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Biharmonic Green’s functions
and harmonic degeneracy*
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The harmonic and biharmonic classification theories of Riemann-
ian manifolds have developed in somewhat opposite directions. In
harmonic classification theory, the existence of the Green’s function
was first explored, and then its relations to various harmonic null
classes established. In biharmonic classification theory, a rather
complete array of relations between quasiharmonic and biharmonic
null classes has been developed, without any reference to biharmonic
Green’s functions. The reason is that no explicit tests for the
existence of these functions have been known. Such tests have re-
cently been found for biharmonic Green’s functions 7y which, roughly
speaking, satisfy the conditions y=4y=0 on the ideal boundary of
the Riemannian manifold [5], [6]. The road is now open to finding
relations between the class O% of Riemannian N-manifolds which do
not carry y, and other null classes considered in classification theory.

The present study is devoted to harmonic null classes. The
first question here is: is there any relation between OY and the
class Of of Riemannian N-manifolds that do not carry harmonic
Green’s functions? We shall show:

The strict inclusion
0; <07
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holds for every dimension N=>2. )

It is known that O <O%,<O%z<<0%,=0%;, where the Oy,
X=P,B,D,C, are the classes of Riemannian N-manifolds not admit-
ting nonconstant harmonic functions whice are positive, bounded,
Dirichlet finite, or bounded Dirichlet finite, respectively. Where does
O% fit into this scheme? We shall prove that its behavior is quite
different from that of the O%; classes:

O¥ neither contains nor is contained in any of the classes Oy
for any X=P,B,D,C, or any N=>2.

Let OY be the complement of a null class O with respect to
the totality of Riemannian N-manifolds. The nonvoidness of the
classes O¥ N O%y, O¥NOYy, O%NO%y offers no difficulty, but since
O¥<O¥ and OY¥<O%p, any counterexample to prove O¥NO¥,=¢
must lie in the “narrow” space OY¥NO%,. We have succeeded in
finding counterexamples only in the cases N=2 and N>4. Fortu-
nately the cases N=3,4 can be settled by means of a counterexam-
ple for Oy NOY%r+#¢ recently constructed by L. Chung [1]; here Q
is the family of quasiharmonic functions ¢, defined by 4q=1.

We also take up the class O¥;» of Riemannian N-manifolds which
admit no harmonic functions of finite L? norm, p=~>1. We show that
this class shares the property of the above OFy:

The classes
O% N Olizs, OF NOf1s, OFNOF1s, OF N O

are all nonvoid for every p=>1 and every N=>2,

1. We start with a test for O¥. Given a Riemannian N-mani-
fold R, N>2, let 4=dd+0d be the Laplace-Beltrami operator. On
a regular subregion 2 of R, let y,(x,y) be the Green’s function for
the biharmonic equation A*u=A44u=0, with the biharmonic funda-
mental singularity y, and boundary data y,=47,=0 on B,=082. In
terms of the harmonic Green’s function ¢.(x,y) on 2, we have

Tﬂ(x, y) = j‘ggﬂ(xs z)aﬂ(za y)dz ’

with dz the volume element at z. We know that 4,7,(x, y) =0.(x, v).
As Q exhausts R, we obtain the directed limit
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r(@9) =lim7a(z,3) = [ 02z, 20a(z 9)dz,

which, if it exists, is the biharmonic Green’s function 7y on R, with
4.7 (x,y) =9z(x,y).

Take a fixed regular subregion R, of R, set S;=R — R, ay=0R,,
and choose a regular subregion £ with R,C Q. Let H be the family
of harmonic functions. On £2nS,, take

wee H(RNSy) ﬂC(.QﬂS'o), wglay=1, we|Be,=0.

According as the limit w=limg ,rw, is =1 or <1 on S,, R is, by
definition, parabolic or hyperbolic. We denote by OfF the class of
parabolic N-manifolds; it is known that these are precisely those on
which limg,z¢,(x, y) =00,

Let OF be the class of Riemannian N-manifolds on which y=o0.
The fact that the finiteness of y and the degeneracy of w are inde-
pendent of x, vy, and S, will be a consequence of the following
simple test:

1) ReO¥swe L (S).

The test was established in [5]; here we give an alternate proof
which is slightly more ‘direct” in that it does not make use of
Harnack’s inequality.

First suppose y(x,y) exists for some x,yeR,

7(z,y)= LGR (z,2)9r (2, ¥)dz .

Since the existence of 7 entails that of ¢z, we may assume hence-
forth’ that Re 0. We shall show that weL?(S,), S;=R—R,, for
any regular subregion R, of R. Take regular subregions R; and £
of R with RyUzUyCR,CR,C® and set @,=0R,, S;=R—R,,

myg=min g4(z, x), M g=max ¢,(z, x),
2ca, 2€a,

Mmag=min o (2, y), Mye=max g,(z, y),
:Ea, €a,

mye=min 0y, Mys=max w,,

@y a,

M MM

2
M1oMag M3g

kuz =
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Denote by m,, M, m,; M, ms, M, ky, ks, the corresponding limits
as —R. Then

04 (2) <ki1o0q (2, x) 9o (2, ¥)
on ;U B, hence on 2nS,. A fortiori,
0*(2) <kgr(z, )9z (z,y) on S;.

By the symmetry of ¢g,

ol = Lw2<z>dz=0+ Laf(z)dz
<C+k ngz (z,2)9r(2,¥)dz

<Ci+k Lga (z,2) 0z (2, )dz

=Ci+ky(x,y)<oo.

Therefore, y(x,y)< oo for some (x,y) implies we L*(S,) for any
Sy=R—R,.

Conversely, suppose we L*(S,) for some S,=R—R, Take any
z, yE R and choose R;,  as above. Then

9a(2, ) o (2, ¥) < koo’ (2)
on a; U R, hence on 2nS,, and therefore
gr(z, 2) 9z (2, y) <kw®(2) on S,.

It follows that

7(x,y) =C+ Lgx(x, 2)0r (2, ¥)dz

<C+h sz(z)a’z<oo.

We conclude that we L*(S,) for some S,=R— R, implies 7 (z, y) <oo
for any z, ye R. This proves our criterion (1). As a consequence, the
finiteness of 7(x,y) and the nondegeneracy of w are independent of

z, v, and R,.

2. By means of (1), we now tackle our first problem, that of
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determining the relation between O% and OJY.

Theorem 1. OY<O¥% for N>2,

Proof. We already observed that O c OF and we only have
to prove the strictness of the inclusion.

Let (x, v, -+, ¥y_1) be Cartesian coordinates, and take the IN-
cylinder

T={(z,y1, -, ¥w-1) x>0, |y:|<1,i=1,---, N—-1},

where for each 7 the faces y;,=1 and y,= —1 are identified by a
parallel translation perpendicular to the zx-axis. Endow 7T with the

metric
Nty g
ds* =zdx* + "D iZ'ldyt )
« a constant, For A(x) e H,

4h(x) = —x7*(z%z7*h’ ()’ =0,

hence A(x)=ax+ b, with a, b arbitrary constants. For Ry= {1<x<2},
So={0<x<(1} U {x>2}, the harmonic measure on {0<{x<(1} is w(x)
=z, hence 77 OF. On the other hand, for ¢<<—3,

1
= j atdz = oo
0
and therefore T’ OF. The theorem follows.

3. We proceed to relations between OF and the harmonic null
classes Oy, with X=P, B, D,C. We recall that Of <O¥,<<O%,< 0%,
=O%¢ (e.g. [7]). To begin with, the Euclidean N-ball gives trivially

0¥nOfx, X=P,B,D,C, N>2.
To see that
Y¥nO¥y+#¢, X=P,B,D,C, N>2,
consider the MN-cylinder
T={|x|<oo, |y:|<1,i=1,---, N—-1},

with the Euclidean metric. Every 2(x) € H has the form A (x) =azx+ b,



356 Leo Sario
which is unbounded for as<0. Therefore, w(x)=1, and T € O <O¥y.

Moreover, |o|>c[*1-dx = oo, hence T OF.

4. Next we give an N-manifold which carries HX functions
but no 7.

Theorem 2. O¥NOYy+#¢, X=P,B,D,C, N>2.
Proof. Take the “short” N-cylinder

T:{lx|<1, |yi|§1,i=1,"' N_l}

b

with the metric
ds* =} (x)dL+ A ()Y I:Z;]:dyf ,

where 2€C*((—1,1)). For h(x)e H,

dh=—=27"(*2°h")’ =0,
h=ax+b, and the Dirichlet integral is

D) = Lh'?x—wvzc jjll_zlzdx<m,

hence xe HD and T'e 0%,>0%y. On the other hand,

o> ¢ j (azx+0)dz.

For A=(1 -2 a< -1, this gives |w|;=occ and T OF.

5. Our next problem is to find an N-manifold which carries y
but no HX functions.

Theorem 3. OYnO¥,+#¢, X=P,B,D,C, N>2,

The proof will be given in Nos. 5-9.

The case N>4 offers no difficulty. In fact, on the Euclidean
N-space EY we have for every he HP(E™), x€ E*, r=|z|, r<R< oo,
the Harnack inequality

(- )N—?R-r

R N_ZR‘I'r

R(0
R—r R—r ©

which for R—>oco gives h=const, EYeO}pCO%¥;. The harmonic
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—N+2

measure on {r>1} is w(x)=r and

o
"60"22: c j‘ r—-2N+4rN—ldr<oo ,
1

hence E¥e OY.

6. The above argument fails if N<<4, as then EYeO}. How-
ever, L. Chung [1] has communicated to the author the construction
of an intricate N-manifold belonging to Oy, N O%,, N>2. Since O¥ c O,
as can readily be. seen, this manifold also gives O¥NO%y#¢ for

N>2.

7. Chung’s example does not apply to the case N=2. For this
dimension we make use of an example originally constructed to show
the strictness of Ogz<Opyp for Riemann surfaces [4]. For our present
purpose the surface has to be endowed with a metric with the pro-
perty we L%

The surface is constructed as follows. From the unit disk |z|<{1

remove the radial slits
R;;n = {r2p§r<r2,u+ly (027..271,/27n+h}.,

where y=q,-2";m,n=1,2,---; {qn} the sequence of odd primes;
ri=1-2"%p=1 ... 2™, the 1=2(x) positive integers to be specified
later. In each sector

Spe={k=1) - 2n/2" < p<k-27g/2™'},

k=1, ..-,2™ identify by pairs those edges of the R}, that are sym-
metrically located with respect to the bisecting half-ray dn. of Su:,
the edges facing d,, being identified, and similarly the edges away
from d,;. The edges of a slit on d,, are thus identified, and the
left edge of a slit on ¢g= (k—1)-27/2™""! is identified with the right
edge of the slit on p=k-7/2™"". Denote by p and p,=p.(p) the
points so identified on the slits. If p is an end point of a slit on the
boundary of S,., there are 2™! identified point p.(p), i=1, .-, 2™,
After these identifications for each m=1,2 .-, we have a surface R.

8. To make R into a Riemann surface we endow it with a
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conformal structure by means of a covering of R by open sets V
and their homeomorphic mappings ¢ =h(p) onto parametric disks |£]<p
in the following manner. For a point p not on a slit, let V be a
disk about p disjoint from all slits and let T =hA(p) =2(p) be the
projection of peR into |z|]<<1l. If p lies on the edge of a slit but
is not an end point of it, V is to consist of two half-disks, about p
and p,(p), with diameters on the corresponding slits. The half-disks
are transferred, by rotations »(p) about =0, to form a full disk,
and the mapping 2 is taken as t==2(Pp(p)).

If p is an end point of slit R, not on the boundary of S,,, the
neighborhood V of p is to consist of two identical slit disks, about
p and p,(p), transferred by rotations about =0 to form a 2-sheeted
Riemannian disk. The mapping A is taken as t=[z(Z(p))]"~ If p
is an end point of a slit on the boundary of S,,, V is similarly chosen
to consist of 2™! slit disks about the points pi(p), i=1,---, 2™}
rotated about z=0 to form a 2™ 'sheeted disk. Now the mapping A
is t=[2(B(P))]*™'. By means of the covering {V} and the map-

pings A so chosen, R has become a Riemann surface.

9. The rather intricate proof that every he HP(R) reduces to
a constant will not be reproduced in the present study where the
main interest is with y. We merely recall that the proof is based
on first showing that every A€ HP has an axis of symmetry and then
proving inductively that there are infinitely many axes of symmetry.
Therefore & must reduce to a constant,

It remains to turn R into a Riemannian manifold which continues
excluding all nonconstant HP functions, but which nevertheless admits
the biharmonic Green’s function 7.

The function

0(z(p)) = —log|z(p)|/log 2

is the harmonic measure on that part of R which lies above {3<|z|<{1},
its value and harmonicity being unaffected by the rotations about =0
of the partial regions combining into the single or multiple disk V.
In view of N=2, endowing R with a conformal structure does not
alter the harmonicity of w. Any conformal metric dso(p) =2 (p)) |dt|
on R can be reduced to another conformal metric ds(p) = x(p)ds,(p)
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where, as p tends to the ideal boundary of R, u(p)—0 so rapidly that
the volume of R is finite. Since we B, we have |w|;< oo, and therefore
Re 0% The introduction of the conformal metric has no bearing on
the class HP, so that we continue having Re O%pC Ok%;.

The proof of Theorem 3 is herewith complete.

10. We now take up the class O%¥;» of Riemannian manifolds
which do not carry harmonic functions with a finite L? norm, p=>1.
The case p=o0 gives the class HB already discussed and is there-
fore excluded in the sequel. In view of the Euclidean N-ball we
have

O¥NO%p=+¢, p=>1, N>2,

To prove the nonvoidness of the classes O¥NOY,,, O¥NO%.,, and
O¥NOY,,, it turns out that we can make use of the examples ex-
hibited in Sario-Wang [8], Chung-Sario-Wang [3], and Chung-Sario
[2] to establish the nonvoidness of the classes O%y NO¥.,, O%y N 0%,
and OanOgL,, respectively. For the convenience of the reader we
reproduce the quite short proofs, slightly modified for the present

purpose.

11. First we exclude both y and HL? {unctions.
Theorem 4. OYNOY..5¢, p==1, N>2,
Proof. We know from No. 3 that the N-cylinder

T———{|1'|<00, |yJ§7‘r,i=1, ,N——l}

with the FEuclidean metric belongs to Of, hence to O¥. Every
he H can be expanded into a series A=)f,G,, where f,G,=

f2(2)G. () eH, y= (v, --,yy-1), and G, ranges over all products of
the form

-1

N
Gu(@) = L5 nays

with n= (m, ---, ny_1), the n; integers =0, and fy(x) =h,(x) € H. Set
P=21"n’ In view of 4(f,G,)=— (f2"G.—9*f.G,) =0, we have
h=h(x) + D) (@ + be™) G, ,

where the sum )" is extended over all n=~(0, ---, 0).
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Assume there exists an A HL? and choose a continuous function
00(x) =0 with supp 0,C (0,1), [ipedx=1. Suppose a,#0 for some
ns(0,---,0). Then for p,(x) =ps(x—1¢), ¢.=0.G,., with £2>0 a real

number,

t+1
(h, @) ~ce j 0. dx=ce™,
t

hence |(k, ¢)|—>oc0 as t—oo. But for p~'+¢7'=1,

t41 1/q
lodly= C( j pzqu> = const< oo
t

for p=1, and | (%, @) |<|2|,l¢.l,=const< oo for all £>0. It follows
that a,=0 for all n==(0,---,0). An analogous argument with #<0,
t— —oo shows that 4,=0 for all ##(0, ---,0). Therefore A=h,(x)
=ax+b. But ||hf,=0c0 unless a=5b=0, and we have proved that
TeO%,,.

12. Next we exhibit an N-manifold without y but with HL?
functions.
Theorem 5. OYNO¥,+¢, p=>1, N>2.
Proof. On the N-cylinder
T={|z|<oo,|y:|=1, i=1,---,N—1},

choose the metric
. N-1
dss=e"'dz*+ e ™F D Y dy?,
i=1

For h(x)e H we have h=ax+b, and therefore Te Of<<O%. On
the other hand, x& HL?, since

lzl3=c j lz|Pe " dxoo.

13. The remaining case is an N-manifold carrying y but no HL?
functions.

Theorem 6. O¥NO%Y,+#¢, p=>1, N>2.

Proof. Consider the N-space M with the metric

N-1
ds' =@ (@)dr*+ ¢ (@)Y 0 37 2:(0)d0:
i=1



Biharmonic Green’s functions 361
where ¢, = C*[0, o),

1 for r<%, @Y for r<%,

—r r

(0(7‘):{ ¢(r)=[

e for r>1, e’ for r>1,

and the A; are trigonometric functions of 0= (0,, --+, Oy_;) such that the
metric is Euclidean on {r<(}}. For A(r) e H({r>1}), we have
dh () = —(e"h’ (r))’=0. Therefore, o(r) =€ on {r=1}, and

lwls* =c jl Edr<oo,

hence Me O¥Y.

To see that MeO%¥;,, expand he HL?(M) into a series h=
S fa(r)S.(0), where f,S.€ H and the S, are spherical harmonics.
If f.,#0 for some 7,0, the maximum principle applied to f,,S,,
gives |fn,|>¢,>0 on [1, 00).

In the case p=1, take () C>[0, o0), 0<{g<1, with ¢(»)=(2r)*
for »>1. Then

= ths,.ndw > ot ffn,,gdrl

= |ei+ cocs f gdr|=oco,
1

a contradiction. If p>1, take ¢ with p7'4+¢~'=1. Then ¢S, L,
and (-,9S,,) is a linear functional on L?. Since

|(h, 0S,) | =1e wa,.ogdrl =00,

we have a contradiction with A L? and conclude that M e O%;, for
all p=>1.
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