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O. Introduction

Consider the semi-linear diffusion equation

(1) u•=lu"+F(u) t>0, —co<x<oo

(u=u(t, x ), u•=eulat, u"=a 2 ulax2 )

with the initial condition

(2) 1(0, • )= f .

The function F is always assumed in this paper to satisfy

(3) F  e  C [0 , 1 ], F (0 )=F (1 )=0  a n d  F (u )>0  0<u<1

and the initial function f  to be measurable and compatible to F, i.e. 0._f :5_1. Our
interest is in the behavior of the solution for large time t.

We mean by the solution of (1) and (2) such a  function u(t, x) defined on the
upper half plane [0, co) x (— co, co) that (i) ( i i )  u  has continuous deriva-
tives u• and u" and satisfies (1) in (0, co) x (— oo, co), and (iii) u(t, •) converges to
f  as t 0 in locally L ' se n se . It is well known that such a solution exists and is
u n iq u e . W e denote it by it(t, x; f). It is clear that u(t, x; u(s, • ; f))=u (t+s , x ;
f )  (Huygens property) a n d  u(t, x; f(• + y))=u(t, x+ y; f). We sometimes con-
sider the equation (1) with different F's and in such cases use the notation u(t, x;
f ;  F) in order to elucidate the dependence on F .  There are just two trivial solutions
of (1): u 00  and  u 0 1 .  We always consider our problem for non-trivial initial
functions f ; f 00 and 0  1 . Such initial functions are called d a t a .  We will mainly
deal with such data that f(x)—*0 as x—>co.

The behavior of a solution u(t, x; f) is closely related to solutions of ordinary
differential equations

(4) -12-w"+ cw'+F(w) = 0 (0 1)

where c is a  real constant. This equation is formally obtained if we substitute the



454 K6hei Uchiyama

wave form u(t, x)= w(x — ct) in (I). A  non-trivial solution of (1) with such form is
called, if exists, a travelling wave with speed c. An associated function (or, equiva-
lently, global solution of (4)) w is called a front of a travelling wave with speed c or
simply a c-front, which will be denoted by wc . Since (4) is transformed to 2 -  lw" —
cw1 +F(w )= 0 by inverting the sign of x, we always assume c  0.

In many articles ([1], [6], etc.) it is shown, under the restriction F'(0)> 0, that
there exists the minimal speed, denoted by c0 , such that a c-front exists if and only
if Ici co . We will give, for completeness, a  proof of this assertion under present
situation, though the proof is essentially the same as those given in papers cited
above. Since the equation (4) is invariant under the translation along the x-axis
and 14, ,  has the corresponding ambiguity, we set the normalization: wc (0)=1/2
except in §1 and § 2 .  Under this convention just one wc  corresponds to each c o .

General solutions of (1) and (2) are related with c-fronts in the following manner :
if a datum f  satisfies certain conditions, then

(5) u(t, x + m(t)) w(x) a s  t co

where u =u(t, x; f )  and m(t)= sup {x; u(t, x)=1/2} (any number, e.g. zero, may be
assigned to m (t) when the set expressed with braces is void). This phenomenon
was observed by Kolmogorov, Petrovsky and Piscounov [13]; they proved that (5)
is valid with c =c o i f  we set f =1 ( _ cm ) )  (I s is  the indicator function of a set S).
Kametaka [10] or Kanel' [11b] found a certain criteria on a datum for (5) to hold
which are satisfied with many data but not easily checked for a given one. The main
purpose of this article is to prove (5) for sufficiently general datum, e.g. any data
with compact support (Theorems 8.1, 8.2, 8.3 and 8.5).

The method of the proofs is similar to that used in [10] or [13] and summarized
in the following. Let u(t, x) be a soluiton of (1) and (2) and suppose that for each
positive t, u'(t, x ) < 0  o n  a  right half x-axis, i.e. an infinite interval {x; x > N }.
Define

M (t)=  sup {u(t, x); u'(t, y)< 0  for all y > xf

and define for 0  w  M (t)

x(t, w)= sup {x; u(t, x)= w}

w)=u'(t, x(t, w)).

Considering 0  as functional of datum f ,  we denote it by 0(t, w; f ) .  Then, since
u(t, x; w c)= w c (x— ct), 4)(t, w; we) is independent of t: this function is denoted by
t c (w ) . We will prove (5) by showing that 0 (t, w) converges to Te (w ) . This will be
carried out at first, in §6, for data which is subject to several restrictions (Lemmas
6.1 to 6.4) and then, in §8, for general data by using this result and by applying some
comparison theorem on a parabolic equation. The section 7 is devoted to estimate
the order of u(t, x; f )  decreasing to zero as x  tends to infinity which justifies the
application of the comparison theorem.

The section 1 is devoted to prove the existence of c-fron ts. The case where
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co > ,./2F'(0) is illustlated by examples in  which an  explicit form of w c 0 is given.
Also some comparison lemmas about the equation (4) are p ro v e d . In the section 2
asymptotic behaviors of 147, for large x are investigated. Results are refinements of
those obtained from the standard theory of ordinary differential equations but will
play minor roles in the main story o f  this p a p e r . In  th e  section 3 we introduce
comparison theorems concerning parabolic equations which will play important roles
in later arguments together with results of §1 and §5. In the sections 4 and 5 some
properties of u(t, x; f ;  F)  which are well known o r  readily proved are explained.
The main theorems are proved through § 6 to § 8 and formulated in §8.

In the section 9 we will investigate the speed of m(t) tending to infinity. It will
be proved that if (5) occurs then in (t ) converges to c as t tends to infinity. If F'(0)

-.F'(u) we will get, under additional assumptions, a fine estimate;

co t — m(t)— (3/2c0 ) log t a s  t co.(*)

The question of when we may replace m(t) by ct +const. in (5) will be answered.
In the last section an alternative method, which is a modification of that used

in P. C. Fife and J. B. McLeod [3b] ( **), is applied to the problem described by (5)
in case co > V2F'(0).

Notations. W e will use throughout the  a rtic le  the  following notations in
addition to those introduced above:

Œ =F'(0), c*=

fl = sup F(u )lu , y = sup IF'(u)I, y* = sup F'(u)

(the supremum of a function is taken with respect to all arguments for which it is
defined unless otherwise specified); for a real number A, A+ =max {0, A}, A -  =min
{0, A} ; if A is a  real function of z, A + is  a  function defined by A +(z)=A (z)+; R=
(—oo, co) whole real line, E = (0, cc) x R open half plane: Et = (0, t)x  R , i t = {t} x R
(t>0);

P(t , .,C) =  (21C0
- 1 / 2 e - x 2 / 2 t t > 0 , x  R

(p(t, x— y) is the fundamental solutions for the heat equation u .  = 2 - 1 u"); for t> 0
and a measurable function g on R we write

Pi g =.13 ,g(x)= R p(t, x— y)g(y)dy

if this integral converges absolutely.

Some terminologies, which are used throughout this paper, are introduced in
the beginning of the section 1.

Most of the results of the present paper were announced in [17].

(*) "a(t)— b(t) as t —*s" means that a(t)lb(t)=1.
(**) Their situation is different from ours, where F changes its sign at least one time.
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1. Fronts of travelling waves

In this section we find all non-trivial solutions for the equation (1), called trav-
elling wave, which has the travelling wave form

u(t, x)=w(x — ct)

where c is a constant called a  speed and w is a  function on  R  called a front or a
c -fro n t. We denote any c-front by w e  to elucidate the sp e e d . A c-front is charac-
terized as a non-trivial solution of the equation (4) on R .  It will be shown that if
a global solution exists it is unique up  to  the translation along x-axis. Thus w e

corresponds at most one to each c except this ambiguity. As mentioned in § 0 we
treat only the case c.?:0. This amounts, as far as global solutions are concerned, to
set the boundary condition

(1.1) w (co)=O  and w(— oo)= 1

to the equation (4).
We often consider the equation (4) in the phase plane:

{ w '=p

p' — 2cp -2F(w ).

The range of (w, p) is restricted to the strip O w Any solution of (1, 2) which
stays in this strip and terminates at its boundary w = 0 or 1 is called, for convenience,
a  c-m anif old. W e call a  corresponding solution of (4) a c-solution. Thus a  c-
solution is a  function defined and satisfying (4) on a (finite or infinite) interval, at
the end points of which it attains 0 or 1. A manifold to which a c-front corresponds
is also called a c -f ron t. Let . \/ 2ot and put

(1.3) b=c— 2 a  a n d  b=c+ J - 2Œ.

It will be proved that if c >2 o t  there exist c-manifolds which enter the origin along
a  line p= — bw o r  a  line p = — b w . A c-manifold entering the origin along p=
—bw (resp. p= — bw) is called (c, b)-manifold (resp. (c, b) - manifold).

We will mean also by a c-manifold a corresponding curve drawn in (w, p)-plane.
Parametrizing the part of this curve under w-axis with its w-coordinates, we denote
its p-coordinate by t(w). Then T satisfies

(1.2)

(1.4) =  -  2c— 2F(w)fr
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in its domain of definition.
The prospects of the vecter field defined by the right-hand side of (1.2) is im-

portant in the arguments of later sections as well as of this section. It will be ex-
plained in  the  proof of Theorem 1.1 and illustrated in  A ppendix. W e often use
explicitely or implicitely an argument described below. Let Q,(x)—(w i (x), p,(x))
and Q 2 (x)=(w 2 (x), p 2 (x )) be sm ooth curves in  R 2 . S u p p o se  (w o , p 0 ) —(w1(0),
p 1 (0))=(w 2 (0), p 2 (0)). Then according as

/  w ( 0 )  w(0)
det < 0  o r  > 0 ,

\ P;(0)

the angle measured from Q 2 (x) toward Q 1 (x ) around the point (4,
0 , p o )  lies in the

interval (0, 7r) or in the interval (-7r, 0) for all sufficiently small x. If the former
case (resp. the latter case) occurs we will say that the curve Q 2  crosses the curve
Q , (at (w o , p o )) from the left-(resp. right-) hand side of Q 1 . F o r  example let g(x)
be defined and twice continuously differentiable on an interval (x 1 , x 2 ) with 0
1. Then the curve { (g(x), g'(x)); x , <x <x 2 }  crosses c-manifolds from the left or
right according as

g'(-12-g"+cg'+F(g))<0 or

at intersecting points, since for a solution (w, p) of (1.2)

1.1) ' g '

det =g '{ ig "+c g '+F(g )}  at (w , p)=(g, g').
g "

The next theorem follows from standard arguments concerning with the 2-di-
mentional autonomous system. The proof is given for completeness.

Theorem 1.1. (i) There exists a positive constant co such that a  c-front exists
if  and  only  if T he c-front is unique u p  to  the translation along x-axis.
(ii) co satisf ies that ,/20c \72/3. (iii) Let co . T h e n  f o r a c-front we there
exists limw e '(x)Iw c (x )= — b, b=b if  c>c o ,  and  b =5  if  c=c 0 ,  w here b and 5 are

defined by  (1.3). (Especially  we(log x) is regularly  v ary ing at inf inity  w ith ex -
ponent — b, in other words w,.(x+x,)/w c.(x)—>exp {— bx0 } as x—÷co.)

P ro o f . Step L  C onsider the fields for (1.2) for different c's, say c  and c',
c '> c .  Since

det )=2(c— ci)p2
—  2F(w)—  2c p — 2F(w)-2c'p

is negative, c'-manifolds never cross each c-manifold from the  right hand of the
c-manifold (c-manifolds are considered to be directed). (cf. Fig. I) Note that the
field points downward on the w-axis and that its w-component directs right in the
upper half and  left in  the  lower half o f the  strip 1 (Fig. I). Clearly the
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c-front lies always under the w-axis if it exists.

Fig. I

There exists the unique c-manifold issuing from  (1, 0). It is routine to prove
the existance. To prove the uniqueness assertion let (w*, p*) and (w**, p**) be two
such manifolds. Regarding the difference p=p* —  p** as a  function of w , we see
that the derivative dpldw = p2F(w)I p*p** has the same sign with p , which implies

0 since p converges to 0 as w-41.
The c'-manifold issuing from (1, 0) lies over the c-manifold issuing from (1, 0)

if c'> c. This is proved by assuming the contray and by tracing back a c'-manifold
passing through a point between two manifold until getting to w-axis.

S te p  2 . Let a c-manifold pass a point (w o , — bwo )  where b> O. The sine of
the angle, made by a tangent vector of it at this point and a half line p= — bw, w> 0,
which is directed to the origin, and taken from the former toward the latter, is equal
to the ratio of

( - 1
(1.5) det = [ b 2 - 2 b c + 2 F ( w o ) l w o ] w o

b  — 2 F(w )-2 c p  7 ,:f g w 0

to V1+ b 2 .,/b 2 +4(F(w 0)/w0 + cb) 2 w0 . This ratio is less than a  negative constant,
say —a, if 5> b>b  ( c c * )  and larger than a positive constant, say a, if b <b , 5< b
or c * > c  0), for 0 < w o <S, where a or 6, become small unrestrictedly only if c c*
and b approaches to b or 5 (c being fixed). It is easy to see that if  0  ..c< c* every
c-manifold reachs the negative p-axis with finite x and that if c> c* there exists a
c-manifold which enters the origin along p= — bw (called (c, 5)-manifold) and those
along p= — bw (called (c, b)-manifold). These exhaust all c-manifolds entering the
origin (in case c> c*).(*)

Step 3. From Step 1 it follows that if the c-manifold issuing from (1, 0) enters
(0, 0) then the situation is same for any c '>  c .  Let co b e  the infimum of such c's.
By Step 2 c *  c o  \ 1213 (the  righ t side  o f (1 .5 ) is negative fo r  c> V 213 =b).
Since 5 is increasing with c and every c'-front lies over the c-front for c '>c >c ,, the

(*) According to the behavior of F near zero, there occur both cases that a c*-manifold entering
the origine exists and that such one does not exists (see Remark of Lemma 2.2).
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c-front enters (0, 0) along p= —bw if c> co . This proves the first half of (iii). T h e
co-manifold issuing from (1, 0) enters (0, 0), because c-fronts with w(0)=1/2 con-
verges to a  co-solution with w(— co)=1 increasingly for x <0 and decreasingly for
x >0 as c—c0 . Thus the co-front exists and (i) is  p roved . The second half of (iii)
is trivial if co = c * .  Let co >c* and co > c>  c * . The co-front is obtained as the limit
of c-manifolds issuing from (1, 0) as c—*c0 . Since each of these manifolds is bounded
from above by the  (c, 5)-manifold which moves monotonously, a s  c f  c o ,  t o  the
(co , b)-manifold, the co-front is the (co , 5)-manifold. Thus (iii) is proved.

The proof of the theorem is completed.

R em ark. The (c, 5)-manifold, whose existance has been proved in  Step 2 of
the above proof, is  unique if  c> c*  as is shown below. Parametrizing any two
(c, b)-manifolds with w-coordinates, denote by p=p(w) the  difference o f their p-
coordinates. Assume p> 0. By 2a/5 2 = 2c/5 — 1 <1, we derive from (1.4) that
(wIp)• dpldw <r <1 for sm all w . This implies p> wr which contradicts to p=o(w),
and we have Similarly p 0. T h u s  p= O.

In order to illustrate that when a <# both the case co > c* and the case co = c*
occurs according as the shape of F, we give examples which are generalizations of
Fisher's population genetic model for the migration of advantageous genes. The
results are similar to what K. P. Hadeler and F. Rothe obtained for F(u)=u(1—u)(1
+ vu), y> — 1 (cf. [6]).

Let G(u) be a function defined in 0 1, having the continuous derivative which
is continuously differentiable in  0 < u  1 , a n d  satisfying conditions;

G(0)= G(1)=0, G'(0)> 0, G"(u)=o(u - '),

G '(0 )  G'(u) and G(u) >0 for 0< u < 1.

Put F(u).-- G(u)H(ti; K), H(u; K)=1+2K - 2 (G'(0)—G'(u)) lc> 0. T h e n  the function
w= w(x; K) given in the inverse form

(1.6) x= —Kdul2G(u)
1/2

is a front with an associated speed

c= K/2 + a/K (a = G'(0)= F'(0)) .

If  K = N/2a  , then c= V 2 a  and  hence c o = \ /2Œ. A s  K  increases, F(u) decreases
and co does not increase. Since c o N /2Tc , we get

c0  = J& for \/2Œ.

If K < V2a , then

lim w'(x; K)/w(x; = -  (2 1 0  lim G(w)/w = —2a/K= — c — Vc2  —2a .
x-.00

From (iii) o f Theorem 1.1 it therefore follows that w(x; K) is the c o -front. T h i s
means that
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co = KI2+c<IK (> N/2cc ) f o r  IC < N/2oc

If G'(0)— G'(u)— uPL(u) where L is slowly varying at zero and p> 0, then a <f l but
co = 1 -2-c-, for N/2x K <,/2ot (p + 1) .

Similar arguments are available in the case F '(0 )=0. Let G(u) be as above and
put

F(u)=G(u)M (u; K ), M (u; K )=2IK 2 (G'(0)— G'(u)).

Then w(x; K) given by (1.6) is the co-front and co = G'(0)/K.
The first example may seem to suggest that whether c0 >c* or co =c* does not

depend only on the behavior of F(u) near u =0. But there is an exceptional case
of Remark to Lemma 2.2 presented later, in which c o > c* is implied only by a  be-
havior of F near u =0.

Let us state a lemma for use in the next section.

Lemma 1.1. L et F* be a function satisfy ing the sam e conditions as imposed
to F , and denote by  w*, b*, b*, etc. the corresponding quantities. A ssume that
F<F* f or 0<u <1 and that c>.\ /2 F * '(0 ) .  Then, (i) the (c, b*)-manifold lies over
the (c, b)-manifold as f ar as they  are under the w-axis, and (ii) f o r every (c, b*)-
m anifold [resp. (c, b)-m anifold] there exists a (c, b)-manifold [resp. (c, b*)-mani-
fold] such that the (c, b*)-manifold lies under the (c, b)-manifold near the origine.

P ro o f . First note that b _ b * , 5 *  b. Since

w' .*,w
det p*, =  —  2(pF*(w*)— p*F(w))

is positive at (w, p)=(w*, p*), (ii) is c le a r . (i) follows from the fact that a c-manifold
for F passing a point below the (c, b)-manifold must reach the negative p-axsis (see
Fig. II). q. e. d.
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C orollary . Under the assum ptions of  L em m a 1.1 (i) if  'w  and  w* are the
(e, b)- and (c, b*)-solutions, respectively , w ith w(0)_w*(0), then w (x)<w *(x)for
x> 0 , and (ii) if  w [resp. w*] is a (c, b)- [resp. (c, b*)-] solution, then there exists
a (c, b*)- [resp. (c, b)-] solution w* [resp. w] such that w(x)>w*(x) f o r x>0.

2. Asymptotic behaviors of c-fronts as + oo

The tail of a c-front for large x is nicely approximated by that of a solution for
the linear equation 2 - Iw"+ cw'+czw =0, if F behaves regularly (in some sense) near
z e r o . Indeed a  theorem in the stability theory says that the error of the aproxima-
tion is a  small order of e- Px with some p> 0 if  au — F(u)=o(td+q) with some q> 0
(cf. [2]). Here we find (weaker) conditions sufficient a n d  almost necessary for
certain estimations about the approximation to h o ld .  Symbols and terminologies
introduced in the previous section are used also here (and later sections).

Let us introduce a  function (u) defined by

F(u )=au +R (u ) (a = F'(0)).

Theorem 2 .1 .  Let c>  „rfa  and c..c o . Assume

(2.1) 1(1 )Iu- 2 du<oo.
0 +

Then the c-front satisfies

(2.2) wc(x)=ae-bx(1+0(0) a s  x

where b= — lim (Wc (x)/wc (x)) and a is a positive constant and given by
X - ' 7,

' c2 — 2ar {bw (0) + w(0) (Iv c.(s))d if  c > c ,

a

— (2/c 2 — 2a) - 1 1bwc (0)+ w:.(0)— eN (w c (s))cis} i i f  c= co

Theorem 2 .2 . A ssume co = \ /2oc and

(2.3)
0+ 

1(u)lu - 2 11og u idu <co.

Then the co -front satisf ies either (2.2) with c— co , b= \ f f i  or

(2.4) w(.0(x)=, a ,xe - s/2 1  x (1 + o(1)) a s  x co,

where a or a l are positive constants and given by

cc.
a = w c o (0 ) +  0  se, /2 " s (iv c o (s))d s,

a l = .\/ 2cz wc 0 (0) + w',.(0) — 5:es7 2 7‘ s (wc o (s))ds.
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Remark. I f (:(u) h a s  a de fin ite  s ign  near u = 0, the condition (2.1) is also
necessary for (2.2) to  hold. The sim ilar statement is asserted to the case of Theo-
rem 2.2 as w e l l .  (See Lemmas 2.1 and 2.2)

Theorem 2.3. U n d e r the assumptions of Theorem 2.2 a  su ffic ien t condition

fo r  (2.2) to  ho ld  is  tha t there  ex is t no F*, satis fy ing  (3) and not identica lly equal
to F, such that F * _ F  and cl= ,/2cx (where ct, is the minimal speed corresponding
to F * ) .  I f  satisfies that

(2.5) 100/ulllog uldu < oo or (u)=o(ul+P) p>0
o+

then this condition is also necessary.
If near zero, then (2.4) holds under (2.3).

Applying the last theorem to examples of the section 1, we have that if ().,
[IG"(01+1G'(0)—G'(u)1/u]llog uldu<oo o r  G'(0)— G'(u)=o(uP), p> 0, then th e  c0 -
front for F=G • H with K>  \ /2G'(0) satisfies (2.4).

The proofs of these theorems follow from Theorem 1.1 and lemmas presented
b e lo w . The proofs o f lemmas are somewhat complicated and  may be skipped if
the reader is contented with the result for 4u)---o(u 1 +P), p> 0 o r is little interested
in the problem all its own.

Let us write z(x)= e"-'w(x) with b = — lim(w'/w) for a c-solution which satisfies
x-•.C■

w(+ co)=0 and write z = lim z(x) if the limit exists.

Lemma 2 . 1 .  Suppose c> ,./2a a n d  a t le a s t o n e  o f the fo llow ing  cond itions
holds;

(2.6) (u)+14 - 2 du < co,(*)
0+

(2.7) (U ) - ti - 2 dU >  —  0 0 .
( * )

0+

Then for any c-solution w w ith  w(-Foo)=0 there exists z„o = lim z(x) with

co. I f  b= 5 the condition (2.6) [resp. (2.7)] is necessary and sufficient that z o o <co

[resp. z o o > 0 ] .  I f  b= b> 0, the condition (2.6) [resp. (2.7)] is  nceessary and suffi-
c ient that z o o >O[resp. z o o <co].

P ro o f .  Write the equation (1.2) in the form

(dIdx+b)(dIdx+b)w=

then apply the form ula 1 ebs(d /dx +b)f (s)ds=ebx f w _ f (0 ) twice, and  you have
the integral equation

(*) x  =  max {x, 0} , fx, 0).
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(2.8) w ( x ) =  A e -
bx B  - b x  ( 5 _  b ) j  [ e - b ( x - s ) _ _ C - 1 2 ( x - s T ( W ( S ) ) d S ,

0

where

A= [bw(0)+W(0)]/(b—b), B=[bw(0)+ w'(0)]1(b — b).

Since log w(x)= ds+ const. = — bx + o(x) and since b> b , for the (c, b)-
solution we have

(2.9) w (x )=  —Be- 4 x+ e-bxo _ b\-) eb s (w)ds+(b—b) - i x e- k(x- s (w)ds,

and

(2.10) bw(0) + w'(0)= G: eh'(w(s))ds.

Let b=b, i.e. w'/w.- — b . It follows from (2.8) that

(2.11) z(x)= A — Be- (5 - b)x + (b — b)_Iç x  e- ( b- k) ( x- s)z  ( w )  ds
. o

— (b— voz(vvw) ds,

and

(2.12) z'(x)=(5—  b)Bc(b-P)x — x e - t s - t o ( x - s )  ( w )  ds

Since z '(x )=o (z (x )) (which follows from w'+bw=e - bxz'=o(w)),

(2.13) z(x)= (1 + o(1))[A —(b— b) - 1 Sx
o z(s) t w4 s

)
) )  d s l.

First assume (w)  dw> — co . F rom  the inequality0+ W
2

z(x) < A' + DS o z(s)P(s)ds

where A', D are some constants and P (s )=  - - (w (s ) ) - /w(s), we can easily deduce the
boundedness of z(x) because of the integrability:

o P (s )d s  cv(0)1(w2 -  w d w  < cc.
Jo iw

The integral in the right side of (2.13) converges, for the left side must be non-nega-
tive and z is bounded. , Now we get that there exists z o, = A —(5— b) - ' cc z 4 w )  ds,

0 W
which is positive only if (2.6) holds.

Next assume 1 ' dw < co. Let us p rove  tha t u rn z (x )> 0 .  Without
0+ w

2

x -4 0 0

loss of generality, by virtue of Corollary of Lemma 1.1, we may assume 0 near
u =0, which guarantees the existance of litn z(x )= z , . Then z oo =0, by (2.13), leads
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to the contradiction;

z ( ) = (1 + o(1 ))(b — b) - 1 z ds=o(z(x)).

Thus lim z(x)>0. Now it suffices only to prove that if dw— — oo then
o+

limz(x )= cc. L e t  dw— —os. Let x, and x, are two points such that
o+ w

z(x 1 ) z(x) for x, <x <x,. Then, by (2.11), (2.12) and that z'(x)=o(z(x)),

z(x) z(x,)—  z(x i )(b — b) -  '5 x  (w)+1.v -  ds — o(z(x,))

for x, <x<x 2 . If x, is large, 1x  ( w ) +  ds is small and z(x) is little less than z(x 1 )
x, w

fo r  x > x ,. Since lim z(x)=  co, this proves lim z(x)— co. The proof of the lemma
in the case b = b  is completed.

In the case b = b  we can proceed similary as above starting from (2.9) instead
of (2.8). q. e. d.

In the case c= \ /2oc, c>0, we get, instead of (2.8),

(2.14) w(x)=[w(0)+(w'(0)+bw(0))x]e-bx

—  (x— s)e (w(s))ds, b = \ /2ot.

Lemma 2 .2 .  Suppose 7 > 0  and at least one of the fo llo w in g  conditions holds:

(2.15) (14)+ti-211og < oo,
o+

(2.16) 4u)-ti-21Iog u du> —CO.
0+

Then fo r  e ve ry  c*-solution (c*=. \ /2ci) w w ith  w( -F co)=0 there exists y „ - -  lirn

x - 'ebxw(x)(b= .'2a) with If b o th  (2.15) and (2.16) hold, there then
occur two and only two cases: 0 < y ,<  CO (Z oo =  00); O <Z < 00 (y „= 0 ) ,( * )  and a

c*-solution to  the la tte r  case (or corresponding c*-manifOld) is  ob ta ined  as the

l im it  of (c, b)-solutions (o r (e, b)-manifolds) as e c * .  Conversely if one of these
cases occurs to som e e*-solution, th e n  b o th  (2.15) and (2.16) h o ld .  T h e  cases

co occur if and o n ly  if  (2.16) d o e s  n o t h o ld . If (2.16) [resp. (2.15)] fa ils  to

hold, then y „ = 0  i mplies z,=0  [resp . lim  z(x)=  co].

Rem ark. I n  th e  a b o v e  le m m a  if
( u ) - f "

2  du = c o  (which implies (2.15)
0+ U • • •

fails and hence (2.16) holds by the assumption of the lemma) then there  is  no c*-
s o lu t io n  w ith  w (+  )= 0 .  I n  such case we have co >c*.

P r o o f .  Let w  be a c*-solution with w(+ co)=0. First we note that x=
—b log w+o(log w) as co and that

(*) The use of the symbol z,. implies the existence of lirn z(x).

x i
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s  d s = 5 " " )  h -2 (t4)
2

±u ld u ( 1  +  o ( 1 ) ) .
Jo W w(x)

From (2.14) it follows that

(2.17) z(x)= w(0)+(w'(0)+ bw(0))x-5 x (x -s)z   4w) ds,
o w

or, introducing the notation y(x)=z(x)/x ,

(2.18) y(x)= w(0)Ix + w'(0)+ bw(0) - x (1 - vs 4 -0  ds
x  -  w

Assume y(x) to be bounded as x-> co. (Notice this holds always under (2.16)
as is easily seen (see the proof of the next lemma).) Then we have, by the hyposesis
of the lemma,

(2.19) z 141'1   ds< oo,
Jow

which further implies that x sz  (" ') ds = o(x) and hence that

(2.22) yo,= w'(0)+ bw(0)- 5 c e z  ds.
o w

It is clear, by (2.18), that y oo >0 implies both (2.15) and (2.16).
Let y oo = 0 . Then we have

(2.23) z(x)= w(0) + x z  ( )  ds sz(w) ds,
xW Jow

or, by dividing by z

(2.24)I _  w(0)r z ( s ) / s  s (w (s)) d s + (x  z(s)  s (w(s)) d s .

z(x)J  z ( x ) lx w(s) Jo z(x) w(s)

Assume (2.15) to be t r u e .  Then z(x) is bounded. Because, assuming the contrary,
we can chose a sequence x,, x 2 ,... such that z(x) z(x„) fo r x_x„, z(x„)/x„>z(x)/x
for x>x„ and z(x„)-> co, which leads to the contradiction, for the right side of (2.24)
tends to zero along this sequence. The boundedness of z(x) implies, by (2.23), that

S°° 1401  ASZ L I S <  GO, and hence that

z .= w(0) +1% z  «w) d s.
o w

Clearly z oo >0 only if (2.16) h o ld s . If  z oo =0, we have z(x)= (s x ) z   ( '̀v ) ds,

from which we deduce that (2.16) is spoiled. Thus w e have proved that under
(2.15) y oo =0 implies 0_.ç. z oo < oo where z oo >0 is equivalent to (2.16).

Now we prove the existance of a c*-solution with yoe >0 under (2.15). Let w
be a  c*-solution defined on an interval (0, x0 ), 0<x 0 :  co, with w'(0)/w(0)= - b12,
w(0)>0 (w(x 0 - )= 0 ).  Note that Corollary of Lemma 1.1 can be readily modified to

465
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the present case (where c  c * )  and assume 0 near u  = 0 . It follows for 0 < x  x „,

from (2.14), that w(x)_._ w(0)(1 +—
b
 x )e - bx and then, from (2.18), that2

y (x ) _ -!)---w(0)-1t ,(0)1x (1 + b  s ) ( w ( s ) )  ds.
o 2 w(s)

Taking w(0) to be small, we have, by the initial condition of w'/w, —w'(x)/w(x) b/2

for 0 < x <x0 , which implies — log w (x )  
2

x and using this we deduce

y(x) ..w (0 )[—
b

— 
r )

(1—logiv)  ? 0<x<x0•
w

Since the integral in the right hand side converges by (2.15), we have, for a small
w(0), y(x) Aw(0) for 0 < x <x 0 , which shows in particular that x 0 = co and y,,, >0,

4
i.e. w(x) is a desired c*-solution.

Under (2.15) a c*-solution with y, =0 is obtained as the limit of (c, 5)-solutions
w(x; c), with common small w(0; c)=a 0 , as c  c * ,  where the constant a, is chosen
so that a  c*-manifold starting from (a0 , 0) enters the  origin (the existance o f  such
a constant is proved above). The convergence part is clear, since corresponding
(c, 5)-manifolds increase as c lc* and are bounded above by a  c*-manifold which
enters the origin (see Fig. I). To prove y = 0 , it suffices to show th a t z(x; c)=
ebxw(x; c) are bounded uniformly in x > 0  and c >  c * .  To see this we may assume,
as before, that c 0 near u =O . Then by (2.9) and (2.10)

z(x; c)= w(0; c)+(b—b) --

o
15 ( e ss _ eks)(w(s))ds

_ (5 _ by-ISx(eb(,--x)_ek(s-x)g(w(s))ds

a +  z (s ;  c)s ( w ( s ) )   ds= z(oo e).
w(s)

Since w(x; c) is bounded above by a  c*-solution, we have log w(s; c)+ log s
+0(1) and, using this,

< a + Z ( S  c)( 1 , 1 ) )  I log w I du,

z(co ; c) jo z(00 ; c) w2

where a constant K  is independent o f c. By (2.15) and Lebesgue's convergence
theorem, z(œ; c ) is bounded as c c * ,  which was to be proved.

Let (2.15) be spoiled. Since (2.16) implies the boundedness of y(x), by (2.18)
we see yœ  =0 and have (2.23). By Corollary of Lemma 1.1 we see that w is bounded
from below o n  x > 0 b y  0  w ith p„ = 0  where 0  is a  c*-solution for with

1!(u)ju
-2

I log uldu <cc. Therefore lim z(x)> 0, w hich, by (2.23), turns into
o+

lim z(x)= co. (Remark follows from these and (2.19))
If lim y(x)= co (which occurs only if (2.16) fails), then we can prove that lim y(x)

= co as in the last part of the proof of Lemma 2.1. Now the proof of Lemma 2.2
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is completed.

Lemma 2 .3 .  A ssume (2.3) and (2.5). Let a > 0 .  Then there ex ists uniquely
a c*-manifold with y =0.

P ro o f . When the latter one of (2.5) is assumed, we can apply a theorem in the
stability theory (cf. [2]) to get the result by fixing z oo = w (0)+ cc sz -L( '--v -) ds. There-
fore we assume the other one of (2 .5). A c*-solution with y. = 0 satisfies (2.17) and

(2.26) w'(0)+ bw(0)=
o

(w)ebsds.

Assume there are two such solutions with a common w'(0), say 6, and different w(0)'s,
say Ei , 82. Then we have y oo = 0  fo r any c*-solutions with w'(0)=(5 and E1 <W (0)
<e 2 . Put z(0)=E and regard z  as a function of x and e: z =z (x ; e ). By (2.17) we
have that n=azIas satisfies

(2.27) i=  I + bx—
o (

x — s)'(w)17 ds.

It follows from this and from (e2 is assumed to be small) that

(2.28) 5 1 + bx+x
o
li(w)iri ds.

By (2.28) n is bounded from the above on  x1:/ by the solution t  of the linear equa-
tion

(2.29) f)= 1 +  bx + x1 W (w)l ds

which has the unique solution with the bound: f )(x )_A x+B  where A , B are con-
stants chosen independently of e and S. Now differentiate the both sides of (2.26)
with respect to  E and we have, by the Fubini's theorem , that b = “w ) g d s ,  the
right side of which tends to  zero  if we le t s  small. But this is absurd since E2

may be arbitrarily small (together with (5). q. e. d.

Lemmas 2.1 to 2.3 and  results of the section I prove Theorems 2.1, 2.2 and
2.3 except the last statement in Theorem  2.3. But since, for a front, w'(0)+bw(0)
can be assumed to be positive, implies, by (2.22), y. >0 as desired.

Theorem 2 .4 .  L et a = 0  and  c>c o . Then f o r any  sm all e > 0  w e  can f ind
constants C 1 , C 2  and N  such that

q(xl(c — s)+ C ,)<w c(x) q(x l(c +s)+ C 2 ) f o r  x> N

where q(x) is the inverse function of

x(w)= ,Ç d u /F(u ) .
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P r o o f .  Put r(w )= w '.  T h e n  F(w)/r(w)-* - c  as w  O. For any E >0 we can
find 6 > 0 such that

\   I  . e
e l  F(w) =  r ( w ) = \  c +  8 1  F(w) 0 < w < 6 .

By integrating each part of this inequality, we get for x> w -» (6 )

a
(c+e)1 d u /F ( u )  x -  w -

c.-1(6 )> (c  -6 )1 du/F (u),
w,(x )w , ( x )

or equivalently

(  

 c+r,
X  _ 111; 1(0 1(6)))._ .w  c ( x ) . q ( F X  FF - c :  'OE )q --1(6)) .

q. e. d.

To illustrateillustrate what Theorem 2.3 says we put F(u)=W +PL(u) with p> 0 and L
slowly varying at zero. Then for c > co

w ( x ) - c 1/'q (x ) a s  x co

and q (x ) is regularly varying at infinity with exponent -  I /p. If we take F(u)=
u( - log u) -  t - rL( -log ii) with r > 0 and L  slowly varying at infinity, then for c>-c 0

log W(X)_ C 1 1 ( 2 "  log q(x) a s  x oo,

and llog q(x)I is regularly varying at infinity with exponent 1/ (2+ r). (In these cases
(with additional conditions on L) w c o satisfies (2.2).)

The next lemma will be used in the proof of Theorem 9.3.

Lemma 2 .4 .  L e t c _ c *  and a > 0 .  Assume the cond ition  o f Theorem 2.1 i f
c > c *  a n d  th a t o f Theorem 2.2 i f  c = c * .  Let S  be the part of the h a lf s tr ip  0<w

sweeped out b y  a ll c -m a n ifo ld s  th a t e n te r th e  o rig in . L e t (w , p ) be a
c-m anifo ld starting from  (w o ,  po ) e S  a t x=0 . C ons ide r the  quan tities

a  = lim eoxw(x) i f  c> c*

a 1 = limec"xx - ' w(x) i f  c = c *

to be functions of (wo , Po ) e S. T h e n  th e y  are con tinuous . E spec ia lly  if (w „, P o )

approaches to a  boundary point of S  w hich is not on {(w , p ); w = 1  or p = 0 } ,  then

a or a ,  tends to zero in  each cases.

P r o o f .  When c > c*, the statement is clear by (2.10) and by the first expression
of a in Theorem 2.1 which is valid for any (c, b)-solution, because {w/w'; w <6/2}
and exp {bx}w(x) are uniformly bounded as long as (w(0), w'(0)) moves in the inter-
section of S and w > 5. In case c=c* use (2.22) and the expression of a, in Theorem
2.2.
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Corollary. L et w be a c-solution with (w(x 0), w'(x o)) being a  inner point of
S. T h e n ,  under the assum ption of  Lemma 2.4, if  (w(x 0), w'(x o )) approaches to a
boundary  point of  S  not on { (w , p); w =1 or p=0}  as  a (or a 1)  and  w(x 0)  being
fixed, x o tends to infinity.

3. Parabolic Equations

We exibit here comparison theorems on the parabolic equation

(3.1) u•=au"+ btt' +cu+Q u=u(t, x )

where a, b ,c  and Q are functions of (t, x )e [0, cx)) x R .  It is assumed through-
ou t th is section tha t a and M o s t  o f  t h e  results presented below are
standard and proofs of some of them are omitted (see e.g. [4 ] ,  [8 ] ) .  When we say
u satisfies (3.1) in an open set, it means that u•, u' and u" exist, are continuous and
satisfy (3.1) together with u  in it. L e t  D be an open set of ET, T >O. W e denote
by D the closure of D in  R2 and  by ap its boundary. W e will further impose on
solutions in D the continuity on D.

Proposition 3 . 1 .  L et u  satisfy  (3.1) in  an  open  se t D  o f  E T , T >0  and  be
continuous on Ti.  A ssume there exists a constant M  such that

(3.2) a(t, x )6M , b(t, x )I5.M (Ix I+ 1), c(t, x)___M(x 2 +1)

and

(3.3) u(t, — Memx 2

for (t, x )E D. T hen u in D if u 0 on OD— Ir .(*)

Proposition 3 .2 .  L et D  be an  open  se t contained in  the rectangle (0, T )x
(0, 1). L et u  satisfy  (3.1) in  D  and be continuous on D .  Suppose there ex ists a
constant M such that

(3.4) a(t, x).5. M x 2 (1 + 'log xl), Ib(t, x)I M  x (1+1 log xl)

a n d  c(1, x) M(1-Hlogx1) f o r  (t, x )e D.

Then u in D if u . () on OD—I r .

Proof : Putting u * (t, x )=u(t, exp {(1 —x2 )/2})(1 < ) ,  a p p ly  Proposition
3.1 to u* .

Proposition 3 .3 .  L e t  D  be a rec tang le  (0, T )x  (0, L ) w ith O<L .. 00. Let
u  satisfy  (3.1) in D  and be continuous and nonnegative on Ti. Suppose that (3.2)
and (3.3) are satisf ied, that b,=suppb and c* = inf pc are f inite and a* =inf D a>0,
that 6, = info .„ T  u(t, 0)> 0, and that 6 2 = i n f 0 < t < T  u(t, L)>0 if  L < co. T here  then
exists a function v  def ined and  continuous on D, which is positive on  D—lo and

(*) I r =  { ( T, x); xeR}.
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depends only  on  and  continuously  on 61 , 62 , c „  T  and L  such that u
on D.

P ro o f . We prove the proposition only when L<  cc. S e t

0
v(t, x)=eec* 1p ( a , t , y)y2dy

where E is a positive constant chosen so small that

v(t, 0)._.(5 1 a n d  v(t, L).(5 2f o r  0< t< T.

Noticing v is a solution of

v '= a ,v "+ b ,o '+ c ,v  w ith v(0, x)=x 2 1( _ 0,0 ) (x),

we see that w=u — v satisfies (3.1) with Q replaced by Q, = (a — a ,)v" + (b — b,)v' +
(c — c,)v + Q and the boundary condition: w on 3 D -1 T . It is easily seen that
v "  0  and v' and hence O. T herefore  by  Proposition 3.2 we have w _.0 in
D as desired.

Proposition 3 .4 .  L et u satisfy  (3.1) w ith Qa- 0  in  E  and be continuous on
E .  Suppose that (3.2) and (3.3) are  satisf ied in  E, f o r each t> 0  and  that c  is
bounded below on each compact set of E . Suppose g(x)=u(0, x) satisfies

g(x) 0  i f  x 1 < x < x 2 ; 0  i f  x < x ,  o r  x>x 2

w ith som e ex tended real constants x ,  an d  x 2 : —oo . _x i <x 2 _ c o . Then there
exist extended real functions X 1 (t) and X 2 (t) of t > 0 with —co oo
such that

i f  X 1 (t )< x < X 2 (t)
(3.5) u(t, x)

>0 i f  x < X , ( t )  o r  x> X 2 (t).

If  x 1 = — co [resp. x 2 = cc], we may set X 1 (t) -  — co [resp. X 2 (0= oo].

P ro o f . By virtue of Proposition 3.1 it suffices to prove that if u(T, . , ) < 0  and
u(T, x 2 ) < 0  with T >0  then u(T, 0 for 51 < x <  Let D, and D y are
connected components o f {(t, x); u(t, x)<O, 0< t< T }  whose boundary contains
(T, )  and (T, . 2 ) ,  respectively. Define an open set D  contained in  ET  b y  the
relation that

y, <x < y 2 f o r  so m e  y, and y 2  with
(t, x)e D i • {

Since by Proposition 3.1 both D, n 10  and D2 n 10  contain points of the segment {0} x
[x 1 , x 2 ], g  0 on b n /0  by (3.5) and hence 0  on OD — IT . Then Proposition
3.1 is applied to — u to get u - _0 in D (we may assume b  i s  compact by curtailing
it if necessary). Thus the proposition is proved.

(t, D ,  a n d  (t, y 2 )e D2.
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4 . Fundamental Properties of u (t , x :f;  F)

It is well known that our Cauchy problem (1) and (2) is reduced to finding the
solution of the integral equation

(4.1) u(t, x )=P,f(x )+ t ds p(t—s, x— y)F(u(s, y))dy
o R

such that 0  u (this will be proved in the following).
The solution of (4.1) is obtained by the usual method of the successive approxi-

m a tio n . The uniqueness of the (bounded) solution is proved by usual method (cf.
[13 ]). Let u be a solution of (4.1) (with T h e n  w e  have equations for
t>0

(4.2) '(t = (P ,f)'(x )+S t ds p'(1—s, x— y)F(u(s, y))dy
o R

(4.2)' u'(t, x) =(P,f)'(x)+Ç ds p(t— s, x— y)F'(u(s, y))u'(s, y)dy
o R

and

(4.3) u"(t, x)= (Ptf )"(x)+ t d s  p'(t—s, x— y)F'(u(s, y))u'(s, y)dy.
o R

We will use formulas

(4.4) 1R

p ( t ,  y ) d y = 2 1 V 2 n t  ,
t

(4.5) y)dy= lit.

From these equations or formulas it follows that

(4.6) I IV , x)I .. \ /7(12 1 {110  + 2 11FIIVT}

and

(4.7) 1/4"0-4 lit+2Y(11FIlt+1)

where 11F11 =sup„IF(u)1. We remark that these inequalities imply in particular, by
Huygens property of u, that u' and u" are bounded on t >1, x E R .  (Similar bound-
edness assertion of u"is deduced from (4.8) which follows.) The existance and con-
tinuity of u• follows from (4.1) and the inequality (derived from (4.6))

x— y)F(u(s, y))dy =1 p'(t—s, x— y)F'(u)u'dyl

. const. M N/Ts +,/s}/Vt—s,

Now the derivation of the equation (1) and (2) from (4.1) is immediate. The unique-
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ness of the continuous solution of (1) and (2) follows from Proposition 3.1 if f  is
continuous. F o r  a  measurable f ,  putting f n =u(11n,-) a n d  un(t, x)=u(t+ 1/n, x)
with u a solution of (1) and (2), each un is the unique solution of (1) and (2) with .1,,
in place of f  and hence u„ is the solution of (4.1) where f  is replaced by f„. Letting
n  tend to infinity we see that u  satisfies (4.1). Therefore uniqueness assertion for
the equations (1) and (2) follows from that for the equation (4.1).

Let u be a solution of (1) and (2): u(t, x )=u(t, x; f ) .  Then u  satisfies (4.1)
as just proved. By differentiating the both sides of (4.1) with respect to t we obtain

(4.8) u*(t, x)=-(P,f)* + P,F(f )(x)

+Ço ds R p(t— s, x— y)F'(u(s, y))u*(s, y)dy

from which the existances of u" and w' follow. Putting v= u'

(4.9)v  =  v"+F'(u)v.

Suppose f  is Lipshitz continuous on R .  Then by (4.2) u' is bounded on ET, T< co,
and converges to f '  at any points where f '  exists, since ( P i f ) '  has these properties.

Suppose F" exists and is continuous on [0, 1]. T h e n  fro m  (4.8), by consider-
ing u*(t, x )— u(t+1/n, x)= u(t, x; u(11n,•)) if necessary, we see as before that y = u•
satisfies (4.9). If we further assume that f '  exists and is Lipshitz continuous on R,
w  is bounded on each ET and converges to  i f " + F ( f )  at any point at which f "
exists.

The next lemma will be used repeatedly.

Lemma 4 . 1 .  L et k (t, x ) and Q(t, x) are  bounded measurable functions on E.
Then for each bounded measurable function g on R  the integral equation

(4.10) u(t, x)= P,g (x )+ t
o dsP, ,{k(s, • )u(s, • )+ Q(s, • )1 (x)

has the unique solution which is bounded and continuous on ET , T< co. Such a
solution satisfies

1

(4. 1 1) ek.'13,g-(x)+S ek" ( t- s) P,_nQ l , •  ) (x )d s

P,g + ( x ) +  o ek . ( -̀ s ) Pt-sQ + (s, • )(x )ds

where k* =sup k(t, x).

Pro o f . For a measurable function y on E we write

(4.12) K o=K 2v (t, x )=Ço eAo- s)P v(s, •)(x)ds,

w h e re  is  a  real constant, if the double integral for I vi is finite. T h e n  formulas
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CO

(4.13) E odOnv=ILK A , ,v ,
n=1

(4.14) AICA{P.g} (t, •)-=eAtP,g —P i g, K o {P.g} (1, • ) = t P,g ,

(4.15) (/1.— ft)Kl oKli = KA —

are valid as far as the both sides of each equation have the m ean ing . Rewrite the
equation (4.10) in the form u = P.g +1(o {ku+ Q}, and apply K _ A  to  the both sides
of it, then we obtain, by (4.14), (4.15), the equation

u=e - A'P,g+K_ A {(k+))u +Q} .

Iterating this equation, we see that the solution of (4.10) is necessarily given by

u= [K_Ao(k+ ,1)]"{Ec ATtg]r=.+K-Al2}
n=1

where K_ Ao (k+ )) is  th e  mapping: p—oK_ A {(k+.1)v}. Chosing s o  large that
k+ )..._0, we have

u [(k* + ,1)K_ A ]" {[e - Al + 'LAW}
n=0

= (k * +).)Kk4e - A `Ptglt=•+Kk.Q +

= e k . t p t g + +K k . Q-1- . .

This is the same as the second inequality of (4 .1 1 ). The first inequality is similarly
proved.

Remark 1. In  Lemma 4.1 if k and Q are uniformly Lipshitz continuous in x,
the solution of (4.10) gives the unique solution, which is bounded on E T  and converges
to g as t 0, for the equation

IA = lu"+k u +Q.

Remark 2. Let F* and f *  be a  function on [0 , 1] satisfying (3) and a datum,
respectively. P u t u*=u(t, x; f *, F*), u=u(t, x; F )  a n d  w=u*— u. Then w
satisfies (4.10) in  which g = f* —f, k=(F(u*)— F(u))I(u*—u) ( * ) a n d  Q=F*(u*)—
F (u * ). Therefore, by the first inequality of (4.11), if  F*_-_F and f  then tt*:.u.

Let g  be a  bounded nonnegative measurable function on  R .  Then it follows
from the inequality, valid for {xl <M ,

(4.16) PdI -?_-11g11
1 3 • 1 > N

P(1, y)dy+ ,/2:77rt
 SI Y I < M + , 1 7  i v

g ( Y V Y

that

(4.17)
 

if g„- - o g  in locally  I.) sense and boundedly, then VTP,g„—>fi-P ig
uniformly on (0, T)x (— M, M) for each T< oo and M<cx).

(*) If u*=u, we put k=F'(1).
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Similarly we see that, for Ixl<M

(4.18) l(P,9)'(x)I 5N/ 1-1 110  1 5 ,1 > N P(1, Y) iyldy

+ ( 1 t ) 1 g(y)dy.
lyi<m+,/ t N

Lemma 4 .2 .  L et f n , n=1, 2,..., and f  be  data and  u„ an d  u corresponding
solutions of  (1 ) and (2). Suppose f„ - ,f  in  locally  L 1 s e n s e .  T hen f iu „ - o f f u ,
tu„' ->tu', and a s  n-+co uniform ly  on (0, T)x (-M, M ) f o r each
pair of finite constants M  and T.

P ro o f . Putting w „=u„-u , we see that w„ satisfies (4.10) with g  g „ =  f ,-  f ,
k=(F(u n )-F (u ))1 (u n - u )  and Q = 0 .  Therefore that \ 17 w„-03 in the desired sense
follows from (4.11) and (4.17). By (4.2) we have

114, 1 1(1),.9„Yi +S t ds Ip'(1- s, x - y)[F(u „(s, y))- F(u(s, y))]1dy.
0 R

The first term multiplied by t tends to zero by virtue of (4.18). The second term is
bounded, for 'xi < M, by

2 11F1I5 ds p (t-s , y)  I d y-0<s<“),t-,<,(t t s

Y+411F d s  p ( t  s ,  y) —
t - s

Lt.y+4y.\/t/2.7r s u p  I  „(s,II
e N

lY siv<*f.tm

Chose s so small and N  so large that the first two terms are less than an arbitrarily
given positive constant and then let n tend to infinity so that the last term tends to
zero . T his proves that tw,-00.  The last convergence assertion is proved similarly
by using (4.3).

Lemma 4 .3 .  Let F„, n=1, 2,..., and F be functions on [0 ,1]  satisfy ing (3)and
u„ and u corresponding solutions with common initial datum  f ;  u„=u(t, x; f ; F„),
tt = u (t, x ; f ; F ). Suppose F „ -4 . un if o rm ly . T hen  u „ - t  and  u'„•-■te uniformly
on  ET f o r each T< co. Further suppose F ,- F ' u n if o rm ly .  T h e n  u -*u •  and
u -n t "  in the same sense.

P ro o f . Set w „ = u „ -u . Then w,, satisfies (4.10) with g =0, k=(F(u„)- F(u))I
(u „ -u ) and Q = F „ (u „ )-F (u „ ). Putting (5,,= F,,-FM , we have liv„I .(5„1,--1(eY' -1 ).
This proves u ,,-u  in the required sense. Remaining assertions are similarly proved
by (4.2) or (4.3).

Lemma 4 .4 .  L et a datum f  have the continuous first derivative on R which is
Lipshitz continuous there. Suppose there ex ists ex tended real constants x ,  and
x2 ; and c>0  such that



(4.19) 41 "+ cf'+ F(f)

where x's are those points at which f "  exist. Then there exist extended real func-
tio n s  X , and X y  of t>0 with — c c  X 1 (t) X 2 (t) co such that
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{  > 0 i f  x < x ,  o r  x > x ,

<0 i f  x 1 <x<x 2

{  > 0 i f  x < X , ( t )  o r  x > X 2 (t)

<0 i f X i (t)<x< X 2 (t)
(4.20) z.(t, x)

where z(t, x)—u(t, x+ct; f). If x 1 = x2  w e  m a y  put X 1 -a-  X 2 ,  if x,— — co then
X ,  —  co and i f  x 2 = co then X2F=-  00.

P r o o f .  A t first assume F " exists and  is continuous. Then by the equation
(4.9) and remarks mentioned just after it the function u(t, z )=v(t, x— ct)= tr(t, x)
+cu'(t, x), where u = u(t, x; f), satisfies (4.9) and that, as t 0,

v(t, x) g(x)=1 f "(x)+ c f '(x)+ F(f(x)) a.s.

and is bounded on  E T ,  T< c o .  It is proved as before that v(t, x) can be approxi-
mated uniformly on each finite rectangle [T - 1 , T ] x [— M , M ] by solutions of (4.9)
v„ such that u n are continuous on 0  a n d  g„— v„(0, • ) satisfy that g(x) O if  x< x ,
or x >x 2 arid 0  if x, <x <x 2 . Therefore we may assume that g  is continuous to
apply Proposition 3.4 which proves (4.20) (see also Proposition 3.3). In the case
that F" does not exist, use Lemma 4.3 and notice Proposition 3.3 to see the strict
inequality in (4.20). q .  e .  d .

Lemma 4 .5 .  Suppose two data f and f* satisfy

f*(x)5 f(x)+ 0(e -  bx)

where b is a positive constant. Set v(1, x)---u(t, x; f*)—u(t, x; f). Then for each
constant c

v(i, x+ ct)...0(e - Kt- bx)( *) w i t h  K = b(c—b12—y*lb),

and if c<b, fo r each fin ite  N,

v(t, x + et)_ 0( \ r -f - le- (c2 /2 - 7 *)() u n ifo rm ly  in x >  N.

P r o o f .  By Lemma 4.1 (see Remark 2 for it) we have

v(t, x) e )'"iP ,[f*— f]+ (x+ct).

Set

g(x)= 1 if x  < 0 ,  = e - b x  i f  x  >O.

Then

( * )  If of . (x ) f (x )+ o (e - 6 . ) ,  then this can be replaced by "v(t, x-A-ct) o(e - " - " )  as  t—)03 uni-
formly in x>  N."
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Ptg(x)=5 x/ 
P( 1 . O ly + e -

b x + g t  
( ( x — b r q s / 7

s i i
P(1, y)dy.

The lemma follows from these and the formula 1 p(1, y)d y p(1, x) as dx cx).

The following theorem asserts that if c_>: \/2y* c-fronts are stable in a sense.

Theorem 4 .1 .  L et c _ -_.\/2y* and f (x )= w c (x + x o ) +0 (e - bx), with some con-
stants b and xo . Then

u(t, x+ct; f)=w c (x + x 0 ) +0 (e - Kr- bx)

where lc is defined in Lemma 4.5; and if c<b

u(t, x+ ct; f)= w c (x + x0 ) + 0( y r1 l e- ( c 2 / 2 - , . " ) uniform ly  in x> N> — co.

P ro o f . Immediate from Lemma 4.5 and the stationarity of c-fronts: u(t, x+
ci; wc.(. +x 0 ))=w c (x+ x 0 ).

Let a > 0 .  It is proved in McKean [14] (in case F(u)=u(1 —u)) that if f(x)—
awc (x ) as x--000 with a > 0  and \/2y* then u(t, x+ct; f)—>w e(x + x 0 )  uniformly
in x > N , where xo = b- '1og a, b= — limx-.30[Wc/wc]•

Here is a  proof of this assertion under our setting. It will be not wasteful to
remark that Theorem 4.1 is not directly available for the  present problem since
w (x) decays as x—>co little more rapidly than e x, b = c _  2C 2a a n d  lc=
a— y*15_0. Now we return to the p roof. B y  the relation f(x)—w c (x+x 0 ), for any
fixed 5>0, we have wc (x+x 0 +6)__ f(x).. wc (x + x 0 - 6 )  for all sufficiently large x,
and by Lemma 4.5 we see

wc (x+ x 0 +6)— Q(t) u(t. x + ct; f)_w c (x+ x o -6 )+ Q (t )

fo r  x > N  w ith  Q(t)= 00 -1 1 2  exp { —(c2 /2 —y*)t}). I n  particular u(t, x+ ct; f)-0
wc (x + xo ) as desired.

5. Limits of u(t , x+ ct; f )

We will investigate in this section the problem: what is the limit of

z(t, x)=u(t, x + ct; f)

as t- +co? The lim it w (x )= I im ,z (t ,  x), if  exists, must be a solution of (4) on R.
In fact, in the equation

z(t+s, x)-= u(t, x+ ct; z(s, •))

letting s tend to infinity, we have, by Lemma 4.2, the equation

w (x)=u(t, x+ct; w),

from which we see that w satisfies the equation (4) on R .  In particular if 0 .c < c 0 ,
wml or w FA.
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The following lemma is due to Aronson and Weinberger [I] except some addi-
tional statements. The proofs given here are based on their idears.

Lemma 5.1. L et q (x ) be a  c-solution (c_...0) defined o n  a  interv al (L,, L 2 ),
- oo L2 CO„such that q(L 1)= 0  o r =1 and that q(L 2 )=0.

(i) Let q(L 1)= 1  and L , -  co (these implies c_c 0 ). Set

(5.1) f (x )=  I U. x < L , , L, <x

and set z(I, x)=u(t, x+ et; f ). Then z(t, x) decreases w ith 1. T he lim it w(x)=
lirn z(t, x) is zero if  1imx „q (x )Iw c (x)=0, and it is a c-front if otherwise and I>0 .

(ii) Let q(L 1) = 0 .  Put

(5.2) f ( x ) = 0  i f  x < L ,  o r  x> L 2 ,  = q (x )  if 1, 1 <x <1. 2

and set z (t, x )= u (t, x+ ct; f). Then z(t, x) increases with t. Its lim it is unity  if
c<c o  o r lim t _, q(x)Iwc (x )=oc, and it is a c-front if otherwise and cx>0.

Pro o f . We prove only (i), since the proof of (ii) is very similar. Let q(L ,)=
I, L 1 >  -oo and L2  =  00 . Noticing q'(L 1 +0)<O, define for each constant a >11F11
= sup F(u)

1 x < L , -6

f * (x )=  1 -a (x -L ,  +6) 2L 1 - 6 < x < L 1 + 6

q(x) x>L1+6

where 6 is a positive constant possibly chosen so that q'(L 1 -1-6)= -4ab and that
1 - a(26) 2  = q(L , + 6). Then f *  is continuous, has the continuous first derivative
and satisfies -If *"+ cf *' + F(f *) ._0 at any x 0 L, + 6. Thus Lemma 4.4 says that
z*(t, x)=u(t, x+ct;/*) decreases with t. It is clear that z has the same property
by virtue of Lemma 4.2, since f *  converges to f  as a -+ oc . If lim q(x)/w e(x)> 0, we
have f(x ). w c (x+ x 0 )  with some constant x,) and hence z(t, x) u(t, x+ct; w ( . +
x0 )=w e (x+x 0 ). T hus w (x )= Iim  z(t, x)_.:wc.(x + x 0 ). This proves that w  is  a  c-
f r o n t .  If lim q/wc = 0, we have lim w/w,.=0, but this implies w =0 because w c.(x + x o )
/w(x) converges to e - bxo as x-■ co. q .  e .  d .

The information on the behavior of u(t, x +ct; f )  may be roughly gathered by
Theorem 5.1 stated below. Results will be somewhat sharpened in Theorems 9.3
and 9.4. We will need the following condition on f.

Condition [ G ] :  u(t, x; f)--* I a s  t - oo locally uniformly.

If I>C1, this is the case for any data. We will discuss about Condition [G ] at the
end of this section.

Theorem 5.1. Let f  be a datum  and set z(t, x)=u(t, x+ct; f).
( i )  Let f(X )=O(e )  as  x-■co. Suppose e ith e r th at b > c -  v /c2 -2 1  and

e> c 0  o r that b> c*, c=c„=c*, and (2.3) and (2.4) are valid. Then for each N >
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— 00

z (t, x) 0  as co uniformly i n  x> N.

(ii) Suppose either that <co and Condition [G ] is satisfied or that co

and limf(x)ebx >0 with b<c—
 , / c 2 _ 2

. T h e n  f or each N >  —cc

Z (t ,  X) a s  t 00 un if orm ly  x> N.

Remark. Assertions of Theorem 5.1 are obtained by several authors ([13],
[10]) in a special case under some restriction on F and by Aronson and Weinberger
in case that f  has compact support (mainly) and c0 co .

Proof  o f  Theorem 5.1. Let j(x )=o (e - bx), b>c—,/c 2 -2 o i a n d  c> co . We
can chose a constant c*  such  tha t c>c.>  co a n d  b>c,— \/ 4 - 2 .  T h e n  th e re
exists a  c,-solution q which satisfies the conditions of Lemma 5.1 (i) and for which
f  _ .f*  where f 4 ,  is defined by the right side o f (5.1). In  the  inequality z(t,
u(t, x +ct; f ,) the right hand side tends to  zero, since, by Lemma 5.1, u(t, x+c,t;
f )  tends to zero or to a c*-front. Thus z(t, x)—>0. The required uniformity of con-
vergence is obvious. In the case c =c* we can similarly proceed, but taking as
q(x) a c o-solution which corresponds to  the extremal one in  all c o -manifolds that
enter the origin (see the last diagram of Appendix). These prove (i).

Let limf (x)ebr > 0 with b < c — c 2  — 2a , c_c o . W e can find a  function F *
satisfying (3) such that F * ._.F and 7 ;  e.g. set, for small u,

(5.3) F * (u )= 1  (F '(v ) /)dv.

Then, putting u* =u(t, x+ct; f ; F * ), we have z and hence z(t, .)-41, since, by
Lemma 4.5 and Lemma 5.1 (ii), z* (t, • )—> I. In  th e  c a se  c <c o , we can proceed as
in the proof of (i) using Lemma 5.1 (ii). Thus (ii) is proved. q. e. d.

In the case c=c o >c * , which is excluded from the above theorem, the situation
is different from the above (see also § 10):

Lemma 5.2. L et co > c * .  For any  couple of  constants b an d  q  with c 0 -
\/c(

2
) -2ct <b<c o + \/c6-2Œ ( i .e .  b2 12—c0 b +a<O) a n d  b2 12—c0 b + —q< 0,

there exist positive constants A  and A ' such that if  we set

U,(t, x)=w,o(x— -e q t-bx

U * ( t ,  X )= W a X  —  A'(1 —e - n f))+ e - '/' - hx

and if  a datum f  satisfies

(5.4) U*(t,, x+x,)_.<f (x) . U * (t 2 , x+ x 2 )

f or some constants 1. 1, t 2 , x 1, x 2 , then

(5.5) U *(t+ t,, x+x ,)_u (t, x+c o t; f)_ U*(t+t 2 , x+x2)
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fo r  a l l  t>0, x e R.

P r o o f  Extending F  to  a  continuously differentiable function F on R  so that
F'(u) oc for all u [0, 1], and setting v(t, x)= u(t, x +c o t; f)— U * (t+ t,, x+x,), w e
have, by the mean value theorem,

v•=4-v"+c,C+F'(0)v+Q,(t+ t ,, x+x,)

where

02*= 4[4+ co U'* F(U* )— U .

Since (5.4) implies v(0, x)._0, for the proof of the left hand side inequality in (5.5)
it suffices to show that Q  E, by virtue of Proposition 3.1. S e t  w(t, x)= w 0

(x—Ae - *() and h(t, x)=Cli - bx. Then, putting Cc= — b2 /2+c o b—ri,

Q* (t, x)= —F(w)+F(w— — Aqe - vw'.

Since ci > cx, we can find a positive constant (5>0 so small that

< w < 5 o r 1-6<w < 1 implies 5 — 7
1-1 [F(w) — F(w — 11)] > 0

for all h > 0 . Then choose constants N and a > 0 such that

(5<wc0(x)__ 1 — (5 implies w'co (x)< — a and

wco(x) 1 - 6
 

im plies x>  —N.

Note that w(t, —(5 implies wc0(x).1— (5. Now we may define A by the equa-
tion

Aria— *y e bN = 0

so that Q * 0 (constants (5, N  and a are chosen independently of A).

Noticing that w* wee (x— A'(1— e - '0 )) wc.(x) h(t, x) for large x, and follow-
ing the procedure similar to that taken in the above, we can find a constant A ' such
that

Q*(t, x)-a--1
2-U*"+c o U*' +F(U*)— U* .

= —F(w*)+F(w*+h)— cih+A 'tie - ww* (U* =w* + h)

<0

which proves the right hand side inequality of (5.5).
These complete the proof of Lemma 5.2.

As the direct consequence of Lemma 5.2 we have

Lemma 5.3. Let co > c* and b and ri make up a couple of constants in Lemma

5.2.
( i )  Suppose tha t a datum f  satisfies Condition [G ] an d  f ( x ) = 0 (  xt, ) Then
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f o r some constants x,, x 2 , and  K

wco (x + x 1) — Ke - nt - bx + Co t; X 2)+ Ke — '11 — b x
•

f o r all t>0, x e R.
(ii) For any  e>0 there ex ists a positive constant (5 such that if  11(x)— we.(x)(

T<Se - bx f o r all x e R then itt(t, x + co t; f)—w co (x)1<ee - bx f o r all t >0, x E R.

Remarks to Condition [ G ] .  Functions F  satisfying (3) are classified into two
classes according as Condition [G] is satisfied for all data or otherw ise. In the
former [the latter] case we say F belongs to the class I [resp. class II]. The class
II is not empty. Some criteria for F to belong to the class I are obtained by several
authors: Fujita [5], Hayakawa. [7], Kobayashi-Sirao-Tanaka[12] (they all deal with
the problem in the multidimentional case). Hayakawa [7] says that if lim„ i 0 F(u)1
u3 > 0 ( * )  then F  belongs to the class I and tha t i f  F(u)=o(uP)(* ) w ith  som e p>3
then F  belongs to the class II. Kobayashi e t al.'s  results are sharpenings of these
consequences. Here is a rapid proof of the assertion: if  F(u)/u 3 -4 a s  u  0  then
F belongs to the class I (the proof is good for the multidimentional case). Let f  be
any datum and set u =  u (t, x ; f; F ). Then there exists e>0 and t0 >0 such that

u(I, x) ep(to , x) x E R.

It suffices to prove that u* =u(t,.x; f * ) 41  where f * =ep(t o , •). Noticing u* (t,
P ,f * (x)r ,--ep(t+t o , x ), it suffices, in turn, to .prove that g(x)=Ep(t+t o , x) satisfies,
with some t >0,

(5.6) +g"(x )+F (g (x ))>0 x e R,

because this inequality implies that u(t, x; g) increases with t  and hence tends to
unity by what is remarked at the beginning of this section. Since g "(x )=g (x )(x 2  —
t i )lti, t, = t+  to and since EI\ 127rti g(x),-el \r2nt i e  for 1x1< ,/ t ,  ,  we have

{  > 0  if 1x1 V t i

ig "+  F (g )
> F(g)— g 12t ._ [F(g)/g 3 — nele2 ]g 3i f  1x1< ,/  t .

The right hand side of the last inequality is positive for some large t. Thus (5.6) is
obtained.

We note thai for any c> 0 there exists a d a tu m  <I; with compact support for
which [G ] is  valid. This follow s from  Lem m a 5.1. It is also obtained that if

u(t, x0 ) > 0  for some x o then  [G ] is valid, as is proved below. The idea of
the proof comes from Kane!' [11a]. We may assume x0 = 0 .  It is easily checked
that

u(t, x)=1
o

p*(t, x, y)f(y)dy+ dsV p*(t—s, x, y)F(u(s, y))dy
o o

(*) In n-dimentional case these must be replaced by firn F(n)/tri+ 3 1 , ,  - 0  and by F(u )---o (u P) with
p I 1- 2/n, respectively.
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— 1t U(s, 0)p'(t—s, x)ds x >0,

where p* (t, x, Y)= P(t , x— y)— p(1, x+ y). The first two integrals are positive and

the last integral, which is equal to 21 u ( t— x 2/v2 , 0)p(1, v)civ, is bounded below

by (1/2)lim u(t, 0) for 0<x < N  and for all sufficiently large t. Thus the fact re-
marked at the beggining of this paragraph proves tt(t, x)—>1 in the desired sense.

6. Behavior of Front of u(t , x; f )  (Special Case)

in this section we treat the problem expressed by (5) when datum f  has a certain
special form . Suppose u(t, x)=u(t, x; f )  decreases a s  x increases o n  some right
half of the x-axis and tends to zero as co for each t > 0 .  Put

L(t)=suplx; u'(t, x)=01(= —co if 1.1 is empty).

M(t)=u(t, L(t))

x(t, w)= sup Ix ; u(t, x)= w1 w  M(t)

w)=10, x(t, w)).

Note that 0 is determined only by the shape of the tail of u (i.e. invariant under the
transform: f—, f( • +const.)) and conversely restored to it through the inverse form

w  d u  x(t, w)=- 4)(t,.

We write 0= 0(t, w; f )  to  express that 0 is determined by J. and M (t)=M (t; 0) for
convenience. W e also write M =M {r} if T is a  nonnegative function defined on
an interval [0 , M ]. Thus M (t; 0 )=M {0(t, • )}. For each t the graph of 0(t, •) is
identical to the  orbit o f  (w, p)=(u(t, x), u'(t, x)), L(t)_x< oo. W e will use ab-
breviations 0. -aolat, =acaw, etc. B y  formulas Ox/Ow=1/u', 0x/t= —u:/u',
0'= u"/W and

(6.2)

we derive from (I) the equation

(6.3) 0.= -1.02 0" — F4' +F' 0 <  w <  M(t).

Let g be another initial datum and set tp =or, w; g) and w=4i—ç1i. Then it follows
from (6.3) that co satisfies

(6.4) co: =  02 w" — RD' +[F' +1(0+ 0)0"]

in the domain {(t, w); 0< w <min {M(t, 0), M(t, 0)}, t>01. This equation is fun-
damental in the later argum ents. We will consider it as a parabolic equation dis-
cussed in  §3 by regarding 0, 0, 0" or tfr" as given functions. Let r be a solution
of (1.4). Then co=0—T satisfies (6.4) where is  re p la c e d  b y  T, since (1.4) implies

(6.1)

u 'u" —(u") 2

(u') 3



482 1{6hei Uchiyama

0=4-r 2 T" - Ft' + O < W < M {T } .

We denote by t c . (C C 0) the solution of (1.4) corresponding to the c-front, i.e. the
unique solution solving (1.4) on the interval [0, 1] with T(0)=-41)=0. The equa-
tion (6.4) will be sometimes cited in the alternative form

(6.4)' o).= t/J 2 e.)" - +[F' +1-(0+0)(/)"]co.

Lemma 6 .1 .  Let c, Let a datum f satisfy  the assumption of Lemma 4.4
w ith c=c,. S uppose that there ex ists a constant x3 such that

(6.5) f ' . 0 i f  x_.x 3 , <0 i f  x > x 3 ,

that there ex ists a function s(t)>O, t>0 such that

(6.6) 4)(i, w; f  ) <T c ,(w) 0<w<c(i), t>0(*)

and that u(t, =u(t, x ; f ) satisf ies

(6.7) u(t, x) --■  I a s  t co

and

(6.8) u(t, 0 a s  t co.

Then 4)=4(t, w; f) satisf ies

(6.9) (P(t, w)5t e i (w)+o(1) 0_.ç.w__.11/1(t;

uniformly as t-*0:).

P ro o f . Applying Proposition 3.4 to  the equation (4.9) satisfied by v =u ', we
see, by (6.5), that u'(t, .)<0  on a right half line and o n  t h e  other half. Espe-
cialy 4)=4 (t, w; f )  is w ell defined a n d  M (t; 0)=max x e ,u (t, x ). P u t  z(t, x)=
u ( t , x +c ,t) . Then by Lemma 4.4 there exists extended real functions X ,(t), X 2 (t),
- oo c o ,  with which (4.20) holds. W e w ill examine the evolution of
the orbits of the vector functions (w(x), p(x))=(z(t, x), z '(t, x)), x e R in the half strip
D={ (w , p); 0<w< I, p 5 0 } .  Parts of these orbits contained in  D are denoted by
S1. For the proof of the lemma we assumed that - oo < X l (t)< X 2 (t)< co for any
1>0, since the other case is easy to deal w ith. D enote by A , a  po in t in  D  that
has coordinates (z(t, X ,(t)), z '(t, X i (i)))=(z(t, X ,(:)), 0(1, z(t, X  i (t)))) or coordinates
(M(t; 4)), 0) according a s  z '(t, X 1 (t))<0 or 0. Denote also by B , a point with
coordinates (z(t, X 2 (t)), z '(t, X 2 (t))). B y th e  equation z . =4 z "+c 1 z '+F(z )  and
by what is remarked just before Theorem 1.1, c,-manifolds cross St from  the right
or the left hand of S , according as z*>0 o r <0 at intersecting points (see Fig. III).
Notice that y on the closed arc of S , between A, and B, and z . >0 on the other
parts of S,. From these and the hypothesis (6.6) it follows that S , lies under the
cc -manifold passing through A, for each t >O. W e denote this manifold by T,. A,

(* ) This condition can be removed if x 2 =00 where X2 appears in (4.19).
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and T, lies over the c 1-front.

Fig. I ll

It is shown below that if z '(t, X ,(t))<0  then A, for s>t does not enter into the
open domain bounded by Tt and the w-axis untill z'(s, X,(s)) vanishes for the first
time after t. Let t(u) be a solution of (1.4) corresponding to T, and set w=4 — T.

Then co satisfies (6.4) with 1' =r and by Proposition 3.1 co(t +s, 0<w > M{r}
for sufficiently small s. This proves the desired assertion. Especially we proved
that if z'(t, X 1(0 )< 0  for t, < t  < 1, then T,, lies over S, for t, <t<t 2 .

To prove the assertion of the lemma first assume that there exists a sequence
{:„} such that t„--+ co and z'(t„, X 1(t„)). 0, n=1, 2  By the hypothesis (6.7), for
each e>0 we can find n o  such that M (t; 0)>1— e for t>t,,..=-t * . Let T  be a c ,-
manifold passing through (1 - E ,  0). If t >t,,, and z'(t, X i ( t))_0 , then T  lies over
T, and hence over S t . If t>t,, and z'(t, X ,(t))<O , then, by what has proved in the
previous paragraph and by the continuity of S, with respect to  t, we can find a time
t '  with s u c h  t h a t  T  lies over T,, and T ,. lies over S,. Consequently T  lies
over T, for any t > t*. Since T converges to  the c l -front as s 0 ,  we have (6.9).

Next assume the remaining case: z'(t, X 1(t ))< 0  for 1>1,,, with some constant
t* . Then T, lies over se if t ' _ 1 > t * . There exists an unbounded sequence t„ such
that w-coordinate of A,. tends to unity as n—*oo. Because in the opposite case we
can find .5 e (0, I) such that z(t o , x0 )> ô implies v (t o , x 0 ) >0, which in turn implies
z(t, x0 )>S  for 1 > 1 0  and contradicts to (6.7) and (6.8). Since fl,„ tends to the point
(1,0), Ti .  converges to the c c f r o n t .  Consequently we have (6.9). The proof of the
lemma is completed.

Lemma 6 .2 .  Let f o --1 ( _ 0 0 . 0 3 .  Then for any data f fo r w h ich  0 is well defined,
we have

0(t , w; f0 )5 4(t, w; f)1 >0, 0<w<M(t)

where M(t)=114(0(t, • ; f)).

P r o o f .  Set u=u(t, x; f) and u 0 =  t  • x; f0 ). We prove a stronger assertion:
for any s>0

tt (s, x0 )..u '(s, x 1) if u(s, x i )= u o (s, x 0 ).
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Fix s > 0 .  Let u(s, x 1) =u 0 (s, x 0 ). Putting

y(t, ) = u ( t ,  x —x0  +x,)— u0 (t, x),

we have y(s, x0 ) =0 and u'(s, x 0 ) =u'(s, x 1) — t6(s, x 0 ). Therefore it suffices to prove
y(s, x 0 + x )O  for x O. S in c e  y solves the equation

v. = -12-  " +F'(u 0 +0y)y 0  0 < I

with the initial condition

lim v( t, =.1.(x-x0+xl)-1(x)
{ <0 if x<0

t 0 >0 if x>0,

we see, by Proposition 3.1 and by the method of approximation as used in the proof
of Lemma 4.4, that v(t, •) O on  a  right half x-axis a n d  < 0 on the other half for
each t. This proves the required assertion.

By the same method a s  used above Kolmogorov e t al.  showed that .0(t, w;
f 0 )  increase with t. But this fact now clear by Huygens property: 0(t+s, w; f ) =
cp(t, w; u(s, • ; f)) and the lemma just proved. Thus there exists -r(w)=1im  4)(t,
w ; fo ). Since T.,.0 (w)=4)(t, w; we )  we have t(w) . . -rc o (w). These prove that u(t, x+
m(t); f 0 )  converges to some function, say 0(x), which is decreasing with t(cc)=O
and 0(— oo)= I. B u t  by Lemma 4.2 0(t, w; w; u(s, x+m(s); fo))=
lim 00+ s, w; fo ) = t(w), from which we see, using (6.3), that T  satisfies (1.4) for
some c. Since T  T c o ,  we have T  T co . Consequently we have

Lemma 6.3. (Kolmogorov et al.). L e t  f o = 1 ,_ , 01 . Then

00, w; fo) T t 0 (w) a s  t T 00.

The next lemma is complementary to Lemmas 6.1, 6.2 and 6.3.

Lemma 6 .4 .  L et c2 >c 0 . S uppose a datum  f  h as  the Lipshitz continuous
.first derivative with f' L<J) and satisfies that

{ <0 i f  x<o
If"+ c2 f+ F (f )

0 if  A . > 0

where x's are  those points at w hich f "  exist. Further suppose that u(t, x+c 2 1;
f)--,1  as t—*oo. Then 0 = 0 (t , w; f) satisfies

(6.10) .0(t, o(1) 0 <w < M(t;

uniformly as t—>oo.

P ro o f . The proof is very sim ilar to that o f  Lemma 6.1 and here only the
outline is given. L e t S, be  th e  orbit o f the  vector function (z(t, x), z'(t, x ))  of
x e R, where z(t, x )=u (t, x+c 2 t; f). As in the proof of Lemma 6.1 we can take a
point A t o n  S, such that z . <0 i f  z  is larger than the w7coordinate of A .  Then
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cr manifold T, passing through A , bounds St . below for t' > t. There exists a  se-
quence {t„} along which p-coordinate of A , tends to unity. S i n c e  A , is bounded
below by the graph o f (kV, • ; fo )  by virtue o f Lemma 6.2, A,. approaches to the
point (1.0). Thus 7, converges to the c,-front. This implies (6.10).

7 .  Asymptotic Behavior of u(t , x :j )  for large x

In order to apply Proposition 3.3 to the equations (6.4) or (6.4)' we must know
the behavior of 0=0 (t , w; f )  and 0" as w  0 , which are involved in that of u=u(t,
x ;f), u ', u " and u" a s  x-* cc. Roughly speaking, the behavior of u(t, x; f )  and of
its derivatives are  asymptoticaly same as  tha t o f ecuP,f for data  f  belonging to
certain classes.

Definition. (i) L et p  b e  a  non-negative constant. A  datum  f  is said to
belong to the class [E ,,] if

f (x )=  0  f o r  x>x o w ith  som e constan t xo i n  c a s e  f l  =  0

f  (x )-A (x )p (p ,  x ) a s  x oo in  c a se  p> 0,

where p is defined in §0 and A  is such a function that A(log x) is slowly varying at
infinity, i.e. A>0 and

A (x+ x 0 ) - A ( x )  a s  x c o  for each c o n sta n t xo .

(ii) Let ). be a positive constan t. A  datum f  is said to belong to the  class
[FA] if

(x )- A (x )e - lx a s  x co,

where A  is the same as in (i).

What we want to prove in this section is stated in the next two lemmas.

Lemma 7.1. Let f  be a datum  belonging to the class [E n] (.1_ 0).
(i) Set u = u (t ,  x ;  f ) .  Then following relations hold

(7.1) log u(t, x )  -  x 2 /2(p+ t)

(7.2) O iu(t, x )/axi-(-x/ (t+p))iu (t, j=1, 2, 3

as x-÷co uniform ly  in t e(1/T, T) for each (f inite) T > 1 .
(ii) Set 0=49(t , w; f). Then

(P(t, w ) N.7 2   .\/ I log w I w and
V t  p

as w  0 uniform ly  in t e (11T, T) for each T>1.
p=0  all these relations hold uniformly in t e (0, T).

Lemma 7.2. Let f  be a datum  belonging to the class [FA] (A > 0).

0„(1, 0 _0 (  ,

I
 ,/ilog 

\ \ / t+ p w J
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( 0  Set u  = u (t, x ; f ). Then the following relations hold

(7.3)e i u ( t ,  x ) l a x i  — ( - 2 ) - l e ( A2 /2 +1 ) 'A(x)e - " j= 0 ,  1, 2, 3

as x—■co uniform ly  in t E (11T, T) for each T>1.
(ii) We have

ch"(t, w; f)=o(w - I)

as w 4. 0 uniform ly  in t E (1/T, T) for each T > 1 .

Remark 1. The second parts of Lemmas 7.1 or 7.2 are readily derived from
the first parts of them and from (6.2). It is also clear by Lemma 7.1 (ii) combined
with Lemma 6.2 that for any  datum  .f, for which 4)(t , w; f) is well defined,

(7.4) 0(t, w; f)=0 (,/  t - Y1108 wlw)

as w 1.0 uniform ly  in t e (0, T).

Remark 2. By the fact that v(t, x)=1 —u(t, x; f )  is a solution of the Cauchy
problem

v . =  v" —F(1 — v), v(0+, )=1 —f,

we can derive similar results on the behaviors of 1 — u(t, x; f )  and its derivatives as
— oo to those obtained above. We will not, however, use them later except the

following simplest case: if  1—f(—x) belongs to the class [E m ] (ki_ 0), then

log (1 — u(t, x))— — x2 /2(j2+ t)

u'(t, x) x(p + 0 - 1 (1 — u(t, x))

as x—>— co f or each t>0, where u(t, x)=u(t, x; f ) .

For the proofs of Lemmas 7.1 and 7.2 we prepare several lemmas.

Lemma 7 .3 .  L et g be a  locally  bounded measurable function with  p(t, x).
Ig(x)Idx<oo f o r any  t> 0  and ess.sup {x; Ig(x)I > 0} = x, < co. Then

P i g(x)=o(exp {—(x — x ,)2 Pt } ) a s  x co

uniformly in t e (0, T) for each T<co.

Pro o f . Immediate from

exp ( x —  x 1 )

2

 }P ,g(x)=1 X ' e - (x- xi)(xi - Y)/tp(t, x,— y)g(y)dy2t

=5 e - (x - xi)w /Jt e - w2 /2  g (x l

o

Lemma 7 .4 .  In  addition to assumptions imposed on g in Lemma 7.3, suppose
g. - 0 on the interval [x 2 , x 1 ]  with some x 2 < x 1 . Then f o r any  constant x3 w ith



x 3 < x l.

(7.5)

especially
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exp {(x- x 3 )2 /2t}P,g(x) co,

P i g(x)- P,{g • 1 ( x 3 . x j ) } (x)

and especially

(7.6) (01110x")Prg(x)-(-xl0nP,g(x) n=1, 2,...

as x-* co uniformly in t e (0, T).

P ro o f . The divergence in (7.5) follows from

exp {(x - x 3 )2 /2t}P,g(x) exp {(x - a)2 12t}P,g(x)

ecx-auy-autp(t, a -  .09(y)4 • (1+ o(1))

as x-> co, where a  is a constant which satisfies max {x 2 , x 3 } <a < x ,, g (a )> 0  and
x x,
g(y)dy=(x - a )g(a )+ o(x- a) as x 4. a  so that p(t, a -  y)g(y)dy.-4g(a) a s  t I 0

a a+t
(cf. Widder [17]).

Lemma 7.5. Let f  be a datum with lim „ f ( x ) = 0 .  Then

u(t, x; f)=ecaP,f(x)(1+1 • o(1))

where o(1)-0;) as x-* cc uniformly in t E (0 , T) for each T.

P ro o f . Define F(u)= 0 fo r  u  > 1 . Putting v(t, x)=--e ltP ,f(x ), u =u (t, x ; f) and
w =u - v, we have

w=Ko{kw+ F(v)-av}

where k=(F(u)- F(v))1(u - v) and Ko is defined by (4.12). By Lemma 4.1

I w(t, x)I t er ( t- s) P,_,IF(v(s, •))-av(s, •)1(x)ds.

Since v(t, x)->0 as co uniformly in t e(O, T ), for any e> 0 we can chose constants
M and L so that

IF(v(s, x))-av(s, 2-1 v(t, x)+ M P s _ j 1( _ ,,,L ) (x)

if 6 <s <T, where 6 = O S .  Then, using the inequality IF(v)-ctvl <I3v (v> 0), we see
that if 0 < t< T

Iw(t, x)1.te r '{s P ,f(x )+ M P u -o v o l(-.,a x )) •

This proves w= t • o(P,f(x)) uniformly in t  E (13 , T ),  since the second term in the
braces is small order of P ,f(x ) as x- cc uniformly in t e (0, T ) by virtue of Lemmas
7.3 and 7.4.
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Lemma 7 .6 .  L et g be the same as in Lemma 7.4. L et T  and  n  be a positive
constant and a non-negative integer, respectively . Then w e can f ind such a con-
stant K„('T, g)=K„(T, x,) depending only on T, n and x i =ess. sup {x; g 00}  that

jp/(s, x—y)1P1igl(y)IyIndy. K„('T, g)(t+ sr  {Ix1^1,/ s + lxi" -H}P r + s Igl(x)

f or x >1 ,t_ 0 ,s >0 ,t+s <T .
P ro o f . Setting

AZ, t, x) =
R IP' (S, .01P(t, Z)IYIndY

we have, for x>1,

J(z, t, x)= p(t +s, x — z ) (

R1
.\/

 ( t  
-
F

t

s ) s
w

 t +  s

x x -
t\/  s   w_  S  (x — z )t+s t+s

<

n dw

K (T )   n o + s ,  x _ 0 1( ./ t(t+s) +1z1y1x1" +10 + IxI n+1 1t + s  r ‘ 1 11 S

where K (T ) is a constant depending only on n and T, and

J(z , s, x)Ig(z)Idz__K„(T, g)(t+ +ixin+1}Pti-sIgi(x),

which is the desired inequality.

Proof  of Lemma 7.1 in case 11= 0 .  Let f  belong to the class [E'0]. The rela-
tion (7.1) is clear by Lemmas 7.3, 7.4 and 7.5. For the estimation of u' we rewrite
(4.2)' as follows

u'(t, x )=0!(P,f )'(x )+1 ' ds p'(t— s, x—  y)J(s, y)dyo R

where J(s, y)=F(u(s, y))— aelsPsf ( y ) .  Then, using Lemmas 7.5 and 7.6, we see,
as in the proof of Lemma 7.5, that the last term in the above equation is small order
o f xt - 1 P,f (x ) as x-÷ co uniformly in t  E ( 0 , T ) .  Since (P,f)'(x)—

x), the case 1=1 in (7.2) is obtained.
Estimation of u" is carried out as fo llow s: Set j ,0=u(1, •), u*(t, x)=u(t, x;

f ,,,)=u(2t, x ). T o  p ro v e  is  th a t u',;(t, x )  e 2 a t

( 4 2 0 2 P 2 t . f ( x )  uniform ly in  t e (0,
T/2). By (4.3)

(7.7) x)=eat(Prf * )"(x)+S t
ods izpV —s, x— y)J(s, y)dy

where

J(s, y )=F'(u * (s, y))u'* (s, y)—aeOEs(Psf

Since f',1,(x)— —eattx - 1 13,f(x)— eat(P,f)(x) uniformly in t <T12, we see, as in the
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proof of Lemma 7.5, using (7.6), that

(Ps I . *)' (x)= Psf;(x)- - e"tx(t + s) -  1 P +  (x)

x)

uniformly in  0 < s  t<  T I2 . By this relation and by the inequality (4.6), for any
s>0 we can find constants M and L depending only on e, T and f such that

37)15.giAt+s) - 1 1 3 t+J(Y)+MNit+s „ay)
for 0 < s  < T I 2 .  Therefore Lemma 7.6 says that the last term in (7.7) is bounded
by

Ki(T, f)(xlt JÏ + x 2 10P2 ,f(x)+ KxP,I ( „ L ) (x)

for x >1, t E (0, T/2], where K  is a constant depending only on L, M, and T, while
we see also by Lemma 7.6 that

(P,f)"(x)=(P,f ',)'(x)- eat(x I2t) 2 P 2 ,f (x)

uniformly in  t e (0, T/2]. Thus we have u(21, x)=u(1, x)--, e2 at(x12t)2 P 2 ,f(x ) with
required uniformity.

Noticing that a' -1-u” a n d  a" and using the equation u•'= i(P ,f) - +
(P ,F (f))'+ (1 ( 0 {F'(1)u})'(K 0 is defined by (4.12)), we can estimate the tail o f u"  a t
infinity as in the case of u". Now Lemma 7.1 has been proved in the case p=0.

For the proof of Lemma 7.2 and of the rest of Lemma 7.1 we prepare the next

Lemma 7 .7 .  L et A (x) be a function as  appears in  Definition of the classes
[E,,] and [ F a  and T  a positive constant.

(i) L et {g,(x)},,,, T be a fam ily  of  bounded functions such that g,(x)-A (xpl
(a+ t))p(p+ t, x) (p>0) as x - *ci  uniform ly  in t e (0, T), then

(7.8) (0"lax")P,g5(x)=g,,,(x)(-xl(p+t+s))"(1+o(1)10-") n=0, 1

where o(1)--).0 as x.-+co uniform ly  in 0_.s<t<T.
(ii) I f  g(x )-A (x )e 1 > 0 ) an d  g (x ) is bounded, then

(J"10x")P,g(x)=A(x)e - " { ( - ) ) " -F  (1/i n - 1 ).o(1)} n= 0, 1, 2

where o(1)--+0 as x-■oc unifortnaly in  t e(0, T).

P ro o f . First w e prove (i). W rite g ,(x )=A ,(x )p (p+ t, x ). Then A (x )= A
(pxl(p+ 0)(1+ o(1)) as x , 00 uniformly in t and

5, ((x — y)/0"p(t, x— y)gs(Y)clY

= As(x-y)p(p+s, x- y)p(t, y)(ylOndy+0(x" - 'e - x 2 / 2 t I N R 2 n - 1 )

-co

Let J denote the first term in the right hand side of this equation. Then
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J=P(1-1-t+s,x) A (   t t + s   x ,\/  01+ s)t
-co  s \ jt+ t+ s jt + t+ s w lx

x ( P±s
+s+ t 

+
jt + t+ s

1 
x )  e

-
w

2
/

2
dw l. vi 27r ,jt N U

where w1 is defined by (It + s)(i i + t s ) -  lx - \/(p+ s)t 1(,u t  s ) w  = 0. S ince  A(log x)
is slowly varying at infinity, A(x) is expressed in the form

A(x)=a(x)exp {1e: 8 (; )   dy}x > 0

where a(x)-(1 0 , 0< a o < co and E(x)-00 as x-*cc. Especially

A(x- x 0 ) _  a (x -  x0 ) e E ( Y )   do} = 0 ( e -.0)
A(x) a(x)

xp y

uniformly in x >O. Then it is not difficult to see

wi
.1 =p (jt+ t+s ) A ( ( x  \ lt ( jt+ t+ s ) w ) )

-co it ± t± s \ s /

as x 0 - -c c

X   e-w212dw IN /21r •(1±o(1)1,/ t ")(11 +.
1s. t )

= g t + s ( X ) (  P - FjCt+S ) n ( 1 +  o
(

1 ) V118 ) •

These combined with the fact that t- np(t. x)=o(g,(x)) as x-4 co uniformly in t proves
(7.8).

The second part of the lemma follows from

R
P(t3 x  -  y ) g ( y ) ( x )  di .

5x / v, A ( e
-y 2 / 2

X
n -1

— e - x 2 / 2 t=  x  j y ) 2  e t  Y y n d y  + 0 (

tn1

. 2   1 an =e e 2 i / 2 A ( x ) ( 1 + o (  I )  j n ) .
1 x

tn eA n

The proof of Lemma 7.7 is completed.

Now we prove Lemma 7.1 in case It>0. Fix t, > 0 .  By (7.8) and (4.2)' and
by Lemma 7.5 it is easy to see that (7.2) with j= 1  holds uniformly in t T).
Using this, (7.8) and the equation

u"(1 1 +t, x )= (P ,te (t i , • ))'(x)+ Ço (P f _s gs r(x)ds

where gs (x)=F'(u(t i  +s, x))u'(t, +s, x), we see (7.2) with j = 2. The case of j= 3  is
similarly proved. The proof of Lemma 7.1 (i) is completed.

Lemma 7.2 (i) is similarly proved by Lemma 7.7 (ii).
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8. Approach of Front of u (t, x ; f) to Front of Travelling Wave

Here we will clarify the behavior of the front of u=u (t, x ; f), i.e. the function
u(t, • + m(t)) where

m(t)= sup {x; u(t, x)= 1,-}

for large t. We will use symbols 4)(t, u; f), Tc ,  M (t; 0 ) , which were introduced in
§6, in this section too. We will mainly deal with data which satisfy the following

Condition [W ]:  there exist 10 >0 and a finite number N  such that

(8. 1 ) lim u(t o , x )= 0 , u'(t o , x)<0 f o r  x >  N

and

(8.2) li m u(t o , x)> 0  o r  u'(t o , x)>0 f o r  x <  - N

where u(t, x)=u(t, x; f ) :  if F  belongs to the class Il (see Remark to [G ] in §5 for
the definition) we assume lim x _, ,  u ( t o , x)>0.

This condition scarcely narrows the class of data to be dealt w ith. For example
if f  does not increase for large values of x and tends to zero as x-* cc then (8.1) is
satisfied. D ata  which belong to the  class [E,] o r  [FA]  also satisfy (8.1). The
condition (8.1) guarantees the existance of 0 (1 , w ; f). The condition (8.2) is im-
posed in order to apply Lemmas 8.1 or 8.2, given later, which prove M{4)(t, • ; f ) }
-41  a s  t--3 co  for data  f  satisfying [W ]. Especially [W ] implies Condition [G ]
(see §5) and  tha t in (t) takes a  definite value for every sufficiently large t. If  F
belongs to class I any datum with compact support satisfies [W].

Now we state the main theorems, from which it will be seen that the behavior
of the front of u(t, x ; f) depends mainly on the behavior of f  for large x which is
inherited to u(t, • ; f )  as was seen in the previous section.

Theorem 8 .1 .  Let a datum  f  belong to the class [E n ] (ft 0 ) o r to the class
[FA] w ith  2>c 0 -V c 6 -2 o  c . (* )  Suppose Condition [W] is satisfied. T h e n  u=
u(t, x; f) satisfies

(8.3) lim u(t, x + m(t))= w c o (x)
( . 0 0

uniformly in  x>  -m (t).

C orollary. Let f  be a datum  w ith com pact support. Suppose F  belongs to
the class I. T h e n  u=u (t, x ; f) satisfies

u(t, x)- w c..(x - m(t))1 ( 0 (x )-w c0 (- x+n i* (t))1 1 , . 0 ) (x)

0  a s  t co uniform ly  i n  x e R

(*) The classes [E,,] and [F1 ] are defined in §7.
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where 112 * (t)=inf  fx ; u(t, x)=  1/2}.

Theorem 8 .2 .  Let a datum  f  belong to the class [FA] with O< 2/
(a > 0). Suppose Condition [W ] is satisf ied. T hen u=u(t, x ; f ) satisf ies

(8.4) lim u(t, x+ in(t)).= w(x) e =1./2 + a/),
t-.0 0

uniformly in x >

Rem ark. Let f  be a  datum such that f(—  x) belongs to the class [E n ] or  [F A]
as well as f ( x ) .  Then assertions analogous to Corollary of Theorem 8.1 hold if F
belongs to the class I. The condition that F belongs to class I  can be replaced by
Condition [G] (cf. §10).

In Theorems 8.1 o r 8.2 the condition that f  belongs to the class [EA o r  [FA]
should be weakened. This is suggested by the next theorem.

Theorem 8.3. L et] be a dif ferentiable datum  for w hich Condition [W ] holds.
Suppose

(8.5) —f (x)(b+o(1)) a s  x

and

(8.6) f ( x ) e  " oo a s  x — co

for a positive constants b_>:c 0 — -27  and  b * ,< b. T h e n  f o r u=u(t, x ; f ) , (8.3)
holds uniformly in x> — nt(t).

The next theorem is complementary to these theorems.

Theorem 8.4. Let a > 0 .  L et f  be a datum  w hich is dif ferentiable and posi-
tive f or large x  and satisf ies that Hill „ f (x )  =  0  and lim f '( x ) I f ( x )=0 . Then
under Condition [W ]

lirn u(t, x + m(t))=
t-oco

uniformly on each compact set of R.

For proofs of these theorems we need two more lemmas.

Lemma 8 .1 .  L et f  be a continuously  dif ferentiable datum . S uppose a  con-
s t a n t  > 0 is related w ith f  in  such a m anner that the equation f (x )=6 has just
two roots, say x,, x 2 , x ,< x 2 , and f '(x )<0 f or x _x 2 , >0  f o r x <x i . L e t 40  be a
solution of the equation (5*(0= F((5(t)) with (5(0)= (5. T hen for each t. 6(0 is related
w ith tt(t, • ; f ) in the sam e m anner of  how  (5 is related w ith f . as  long as b(t)<
sup xE ,u(t, x ; f ).

P ro o f . Let g(x ) be a  continuously differentiable function such that 0
g' 0 and  g  is not a constant. Suppose that the equation f (x )=g(x ) has just two
roots, say y l , y 2 , y  <y 2 ,  and that f (x )< 0  and f (x )<g (x )  fo r x . y 2 . Put u=
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u(t, x; f ) , v =u(t, x; g) and  T =  sup ft; u(t, x)> y(t, x) for som e x e R}. W e show
here  tha t u'(t, x ) < 0  f o r  x  sup fx; u(t, x)=41, x)} i f  0 < t<  T. Since w= u —
satisfies

w = w" + F'(v + 0w)w' ( 0  = 0 ( t ,  x ) _ _  1 )  ,

the set f(t, x); T> u(t, x )<v(t, x)}  has just two connected components by
virtue of Proposition 3.4. Let D be one of them which contains a  right half x-axis.
By Lemmas 7.3, 7.4 and 7 .5  D , the closure o f  D  in  E, contains a  right half of
17 , {T} x R if T < c c . Assume for simplicity that T  is finite and set OD= D - D and

= OD —(IT  U le ). Then ti' _1/ < 0  o n  T  because the intersection of D  and l  i s
connected for each positive t < T. T h u s  u' < 0  o n  I", which implies, by Proposi-
tion 3.3, u '<0 in D .  This is the same as what was announced to be shown.

Now the lemma is easily proved. Let t be such a  time that 6(t)<sup x  u(t, x).
Clearly we can find a  function g for which g â, conditions stated at the beginning
of this proof are satisfied and t <T  where T is defined in  the  previous paragraph.
Since 6(0 <u(t, x ; g) x e R, we have u'(t, x)<0 for x._:X 2 (t)=sup {x; 6(0= u(t, x)}.
Similarly we get u'(t, x ) > 0  for x X 1 (0=inf f x ; 6 (t)=u(t, x ){ . It is clear that
u(t, x)>b(t) if X 1(0<x < X  2 (t). Thus 6(t) and u(t, • ) are related in the required
manner.

The proof of the lemma is completed.

The similar method proves

Lemma 8 .2 .  L et f  be a continuously  dif f erentiable datum . Suppose the set
{ x; f(x)=-6}  consists of just one point and f  '(x )<0 if  f(x) . Let 6(t) be defined
as in Lemma 8.1. Then 6(t) has the same relation to  u ( t, •  f )  as 6  does to f  for
each t>0.

Proof of Theorem 8.1. S te p  I .  S e t  u =u(t. x; f )  and (P(t, w)— 4)(t + t o , w ; f )=
0(1, w; u(t e , •)) where t appears in C ondition [W ]. We will prove

(8.7) O(t, w)=---re0 (w)+0(1) O w<M(t; q))

as t---oo uniformly. Since we know that (/)..r,..-E o(1) as a direct consequence of
Lemmas 6.2 and 6.3, for the proof of (8.7) it suffices to show that

(8.8) 4 ) (  t ,  w)._.t,..(w)+o(1) 0 w  < /1/1(t ; 0).

Let c ,>c e . Condition [W] enables us to find a constant ó>O  which is related
with u(t o , •)  in the manner stated in  Lemma 8.1 o r  8 .2 .  We will show in Step 2
that there exists a  datum f *  and a constant t, > t ,  such  tha t 

f *
 satisfies conditions

imposed in Lemma 6.1 and inequalities

f *(x )< min {g(x), (5} x e R

and

4)(0, w; f*)> 0(0, w; g ) 0<w<M(0(0, • ; f*))
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where g(x)=u(t,, x). Let such f*  and t, be found for each c, >c, sufficiently near
co . Set 4)*=0(1, w; f*) and 0=4)(t, w; g)= (PO +(t, — to ), w). Then we have, by
Lemma 8.1 or 8.2,

m(t; 0.)<mo;
and hence w=/i— is defined and satisfies (6.4), where 0  is replaced by 0*, in the
dom a in  D={(t, w); 1> 0, 0<w<A4(1; 0*)). S in ce  M(t; 4)*)=sup x u(t, x; f *) and
co(t, M(t; 0*))<O, there exists a  continuous function  M(t) such  tha t O<M(t)<

4)*), t 13 and co<0 in  D— D,,, where D * ={(t, w); t>0, 0<w < A4(01. Then
cs).__O on ap* . Check that Proposition 3.2 is applicable to the equation (6.4) in  D*
for the present co, using Lemma 7.1 (ii) o r  Lemma 7.2 (ii). Then we have o) - 0 in
D .  C o n se q u e n t ly  t/J...4)* in  D .  S ince  (/)*-.T.

e i + o(1) by Lem m a 6.1 a n d  since
t e , r c ,  co we get (8.8).

Step 2. Now we con s tru c tf* . We carry out this only in the case li m x _, , f ( x )
=0 (in the other case the construction is m uch  s im p ler). Thus w e assume that F
be longs to  the  class I. S e t h(x)=6exp{—x 2 }  an d  take  t, >t o  s u c h  th a t  h(x)
min {g(x), 3} x e R where g(x)=u(t,, x; f) (see Lemma 7.4).

First we assume that f  belongs to the class [E n ] or [F A]  w ith 2.> co + N /c6— 2a .
Let c 1 > e, and let /1/2+aR>c 1 >c o if [ belongs to the class [F A]. T h e n ,  by Lemma
7.1 or Lemma 7.2 there exists a constant x , such that g' <0 for x > x, and

-21-g"+c 1g' +F(g)>0 and g< 6/2e f o r  x > x 2 -1 .

Set k(x)= — a(x — x 2 )2 + g'(x 2 ) (x — x 2 )+ g(x 2 ) where the constant a >0 is chosen so
large that

-1-k"+c1k'+F(k)<0 if k>0,

max k(x)<61e a n d  ,/g'(x 2 )2 +4ag(x 2 ) la <1.
xeR

Since (1/2)h"+c 1 h'+F(h)>0 fo r  x< —1 and  h(-1)= 61e, two trajectories {(h(x),
h'(x)); x< —1) and {(k(x), k'(x)); k(x)>O, k'(x)<0} drawn in the vertical half strip
(0, S) x (0, oo) cross each other at just one point, say (w, p). Let 4  and x, be values
o f  param eter a t w h ich  they pass though it :  11(4)= k(x

1
)=w, h'(xt)= k'(x,)= p.

Now we may put

g(x) if x> x 2

f *(x)= k(x) if x, < x< x 2

h(x —x 1 + 4 ) if x< x,.

By Theorem 5.1 u(t, x +c, (; 1*)—■0 as 1-+ co and by Lemmas 7.1 and 7.2 lim 0 0(t,
w; fnlw< —e,— ,/ci— 2a which implies (6.6) fo r 0= 0 (t, w; f*). Other require-
ments for f*  are clear by the construction and hypotheses.

W hen f  belongs to the class [F,„] w ith  c o — v
i c6-2a 2.5_ co + N /c6 -2 a  , we

can find x 2'  such that
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4g"+c 1g ' + F (g )< 0  and g <6I2e fo r  x > x ;

and then construct f *  as above, but in this case f *  satisfies the condition (4.19) with
x2 = co. T h u s  f *  is constructed.

S te p  3 . The inverse function of u(t, • +m(t)), denoted by x(t, • ), is given by

(11 //VI, 

) 1 / 2  0 0 . ,  W ;
=x(t, u)— m(t)

and converges to w -
c
-,;(u); w;(w co ( x ) ) = x .  The desired assertion follows from the

inequality

la(t, x+ m(0)— w e o (x)1--lu(t, x+ in(0)—u(t, x(t, w c.0 (x)))1

K1 <(w)— x(t, w)+ m(01 if w= M(t,

where K t = sup {lu'(t, x)I; x E R}  is bounded for large t by the remark following (4.6).
This completes the proof of Theorem 8.1.

Proof  o f Theorem 8.2. Set 0=4)(t , f ).  It is proved as in the proof of
Theorem 8.1 that ci) o(1). Thus it suffices to prove that (/) ._Tc + o (1 ) . This
follows from Lemma 7.2 and the next lemma.

Lemma 8 .3 .  Let a > O .  Let a datum  f  be positive and dif ferentiable On a
right half  x -ax is. Suppose lim x . f(x )=  0 and

(8.9) —f'(x)5(b + o(1))f(x) as  x co(*)

w ith 0 < b <c o — .\/ ce, — 2y . Then

(8.10) 0(t. 14';.f)?-_-.7 ,(w) -3- 0 ( 1) as 00

uniformly where c= b/2 +

P ro o f . Set u = u (t, x ; f ). First it is proved that (8.9) implies

(8.11) —u'(t, x)__(b+o(1))u(t, x) a s  x co

for e a c h  t> 0 .  Put v(t, x)=exp {ca }P ,f(x ). I t  is  easy to see — v'(t, x)...“ b +
o(1))v(t, x). By Lemma 7.5 v(t, x )  as Set w= v— u. Then w '=
Ko {F'(u)w'+ ow' — F'(u)v'} (K 0  is defined by (4.12)) and, by Lemma 4.1,

1W(t, x)15K.,,{la — F(u)l (t, x)— o(v(t, x))

as co. T h u s  w e  have (8.11).
Set 4)(t, w)= 4)(t + 1, f ).  From (8.11) it follows that (At, — bw+o(w) as

w  0 .  Take a constant c2 w ith  co  <c 2 <c. It is not difficult to construct a con-
tinuous function I/4w), 0 1  w h i c h  h a s  a  piece-wise continuous derivative
bounded on each compact set of the half open interval [0, 1) and satisfies

tk0(w)<0 0< w <1, 1P0(0)=

(* ) "a (1 )S b (1 ) as t — ,c o " means that a(t) b(t), r N  for some N < c o  .



496 K6hei Uchiyama

11/0(w)<4(0, w) 0<w < M(0; 4))

>0,':,(w)
_lc2-2F(w)/k(w)

{ <0;(10 w < 1

and

- 4/0 (0)<c 2 -,/ c i- 2ot

opo  m ay be taken to be equal to a  (c', b)-manifold with c2 <c '<c  near w =0 and
equal to 4)(1/2, w; f o ), 1.0 = near u = I). Let g(x) be a non-trivial solution of
the differential equation g' =0 0 (g ) o n  R  and set 0=0(t, w; g). By Theorem 5.1
u(t, x +c 2 1; g)--■ I  a s  t-4 cc, because th e  last condition im posed on tko im plies
g(x)exp{ b*x} -÷oo as x--■ c c  i f  -44(0)<b*<e 2 -  2at. It is easily checked
that g  satisfies conditions imposed on f  in Lemma 6.4. Thus 0(t, w)..-t- i .2 (w)+0(1),
while (6.4) combined with boundary conditions:

0(0, w)>0(0, w)=0 0 (w) 0< w <M(0; 0),

w)> 0(1, w) for w near 0 o r  near A l i t ;  0)(*)

implies 4)(t, w)>IP(t, w) 0<w<  M i t ; 0 ) .  Therefore we have 0(t, w )-r e ,(w)+ o(1)
by virtue of Lemma 6.4. This proves (8.10) because re , (w ) t(w )  as c2 c .

q.e. d.

Proof of Theorem 8.3. Set 0(1, w)=4)(t+ to , w ; f ) where t o is a constant which
appears in  [ W ] .  As in the proof of Lemma 8.3 we see that 4)(t, bw + o(w)
and that for each b 1 , b* < b, <b there exists a smooth datum g  such that

g(x )-e - htA

g'(x )<0 x<0

and

0(0, w)> 0(0, w) 0< w <M(0; 0)

where 0=4)(t, w; g). Let 6 be a  positive constant which is related with u(( 0 , ;  j )
in the manner stated in Lemmas 8.1 or 8.2. Conditions (8.2) and (8.6) allow us to
assume that g  satisfies in addition g(-x)<min fu(t o , x; f), (51 so  tha t M(t; tp).<
mo; and M(i ; 0)-+ l as t--)co. Then as before we have 4) <0, while, as
was shown in the proof of Theorem 8.1,

0(t, r,..(w) -4-  0(1 ) c ' =  max Ico , b 1 /2 +1117,1 .

This implies 0(t, w)= rcn (w)+ o(1) and proves (8.1) as before.

Proof  of  T heorem  8.4. S et 0=0(t, w; f ). Condition [W ] and Lemma 8.1
implies M(t; 0)-)1  a s  t-+ cc. while Lemma 8.3 says that 0(t, w)=o(1) a s  t-) x .

(*) 1f (t ; 0)— I, to get this strict inequality we may use Remark 2 of Lemmas 7.1 and 7.2.
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From these the assertion of the theorem is obvious.

Under an  additional restriction on F, Condition [W ] can be removed:

Theorem 8 .5 .  Suppose F(u)/u is non-increasing.  T h e n  in each of Theorems
8.1 to  8.4 Condition [W ] m ay  be rem ov ed f rom  assum ptions of  each o n e . In
Theorem 8.3 the condition (8.6) may be also removed simultaneously.

For the proof we use the following lemmas

Lemma 8 .4 .  Suppose F(u)lu is non-increasing. Let f ,, 12  and f  be so related
that f  = f i + f 2 . Let u, u , and u2 be corresponding solutions of (1) and (2). Then

P ro o f . Set k(t, x )=F(u(t, x ))1u(t, x ) and  le t u t  and  u t  be solutions of the
equation

u• —1 u" + ku-  2

with u;`(0+, • )= f ,  a n d  14(0+, • )=f2 ,  respectively. Then u =ut + u t .  Since
F(u i)lu, F(u)lu for any (1, x)e E, we have (i =1, 2). Thus +112.

Lemma 8 .5 .  Suppose F(u)lu is non-increasing. Let f ,  and f 2  belong to the
class [Ed i.e. sup {x ;f i(x)>0}< co and set m ,(0=sup {x; u(t, x; f , ) =  1/2}  (i =1, 2).
Then m 1 (t)—m 2 (t) is bounded for large t.

P ro o f . We can assume that f 1 = I,_ 
1 , 0 ]  

and Since f 1 = f 2 —
f 2 (. +1), by Lemma 8.4 and Theorem 8.1

limu(t, x+ m 2 (t); wep(x)— wc p (x +1)—(1 — e - c. )w„(x) co).

Hence ni 2(t)  m i (t) ( 0)'is bounded.

Proof of Theorem 8.5. We deal with only the case that f  belongs to the class
[E p ] for some it > 0 .  The other cases are analogously treated and omitted here.

Let f  belong to the class [E,,]. For each positive integer n define

f „ = 1  f o r  x< — n; = f(x) f o r  x> —n

a n d  s e t  mn(t)=sup Ix; u(t, x ;  )= 1/21. Since f  + f o ( +  n ) ,  where fo=
/( _ 00 ,0 ] , by Lemma 8.4

x + m(0) —  wc0 (x+m(0 —  m.(0)1

x +m (t)+n; f 0) +1u(t, x+ m(0; f .) —  w 0 (x+m(t)— m n (t))1.

By Theorem 8.1 the last term in this inequality tends to zero as t—oo uniformly in
x ER. Thus, writing m o (t)=sup {x; u(t, x; fo)=1/2},

11m Iu(t, x + m(t))— w c o (x + m(t)— tn„(t))1_w c .(x +11m(m(t)— m o (t))+n).
( . 0 0 ( . 0 0

Since lim(m(t)—m o (t))> — co by Lemma 8.5, the  left side quantity in  the  above
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inequality become arbitrarily small uniformly in x> — N  for each real N  when we
le t n  la rge . Therefore (8.3) holds uniformly in  x>  — N . The required uniformity
in x> — m(t) is obtained if we bound u(t, x+ m(t)) below by u(t, x+m (t); f )  where

f , ( x ) = 0  f o r  x < 0 ;  =f (x ) f o r  x > 0

and apply Theorem 8.1 and Lemma 8.5. q. e. d.

In the proof carried out in the above we needed Theorems 8.1 to 8.4 applied to
data  with lim„,_ f ( x ) > 0 .  But for such data  the  proofs of these theorems are
much simplified. Indeed we need only the comparison argument based on Proposi-
tion 3.1 in the phase space and Theorem 4.1 in addition to Lemmas 6.2, 6.3 and
8.2 (see the proof of Theorem 8.3). Correspondingly Theorem 8.5 can be obtained
more easily than Theorems 8.1 or 8.2.

9. Speed of Propagation

We have seen in the previous section that the front of u(t, x; f )  propagates with
speed m*(t) as forming the shape of the c-front with some constant c, provided that
the tail of f  at (positive) infinity behaves regularly in a certain sense. The purpose
of this section is to get nice estimations of in(t).

Theorem 9.1. L e t  f  b e  a  d a tu m . S e t u  =u (t, x ; f ) . S uppose , f o r some
continuous function k(t), there exists

lim u(t, x + k ( t ) ) = g ( x ) i n  locally  L , sense,

where g  is not a co n stan t. Then g  is a c-front w ith some speed c,Ici_c () . If  m(t)
is defined by (for large t)

u(t, m (t))=-1 and  m (t)—  k (t) being bounded,

then in is continuously differentiable and nr(t)— c as co. Furtherm ore v (t, x).=

u(t, x +m (t)), y' and v" converge to w c ,  w  and w ';., respectively, as t—■oo locally
uniformly.

P ro o f . By the remark following (4.6) and (4.7), functions u', u", u" a re  uni-
formly bounded f o r  t > 1 .  It follows that the function g is twice continuously differ-
entiable and, setting v(t, x )=u(t, x+k(t)), w e have

(9.1) y' g '  a n d  v" --+ g" a s  t oo

locally uniformly in  x . L e t  J be a  connected component of the set { x ; g'(x )00} .
Without loss of generality we can assume g ' <0 on J. L e t x , e f  be fixed. T h e n
we can define a continuous function k ( t )  (for large t) by

u(t, k ,(t); f )= g(x 1) an d  lim k(t))= x„.

Set v* (t, x)= u ( t , x +k ,( t) ; f ) . Then by (9.1)
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(9.2) g, g '  a n d  4, -->  g" a s  t co

locally uniformly. N ote th a t 4(t, 0)= g(x ,) is  c o n s ta n t. Letting x  be fixed at
zero and t tend to infinity in the equation

v;=+v;+k;i4+F(v,,),

we have

k;(t) {(112)g"(x1)+ F(9(xiDI- - , c=
g'(xi)

a s  t co.

Integrating the both sides of the same equation by t from n  to  n+1 and letting n
tend to infinity, we have 0 = (1 /2)g" + cg' + F(g). Hence g  is a  c-front. q. e. d.

McKean [14] found that if F(u) has the special form au(1 —u) and initial datum
f  is the indicater function of negative real axis then in(t)._c*t — (40+ const., where
we write

(9.3) o(t)=(2c*)-1 log t.

This is easily extended to the case that F(u)Iti cx, i.e. fl =cx, and is readily derived
from

Proposition 9 . 1 .  Let y be a  solution of the linear equation

(9.4) = I if+ ow

w ith  v(0+, a.e. a n d  w ith  v(t, x)=0(exp {x 2 }) uniformly in t e (0, T) for each

T<co, where g  is measurable a n d  satisfies Ç exig(x)1dx<oo. Then

v(t, x + c*t — c(1)) ,v1-27tRec*Yg(y)dy e- c*x a s  t

P ro o f. By the  equation (x + c*t —)  log t — ) 2 = (x — y — log t)2 +2c*t(x— y—).

log t)+2at 2 , we see

v(t, x + c*t —)L log t) = eatP,g(x+ c*t log t)

e c.A lo g  t

O n t  Rex -P —

( x  —  y

2
—

t 

lo g  t ) 2

 c * Y } g (Y )d Y

Then substitute A= 
1/2c* to get the result.

Suppose F(u)/u Œ. L e t  f  b e  a  datum  an d  se t u = ti(t, x; f), tn(t)= sup {x;
u(t, x)=1/2}. Then

m(t) c*t—a(t)+const. if e x  f(x)dx<oo.

This is immediate from Proposition 9.1 and the inequality u(t, x) ecaPt f (x ). Let
A be a positive function such that
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A(x)dx < c o  and  A (logx) varies slowly at infinity.

Then under the same restriction on F

e* t - a t ) -  m (1)--■ co i f  f (x )= 0 (A (x )e - ‘"") a s  x co.

For the proof it suffices to show that if f(x)-A(x)exp {-c*x} as x-4 co and f(x)=1
for x<0 then  u (t, c*t-o - (t))-40 as co. B u t  for such f  we have seen, in Theorem
8 .1 , u(t, x + m(t))-4 wc o (x), while lim  u(t, x + c*t - const. exp - c*x} =
o(wec,(x)), since, by Lemma 2.2 (see also (2.22)), w,.°(x) exp {c*x}/x >O. Thus
lim u(t, x+ c*t -  a(t))= O.

We get here a more exact estimation under some additional restrictions on F
and f .

Theorem 9 .2 .  S uppose F (u )o ttt f o r  0 < u < 1  a n d  a u - F ( 0 =0 (u 1 + 6 ) w ith
some (5> 0 .  Let f  be a datum  w ith sup {x; f (x )> 0 } <co . T h en

e*t - 3o- (t)+ const. in (t) ._  e t  -30 - (t)+  0(log log t).

P ro o f . Step 1. W e can fined a  function F * and F *  satisfying (3) such that
F* and F*(u)lu and F (u )/u  are decreasing. Therefore there is no loss of
generality in assuming f = f 0 =1 ( _„„ c o  by virtue of Lemma 8.5 and in assuming that
F(u)lu is decreasing.

S et u=u(1, x; A )  a n d  v (t, x )= u (t, x+ m (t)). Then, by Lemma 6.3, we see
u(t. x),1, w 0(x) for each x<0 and Î w 0(x) for each x>0 a s  t-+ y .

Let rtt(t) be the maximal convex function on t >0 that bounds m(t) b e lo w . In
the  remaining part o f this step w e prove that m (t)-m (t) is bounded. D efine a
function a(t, s, N), t, s, N >0 by

m (t+  N )- m (0=  m (t+s+  N )-m (t+s )+a (t, s , N ).

Since c*t -  m (0 - ,  oo and nr(t)->c*, there exists an  unbounded sequence {t„) such
that m (t„ )=m (t„ ). It is easily seen that

0  m (t )-  m (t ) .  sup  a(r, s, N) if t >
s,N > 0
r > t , ,

Therefore for our present purpose it is sufficient to prove that

(9.5) a(t, s, N) 0  a s  t co uniformly i n  s, N>0.

Set h(t, x)= [v(t, x)- v(t + N , x)]+ . Then h(t, x) v(t, x + M(t)) with some function
Al such that M(t)-0 co a s  t-*cc. B y  L em m a 8 .4  and the monotonicity of F(u)lu

m (t+s)-m (t); v(t, • ))

m (t+s )-m (t); h (t, • ))+  u (s , m (t+s )-m (t); v (t+N , •)).

Since u(s, m(t+s)- m(t); h(t, •)) < v(t + s, M(t))-*0 as t-4 oo uniformly in  s, N, we
have
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u(s, m (t+s)-m (t); v (t+N , •))+o(1)

>4= u(s, m (t+s+N )-m (t+N ); v (t + N , •))

a n d  hence tn(t + s+ N )- tn(t+ tn(t + s)- m (t)+ o(1) w here o (1 )-0  a s  1-■co
uniformly in s, N .  This is the same as the statement (9.5).

Step 2. Set k (t, x )=F(v (t, x ))Iv (t, x ). Then we have

v. =Iv "+m 'y '+k v .

In terms of the standard 1-dimentional Brownian motion {B„ t O; Px , x e R }  (cf.
[9]), we have by Kac's formula

k(s,13,..,+m(t)—m(s))ds
ll(t , x)= Ex [e 0 fo(Be+ * O )]

where Ex [ . ]  stands for the expectation of Brownian motion B, starting from a posi-
tion x. Let q *  be a function on R defined by

q,(x )=M e - bx M > 0 ,  b >0,

where constants M and b  are chosen so that This is possible, because
v(t, w0(x) as t t oo for x >0, log wco(x ) -  -c * x  as x-* oc and F(u)lu =Ix+ o(tta).
Then

rv (t ,  x ) e . , E x [e — S o q.(B.+1"(1)—m(t—s))ds ±  M (t ))]  .

Write

m ( 0 =  -  n ( t ) .

Setting L=inft>s›o {m( 1) -  m (t-s)-(s/t)m (t)} , we see, by the convexity of m(t) and
the boundedness of tn(t)-nt(t), that L is finite and we have

v(t, x). eatEx[e-
1 0(  q * (  il.,4 -m (t)-1 --FL  ) d s f o ( B t  m ( t ) ) ]

and

v(t, _,[e-SO"(11'+"'")1+14"1Bid- M (0 =  — 1 ]

x P 1 [- I <B ,+m (t)<0].

w h ere  E l+  ] stands for the conditional expectation. Since {Bs + m (t)slt; 0<s <t}
conditioned on  B ,+m (t)= -1  has the same conditional law as  {Bs ; 0 <s <t}  con-
ditioned on B ,= -1 , the right hand side of the last inequality is equal to

r i
q*(B+L ) ds I B, = p(t, y  -m (t))dy

Jo

=E_,+11e-fot q • ( B . , ) d s I B t =  _ 1 + L l e c s n ( t ) *o ec Pdy +0(1))

ec* -1 p * ( t ,  -  I + L , -1+ L )ec*"( 0 (1+o(1))c*
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where p * (t, x , y) is the fundamental solution of the parabolic equation

u•=1-14"—q * u t > 0 ,  x e R.

In order to estimate p*(t, x , x ) let ft(t, x, y) be the fundamental solution of tr = If "  -
u where 4(x) = exp { —2x}. Then

p(t, x ,  y ) =  e- r1
7
1
2 K d e lK d e l  sinh (s7c)c/). s2 =

where i =,./ — 1 and K „ are modified Bessel functions of the second kind:

co
K,s( z ) =  e - 2  c o s h  r  cos (st)dt

Jo

(cf. [15]). It is easy to obtain the corresponding integral representation of N (t , x,
y) from which we have the asymptotic formula:

( i  ±  0 ( 1 ) )  ( * )t •
NO, X , X ) - - -   {K O  (  2

M
 e - b x / 2  )} 2  \ /it 3

Therefore

e c " (r )  

v(t, const.
3  

(1 + 0(1 ))

and

n ( t)5  
3

2c* 1° g t c o n s t .

This proves the first inequality in the theorem.

Step 3. W e may assume without loss of generality that F(u)lu<a— q for 1/2<
u <1 with some positive constant q  (<a) (if this is not the case, consider sup {x;
u(t, x)=1— e), instead of m (t)) . Then, setting

q * (x )=q  i f  x  < 0  a n d  = 0  i f  x > 0 ,

we have k ..a— q* for all t > 0, x e R, and

v (t, x )_eltE x [e - foq*( B.+"1 0 )- m( r- s) ) dsfo (B ,+m (t))].

Since for large t ,  by Step 2, m(t)— m(t—s)— m(t)s/t=n(t—s)—n(t)(1— slt)..4cr(t),
we see, as before,

v(t, 0)_eatE o [e -  50' q*(B+m(t) -gi-+46,( 0 ) dsIBt m( t)= 0]

x Po [B ,+m (t)<O]

= p*(t, 4a(t), 4o-(0)ec"(t )(11c*+o(1)),

(*) We need here only "O<C, 5,17 3 p(r, x, x)5 C 2 < CO (1 C O ) " . This is obtained under the
assumption that q* (x)xdx< co, (14, 0, /400 and q* is  locally bounded.
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where p*(t, x , y) is the fundamental solution of

u • =  u"  — q*u.

The Laplace transform of p*(t, x , x) is explicitely calculated for x >0 as

G(x, x)— ri)e-2,/ 2). X }  ,, (1 1

and inverting the transform we have, setting 8=4c,

p*(t, 6(t))

1  „ 1 a 
\ /27rt e \/2 j2,/rct t  (1 e - 1 9 1* { ,/rtt t 

e - 2 4 2 / 1 ( * )

= 7 2 t t  ( 1 ± 1 9 ( 1 ) )
1 282 

a s  t

Thus we have

1 28(02
2  5. /zit 0 _3  ec•ti(t)(c

+ o ( 1 ) )

or

n(t)?_. (3/2c*) log t — (2/c*) log log t + const.

and the second inequality of the theorem has been proved. The proof of Theorem
9.2 is completed.

Remark. Assuming F'(1)<0 in addition to the conditions of Theorem 9.2, the
speed of the convergence expressed in (8.3) is generally not more rapid than that of
(t log tr i  to tend to  z e ro . In fact we have for v (t, x )=u(t, x+m(t);

supixi<c log  sIV(S, )0 —

 wco (x)l Cat log t

where C and C , are some positive constants.
The proof is outlined here. Set M(t)---- — 1  u'(t, x; / ( _ , 0 ) ) d x .  Then using

Lemma 6.1 we have, after elementary calculations, that

m (t)=M (t)+5  . w'(x)xdx+o(1), M(t) =1 coF(v(t, x))dx.

Since c o = (wo(x))dx, it follows that

IM(t) — col 5 yLlv(1, x) — wc o (x)Idx

.2y[C log t supi x i <clogtiv(t, wco(x)I

(*) a(t)*b(t)=5:a(t —  s)b(s)ds.
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Wco(X)dX±
x>C log t x< -C  log t

from which we deduce the inequality

1 - wco (x))dx],

1 le(t) sup  < Clogt I w 0 (X )  V (t, X )I  c (
4 .
t log t  '  log t •

Here we put k(t)= M(t) - co t + (3 /2c0)log t and chose positive constants C  and C,
appropriately. Since M(0= m(0+ 0(1), we see k(t)=0(log log t) and then that the
above inequality implies the desired one.

It is interesting to compare the results as in Theorem 9.2 with the result obtained
in case F(u)=u(u - a)(1 - u) where 0<a <1 (as typical example): Fife and McLeod
[3a] says that with such F there exists the unique speed c for which the differential
equation (4) has a global solution w such that 0  w  1 ,  w(- co)= 1 and w(oo)=
and that for any continuous f  with lim„_,_ œ f(x )>  a and f (x) < a  it holds
that

(* ) ju(t, x+ ct)- w(x + x0 )1 0 a s  t oo

where u is the solution of (1) and (2) with present F and x , is some constant.
Next three theorems give an answer to the question of when m (t)-ct is bounded

and such formula as described by (*) holds.

Theorem 9.3. L et a > 0 and c>c o . Let f  be such a datum  that there ex ists
ekx f(x)=a co w here b = c -V c 2  -2a . Suppose la <cc.

o+
S et u = u (t, x ; f ). Then m (t)-c t  is bounded if  and only  if  0<a< c o .  I f  this is
the case and if  Condition [W ] is satisfied, then

(9.6) u(t, x+ct) wc(x + x0 ) a s  t c o  uniform ly  in x>N ,

where xo =b - i log (a,la), a o =lim , w c(x)ekx, f or each N >  - c c .

P ro o f . It suffices to prove (9.6) assuming that 0< a < co. Set w,,= limt..œ  u(t,
• +ct) and w*=lim,„ u(t, • + c t ) .  We will prove that if 0 < a < co

(9.7) w *(x ) w* (x )-f (x ) a s  x co.

Note that these are immediate consequences of Lemma 4.5 if c2 /n : y * .  First we
prove w* (x)_ ._ f (x )(1 + o (1 )). For this purpose, as in the proof of Theorem 5.1 (ii),
take a function P satisfying (3) such that S IP(u)-aulu - 2 du < co, P'(0)= a, P'

o+
and P  F .  Then û(t, x)-=-u(t, x; f ;  P ) u(t, x) and, since c2 /2 > a = sup P', lim no,
x +co=o c(x+.320 ) where 0', is a  c-front corresponding to P and is determined
by Oc(x + J20)- f (x) as x - oo. T h u s  w* (x ) . f (x) (1 + o(1)). Next we prove w*(x)
wc(x +x 0 ). By Corollary o f  Lemma 2.4, for any (5>0  we can find a  continuous
datum g such that with some constant L

- ig "+ c g '+ F (g )= 0  f o r  x > L  and g =1 f o r  x<L
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and such that g(x)— f (x) as x—*cc an d  f (x) g(x — 6), x e R .  Let ti =u(t, x; g).
Then by Lemma 5.1 lim 6(t, x+ct)=w c ( x + x , ) .  Since u(t, ù ( t ,  x —(5), w e have
w*(x) . _ wc(x +x 0 - 6 ) .  Hence w*:_w c(x + x0 ). S ince  lina  w c (x +x o )ekx =a 0 e- kx0,

f (1 +  o (1 )). Consequently (9.7) has been proved.
If Condition [ W ] is satisfied, we have u(t, x+ m(t))--4wc(x), and hence (9.7)

implies (9.6). The proof of Theorem 9.3 is completed.

Similarly we obtain

Theorem 9 .4 .  Let c 0 = c''. Assume (2.4) and that

c 110g <cc  o r  F(u)— cxu = o(uP) p> 1.
0+

Suppose limf(x)x - iec*x =a ex ists and is positive and finite. T hen  under C ondi-
tion [W ]

(9.8) u(t, x+ co t; f ) wc.(x+x,)

where x0  r= log (a0 la)lc*, a,= urn wc0(x)x - 1 ec*x.

In case c = co > c* we have

Theorem 9 .5 .  A ssum e the  hypotheses o f  Lemma 5.3 (i). T hen  m(t)—c o t
is bounded. I f  w e assum e in addition the hypotheses of  Theorem 8.1, then (9.8)
holds where x , is some constant.

Pro o f . The boundedness of m(t)— co t is clear by Lemma 5.3 (i). Let f  belong
to  the class [F i ]  with 2> c,— \ / c6-2a . T h e n  if  co —vca— 2a < b < min {A, co +
\/c1,— 2a} we have

su p ,"  M ( t , x+m(t); f )+w c „,(x)lebx a s  x co

and hence, by Theorem 8.1,

sup ,„ R x +m(t); f)—w c .(x)lebx - > O  a s  t co.

which combined with Lemma 5.3 (ii) deduces (9.8). When f  belongs to the class
[E,J, we can similarly proceed with any co —,/c,3— 2a < b <c 0 + ,/cti— 2a .

q. e. d.

1 0 .  Supplement to The Case co >c*

Here is given an alternative proof of Theorem 8.1 in the case co > c., which
provides a  better consequence. The proof is a modification of a proof given in
P. C. Fife and J. B. McLeod [3.11] to the assertion cited in §9 and simpler than that
given through § 6 to § 8.

Theorem 1 0 .1 .  A ssume co > c * .  L et f  be a  datum  such that f(x )= 0 (e - bx)
for a constant b >  —,/c6 —2a. I t  i s  in addition assum ed that Condition [G] in
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§5 is satisf ied (this is automatic when a >  0 ) .  Then (9.8) holds.

P ro o f . Set u =u(t, x; f  ) and z(t, x)= u(t, x + co t). Obserbing that v = u  or
v = u ' satisfies that, with k=F(u)lu or k=F'(u), respectively,

r i
v(t +1, x+ y)= p'(1—s, y)v(t +s, x)ds p*(1, y, r)v(t, x +r)dr

J o

+  d s1 Sœ  p*(1—s, y, r)k(t+s, x+r)v(t+s, x+r)dr
J oo

for x e R, y > 0 and t> 0, where p* is defined just after the equation appeared in the
last paragraph of §5, differentiating the both sides of this equation with respect to
y, and then putting y =1, we deduce the estimates: for t >0, x e R

luV+1, x+1)11(11W x ', u"(t+1, x+1)1 K l u r x'

w here ivrx
1 =sup Iv(s, y)i and K  is a constant independent of t  and x.

We can assume b<c+ \./cg- 2œ. T h e n , by the equality u•=2 - 'u "+F (u ) and by
Lemma 5.3 (i), we see that for t >1, x eR

(10.1) z(t, x), 1“1, x/I <Kimin {e" 1 }

where b 1 = co + 2 - 1 Vc8— 2a and K 1 i s  a constant independent of t  and x. Let &
be a positive constant so small that (co — b)e<ri, and set

z(t,x)
E ( t )= Y  e 2 c o x

LT.

z  0, )02
 - F(r)dr]dx.

—et 0
r 1

Then, by (10.1), E(t) is bounded as t tends to infinity and

Et
(10.2) E '(t)=o(1 )— S e 2 c0x[I z"+ co z' +F(z)] 2 dx.

-et

From these it follows that there exists an unbounded sequence {t„} along which
E .(t„)-40. Since z, z', z" and z" are bounded for x E R, t>1 (see the remark follow-
ing (4.6) and (4.7)), we can find a subsequence { t }  {t„} such that z (t ,  x) converges
in the norm of C2 ( — N, N) for each N >0. L e t  w(x)= lirn z(t.., x). Then, by (10.2)
and lim E (t ,)= 0 , 2- 1 w" +c o w' +F(w )=0 and by Lemma 5.3 (i), w does not de-
generate. Therefore w is a  co -front. Since any co -front is stable in the sense of
Lemma 5.3 (ii), we have actually lim z(t, x)= w(x) (see the proof of Theorem 9.5).
Thus the theorem is proved.

Appendix

Following diagrams illustlate solutions of the equation (1.2).
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(b) V 2cr Sc< c o, c>0

( c )  c =c o >,/- ( d )  c = c =1/Nx" (case 1)

(e) c > c , ( f )  c = c 0 = f2-c-r (case 2)

D EPARTM EN T O F A PPLIE D  PH Y SIC S

TO K YO  IN STITUTE OF TECHNOLOGY



508 1hei Uchiyama

References
[ 1 Aronson, D. G. and Weinberger, H. F . ,  Nonlinear diffusion in population genetics, combus-

tion, and nerve propagation, Proc. Tulane Program in Partial Differential Equations, Lecture
Notes in Math. No. 446, Springer-Verlag, New York, 1975.

[ 2 ] Coddington, E. A. and Levinson, N . ,  Theory of Ordinary Differential Equations, McGraw-
Hill, 1955.

[3a] Fife, P. C. and McLeod, J. B., The approach of solutions of nonlinear diffusion equations,
Bull. A. Math. Soc. 81, 1975, 1076-1078.

[3b] Fife, P. C. and McLeod, J. B., The approach o f solutions of nonlinear diffusion equations,
Arch. Rat. Mech. Analysis, 65. 1977, 333-361.

[ 4 ] Friedman, A., Partial Differentia! Equations of Parabolic Ty pe , Prentice-Hall, Englewood
Cliffs, New Jersey, 1964.

[ 5 ] F u jita , H .,  On the blowing up of solutions of the Cauchy problem for u t = du-Ful*", .1.
Fac. Sci. Univ. Tokyo Sect. I, 13, 1966.

[ 6 ] H adeler, K. P. and Rothe, F., Travelling fronts in nonlinear diffusion equations, J . Math.
Biol. 2, 1975, 251-263.

[ 7 ] H ayakaw a, K .,  On the limit state of solutions of some semilinear diffusion equations, Osaka
J. Math. 12, 1975, 767-776.

[ 8 ] I l ' in ,  A. M., Kalashnikov, A. S. and Oleinik, O. A., Second order linear equations of para-
bolic type , Russ. Math. Surveys 17, 1963, 1-143.

[ 9 ] Ito, K. and McKean, H. P . ,  Diffusion processes and their sam ple paths, Springer, 1965.
[10] Kametaka, Y . ,  On the nonlinear diffusion equations of Kolmogorov-Petrovsky-Piskunov type,

Osaka J. Math. 13, 1976, 11-66.
[11a] Kanel', Ja. I., On the stability  of solutions of the equation of combustion theory for finite

initial functions, Mat. Sbolnik 65, 1964, 398-418. (in Russian)
[11b] Kanel', Ja. I., The behaviour of the solution o f  the Cauchy problem when the time tends to

infinity, in the case of quasi-linear equations arising in the theory  of  com bustion, Soy. Math.
Dokl., 1, 1960, 533-536.

[12] Kobayashi, K., Sirao, T. and Tanaka, H . ,  On the growing up problem fo r  semi-linear heat
equations, J. Math. Soc. Japan, 29, 1977, 407-424.

[13] Kolmogorov, A., Petrovsky, I. and Piskunov, N .,  Etude de l'équation de la diffusion avec
croissance de la quantité de la nzartière et son application a un probleme biologique,  Moscow
Univ. Bull. Math. 1, 1937, 1-25.

[14] McKean, H. P . ,  A pplication of Brownian motion to the equation of  Kolmogorov-Petrovsky-
Piskunov, Comm. Pure Appl. Math. 28, 1975, 323-331.

[15] Titchmarsh, E. C . ,  Eigenfunction Expansions 1, Oxford Univ. Press, 1946.
[16] Uchiyama, K .,  The Behavior of Solutions of the Equation of Kolmogorov-Petrovsky-Piskunov,

Proc. Japan Acad, 53, Ser. A. 1977, 225-228.
[17] Widder, D. V . ,  The Heat Equation, Academic Press, 1955.


