higher
derivation of % into 2 with index domain 4. (ii) A higher deri-
vation 0= {0"=id,, o',...} of k into k is called “induced”, if there
exists a higher derivation 6= {0"=id:, ¢',...} of R into R with index

domain 4 which induces o.

Theorem 5.2. 4:(zx)>1 for all nEA-0 if and only if every
higher derivation 0= {0"=id,, 0',...} of k into k with index domain
A is “induced”. In this case, every higher derivation 0= {0°=ids, 0',...}
of R into R with index domain A is inducing.

Proof. Assume that 43(z) >1 for all ne4-0. Then the last
assertion follows from Proposition 5. 1. Let {A,.}.cr..cs-. be aset of
representatives of {0'¢.}.er.ica-o In P. Then, by the corollary to
Theorem 3.1, there exists a higher derivation d= {0°=id,, ¢', . ..}
of P into P with index domain 4 such that é&'c,=h. (&I, i€ 4-0).
By Theorem 5.1 § is extended to a higher derivation 0= {3’ =idx,
d'y...} of R into R with index domain 4. Since ¢ is inducing
and d'c,=h,;(cel’, ieA-0), 0 induces 0. Next, we assume that
there exists a positive integer n& A-0 such that 4;(x) <0. Then
k is not perfect, hence it is an infinite field. Hence by Lemma
5.1, there exists a set of elements {w,,;}.er.ica-, in R such that
V(F, (oW iy...))=min v(coefficient of F,). Let w,,; be the
class of w,,; modulo m for (=7l i€ A-0. Let d={0"=id,, d,...}
be a higher derivation of 2 into 2 with index domain 4 such that
éc.=w,,; for (€I, icA-0. Assume that there exists a higher
derivation 8= {0°=ids, 0',...} of R into R which induces . Then we
have d'c,=w, mod. m (¢cel',i€4-0), hence v(F,(..., dc,y...))=v
(Fo(evoy Weiy...))=min v(coefficient of F,). Therefore we have
v(0"w) =43 () <0 by Proposition 5, 1, and d is not “inducing”, which

(™

is a contradiction. Hence ¢ is not “induced”.
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As an immediate consequence of Theorem 5.2, we have:
Corollary. The condition that 4;(zx) >1 for all nEd-o0, is
independent of the choice of P and =.

§6. The case A=N,.

Lemma 6.1. The following two conditions are equivalent.
(1) 43(=x)=>0 for all nEN.
(i) 43 (x)>1 for all nEN.

Proof. It is enough to prove that (i) implies (ii). Assume that
(1) is true and (ii) is false. Let n be the least positive integer
such that 4;(z) =0. Let d={0"=ids, d',...} be a higher derivation
of R into R. Then by Proposition 4.1, we have

0=0"f(z) = Z*‘f‘]}.(’?)r 2 ow...ovm

J! iptecckij=me

+ G, (0'm, 1y ov sy OCy e hl).

()
Here, we have i~—.££)—6111 for j<e and
7!

(€}
_I_lgl Z ailﬂ e ai'n'z Z 3“71‘ oo 6"2‘:
g! ;1.'.‘...+,'!=n, ilf""""!:"’
1<i0een,y ig 1<i1,000, i1

= Y dz...07+(0)

In the last expression, all terms except the last term belongs to
nt, because in each of these terms at least one 7, is smaller than
n and then 4¢¥(zx) >1, hence d*z=m by Theorem 5. 2. Therefore
we have (0'w)° €m, hence "r&m. On the other hand, since 4:
(r) >0 for all {EN,, for w,, R (I, iEN,) arbitrarily given
there exists @ such that &c,=w,; by Proposition 5, 1. Especially,

there exists a 0 such that d"zé&ni, because of the assumption that

43 (x) =0, Lemma 5,1 and Proposition 5, 1, which is a contradiction.
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By Theorem 5.1, Theorem 5.2 and the above lemma, we get
the following theorem.

Theorem 6.1. The following five conditions are equivalent.

(1) 4:(x)>0 for all nEN.

(i) Every higher derivation 6= {6°=id,, 8',...} of P into P is
extended to a higher derivation 0= {0°=id,, 0',...} of R into R.

—_— S

(i)  The canonical R-algebra homomorphism ¢: RQ»A(R)—A(R)
is left inversible.

(iv) di(z)>1 for all nEN.

(v) Every higher derivation o= {d°=id., d',...} of k into k is

“snduced”.

Example 6.1. If %2 is perfect, R satisfies conditions in Theorem
6. 1.

Example 6.2. If R is tamely ramified, that is, if (e, p) =1, R

satisfies conditions in Theorem 6. 1.

Proof. We show that 4;(z) >1 by induction on n, remembering
how we deduced relations (4) from (3) at the begining of §5.
Assume that 4 (z)>1 for 0<j<n. Then, F;(..., W.;...) can
be written as (f(x))? 'zl (..., W.i...) (0<j<n). Hence the

relation (4) is:

@y dim=— @R D 5 F,

Kt
(eooy diCorens) oo Foy(ovsy dicey oo )-p(f ()2
Go (T (evoydiCiy )y ennsenn dicy, ..

f(j) (71') X
On the other hand, we have v(p) =e¢, v( rvj'»—n’) >e for 2<j<e

and v(f (r)) =e-1 because (¢,p) =1. Hence it is easy to see that
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i (m) =1

§7. Invariant ideals.

Lemma 7.1. Let T be a ring which is complete in the p-adic
topology. Let 2 and p be homomorphisms of P into T. Assume that
both induce the same homomorphism of P/pP into T/pT and 2(c.)
=pu(c.) for every c€I'. Then it holds that A= p.

Proof. Since it holds that if a=b (p), a'"=b""(p"*') for every
n>0 in T, 2 and g induce the same map of (P/p"*'P)*" into
T/p""'T. Let ¢,*” be ¢, modulo p"P for ¢eI'. Since k=k’"[¢.].cr,
we have P/p""'P=(P/p""'P)""[¢"*"].er. Hence 2 and g induce
the same map of P/p""'P into T/p""'T for every h>0. Since T
is complete, we have i=p.

Lemma 7.2. Assume that R satisfies conditions in Theorem 0. 1.
Let 2 be an isomorphism of P onto another coefficient ring P’ of R
such that 2 induces an identical map on k. Then 2 can be extended to
an automorphism of R.

Proof. Let = (4°¢",...) be a higher derivation of P into R such
that 6°=the canonical injection of P into R, é&'c,=2(c,)-c.€pP
for cel” and d‘c,=0 for i>1 and ¢(€I'. Then p(b):f} o'b(be P)

i=0

is a convergent sum in the p-adic topology in R, because the 0
are convergent linear combinations of countable monomials of ¢
¢.’s of order 7, hence 0'b=p’'P. Hence p defines a homomorphism
of P into R. Since p(c.)=c.+ (A(c.)-c.) =2(c.) and p induces an
identical map on k, we have 2=y by Lemma 7.1. Let ¢ be a

. . Py T T
grade preserving R-algebra homomorphism of A(R) into RR),A (P)
such that ¢ o ¢=identity. Let g : A(P)——>R be the P-algebra
homomorphism such that ¢'=go d; for i=0,1,2,.... Let g:
/\
RK:A (P)

>R be an R-algebra homomorphism induced by g.
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Then g (RQ»A (P)) CpR for i=0,1,2,.... Let h:AR)—AR)
be the canonical homomorphism. Then we can define a higher
derivation d= (4", 9',...) of R into R such that ¢'=godohods,
i=0,1,2,.... Then ¢ is an extension of § and &b p'R, for bER,
i=0,1,2,..., that is, v(d) =§] o'b is a convergent sum. Hence v
defines a homomorphism of"=°R into R. Since R is a complete
discrete valuation ring of unequal characteristic, v is an isomorphism

which is an extension of A

Theorem 7.1. Assume that R satisfies conditions in Theorem
24 (n)
6. 1. Then for each n>1, the ideal (£ (), 7P ... /"y of R
is indepedent of the choice of P and r.

Proof. Let F, be a free R-submodule of REsA:(S)=
R[ds/» X, d%/p X, . . .] generated by monomials of di,»X of weight n. Let
H, be an R-submodule of F, generated by elements of the form:

o) @M vovvviiinninn., (%)
, where the M are monomials of di,X of weight n-m (m=1,2,
.. n) and
[ (93]
@ Hm =3 f 'ﬁ(@ S dyX...dy.X.

iptigt o otij=m
1itseeniij

Then we have A;(R)~F,/H,. Let r, be the rank of F,, which
is independent of the choice of P and n. Then the (x,-1)-th
Fittings ideal of A;(R) is the ideal of R generated by all coeffi-

cients of (*). Hence it is (f (n-),f”Q(!”) ’.”,f(";!(n') ). Let P’ be

another coefficient ring of R. Then by Lemma 7.2, there exists

an automorphism v of R, inducing the identical map on k, such
that v induces an isomorphism of P onto P’. Let f(X) be an
Eisenstein polynomial over P’ such that f(v(x)) =0. v induces an
isomorphism p of A,(R) onto A, (R) such that p(dib) =dz/v ()
for b&R. Hence p induces an isomorphism between the (N-1)-#h
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Fittings ideal of A.(R) and that of A,.(R), that is, the image of
(n) (n)

(f’(n),...,f—n—'(ﬂl-) by v is (7 (v (@)« fii’%@) Since R

is a discrete valuation ring, both ideals are the same one.

The following example shows that even in case R is tamely

unramified, the ideal (f"(z)) of R is not ncessarily invariant.

Example 7. 1. ~ Assume that p#2 and f(X) =X""'+pc,, with
owel'. Then (f'(z))=((p+Dpr*"")=(z**). Let P’ be another
coefficient ring of R, containing ¢, with &7, ¢#¢ and c,,+7
Then the defining equation of = over P’ is A(X)=X""-pX’+p
(co+7*). Then we have (f' (7)) = ((p+1D)pz*~'-p) = (z**'). Hence
it holds that (f (z)) = (" (n)).
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