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0. Introduction

The asymptotic behavior of the distributions of multitype Galton-
Watson processes has been studied by many mathematicians. According
to the author’s knowledge, Jirina [8] for subcritical processes is the
first paper on this subject, and Chistyakov [4] and Mullikin [10] for
critical processes followed. But they assumed that (i) the second
moments (in the subcritical case) or the third moments (in the critical
case) are finite and (ii) the mean matrix is positively regular.
Joffe and Spitzer [9] obtained the results for discrete time processes
without the hypothesis (i), and Sevastyanov [14] extended them for
cotinuous time processes. Their results are final for the processes
satisfying the condition (ii). However, when the condition (ii) fails,
somewhat different phenomena occur. Chistyakov [3] illustrated it
for the continuous time subcritical processes with the hypothesis (i).
For the continuous time critical processes, the results of Savin and
Chistyakov [12] for the processes with three particle types and the
hypothesis (i) are very suggestive.

In this paper, we shall give the whole asymptotic behavior of
discrete and continuous time multitype Galton-Watson processes with-
out the hypotheses (i) and (ii) (but with some weaker hypotheses).
The processes are decomposed into elementary subprocesses. When
the elementary subprocesses have positively regular mean matrices,
the results naturally coincide with those of [8], [9], [10] and [14].

But when they are reducible, the rate that the generating functions
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tend to the extinction probabilities are different from that of the
positively regular cases. Furthermore for the processes with discrete
time we must take some care of the periodicity.

We shall give the definitions and notations in section 1. In
section 2 we shall deal with the discrete time noncritical processes
having aperiodic mean matrices, while we shall deal with those having
periodic mean matrices in section 3. Sections 4 and 5 are devoted
to the study of the discrete time critical processes. The results for
the continuous time processes are summarized in section 6, and some

examples are given in section 7.

1. Definitions and notations

We designate the set of all integers between m and n by {m, n)>
and put Z, =40, 00), S=Z,% (Ne(l,00)). If two vectors s,= (s,
coo5™) and s;= (s, oo, 5Y) satisfy s,">s5[5'=s'] for all i3, N,
we say that s, is larger [resp. not less] than s, and write as s >s;
[resp. s;==s:]. Thus we can naturally define the maximum, minimum,
monotony, etc. of a sequence of vectors. Further, these notions and
notations are extended for matrices in the natural way. For example
a matrix A is called nonnegative if all its components are nonnega-
tive, and in this case we write as A=0. Let A be a nonnegative
square matrix of order k. We call A positively regular if A">0
for some n€{1, oo, where A" means the n-fold product of the matrix
A. Also the matrix A is called irreducible if for each 7,;=<1,k),
i==j, there is an ne{l, 00> such that A;*(#)>0, where A, (n) is
the (Z,)-component of the matrix A". Hence each nonnegative matrix
of order 1 is always irreducible. We also call a square matrix a
with nonnegative off-diagonal elements to be irreducible if the matrix
a+1I (=0) is irreducible for some />>0 in the above sense, where
I is the identity matrix. For two vectors s, and s, we define new

vectors s;5; and s,/s; (for s,>>0) by
sise= (852", oo, 517", si/se=(5,/s, -, 5" /s:V).
For each seR”¥ and xS we set
= (") (M), where s=(s', -+, sY), x= (', -+, 2V).

Finally we denote the i-th canonical unit basis by e;, ie. e’=0,"
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where 0,° is the Kronecker’s delta.

Now we shall call a Markov chain X = (Z(n), P,) on S a discrete
time N-type Galton-Watson process (DGWP for brevity), if its pro-
bability generating functions

F*(nis)= 2, PAZ(n) =9}, zeS, ne0, 00), 0=s=1,

are given by
a.1n F*(n;s)=F(n;s)°,

for some vector functions F(n;s) = (F'(n;s), -, F¥(n;s)). Then it
is clear that F(n;s) is given by the n-fold iteration of the vector
probability generating function F(s)=F(1;s):

F(n+1;s)=FF(n;s5)), nel0, ),

1.2)
F(0;5) =s, 0<s<1,
where
(1.3) Fi(s) = ZSP‘ (y)s?, iell,N>,
ye

with P*(y)=0 and > ,cs P'(y)<1. Since the family of generating
functions {F(n;s)} uniquely determines a DGWP, we sometimes call
{F(n;s)} itself a DGWP,

Similarly a Markov process X= (Z(¢), P,) on S is called a con-
tinuos time N-type Galton-Watson Process (CGWP), if its probility
generating functions F*(¢;s) are given by

(1.4 Fo(t;s) =F(t;9)° xS, te[0, 00), 0s<1,

where F(¢;5) = (F'(¢;s), -, F¥(¢:5)) is the unique solution of

AL _p(Rs)), 0,
dt
(1. 5)
F(0;s)=s, 0<s<1,
where
1.6) fi(s) = v;sl’i (»)s*, iell,N),

with p* () =0, ys e, and Y, s p*(¥) <0. Also, we sometimes call



254 Yukio Ogura

the family of generating functions {F(¢;s)} itself a CGWP.

It is shown by Sevastyanov ([13], [14]) that for a DGWP
[CGWP] there exists the least nonnegative fixed point g of F(s)
[resp. zero point ¢ of f(s)] in the cube 0=<s<1, and it is stable in
the sense of

1.7 lim F(n;s) =q [resp. lim F(¢;s5) =q], 0<s<q.
n—00 t—oo

Especially it holds
P, {T<oo} =lim F*(n;0) =q*

n—o0

[resp. P, {T< oo} =1lim F*(¢;0) =q'],
t—o0

where 7' is the first hitting time for trap state 0&.S, namely the
extinction time. Hence we shall call g the extinction probability of
the DGWP [resp. CGWP]. Let R(s) =q—F(s) and R(n;s) =q—F (n;
s). An objective of the present paper is to obtain an exact estimate
of R(n;s) tending to O,

For a DGWP, we shall assume

) ¢>0 and F,'(q)<oo, i,je(1,N),

where F,*(s) =0F"/0s’ if it exists and F,*(s) =limgy, F,* (£) otherwise.
Note that when the DGWP is subcritical, or critical with no final
classes, ¢g=1>0 holds. We call the matrix

A= [Afi]?.]!ﬂ = [th (Q)]glﬂ

the g-mean matrix of DGWP., Since A=0, there exists a nonnega-
tive characteristic root p(A4) of A which is not smaller in absolute
value than any other characteristic roots (cf. Gantmacher [6]). We
call it the Perron-Frobenius root (P-F root for brevity) of the matrix
A. From the definition of g, the inequality p(A) =1 easily follows.
It is known that by a change of suffixes the nonnegative matrix A is

represented as

(1. 8) A=| ,
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where each A, is an irreducible square matrix of order m,e<{l,N)
Q8 m,=N). We set

I''={jed,N>; A;*(n)>0 for some ne{l, o)} U {i},

du={ X mat 1, 33 may (di=C1, m0)).

Since every A, is irreducible, g I'y if I''Ndg#¢, and I''=I"" if
i,i’e4, Hence I'*" is a disjoint union of some 4g’s and it is same
for all i=4,, which we denote by I',, We also set [ ,=1,—4.,.
The I'part(s*)ier [ opart(s®)icr,, dapart(s’) ;cs,] of a vector s= (s,
.-+, 5") is denoted by s,[resp. 5,,5,]. From (1.3) and (1.8) it follows
that the generating function Fi(s) for ieI',[i€l,] only depends on
s.[resp.5,]. Hence we can write as F(s),=F(s,) o[resp. F(s),=F(5.).].
Similarly, since F*(n;s) for ieI',[ieT,] only depends on s,[resp. §,]

by (1.2), we can write as
1.9 F(n;8)a=F(n;5) 0 0=s,=1

We set S,= {x,= (%) ier,; ' =0, 00)}. Then the family of generat-
ing functions {F'(n;s,).; 70, 00>} forms a DGWP on S,, which we
denote by X,=(Z,(n), PZ). Note that the extinction probability of
the DGWP X, is equal to the I',-part g, of the extinction probability
g of the original DGWP X by (1.7), and hence 'the submatrix
A.,=[A;]4 jer, coincides with the g-mean matrix of X,. Further it
follows

Fi'(n;q) =F;' (n;40) = (A. () ;= A, (), i,j€T.

Since p(A) =1, p,.=p(A,) =<1 holds. We call the DGWP X, critical
if p,=1 and noncritical if p,<1.

For a CGWP, we assume

© g>0 and f;%(g)<oo, i,je{1,N).
We call the matrix
a= [ali]g.f:l: [flt (q)]?,'j=1

the infinitesimal q-mean matriz of the CGWP X, Since (1.6) im-
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plies a+II=0 for some />0, there is a real characteristic root p(a)
of a which is not smaller in real part than any other characteristic
roots of a. In this case p(a) <0 holds (cf. Ogura [11]). By a
change of suffixes the matrix a is represented as

Ay O cvrvnrennnn 0
Ty O ceveennnn 0
(1.10) a=| e ,
*
a'll

where each @, is an irreducible square matrix of order m, (3 %_, m,
=N). We define the sets 4,, I’y and I, as in the discrete time
case but from the matrix a+/I (=0) instead of A. By (1.6) and
(1.10) the function f*(s) for iel,[i€T,] only depends on s,[resp.
5.], and we write as

(1.11) f()a=Ff(5a) e 0=5.=1, [resp. F(5)oa=F(5a) 0 0=5.=1].

Hence F'(¢;s) for ieI',[iel,] only depends on s,[resp.5,] by
(1.5), so that we can write as

1.12) F(t;5),=F(t; 5,0 055,51,
[resp. F(¢;5) o =F(;5),, 0<5,<1].

We designate the CGWP {F(¢;5,) ;¢ [0,00)} by X,=(Z,(), PZ).
The extinction probability of the CGWP X, is equal to the I -part g,
of that ¢ of the CGWP X, and the submatrix a,=[a;*]; ,cr, coincides
with the infinitesimal g-mean matrix of X,. Moreover, setting

AW =[A;® ] ,-1=exp(ta),
Ay () =[Ae; (D ]s ser. = exp (ta,),
we have
(1.13)  F/i(t;9) =F,/(t;9) =A%) =A,' @), i,jeTl..
Since p(e) <0, ¢,=p(a,) =0 holds. We call the CGWP X, critical

if ¢,=0, and noncritical if ¢,<0.

2. Noncritical aperiodic DGWP
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In this section we shall deal with noncritical DGWP’s with the

assumption
(DN) Y P H(y)y'q" log y'<oo, i,j€1,N>.
yES
We shall also assume that all the matrices in this section are aperio-
dic, i.e.
G.C.D. {nel,0>; A} (n) >0} =1, i,jE4,.

Since fL is irreducible, it is positively regular if it is not equal to
the zero matrix of order 1. Hence there correspond positive right
and left eigenvectors #,= (#,")ics, and ¥,= (¥as)ics, to the P-F root
Oa=0(A);

Aaﬁa = 51:‘1711) vaAa = 5aga,
with the normalizations

Zﬁai‘ﬁat‘:l, Z ﬁat’:l

1€, 1€Ed,

(Gantmacher [6]). It is also known that as #—o0
(2.1) Al =0 (AX+0(1)),

where A *=[A¥]=[#,"V.s]1ses,. Of course it holds
(2.2 A A =A*A,=p A% AXAX=Ar

In order to define the ‘rank y, of @’, we shall introduce the semi-
order ‘<’ in the space of indices {1, 9> by

B<a if dyCr.
Next we define the rank yg(r) of B w.r.t. » by

max{y, () ; v=B},  if O,

(2.3) ve(r) =
max{v,(r) H Yﬁﬁ} +1’ if 5ﬁ=r,
inductively, where we agree on max ¢= —1. Then the rank v, of «
is given by
2.4) Va=VYa(0a) -

Note that y,=<0,9—1) since ggs=p, for some f<a.
To state the theorem we shall define one more set: I,(x)
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={aeld, 0>; 2,40}, z<S.

Theorem 2.1. Let a DGWP X = (Z(n), P,) satisfy Conditions
(D) and (DN) for each {1, 9> with p, <1, and all the matrices
fL be aperiodic. Then, 1) for each as<{l,9> there correspond
monotone nonincreasing functions R* (sp) in 0<s5,<q,, i€ d,, such

that as n— oo
(2.5) R (n;5) =n"p (R* (s +0(1)), icd,

where o(1) is uniform in s on 0<s5,<q,. The R* (s,) are determin-
ed inductively w.ar.t. the semiorder ‘<’ by Lemmas 2.1 and
2.4 below. Further, if p,>0, no R*(s,), i€d,, are identically
zero. 2) For cach xS such that p,<<1 holds for all acl, (x),
and p,>0 for some acl, (x), there corresponds a probability dis-
tribution {P,*(y)} on S— {0} satisfying

(2.6) lim Po{Z () =y|n<T<oo} =P.*(»).

We shall prove this theorem by the induction w.r.t. the semi-
order ‘<. When « is minimal, I',=4, and A,=A, Hence the
g-mean matrix A, is positively regular, if p,>0, ie. A,#[0].” In
this case there are the following excellent results given by Joffe and
Spitzer [9]:®

Lemma 2.1. (Joffe and Spitzer.) Let the g-mean matrix A, of
the DGWP X, is positively regular and p,<1. Then there exist
a monotone nonincreasing function K,*(s) in 0=s5,=q, and a dis-
tribution {P**(y,)} on S,, such that

@.7) lim de=F 05 9a _ g x(5 )7, 0<5,<q.,

oo
n— «

(2- 8) lim Pg@ {Za(n) =ya|n<T<°°] = pe* (ya)’ La, yanSa_ {O}'

Further K, *(s,)3£0 if and only if (DN) holds.

bt Z;:ia],ﬁ(z*-s) is always satisfied.
» It seems there are two errors in their paper; the second inequality in (4-10) and
that in (4-42). But their assertions are valid.
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When « is not minimal, I',#¢ and the g-mean matrix A, is re-
presented as

A, 0
2.9) Aa———[ ~],

where
Aa= [Alt] i, JEF Aa, = [A/i] icd,, 1er, 7#0.

We put g,=p(A,). Then p, is equal to the maximum @,V p, of d,
and p,.

Let R(s) =¢—F(s) and R(n;s) =gq—F(n;s). Then it is given
by Joffe and Spitzer [8] ((4.6)) that

(2.10) R(s)=(A—-E(s5)) (g—s), 0=s=q,

@1)  Ef©=XPovie- [ @ a-9oa,

where we agree on =0 for ye&S. (2.11) implies
0=E(s) SE(s) =4, 0=s;=5=q,
(2.12)
E()—0, as s—q in 0<s<q.

We set E(n;s) =EF(n;s5)) and C(n;s) =A—E(n;s). We define
matrices E(n;5) o, C(n;5), E(n;5),, etc. in the natural way. From
(1.3), (1.8), (1.9) and (2.11) it follows

(2.13) E@;5)a=E;50) ey C(1455)a=C(7;5) 0y 0=5.=¢

Hence (2.10) implies
R(n+155)a=R(n+1:5)a=C(1;5) R (7 5) 0y 0=5,=¢L,

and with the aid of (2.9) and (2.13)

(2.14) R(1+155) 0 =C (13 5) R (75 5) o+ C (13 5) o’ R(735) e

Using (2.14) inductively, we obtain

(2.15) R(n+155)=Dy(n, —1) (G —752)

D.(n,DCU;s) o’ RU; 50

-
"2
>

where
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(2.16) D, (n,0) =D, (n,1;s,)
C(n;5) C(n—1;5) 0 CUH1;55)0 l€{—1,n—1),

I, l=n.

Lemma 2.2. If Condition (DN) and the inequality p,<1 are
satisfied, then it holds

(2.17) f‘i‘lE(n; 0) ,< oo.

Proof. From the convexity of the function Fi(n;s+ (¢ —s)¢) in
0=¢<1, it follows g,—F(n;0),<A.q,. Applying® the same argu-
ments as in the proof of Lemma 2.5 below to the matrices A", we
obtain

A q . =npeKq,<0r'q,,

where K is a positive square matrix with the indices in I, and »
and 6§ are contants with p,<r<{1 and 6>0. Hence it follows
F(n;0),=(1—0r")q,, and we obtain the conclusion by the same
arguments as in Joffe and Spitzer [9] (pp. 424-425) with the aid of
(2.11).

Lemma 2.3. The relations §,>0 and (2-17) imply the ex-
istence of the limit

(2.18) lim D (n, 1;s) 8, " =D*(l;s,)

uniformly in 0<s,=<q,. Further it holds

(2.19)  0<D*(Uss) SA*, 0=5,5q, l{~1,00).
Proof.® Let

(2. 20) en=max{E,‘ (n;0) /A, ;i,jed, A, >0},

Then, since A,*=0 implies E,*(n;0) =0 from (2.12), it is clear
that

®  Or equivalently, we may use the Jordan’s normal form of A reminding the asymp-
totic forms of its products.

9 In the proofs of the following theorems and lemmas we shall often abbreviate
the suffix & and the variable s where there are no confusions.
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(2.21) 0=E (n;5) <E (n;0) Ze. 4,
(2.22) Se< iﬂ;i‘,‘(rz; 0)/A,' < oo,

by (2.17). On the other hand, there is a sequence a,—0, 12,20,
by (2.1) satisfying

A—a) A* <A "< (1 +a.) A*.
Hence it follows
(2. 23) D (n, ) <A L+ ) A%,

and with the aid of (2.21)

6D (e, =5 A ] (120

k=l+1

=(1—an_l)k=f;[“ A—e) A*>(L—an.— O &) A%,

k=1+1

for all large [ with ¢,<1, k€ {/, 00)>. Therefore we obtain
2.24) (@t 3 ) AYSG D (n, 1) — A* S A*.
k=T+1
Now take any ¢>0. Then by (2.22) we can choose an 7, such that
Y von,+1 &x=¢. Further, it holds
oD (i, 1) =7+ D (g, 1) = ("D (s, m0)
_6—n,+n°ﬁ (nz, no))ﬁ_n“—lﬁ (n(h l) y Ny, 7122”0,

and §~™*'D(n,, 1) is bounded in 7, because of (2.23). Hence it
follows that the sequence §"*'D(n, 1), ne{l+1,00), is a Cauchy
sequence uniformly in 0<s5,<q,. So we obtain (2.18). Now we
shall show (2.19). Letting n—oo0 in (2.24), we have D* () >0
for all sufficiently large #n,. Since D(n,1) =D (n, n,) D (1o, 1), it holds

(2.25) D* () ="+ D* (n) D (n, 1).

On the other hand it follows from (2.11) that A,*>0 implies A4,*
—E;*>0, so that

C, (k)>0, if A,>0.

Since the matrix A is positively regular A™~'>0 for a large 7, Com-
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bining these facts with (2.25) we have D*(/)>0. The relation
D*(l) <A* is clear, if we let n—>o0 in (2.23).

Corollary 2.1. Suppose that Condition (DN) holds and « is
minimal w.r.t. the semiorder ‘<’ with p,<1. Then the limit of
(2.7) is uniform in 0<s5,Zq, and K,*(0)>0.

The proof is clear from Lemma 2.2 and 2. 3, since,

ﬁ(n;sa)azﬁa(n, _l;sa) (?ja—ga)

in this case.

Now we assume that for all f=«
(2.26) R(n;sg) g=n"05"(Rg* (sg) +0(1)), 0=5,=gp,

as n—oo, where 0(1) is uniform in 0=<s5,<gq, Then it follows as

n—>00
(2.27)  R(n5so=n"0"(R* () +0(1)), 0=5,Z0a

for some vector valued function R *(5,), where o(1) is uniform in
0=<5,<p, and

De=max{ys(0.) ; B0} .
Hence, it is enough for (2.5) to prove following
Lemma 2.4. Let (2.17), (2.27) and p,<1 hold. Then it
Sollows
(2. 28) R(n;550) a=n"0a" (Ro* (s) +0(1), 0=5.=4.,

where 0(1) is uniform in 0<s,<q., v, and R,*(s,) are given sepa-
rately in the following three cases: (i) if 0,=0o>>0q then y,=0
and

(2.29) Re* () =D* (=155 + 3 Do (15 s)uR (U3 S.0ub0™ ™,
(i) if 0u=Ba>Par then vo=5, and
(2.30) R.* (sa) = (0ul = A0) AL R* (50,

and (i11) if px=0a=0a>0, v.=b,+1 and
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(2.31) R.*(s0) = A A R* (50) /0

Proof.® (i) When p=g>p, we divide the sum in (2.15) into
St and Y 7,41 For each p>7r>p we have from (2.23) and (2.27)
that

5" D(n, NCU)’'RUD) < rp™)'e,

where ¢ is a positive vector with the indices in 4. Hence it follows

= 3 D W RO ST e, ne(m+1, w0,
__rp

l=n,+1

for all sufficiently large 7, Similarly, for all large 7, it holds

_'i“ D*()C @) R p-'<e, nelng+1, o),

I=mp+1

uniformly in 0<s=<q. But for a fixed n, (2.18) implies
oD, ~1) @-9 + X D, HCW'RWD)
—D*(~1) @9 + 3 D*O)CW)'RA)p~
=0

as n—oo0, uniformly in 0<5<gq. Hence we have (2.28) with y=0
and R* given by (2.29).
(i1) When p=p>p, we shall exploit (2.15) in the form of

R(n+1) =D, —1) G—5) + Lilj(n, n—1)C(n—1)'R(n—1),

dividing the sum into >%° and 7 ... From (2.23) and (2.27) it
follows

r+1) 20D, n—1DC(n—1)'R(n—N< @p™Hle,

so that

(n+1) P! }:‘ D, n—0)Cn—-1)'R(n—1) §@L~l)f1c<s,
1=m,+1 1-0p

ne (y+1, oo,

for all sufficiently large #,. Similarly, it holds for all large 7, that

Y T A'AYR*<e, uniformly 0<s<g,

l=ny+1
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by means of R*(s) <R*(0)<co. Since
(2.32) AZC(n)=A—E(»;0)—>A
as n—oo, we have for a fixed /=<0, n,> that

lim D(n, n—1) =A', uniform in 0<s<gq.

n—co

Hence it follows from (2.27) that

lim (n+1)p™""! i‘ Dn,n—1)C(n—1)’'R(n—1) = ﬁ p~lA'A’ R,
=0 =0

n—>c0 ]
uniform in 0=<s<gq. Finally (2.23) and the inequality p>§ imply

lim(z+1)p~"'D(n, —1) (§—3) =0, uniformly in 0<s<q.

n—>%

Combining the above facts we obtain the conclusion.
(ili) Suppose that p=p=5>0. From (2.24), (2.22), (2.32)
(2.27) we can find », and 7,1, oo) satisfying

(2.33) —&le<p"D(n,1)C()’'R() —A*A’R*'<&l’s, I {ny, n—m,

for some vector £>0. Now we divide the sum in (2.15) like as

D=3+ T 4 B =I4II+IIL
[0 Mo+ n—n+!

Since thé functions
o " (n+1)"D(n,1)C()’R(), 1€0,n), ne{0, o),
are bounded in /, » and s on 0<s<gq, it holds

lim o™ '(n+1) > '(I+1III) =0, uniformly in s.

n—0o0

Further it follows from (2. 33) that

—eepT <o (n+ D) - XA RY T (4 D Y P <zep™,
1

l=nq+1

Hence by the fact that

ImG+ D) S P=1/G+1),

n-—»o0 l=ng+

and the boundedness of R* in s, we have

n

lim p~""'(n+1) 3. D(n,0)C()’R() =A*A’R*/p (5 +1),

n—>00 =0
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uniformly in 0<s<q. But since (2.23) implies

lim(n+1)~p""'D(n, —1) (—5) =0, uniformly in 0<s<gq,

n—o

we obtain the conclusion.

Note that the procedure to determine y, from v, by Lemma 2. 4
coincides with that of (2.3)-(2.4). Further, we have

Lemma 2.5. Under Condition (DN), the function R,* (s,)
determined by Lemmas 2.1 and 2.4 for eachic d,, a1, g) with
0<p,<1, is not identically zero.

Proof. If ¢ is minimal w.r.t. the semiorder ‘<’, the assertion
is clear by Lemma 2.1. If p,=0,>0,., it is also clear from (2.19)
and Lemmas 2.4 and 2.2. To deal with other cases, we assume that
Rg* (s5) 0 for all i€ 4, with =« sarisfying ps>0. We choose a
maximal element B, in the set {f=a;vs(0.) =7.. This §, is also
maximal in the set {=a}, since in general < implies p,=p,, and
p<a, pg=ps imply vs=y,. Indeed, if it is not maximal in {f=a},
there is a § such that B,=f=a. Then it follows pg =ps=0. and
SO Vg, =Vg=10, which implies v,=vs(p,) and leads a contradiction.
Now, since b,=vg, (0,), it follows

jé*l (Ea) = RZ‘: (sﬁq) $09 ie Aﬁoy

by (2.26) and (2.27), and since (3, maximal in the set {f=a} it
holds

A;*>0, for some i€d, and jEdg,.
Hence the conclusion is clear from (2. 30)-(2.31) since A, *>0 and,
when 0,>fa, (0ol —A) 7>>0.
Proof of Theorem 2.1. Since 1) is clear from the previous
arguments, we have only to show 2). Combining the equality
P {T<oo} =lim F(n;0)*=qg"
with the Markov property, we obtain

y;spz {Z(n) =y, T<oo}s'= IESP,{Z(”) =y}q's"=F(n;qs)".
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Hence it follows

(2.38) D P{Z(n) =y|a<T<ools=1-94 —Fl:ia9)*
VES q°—F(n;0)"

Further by mean of (2.5) and (1.7) it holds as n—oo

(2.35) ¢*—F(n;qs)*= 2 > x'¢" 00, (R* (gass) +0(1)),

acTn 1&7,
where 0(1) is uniform in 0<s<<1. Hence there exists the limit

F* (o) =lim 3} PAZ(n) =y|n<T<oo}s,

n—o» yES

uniformly in 0=s<<1. Since R*'(q,) =0, i€ 4,, it is easily seen that
F,*(1) =1. Thus F,*(s) is a generating function of a probability
distribution and we obtain the conclusions.

Remark 2.1. We can calculate the support of the limit dis-
tribution {P,*(y)} more precisely. Let p,=max{p,;acl, (2)}, v,
=max{y,; a1, (x), p.=0-5 and I*(x) ={a €1, (%) :0a= 0z Va=Vs}-
Then it is clear from (2.5), (2.6), (2.34) and (2.35) that the sup-
port of the limit distribution {P,*(y)} is contained in the set

{e=(2, -, 2")eS;z'=0, i¢e u I} —{0}.

acl*(x)

Remark 2.2. It can also be calculated how the limit distribu-
tions {P,*(y)} depend on x=S— {0}. Indeed, it follows from (2. 34)
and (2.35) that

ST xtgTTURY (q45,)
) PI* syzFr* s :1__0’61*(.‘1:) = :
PRRATORES KO T RRO)

agl*(x) i€4,

Further, if 5,220, or « is minimal w.r.t. the semiorder ‘<, it hold
R* (s = Ko* (52) e,

for some monotone nonincreasing function K, *(s,), since (2.7) holds,
and (2.29) and (2.31) imply A R.*(s.) =0uR.*(s.). In the case of
0.0 (2.30) will give us the sufficient information for the purpose.

Remark 2.3. From (2.5) it easily follows that
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(2. 36) R*(F(1:5) o) =pa"R* (50), i€ 4,

if 0<p,<1. Hence the coefficients of the power series (log R*(s)/
R*(0)) /log p,. give a stationary measure of the DGWP X, on S, — {0}.

3. Noncritical periodic DGWP

In this section we shall deal with the noncritical DGWP’s with
the periodic matrices A,. It is known that, by a change of suffixes,

an irreducible nonnegative matrix M==[0] is represented as

oOMO..--- 0

0 0 M,O0--0
3.1 M=\ o ,

Oceenvenns 0 M,_,

My 0-oeennnn 0

where every 0 matrix on the diagonal is a square matrix and each
Q.,=M,--M,M,---M,_, is positively regular (Doob [5] pp. 177-178).
We shall call the positive integer d the period of the matrix M.
Of course the d-fold product M® of M is given

Q0 eeneenns 0
3.2 A 0Q; 0nene 0
OQceervenn 0 Q.

Lemma 3.2. The P-F root of the matrix Q, is equal to
o(M)“.

Proof. The set of all characteristic roots of M* is the union of
the sets of characteristic roots of Q. a=<{1,d), by means of (3.2).
On the other hand it holds p (M%) =p(M)* by the Frobenius’ theorem
on the characteristic roots of a polynomial in a matrix. Hence we
have

3.3 o(M)*=max{p(Q.) ;asl,d)}.

Suppose that p(M)*=p(Q,). Then, because of the positive re-

gularity of Q,, there corresponds a positive eigenvector u,, of Q,,
to p(M)*;
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aouaa = Maa' ' .MdMl. : .Mao—luaa = p (M) duan’

Operating the matrix M,--M, , if ae€{d,a,—1> (and the matrix
MMM, M, _, if aclav+1,d)) from the left, we have Q,u,
=o(M)%,, where u,=M, -M, u, if ac{d,a,—1> (and u,=
M, -M,M,---M, u, if aela,+1,d>). But u,#0 since every Q,
is positively regular, and hence p(M)® is a characteristic root of Q,.
Therefore p(Q,) =p(M)* and so p(Q,) =p(M)* by means of (3.3).

For each d (1, o), the family of generating functions {F (nd; s,)a;
ne{0, o>} forms a DGWP on S,, which we denote by X, .

Lemma 3.3. 7The least nonnegative fixed point of F(d;s,). is
equal to the I ,-part q, of the extinction probability q of the DGWP
X. Hence the q-mean matrix of the DGWP X,® coincides with
the d-fold product A, of A,, and if Conditions (D) and (DN) are
satisfied for the DGWP X, then they are also satisfied for the
DGWP X,

Proof. Let r, be the least nonnegative fixed point of F(d;s,)..
Then it holds ,=Zgq, since g, is a nonnegative fixed point of F(d;s,) ..

Hence it follows

ro=lim F(nd;r,).=q.

n->c0

from (1.7). The remaining assertions except for that on (DN) are
clear. But the assertion on (DN) can be easily seen if we make
use of the same arguments as in Athreya [1] or Sevastyanov [14]
Chapter III, § 3.

Now let d,e{1,m,> be the period of the irreducible matrix A,
in (1.8), and
dazL.C.M.{d.'/g: Aﬁc ra}

(we set d,=1 if p,=0). Then by a change of the suffixes, we have

/ﬁ;? O ceeeenen 0
- 0 A~§‘;) Oeeeeee 0

(3 4) A,g = s Aﬁcrar
Onevrneren 0 Ag2
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where A§ is an irreducible aperiodic nonnegative square matrix of
order mge{l, mgy (3%, mg,=mg). We define from (3.4) the sets
dg, T and S§°, the vectors s§ and 3, and the matrices AfY as
we defined 4, I',, etc., in section 1; for example

8-1 r—1 = r
dgr =<2 mp+ 2 mee+1, 2 im,+ 2 Mgy
p=1 q=1 p=1 q=1

Note that m, (and hence 4g) is independent of d, which satisfies
d,|d, We also define the DGWP X by the family of vector
generating functions {F(nd,;s§?)§; ne0, oo)}. By Lemma 3.2 and
the representation (3.4), our DGWP X satisfies the assumptions
of Theorem 2.1. As in section 2, we shall introduce the semiorder
¢<,’ in the space of the suffixes {(3, )} by

0, <., p if 4l
Then the rank y,, of (a,7) is defined by

max {qu (7') 5 (6: Q) ia (Ba P)} ’ if 539&7.9
(3.5 viR@() =
max {v;, (1) ; (0, D= (B, P} +1, if pe=r,

(max ¢ = 1) ’ and Var = vt(;!r) (pa) .

Lemma 3.3. Let Conditions (D) and (DN) be satisfied for
all «e1,9) with p,<1. Then for each acl,9) and vel,d
with p,<1, there correspond monotone nonincresing functions R*'(s&)
in 0<5s@=<q@, i€ d,,, such that it holds as n— oo

(3.6) Ri(ndy; s) =n*rpp® (R* (s) +0(1)), i€ dqy,
where 0(1) is uniform in s on 0<s@<q®. Further, if p,>0, any
R* (s, i€ 4,, is not identically zero.
For each rS, we set
d.,=LCM.{d,;acl, (x)}.
Theorem 3.1. Let a DGWP X = (Z(n), P,) satisfy Conditions

(D) and (DN) for each a1, 9y with p,<1. Then 1) for each
aell, 9> with p,<1 and v€{1,d,>, it holds as n—oo
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B.7)  R'(ndy+1;s) =nerp (R*(F(l:s)$) +0(1)),
ZE<0, da_1>y iEAan Oésaéth

where 0(1) is uniform in s on 0=<s,Zq,. Further, if p,>0, then
any R¥(F(l;s5,)%), i€ d,, is not identically zero. 2) For each
xe S such that 0,<1 for all a1, (x), and p,>0 for some acl, (x),
there correspond a probability distributions {PX(y)} on S— {0}
satisfying

3.8) lim P {Z(nd,+ 1) |nd.+I1<T<oo} =PX%(y),10,d,—1>.
Proof. Repeating the arguments in the proof of Theorem 2.1,

we have only to show the nontriviality of the functions R*' (F(/;s,) %),
i€ d,, for p,>0. It follows from (3.6) that

3.9) R*(F(mdy; $)$) = 0" R* (s9), 1€ dey
Since F(:0) @ <F(md,; 0%, I<md,, it is clear that p,>0 implies
R*¥(F(;0)@) ZR* (F(mdy; 0) ) =p,""“R*' (0) >0, i€ d,,, {=md,,

and we obtain the conclusion.

Remark 3.1. With the aid of Lemmas 2.1 and 2.4, we can
determine the functions R*'(s{’) inductively w.r.t. the semiorder ‘<.’
in the space of the suffixes {(B,2); ds CI'}.

4. Asymptotic behavior of critical DGWP

Since we have studied the noncritical DGWP’s in the previous
sections we shall study the critical ones in this and the next sections,
We assume Condition (D) and

(DC) F}k([I)<O°7 i)j’kera’

where Fi.(s) =0*F'(s)/0s’0s* if it exists and Fj,(s) =limg, F}, (&)
otherwise. We set

.1 Ha=1/270, fy=1/280,

where y,(1) and (1) are those defined by (2.3) and (3.5). The

object of this section is to prove the next two theorems:
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Theorem 4.1. Let a DGWP X = (Z(n), P,) satisfy Conditions
(D) and (DC) for each as{l,q> with p,=1, and every matrix
Aa be aperiodic. Then, for each a {1, 9> with p,=1, there correspond
constants R* >0, i€ 4,, such that
4.2) lim #*«R*(n;s) =R*, i€ d,,

for each s satisfying 0<s5,<q, and
4. 3) 5<qs if pB<a, Bg>0.

The constants R*' are determined inductively w.r.t. the semiorder
‘<’ from Lemmas 4.2 and 4.7 below.

Theorem 4.2. Let a DGWP X= (Z(n), P,) satisfy Conditions
(D) and (DC) for cach ac{l,9> with p,=1. Then, for each
as{l, 9> with p,=1, and yell,d,p, there correspond constants
R*>0, i€ d,,, such that

4.4 lim n#«rR* (n;s) =R*', i€ d,,,

n—>»c0

for each s satisfying 0=s5,<q, and (4. 3).

Proof of Theorem 4.2 assuming Theorem 4.1. By the
same arguments as in the proof of Lemma 3.3, we have from
Theorem 4.1 that

lim (nd,)*'R*(nd,;s) =R*', i d,,

n—>oc0

for each s satisfying 0<s5,<q, and (4.3). But since F(/;s) also
satisfies 0=F(l;s),=<q., and (4.3) for such an s, if follow

lim (ndy+ 1) "R (nd o+ 1; s) =lim (nd,) *"R* (nd,; F(l; 5)) =R*',

n—o00 n

ic€d,, [=0,d,—1.

Remark 4.1. Combining Theorems 3.1 and 4.2, we of course
obtain the whole asymptotic behavior of a DGWP satisfying con-
ditions (D) and (DC) for all a1, ¢>.

Now we shall prove Theorem 4.1 without haste. In the follow-
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ing in this section, we assume that the hypotheses of Theorem 4.1
are satisfied, unless otherwise is stated.

Lemma 4.1. If §,=1, then

B,

Y vuFi(@ulu,>0.
i, 1, k€.

L

Proof.® Suppose first that I'=¢ and F(s) =F(0)+As. Then

it follows
g=F(n;q) =F(n;0) +A"q.

Letting n—oo we have lim,_, A"¢=0 by (1.7) which implies p<{1.
Next we shall assume that I'#¢ and F(s) = F,(5) + H(s)5 with F,(5)
#0. Then it follows that H(z) =A and

P 9=FF(n—1:9)+ £ BFG-155) - AFE )
xF(FU-1;8) + HF(r—1:5)) - H(F(0;5))3.
Hence it follows

g=F(n;9) = R AR (@ + A"q.

Since X7, A”"Fo(q) >0 for a large 7, it hold 2}>[P‘?j, Hence we
have p(ﬁ)"=p(ﬁ") <1 by the mini-max principle (cf. Gantmacher [6]
II. p. 65).

For an a1, 9> which is minimal w.r.t. the semiorder ‘<’, we

exploit the following

Lemma 4.2. (Joffe and Spitzer [9]). If the g-mean matrix
A, is positively regular with p,=1, it holds

Uo' Vo (La—5a) .
.6 Ri ; — a Ya «a a 1+ 1 R EAa,
(4.6) (n39) = e e e Ato@),

as n—oo, where o(1) is uniform in 0=s5,<1,, s,#1..

Note that g, is equal to the " -part 1, of the vector 1=(1,---,1)

in this case,
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To study the case when « is not minimal, we prepare some

lammas.

Lemma 4.3. Let p,=1 and 0=5,=q., Su7q.. Then the re-

lation

“.7) lim i;@ﬁ%-ii— —0, k0, 0o,
implies
(4. 8) lim f}%% =7,
Proof.? First of all we note that ,
(4.9) ¥-R(n;5)>0, neln, o), 0=s=q, s#q,

for some n,e{1, oo>. Indeed, for each i€ 4 and jeI there corre-
sponds an 7z,/€{l, > such that A, (n;)>0. Hence the positive
regularity of A implies

At () zZ A (n—n') Ay (') >0
for all sufficiently large n. So such Ff(n;s) depends on every
variable s’ with jeI', and we obtain (4.9). Now using (2.14) in-
ductively, we obtain

(4.10) R(n+1) =D, n—m—-1)Rn—m)+ 3 D(n,1)C1)’RA).

l=n—-m

We take the sequences ¢, and @, in the proof of Lemma 2.3. In
our case the sequence &, may not satisfy (2.22), but it tends to zero
as n—oo and satisfies (2.24) with p=1. Combining (2.24) and
(4.10) we have

A—tn— 3 e) A*R(n—m) + 3

k=n-m 1]

A=aui= 3} ) A*CO'RQ)

m

SR@+DSA+an) A*R@-m) + 3 (+a.-) A*CQ'RQ).

1 m

Hence it follows, for each 7 and » with n—m e {n,, oo,

(1—am+1_‘ i ak)ﬁ(n’ m)+ i (l_an—L_ i} 8;;)@(71, l)
(4.11) k=n-m l=n—m kST41

A+ame) + _E_

i

A+an)v-0(n, 1)

m
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< R(~n+1)
~ P-R(n+1)
At am) PO, m) + 33 A+ )3, 1)
A—npi— > e+ 2 A—awi— > e)5-0(n,0)
k=n-m l=n-m k=l+1
where
5 _ A*R(n—m) ~ A*C()'R()
P(n,m)="=—>"_"7_| D = s a
) F-R(n—m) Q@D T-R(n—m)

But P(n, m) =% by the definition of A* and Q(n,1)—0 as n—oo
by (4.7) and (2.32). Hence, letting n—oo in (4.11), we have

1+ Qs ism U-R(n+1) = ne 7-R(n+1)

(A—ana’ < lim Ri(n+1) o Ri(r+1)

< Atan)Z oy pedl, ood.

I o A

Now we obtain (4.8) by letting m—oo.

Lemma 4.4, There are functions B (s,) and G, (s,) in 0=s,
<q, such that

(4.12) R'(sp) = pe A (@ =) — 25 Bj(sa) (@7 =) (6" —5)

Jhk€Edy

+ Zf‘ (Aji - ij (Sa)) (qj - sj) ’ S Aa) 0§5a§Qa,

je

where
0B}, (5.") =B (5.”) =3 Fje (@), 0=5."=5,"=Gus
(4.13)
Bi’k (sa) —_)%F;k ((I)5 as sa—)Qa iﬂ Oésaé(.hn i’j, kEAa,
(4' 14) OéGji (Sa) §2Eji (sa) ’ ie Aan JE I__Ta-
Proof. Integrating by parts the integral in (2.11), we have
E;'(s) = 2 Bik(s) (¢°—5", ied, 0=s=q,
ker
(4.15)
1
Biu() = TP O) 0y =502 [ (a—a-9eroma—ods.
Yy

Combining this with (2.10) we have
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Ri(s) = j;A/ (@ =)~ 2, Bi(® (@~ (@ ="

+ X (A —Ej () (=) — 3 Biu(s) (@ —5) (@ -5,
jer jefwer
0=s<q.
Since B, (s) =Bi,;(s) by (4.15), the last term is equal to

-2 gB‘/k(S) (@*—s (=57,

Jjer k

and we obtain (4.12) with
(4.16) G, (s) =E,"(s) + 2 Bis(9) (@ =5).
€4

Further (4.13) follows from (4.15), and (4. 14) follows from (4. 15)-
(4.16).
Note that, if we replace s, in (4.12) by F(n;s,). we obtain
(4.17) Ri(n+1l5s) = 2 A/ 'R (n;s) — 25 Bi(n;s) R (nss,)
j€d. IN TP
XRk(n;sa>+j§ (A" =G, (n;s)) RV (n;54),
i€ds, 0=5.=4a
where
(4.18)  Bj(n;5,) =B (F(n550)0), G, (55 =G, (F(n554) ).
Hence it follows, when g,=1,
(4.19) Anp1— Ay = —b,a,"+Cpy
where

an:aan(sa) =ﬁa°R(n; Sd)d

2 UaBi (s )R (n55,) R* (s s,)
(4’ 20) lbn, = ban (sa) =0l kel

@an (52)*

En=Can(sa) = 20 Taui(A; =Gy  (n55) ) R (n55,).

i€da JET

Note that (4.9) is rewritten as

(4 21) [ln>0, ne <n0, °°>’ Oésaéqw sa#‘]a)
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for some 7,1, o0>. Further

(4. 22) lima,=0

n—>00

by (1.7), and

(4.23) 0<b*=lim 4,<lim b,=5*< oo

n—o0 n—>o0

by (4.13) and the inequality ¥,>0. Finally it holds
4. 24) =20, nedln, o),

for some 7,0, 0> by means of (4.14), (1.7) and the fact that
A,;*=0 implies E,*(s,) =0.

Now we assume that

4. 25) lim n*R*(n;s) =R*', i€ d,,

n—oco

for each f=a with ps=1 and s satisfying 0=<s,=gq, and (4. 3), where
R** are constants with R*>0. Then we have

Lemma 4.5. 1) If p,<1, it holds

(4. 26) c,=o0(l/n?), as n—oo,
2) If p.=1,
4.27) lim #2«R (n;s) .= R.*,

n—»c0

for each s with 0<5,Zq, and (4.3), where

(4. 28) Fle=min {4y; B=at, p,=1}.

Further, it holds

4. 29) lim n«c, =v,A,/ R *=c*>0.

n—>c0

Proof. (4.26) is clear from (4.20) and Theorem 2.1. (4.27)
is also clear by (4.25). Hence (4.29) except for the relation ¢*>0
follows with the aid of (4.14) and (1.7). But ¢*>0 is easily seen

if we repeat the same arguments as in the proof of Lemma 2. 5.

The next lemma plays an important role in the following.
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Lemma 4.6. Let sequences {a.}, {b.} and {c.} satisfy (4.19)
and (4.21)-(4.24). Then, 1) (4.26) implies

(4. 30) 1/5*< lim na,< lim na,<1/b*.
2) If

(4. 31) 0<b*<B* < oo,

(4. 32) lim n*c, =c*,

for some 0<u=1, then it holds

(:T . ) T w2 C*
(4. 33) ?;é lim n*%q,< lim n*a, < [/~ .

n—0c0 n—>00 _b.*

Proof. 1) By (4.22) and (4.23), it holds

—lfs—MgM, ne<n2, 06>

for some M>0 and »n,<1, ). Hence it follows from (4.19),
(4.21) and (4.24) that
1 __L<bnan = bn <M’ ne <7l;, 00>’

Ap 1 an - Ant1 (1 —'anbn) +cn/an -

where ny=n,\Vn,\V7;, Summing up these inequalities from #n; to #
we have

L cromyM+ L, nein, oo,

an

so that, by means of (4.26),

lim ¢,/a,=lim ¢, /a,’=0.

n—sc0 n—oo

Hence we obtain (4. 30) since (4.19) implies

l{ 1 1 }____l_"“ b,—c/al

nta, Aq, n l=nsl—bla,+c,/al '

2) Setting ¢,=n"’a,, we have from (4.19) that
bn$n2 - nl‘cn+ nl‘/z ($n+l —sn) =an+10 (n”_l) )

as n—oo, Since 0<{y=X1, this with (4.22) implies the basic equality
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(4. 34) l]m {bnfnz—n”cn'*'n”/z ($n+l"$n)} :O'

n->c

Now we shall show that the sequence {£,} is bounded. Suppose
that {£,} is unbounded, and let

m=1, n,=min{n; &>, ,VEk), k{2, o).
Then it follows
(4. 35) En > VEZ S, 1, kE(2, 00D,
(4. 36) lim &, = oo,

koo
By (4.35) we have £, >£,,, and hence by (4.34)

lim (B, 183,01 — (2 — 1) e} S0,
Hence with the aid of (4.32) and (4.31) we have
(4.37) lim £}, . <e*/b*< oo,

and from (4.34)

. _ T bnk_:Ef.,,_l — (s —1) ”Cn,,—l _
@39 b = ey

(4. 37) and (4.38) imply the boundedness of the sequence {¢,}, which
is a contradiction. We note that, by means of the boundedness of
the sequence {&,}, (4.38) is valid for any subsequence {n,}. To
prove (4.33), we set

g¥=lim¢, &*=limé,.

First we shall show that §*=§*=¢* implies
Vot /B <e* =<V o /6.
Indeed if (0=)&*<+c*/p* for example, it holds by (4.34) and (4. 32)
that
R (&1 —E&0) 0P, —bofnt —e=c* —b* (6%)P—2e>0, ne{lN,, o)
for some N,e<1, ). Hence it follows

b a2 (B 20 5

F, ke’
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which contradicts the boundedness of {£,}. Next we shall show that
(4. 33) holds even when §*<§*. Since the situations do not differ,
we suppose §*>\/CT/F and lead a contaradiction. Take a constant

¢ in E*>&>£%\/ Vc*/b,, and let
ny=min{n; §,>§},
mey=min{ne {n,_;+1, o) &,<E},
ne=min{ne {m,+1,00%;£,>€, kel o).
Then it holds
(4. 39) En,>6n1VE, kel 00).

Indeed, the inequality &,,>¢ is clear from the definitions, and &,,>¢,, ,
is also clear since &, _,=<¢ if n,—1e{m,+1,00), and &, ,=&,<¢&
if n,—1=m,. Now it follows from (4.34) and (4.39) that for any
¢>0 there is a k, satisfying

&< (”"_2)””“—‘“ L kedh, 00
np—1

Combining this inequality with (4.39), (4.38) and (4. 32), we obtain

. . c*
&< lim &, = lim & < _:8 ,
k- k-

which contradicts the inequality &>+Vc*/b*.

Corollary 4.1. (4.388) is still valid even if we replace the
assumption (4.19) by (4.34) where &,=n*"a,.

Now we are ready to prove the next lemma which completes
the proof of Theorem 4.1:

Lemma 4.7. Let p,=1, and (4.25) hold. Then it follows

(4. 40) lim 2*R (13 5) . = R*,

for all s satisfying 0<s,<q, and (4.8), where y, and R,* are
given separately in the following three cases; (1) if 1=0,>0, then
U.=1 and
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(4.41) R*=%,/B,,

(i) if 1=0,>0e, then pto=7x, and

(4.42) Rr=(I-A)"A/RY,
and (iil) if 1=0,=0a then ty=[,/2 and

~ ' ok \ 172
VAL R, > / .
— a

(4. 43) R*= ( =

Proof. (i) When 1=§>p, it holds (4.26) by Lemma 4.5.
Hence it follows (4.30) by Lemma 4.6, and we have (4.7) by
Theorem 2.1, Therefore (4.8) holds by Lemma 4. 3, and so

(4.44) lim b, =B

n—>00

by (4.20), (4.18), (1.7) and (4.13). Now appealing to Lemma 4.6
1) again, we have lim,,. 7 a,=1/B to obtain (4.40) with #=1 and
R* given by (4.41) from (4.8).

(i) When 1=p>p, it holds

(4. 45) n*R(n;s) <z, ne<0, ),

for #=px. Indeed, combing (2.15) with (2.23) and (4.27) we have

have
A+ D* R+ DS G+ DA+ (e ) 3 A A'RQ)
<+ 1) 40,57 A g+ (n+1)*0,6" 3] 5+ A* A (R* + K),
l=1
where 6,, 0, and K are positive constants, But since

3 o0 U t~n"tp7"/(—log p), as n—oo,
l—l()

(4.45) follows.
Now by means of (4.10) it holds

3

"D (n, n —Z)C(n—l)’(n—i-1)”R(71—l)§(71+1)"R (n+1)

<< - >,‘A~m+'(7l—m)"ﬁ (n—m) + i AA (n+ D*R(n—1).
l=0

“\n—m
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Hence letting n—>cc we have from (4.45) that

i‘, AA’R*< lim n*R (n) < Tim n*R () <A™+e+ Y A'A’R*,

1=0 n—co n—oco 1=0
But A™*'—>0 as m—oo since §<1, and we obtain the conclusion.

(iii) In the case of 1=0=p, we shall first prove (4.44). Since
the sequence a@,(0) is monotone nonincreasing in 7, it follows from
(4.19) and (4.20) that

ogi"—i%))-gbn(om(owo, as n—»co,

n

Hence it holds from (4.29) that
lim 1/na, (0) =0.

n—

Further, for each 0<s<gq satisfying (4.3) we can find an /€0, o)
by (1.7) such that s<F(;0)<q, whence it follows R(u;s)=
R(n+1:0) and

lim 1/7%a, (s) =0.

Hence we have (4.7) by (4. 27), so that (4.8) and (4.44) by Lemma
4.3 and (4.20). Now since B>0 by Lemma 4.1, it follows from
(4.44) and Lemma 4,6 2) that

lim #**a, = vJc*/B.

n—>o0

Hence we have the conclusion with the aid of (4.38).

Remark 4.2. The vectors R, * given above are positive.
The proof is similar to that of Lemma 2.5.

Remark 4.3. It is clear from the proof that (4.40) holds for
all s with 0=<s5,=q., s.7q. in case of (i), and for all s satisfying
0=<5,=4q., s.74q, and (4.27) in case of (ii). Further, it can be seen
that if we assume Condition (DE) in the next section (4.40) (and
hence (4.2)) holds for all s with 0<5,<¢q,, s.#q. in all cases.

5. Asymptotic behavior of Z(n)/n of critical DGWP

In this section we shall give the asymptotic behavior of the dis-
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tributions
Q.(u;u) =P, &§u|n<'f<oo}, ueR,”,
n

of critical DGWP’s. We shall assume for each ¢ (1, ¢> with g,=1
that
(DE) Y VeiF (A )88 200 (S Ui,

i, 5y k€ day =7

gar: (gi) iEA“T>Oa TE<19 Ja>’

where ¢,, is a positive constant and %, is the positive left eigen-
vector of z‘ﬁ,‘;’ corresponding to the P-F root 1. When the matrix
A, is aperiodic, it is clear that d,=1, and Condition (DE) is reduced
to

(5~ 1) 47 kZCJ %aiF}k (q) 5@"2%( g ijaisi) 27 g(l = (éi) i64a>0»
for some ¢,>0. We set
sM=s"V=(q" exp(—2"/n), -, q" exp(=2"/n)),

for each 1=(", ---,2%)=0. Our object in this section is to prove

the following

Theorem 5.1. Let a DGWP X=(Z(n), P,) satisfy Conditions
(D), (DC) for each «ael,g> with p,=1 and (DE) for each
asell, 9> with p,=1, and the matrices A,, be aperiodic. Then, 1)
for each as{l,9> with p,=1, there correspond nontrivial non-
negative functions ¢' (1), i€ d,, such that

5.2) lim 2#«R* (7 5™M) =¢* (A1), i€ dg

fqr each A=0 satisfying

(5.3) 15>0, if B<a, p>0.

The functions ¢’ (o), i< da, are determined inductively w.r.t. the
semiorder *<" by Lemmas 5.1 and 5.8 below. 2) For each
zeS with p,=1 for some acl,(x), the distributions Q,(n;u),

nel, o), converge as n—oo to a probability distribution Q.* (u)

on R.Y given by



Multitype Galton-Watson processes 283

PR LA O W)

I, 1
Gy [ ea0ra=1-EE :
. F i .t—e,R*
R4 X

Ha=HNzx

where p,=min{y,;asl, (x)}.

Theorem 5.2. Let a DGWP X=(Z(n), P,) satisfy Conditions
(D), (DC) for each a={1,9> with p,=1 and (DE) for each ac
1,9> with p,=1. Then, 1) for ecach as{l,g) with p,=1 and
rell,d,>, there correspond nonnegative functions ¢*(A&), i€ du,
such that
(5.5) lim (nd, + 1) *"R* (nd,+ 1; s™ M) = ¢! (0, () &),

i€d,, [€40,d,—1),

for each 2=0 with (5.383), where w,() =A'{qd}/q. 2) For each
xS with p,=1 for some acl, (x), the distributions Q,(nd,+1; ),

usR.”, converge as n—oo to a probability distribution Q¥ (u) on
R.”.

Throughout in the following in this section we always assume
the hypotheses of Theorem 5.2, Further, we shall assume for the
moment that every A, is aperiodic. Then, for an ae<1, 9> which

is minimal w.r.t. the semiorder ‘<{’, there is the following excellent

Lemma 5.1. (Joffe and Spitzer [9]). If the g-mean matrix A,
is positively regular with p,=1, it holds (5.2) with u,=1 and

5. 6 i — Tii?j ° (qala)
©-0 V)= B v (a)

To deal with the case when « is not minimal, we prepare a
lemma.

Lemma 5.2. Suppose that p,=1 and A1=0 satisfies (5.3).
Then the relation

R(»— . oM
6.7 lim ROE=mALs™Ne 60 10, md, med0, oo,

noo U R(n—my 5,™M), B
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implies

(5.8) lim — R85 )
noeo ‘ﬁa ‘R (71 H sa(n' X)) a

o
=U,.

Further the relation

: R(k_m'i'l;ga(n')‘))a —
5.9 ll_’nalo snlép’: B Rk sy =0, 140, m), me<0, =),

implies

i . n, A
(5.10) lim sup max R (k: 5, %)

—%,t =0
= « .
koo a2k i€da | Ty R (k5 5,™M),

The proof is similar to that of Lemma 4.3 and will be omitted.

Here we assume

lim #*R* (n; s™V) =¢' (1), i€ dg,

n—»c0

for all =« with ps=1. Then it follows, if p,=1, that

(5.11) lim 72<R (3 s™™) . = 0. (Ao,

n—00

for some ¢,(1,) = (¢* (1)) ier,-

Lemma 5.3. Let p,=1, and (5.11) hold if p6.=1. Then it
Sollows

(5.12) lim ##« R (n: 5™») =¢, (Aa),

n—00

for all A=0 with (5.8), where p, are those in section 4 and

Jo(Aa) are given separately in the following three cases: (i) if
1=, then

~ — ‘?jﬁ‘ (aaza> ﬁa
(5.13) Pele) = T 1) B GO}

where

— - %aAa/Aak{aaZa}
618 D = o e A g e - (A g )T

(i) if 1=0.>0a then
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(5 15) S’Ea (la) = (I— A:a) _lAa,{b—a (za) ’
and (ii1) if 1=0,=0,, then

'3 1/2
gaAa ¢a (la) > ‘z\za‘

(5.16) Fale) = (efle

Proof. (i) With the notations in (4.20), a,>0 holds for all
ne {0, o) since we have assumed (5.3) and §,>0. Hence it follows
from (4. 19) '

(5.17) l{ 11 }
n La,(s™) a,(s™)
1 bk(s(n))
ST b, (™) ™) + e M)/ ar ()

}_n—l Ck(S("))
n k=0 @, (s™) ap, (™)

_1_-11

n

X

By the same arguments as in the proof of Lemma 2.2, it holds

— — k—m<+1
(5.18)  R(k—m+1;5™) <A*-m+ (5 —5m) g%i

Ee{m—1, 00,

for some 6,=0,(1) >0 and p<r<{1. Similarly, by the convexity of
the function F*(n;s+ (g—s)¢&) in 0=<¢<1, we have

(5.19) RE—m;s™=A(k—m;s™) (G—35™), kelm, o),

where A(k;s) =[F,;*(k;s)],es Further it can be seen that for each
r<#<1 there is a vector 0<{y=gq satisfying (4.3) such that

(5. 20) F(p=y and p(A(1:p))>7.

Indeed, since F*(2;0)1q* as ntoo, it is enough to take an F(x;0)
with a sufficiently large 7 as the vector . Since the matrix /1'(1;77)
is also positively regular, it follow from (5.20) that

(5. 21) Al; =A@ *=r* (1 -8 A* (),

where A* (y) is a positive matrix and {0} is a sequence with §,—0
as k—oo and 0<4,<1. But since there is a k&1, o) with

1=s0=s"=q, nelk, ), ke&lk, o),
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we have from (5.19) that

(5.22) R(k—m;s™)> 07" (A= 0i-n) A* ()7 , n=k=m\/k,,

n
for some 0,=0,(1)>0. Combining (5.18) and (5.22) we obtain
(5.9), and hence (5.10) by Lemma 5.2. Since B, (k;s) >Fj.(q)/2

as k—oco uniformly in 0<s<gq, it follows from (5.10) and (4.20)
that

(5.23) lim sup|bk(s(")) B|=

k>0 nZ2

Hence it also follows from (4.22) that

(5.24) lim supb (s™)a, (s™) =0.

k—oco n>

Letting m=[=0 in (5.18) and (5.22), we have

Ck (s(n)) 017‘ @’A, 712k2k0,
“a, (s™) 027”" A-0)VA*(Dg’
so that
(5. 25) lim sup . (s™) /a, (s™) =0.

k- nx>

To estimate the sequence c,(s™)/a;(s™)a;.,(s™), we shall exploit
(5.22) for an 7 with

Vr<F<ll.
Then it is clear from (5.18) and (5.22) that

1 ¢k (™) < 03

7 ay (5™ ap, (™) T "2" ’

n=k=k,,

for some 0;,>0. As for 20, k,», it is not difficult to see that

1 ce (5™)

7 ap(s™)ae, ., (s™)

=M., nelk, o0).

Since

ko o
ZMk+ Z 03 ~2k<°°,

k=0 k=ko+

we can apply the Lebesgue’s convergence theorem, obtaining
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(5. 26) lim 3 = =1,

n—sco k=0 ay (™) ags (s™)

n

with the help of

(5.27) lim nR (k; s™™) = A*{q}.

n—oo

Combining (5. 23)-(5.26) with (5.17), we have

lim 72 a, (s"™) = 7. (qh)

o 1+9- @) {B—x )}

Hence we have (5.12) with ¢*(1) given by (5.13) because of (5.8).
(i) By the convexity of the function F*(/;s®+ (s"*H—sM)§)
in 0561, we have

(5. 28) Ri(l;s®) —RY(l; sy =Fi(l;s™*M) —Fi(l; sV)
< SVF, (L s™H0) (57D — 50) S
= jer ’ ’

for each il and n+1=![. Similarly it holds

(5.29) Ri(l; s =F'(l;q) —F'(l; s"*)

Z 3 FE( s™D) (@ —sTHD) .
~jer
Since

(5.30) (s™+h— sm)fgg'_l_ Ll—lgg (g —s™+D) jntl—1 ,
= n+1 ) - l

n+1=2L\ n,

for some 6>0 and n,<1, o), it follows from (5.28), (5.29) and
(4.27) that

(5.31) 0<R(l;s®)—R(l; semy<1=D0 11"’)"1?(1-, o< @ri=De

[t ’

n+1=1\ ny,

for some vector ¢. Hence, substituting [=#n—[, we have for any
fixed m

lim(z+1)* i D (n, n—1; s"*)C (n—1;5"+D)’ R (n—1; s™+)
=1

n—soo
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=lim i D(n,n—1;s"+"C(n—1; s (n—1)*R(n—1; s™D)

n—oo [=0

AA'GQD).

40

Now we can obtain (5.12) with (5.15) by the same arguments as
in the proof of Lemma 4.7 (ii).

(ili) By Lemma 4.7 (iii), the sequence ##*R (n; s"*") is bound-
ed in ze(l,00) so that we have by the same way as to (5.31)
that

(5.32) O<Rn+1;s™—Rn+1;s""H< 4 n=n,,

nltar ’
for some vector ¢ and 7,<{1, o). Let

An =Ux (l) = nﬂ/za'n (s(n)) ) Bn = Bn ()\) = bn (S(n)) y Tn=T7n (}\) = nﬂcn (s(n)) .
Then (4.19) and (5.32) imply

Unyy — = n=#E( —ﬁnanz +72) +O <l> ,
n

as n—>oo0, so that

(5. 33) lim {nﬂ/z (an+l - an) + (Bnanz - rn)} =0.

Further, by means of (4.20) and Assumptions (DC) and (DE), it
holds

0o>F=lim ,(2) Z lim 8, (1) =§>0,

n—»o00

for some 3=3(1) and f=p(1). Hence, appealing to Corollary 4.1,
we obtain from (5.33) that

(5. 34) Vr*/B< lim @, < lim 2, <v7*/8,

n—00 n—o
where

r¥=limy,=9A4¢ ().

n—oco

Combining (5.34), (5.32) and (4.29), we obtain (5.7). Hence
(5.8) follows by Lemma 5.2, and also



Multitype Galton-Watson processes 289

lim 8. () =B.

n—»c0

Hence, again using Corollary 4.1, we obtain from (5. 33)

lim @, ) = V7*/B.

n—»c0

Now (5.12) with (5.16) is proved, since (5.8) is valid.

Proof of Theorem 5.1. Since 1) is clear from Lemmas 5.1
and 5.3, we shall show 2). By the similar arguments as for (2. 34),

it is easily seen that

. z_F(n;s(n,x))z
»udQ,(nyu) =1—2 .
L.Ne Q.(n; ) @ —F(n;0)*

Further, it follows from (5.2), (4.2) and (1.7) that

@ —F(n;s™)*=n"" 3 3 x2'¢"'(Aa) +o(n™*),
agi(r) i€Ed,
ba=Hr

¢ —F(n;0)*=n"*s 3 3 z'¢"“R*+o(n*),
act, (z) i€ds
Ha=H1

as n—>oo, Hence it follows

lim e dQ. (n;u) =¢. (D),

n—oo JR,N

where ¢,(1) is given by the right side of (5.4). Further ¢,(1) is
a Laplace transform of a nonnegative measure dQ.* (x) on R.". Since
lim,y ¢* (4,) =0 by (5.6) and (5.13)-(5.16)?, it hold lim;, ¢. (1) =1.
Hence the nonnegative measure dQ.,*(«) is a probability measure

and we obtain the conclusion.

We note that the parallel assertions to those of Remarks 2.1

and 2.2 are also valid in this case. Further, we have

Remark 5.1. It holds

(5. 35) P ) =9 Qo)

More precisely, one may take 4, with the form of 7a=0¢7, 2,=06°g where 6>0, 6 |, 0,
in the case of 1=3.>p..

5
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where w, (1) = A*{ql} /q.

Proof. From (5.6) and (5.13)-(5.16), it is enough to show
(5.35) in the case of (5.13). But this is not difficult since

o v (Alad)) "=
1(4)) =
ACACY)) 1+%- (A{qd})"B—%- (A{aA}) 1 (0, (D))

- - (A{qd}) % -
1+%- (A{gd)~B—x W) +TA’{gA} /v - (1)
=¢@).

As to Theorem 5.2, we have the next lemma from Theorem 5.1

by the same arguments as those to lead Lemma 3.3 from Theorem
2.1,

Lemma 5.4. There exist nontrivial limits

(5. 36) lim (nd,) 'R (ndy; s™=M) =¢* (L), i€ dqy,

for each 3=0 with (5.38), ae{l,9> with p,=1 and v, d,>.
Proof of Theorem 5.2. First we set
FQ) =F (s, 5(0) =504,

F\Vs=F'Q)Vs'(w), -, F'{) Vs ().
Then it is clear that

(5. 37) Ri(nd +1; s+ = Ri (nd; F(1)).

Further by the differentiability of the function F*(nd;F() + (s(w)
_F@))&) it holds

(5.38) |R‘(nd;F(l))—Ri(nd;S(w))|§1§F;i(nd;6)|F’(l)
——s’(a))|§IZFF,t(nd;FV5)|Fj(l) —s(w) |,

where ¢ is a vector with ¢<FVs. Similarly

(6.39) R (nd; FVS)ngrFfi(nd; FVs) (@ —F' () Vs (0)).

On the other hand, since

F()=¢d—-Y A1) g /nd+O (%)
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= 1—wl Q) /nd) +o(~i?>,

@) =’ A0/ @) /nd) +0 (=),

as n—»o0, it follows
IF? (1) —s'(0) | Zki/7,
(5. 40)
@ —F' (D) Vs (0) Zks/n, neln, ), jeT,
for some k;, k>0 and »n,e(1,00)>. Combining (5.37)-(5.40), we

have

(5.41)  |R*(nd+1; ™YY —R*(nd; 5(0)) |§k—;Ri (nd; FVs)
nK,
§~k‘—R‘(nd;0), ne {ny, o).
nk,
Hence it follows from (5.36) and (5.37) that

lim (nd + 1) *R* (nd + L; s+ =lim (nd) “R* (nd ; s (w) )

=¢0* (0. (D), ied, 1e0,d—1).

The assertion of 2) is easily seen from (4.4) and (5.5) by the same
arguments as in the proof of Theorem 5.1.

6. Asymptotic behavior of CGWP

In this section we shall deal with CGWP’s X = (Z(¢), P,) satisfy-
ing Condition (C). Since the matrix

j{a(t) = [A!i(t)]i,jedqzexl) (taa)’ t>01

is always positive by the irreducibility of &, the periodicity does
not appear. There also correspond positive right and left eigen-
vectors %, = (#,")ics, and ¥,= (¥o:)ics, of the matrix &, to the P-F
root G,=p(@,);

aat‘z“‘az = O‘auaz’ gaaa = aaga)

with the normalizations
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Z ﬁai‘zzatt = 11 Z iza‘ = 1-

i€da i€d,

We set 0,=1/27, p<0, >. Then the family of the generating
functions {F(nd,;s);7€<0, >} forms a DGWP on S, which we
shall denote by X®», The extinction probability of X¢» is equal
to that of the original CGWP X, and the g-mean matrix A®» of X¢»
is equal to exp (0,a). Similarly, the family of the generating functions
{F(n0,;50)a; nE0, 0>} forms a DGWP X, %» with the g-mean
matrix A,%?=exp(0,a,). Here we set the condition

(CN) ;SP‘ M y'q¥ log y'<<oo, i,jerl,,
i

where pi(y) are those in (1.6)

Lemma 6.1. [t is necessary and sufficient for Condition (CN)
to hold that

6.1) E {2 ()q"" log Z/ ()} <oo, i,j€T,, t>0.

Proof. For a je{1,N) with ¢’<<1, both (CN) and (6.1) are
automatically satisfied since the function

¥'q" log y' = {y’(¢’) ¥ log ¥} iLlj (@)

is bounded in yeS. But for a je{l,N) with ¢g’=1, it is not
difficult to show the necessity by the similar arguments as in the
proof of Sevastyanov [13] Theom 2.4.7, and the sufficiency from the
arguments as in Athreya [1] (pp. 49-50).

Now as in (2.3)-(2.4), we shall define ys(r) by

max{y, () ; y=p}, if O,
ve(r) = L
max{y,(r) ;7P +1, if Ge=r,
inductively (max ¢= —1), and y, by v,=v,(0,). Then setting R(¢;s)
=qg—F(t;s), we have the following

Theorem 6.1. Let a CGWP X=(Z@®), P,) satisfy Conditions
(C) and (CN) for each as{l,9)> with 6,<0. Then, 1) for each
ae{l, 9> with 6,<0 there correspond monotone nonincreasing func-
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tions R* (s,) in 0=<5,<q., i€ d,, such that as t—oo
(6.2) Ri(tys) =<« (R* (s)) +0(1)), i€,

where o(1) is uniform in s on 0<s5,<q,. Further cvery R*'(s,)
is not identically zero. 2) For each x<S such that ¢,<0 for all
ael,(x), there corresponds a probability distribution {P,*(¥)} on
S— {0} satisfyving

(6.3) lim P.{Z (¢) =y|t<T<oo} =P,*(y).
t—o0
Proof. By means of Theorem 2.1 and (6. 1), there are monotone

nonincreasing functions R*‘(s), i€ 4, which are independent of the
choice of p={0, 00>, such that

6.4) Ri(nd,;s) = (nd,) e {R*' (s) +o(1)}, ied,

as n—oo, where o(1) is uniform in 0<s=<gq. Hence it holds by
(2. 36) that
(6.5) R*(F(t;5)) =e"R*(s),

for each =0 with the form of 7/2” first, and then for all £=0 by
means of the continuity of R*'(s) in 0<s<<¢ and of F(¢;s) it ¢
Now (6.4) and (6.5) imply

(6.6) lim (B F(E:9)  paeyy =

I (n + z_) vg(n+o)o

uniformly in 0<s<q and 0<r=<{1. Since each ¢#==0 is represented
as t=n+r7, 0=r<{l, where n—oco as t—oo, we obtain (6.2) from
(6.6). The assertion 2) is clear from (6.2) if we repeat the argu-
ments in the proof of Theorem 2.1.

Remark 6.1. The procedure to determine the R*'(s,), i€ 4.,
is not complicated. Indeed we have only to repeat the analogous
way along Lemmas 2.1 and 2.4 in the case of DGWP. Of course
the parallel assertions to those of Remarks 2.1-2.3 are also valid
in this case.

To deal with the critical CGWP, we shall assume

(CC) Fie(@)<oo, i,j,kell,N),
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(CE) > VS @EEZc, (L 0.8% Fo=(6Y)ics, 20,
L f FEda i,

for some ¢,>0.

Lemma 6.2. Condition (CC) implies
6.7 Fj(t;9)<oo, i,j,ke(l,N), t>0.
Further, (CE) and G,=0 imply

(6' 8) E 6util;‘/ill-' (t > q) 515"2% (t) (iezl.‘ gaiei) 2: ea = (gt) i€4a>0,

i, J R da
Sor some c, (&) >0.

Proof. The first assertion is well known (eg. Sevastyanov [12]
Theorem 4.7.3). To show the second assertion, we shall use the
relations

. t
Fao= 3 [Ac-0fh@4,@Aar@d
t
>3 [Ale-0fh@Aa/ @A @
(ibid. (4.7.16)). Then it follows
t
LN R NGOV HOVRIOER S
i, j,ked i, f,ked Jo
which implies (6.8), since A4,(r) »>1 as 7 0.
Setting #,=1/2"«“, we have the following

Theorem 6.2. Let a CGWP X=(Z(@®), P,) satisfy Conditions
() and (CC). Then for each ac<l,9> with ¢,=0, there cor-
respond constants R*' >0, i€ 4, such that

(6.8) lim t*«R* (¢;5) =R*', ied, 0<s<q.
t—00

The proof is clear from Theorem 4.1 and (6.7), and will be

omitted.

Theorem 6.3. Let a CGWP X=(Z(t), P,) satisfy Conditions
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(C), (CC) and (CE) for each ac{1,9) with G,=0. Then, 1) for
each a1, 9> with 6,=0, there correspond nonnegative functions
0 (Ao, i€ d,, such that

(6.9) lim #«R* (¢;5%™) =¢' (&), i€ 4, A>0.
t—oo
2) For each reS with ¢,=0 for some acl,(x), the distributions
0., u) =P,,{Z—§t)—§u|t<T<00}, weR,",

converge as t—o0o to a probability distribusion Q.*(u) on R.”.

Proof. By means of Theorem 5.1 and (6.8), there are non-
negative functions ¢*(1), i€ 4, which are independent of the choice
of p=(0, 00), such that

(6.10) lim (70,)*R*(nd,; s™»") =¢* (1), ied, 1>0.

n—»00

Further, (5.35) implies

(6.11) ¢ (0. (D) =¢* ),
for each t=0 with the form of /27, where w,(1) =A @) (qd)/q.
Since the function 1—¢*(1)/R*' is a Laplace transform of a pro-
bability distribution, it is continuous in 2>0. Hence the function
¢*(w, (1)) is continuous in #, and so (6.11) holds for all 2Z20. Now
representing each =0 as t=n+r7, 0<r<1l, we have

(6.12) RY(¢: sy =R*(n; F(r;s“M)).

But by the same reason as of (5.41) it holds

K

|IR*(n: F(r;s®M) =R (n;s™e ™) | < ™ R (n:0), neln, o).
7

Hence it follows from (6.8) and (6.10)-(6,12) that

lim £#R* (¢; s¢V) =lim 7*R* (75 s =00 =g (. (1)) =¢* (A).

t—>o> n—>o00

The assertion of 2) is clear from (6.9) and (6.8).

7. Examples

In this section we shall give four examples. The first two are
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those proposed by Jirina [8] and Sevastyanov [14] as examples which,
because of the failure of the positive regularity, do not satisfy their
theorems. But these are contained in our scheme, and the direct
calculations show that the asymptotic forms coincide with those given
by our theorems. Example 3 is of reducible cases, where the asymp-
totic behaviors are also calculated directly and coincide with those
given by our theorems. However, all the marginal distributions of
Q.*(u) in Examples 1-3 are of exponential type. In Example 4 we
shall show with aid of our theorems that there really exists a case
when a certain marginal distribution of Q,*(x) is not of exponential
type. Naturally the distribution is the same type of that in Savin
and Chistyakov [12].

Example 1. Let 0#(&) =>7,p,6’ be a one-dimensional pro-
bability generating function with p,>0, 0” (1) <{oo if 0’(1) =1, and
consider the two-type DGWP X with the generating functions

(7. 1) F'(s',sH =0(", F(s' s =0(").

Let g, be the least nonnegative fixed point of @(¢&) and set p=0'(q,).
Then it is well known that @’ (1) =1 implies p<{1, and #’ (1) =1 im-
plies p=1. The extinction probability ¢ of X is equal to (g, ¢o), and
the g-mean matrix A is given by [O 8] Hence it follows that 4,=1",
={1,2} and p,=p,=p. We can calculate the n-step generating func-

tions F(n;s) precisely:

O@(n;sh), i=1,2, if = is even,
(7.2) Fi(n:is) =

O(nyst™y, i=1,2, if » is odd,

where @(n; &) is the n-step iteration of @(§) and 741 is identified
with 1 if i=2. Here we shall divide it into three cases.

(i) When p=0, it follows F(n;s)=1, ne{l,00), and all the
situations are trivial.

(i) When 0<p<1, the one-dimensional (or positively regular
case) arguments assure the existence of a nonincreasing function K*(§)
and of a distribution {P*(j)} on (1, o) such that

(7.3) lim{ge—0(n; &)} /0" =K*(§), 0=(=q,
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) Clim =9 (5968) _ Svpreiyer o<e<l1.
(7-3) 1-lim a0 (n:0) ,Z;'. (NHE, 0=f=

Combining (7.2) and (7.3) we obtain

lim R*(2n;s) /o =K*(s"), 0=s5=q, i=1,2,

(7. 4) n—sc0
lim R*(2n+1;5) /p™=pK*(s'*), 0=s=q, i=1,2,
1 2 3 2
lim P, {Z(2n) = y|2n<T< o0} = Z'P*(y) +2'P* (v)
R0 xl_’_xz
(7. 5)

2 2 1
lim P,AZ (2n+1) = 9|27+ 1< T<oo} = LL- W) +TPF(G)

- '+
x= (z', %) 0.

(iii) Let p=1. Also in this case the one-dimensional argu-

ments tell us

lim #{1-0(n; §)} =2/0” (1), 0=£<1,

(7. 6) n—»00
lim 2{l—0 (n; - =_ 1 g>0
lim ni (n; exp(—q/n))} 1407 (D)y/2 =
Hence by means of (7.2) it follows"
(7.7 lim #nR(n;5) =2/07 (1), 0=s<1,
lim E,{exp(—4-Z(2n) /2n) |2n<T}
_ 1 % x! + xt
242 1+07Q)21/2 1+07 (1) 22/2)
(7.8)
lim E.{exp(—4-Z@2n+1)/(n+ 1)) |2n+1<T}
_ 1 { @ 2]
242 1+0” Q)22 1107 1) 1/2)°

for each x=(z',2%) %0 and 1= (2", 1) >0. From (7.8) it follows

7.9)  QR() =2 {z' (1" ®) | 22(1— o m)) »
X

x'+

®  This means, in terms of measures,

1 2x!
* (E'X E?) = = —2u/0" (N gy I e
QX (E'X E?) e xz{w”(l) P du'lg:(0) +

where Iz(+) is the indicator function.

2
2z f _2u2/w'(l)du‘lm(0)}
0”(1)J e ’
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1

(7.9) Hw) =
xr+x

{1'1 (1 _e—Zul/w’(l)) +1,2 (1 _e—2ul/0"(l))},
for each z=(z', 2% 0 and u= (&', u*) €R,%

Example 2. Let #(¢), ¢, and p be those given in Example 1.
We consider the two-type DGWP X with the generating functions
(7. 10) F'(s", s =0(Y, F'(s,s) =5
The extinction probability is equal to (g, ¢o) and the g-mean matrix

is A=[(1) 8] Hence 4,=I1=1{1,2} and p,=p,=+vp. The n-step

generating functions F(n;s) is given by

O(n/2;sY, i=1,2, if n is even,
(7.11)  F'(un;s) =

O({n— (=1 /2:5s'*, i=1,2, if »n is odd.

(i) When p=0, F(n;s)=1 for all n€{2, oo},
(if) When 0<p<1, it holds
lim R*(2n;s) /p"=K*(s)), 0<s<q, i=1,2,

n—oo

(7.12) .
lim R (2n+1;5) /p" = p"'""CDVIK* ('), 0=s=q, i=1,2,

n—oco

where K*(&) is that of (7.3). Here we assume

(7.13) S piilogj<eo, i 07(1)<1.
=0

Then K*(£) 0 and we have

lim P,{Z (2n) =y|2n<T < oo} = x'P* (y‘) + 22P* (v ’

oo '+t

(7. 14)

1 D% 2 2 D% 1
lim P{Z(2n+1) =y|2n+1<T<oo} =L (y)liﬁp )
n—r00 x x

x= (z', rz) 0.
(iif) When p=1, we also have (7.7)-(7.9) but with 0”7 (1)
replaced by @7 (1) /2.

Example 3. Let ¢(&) be a one-dimensional infinitesimal generat-
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ing function with ¢” (1)< oo and ¢(0)>0. We consider the two-type
CGWP with the infinitesimal generating functions

(7.15)  fi(s, ) =4(sH, fi(,H=b(G—1) +c(1-5),
where & and ¢ are constants with 0<<6<<c. Let ¢, be the least non-
negative zero point of ¢(€) and put 6=¢"(q;). Then ¢ (1)#0 im-
plies 0<C0, and ¢’ (1) =0 implies ¢=0. The extinction probability is
given by ¢=(q¢',¢") where ¢'=¢q, and ¢*=1-b6(1—gq,)/c, and the
infinitesimal g-mean matrix is a= g el Hence it follows 4,= {1},
4,=1{2}, I''={1} and I';={1,2}. Now we can define the one-type
CGWP {0(t;¢&)} with the infinitesimal generating function ¢(¢):
do B _
—J(t;@ =¢(@(¢;€)), 0(0;8) =¢ 0=£x1.

Then our CGWP {F(¢;s)} is given by

Fi(t;s)=0(t;s),
(7. 16)

t
F(ts5) = .[ e (B0(c;s) +c—b)de+5°
0

t
=qg*+e {b j)e"((D(r;s‘) —q‘)dr-l—sz-—qz}.

The CGWP X,={F'(¢;s)} is divided into two cases.
(i) When 6<<0, the one-dimensional arguments assure the ex-

istence of a monotone nonincreasing function K* (¢) and a distribution
{P*(7)} on (1,00} satisfying

lim{q,~ 0 (t; )} /e = K* (§), 056=q,

(7.17)

1—1 41—0(’5;%5): wP* Ve 0<e<l,

lim 0 —0G:0) IZJI (NE, 0=¢e<

Hence it follows

lim R'(¢;5) /e =K*(s"), 0=s'<q".

t—co
(7.18)

lim P, {Z(8) = (0", ) |t <T< o0}

P*(y"), ¥*=0,

0, otherwise, for each z'e(1, o).
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(i) In case of 0=0, the one-dimensional arguments also tell us

}im t{1-0@;8€)}=2/¢"1), 0<&X1,
(7.19)

lim ¢{1—@(¢; exp(—7y/8))} =

7 >0
oo | 11¢"(Wq/2’ 1=

Hence it follows that

lim eR' (3 5) =2/¢” (1), 0<s'<I,
t—oo
(7. 20)

lim P, {Zit) =@ ) |t<T} =1— /D,
t—oo

for each z'e(1, 00> and ¥R,

The CGWP X,=X={F(¢;s)} is divided into four cases.
(i) When —c<0<0, the P-F root 6;=p(a) is equal to ¢

. It
follows from (7.16) and (7.17) that
lim R (3 8) /et =—2_K* (), 0<s=q,
t—co c+0‘

(7. 21)
lim P.{Z (®) = o', ¥) [t<T < oo}

P*(y), =0,

0, otherwise, for each x=0.
(ii) When 0<<—c¢<0, it holds g,= —¢, and

lim R*(¢; s) /e~ =b re“ (@ —0(r;s))de+ ' =5, 0=<s=q,
t—>» 0
(7.22)

lim P(zx,,ﬂ) {Z(t) =y|t<T<°°} =P* (y)’ x?#o’
t—>oc0
where the distribution {P*(y)} is given by
b j%”(ql —0(r;q's))dc+ ¢ (A —5D)
S P ) =1-—t
v bj‘ e (g —0(r;0))dc+4,

(iii) In case of 0= —c<0, it holds ¢,=0= —¢, and

, 0=<s<1.

lim R2(¢;5) /te”* =bK* (s"), 0=s5=q,
(7. 23)

}im P AZ @) = (', ¥) [t<T <oo}
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P*(y), ¥'=0,
0, otherwise, for each x=0.

(iv) When —c<0=0, it follows ¢,=0 and the CGWP X is
critical with g=1. By means of (7.16) and (7.19) it holds
. 2b
lim tR* (¢ s) =———, 0=<s<1,
e N
(7.24)

. Mgt b A
l tR2 l; p¥ /z’ A/t — ,
m ( (e 4 )) —c —‘-—_‘1+¢,, (1) 11/2

Hence with the aid of (7.19) and (7.20) it follows
(7. 25) Q. (!, u?) =1—e /"D x£0, ueR,’

@, 2% >0.

Example 4. Let @(§) be a one-dimensional probability generat-
ing function with @' (1) =1 and 0<0”(1)=2B;<{co. We consider
two-type DGWP X given by the generating functions F'(s',s%) =0(s")
and F*(s',s*) with FF(1)=A">0, F; (1) =1 and 0<F3(1) =2B,<co.
Then the extinction probability is equal to 1=(1,1) and the g-mean
matrix is A=|}, 7], Hence 4= {1}, 4= 12}, 1= {1}, 1= 11,2}
acd p;=0:=p1=p:=1. From (7.6), we have

lim nR'(n;s) =1/B;, 0<s'<1,
t—o0
(7. 26)

1
lim 2R (25 sy =— 4+ 11>,
iR =g A

Now by Lemmas 4.7 and (5. 3)
lim 7'2R?(n; s) =vA’/B,B,, 0<s<1,

n—o0

(7.27) -
lim #2R*(n; s™M) = / A , A>0,
oo . ) B;(1+B;AY >
Hence by Theorem 5.2 2), it follows
(7. 28) lim E,. .y {exp(—1-Z(») /n) |n<T}

S
1+ B2’

1 <1 1 172
() o
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that is

7.29 tl e = ut
( ) Qb1 20 (0) 1 f e‘f/B‘F1<— 1
0

1—e /%, 1,=0,

¢
2. _2.5)q
5B 2’ ’B> s m#0,

where I, is the Barnes’ generalized hypergeometric function:
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- ait = 5 G
o (—1/2) (h—1-1/2) - (1-1/2) ,.
=, (E+1)! k! &
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