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Introduction.

The present paper deals with a certain generalization of my former result
[2] and Shiba’s one [6] concerning the Riemann-Roch theorem on open Riemann
surfaces.

For this purpose we introduce a certain subspace Az of harmonic semiexact
differentials (see Definition 2.1) and define the notion of 4gz-behaviour of mero-
morphic differentials near the ideal boundary (see Definition 2.2). We find that
Ag-behaviour gives a generalization of A,- and A,-behaviour in [2] and [4], [5]
respectively. By using Ajg-behaviour we can define, as in [6], the singularities
at the ideal boundary and show the existence of elementary differentials with
prescribed such singularities.

After these preparations we shall show in §3 an algebraic duality theorem
on two mutually dual spaces of differentials (Theorem 3.5), from which we can
immediately deduce the Riemann-Roch theorem (Theorem 3.6). Finally we shall
mention some specializations of this theorem (Theorems 3.7 and 3.8).

The author would like to express his sincere thanks to the referee for many
helpful comments and suggestions.

§1. Preliminaries.

We shall be working on an arbitrary open Riemann surface W with genus
g(=o0). The space of differentials which we are dealing with is a real Hilbert
space /A of square integrable complex differentials on W with the inner product
defined by

Ay, > =Re(As, Xg)zReSSWA/\I‘z"zReSSW(aJ(ZZ—I—blEZ)dxd y

where 2;=a;dx+b;dy for a local parameter z=x+7y. The norm in A will be
denoted by |-|l. The real Hilbert space of square integrable real differentials
with the usual inner product (,) will be denoted by I. By {2} we denote a
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canonical regular exhaustion of W. For terminology and notations we follow
(1], £2], [3], 051, [61.

We use the following orthogonal decompositions and relations.
A=I'@il, A=4,D4..DA%,
Ap=A%:eDAnm=AnseNAf:eDAnnD A m
Ac=4,BA, Ap=A.NA¥E.

(cf. [1], [2], [5D)

The following classical Lemma is often useful in our work.

Lemma 1.1. Let 2 be a canonical regular region on W and E(W)=1{A;, B},
a canonical homology basis on W modulo dividing cycles such that 5N2 is a
canonical homology basis on 2 modulo 9. Suppose ¢, and ¢, are closed C'-dif-
ferentials on £ and ¢, is semiexact, then

oot Q005 31,80, 5L, 0, 5

where % stands for the sum over all Aj;, B; contained in £. (cf. [1], [2], [5], [7])

§2. Definitions and existence theorems.

Divide the set of positive integers J={l, 2, -+, g} into two disjoint set J;, [,
and let £L={L;} (j],) be a set of straight lines L; in the complex plane passing
through the origin z=0.

Definition 2.1. A (closed) subspace Az of Ax.enA¥, is called a behaviour
space if it satisfies the following conditions.

(i) Ag=iAd*, where A} is the orthogonal complement in A\ A¥se of Ag.

(ii) For each A, =45,

S 2=0 for je/, and S xb,g nel; for jels.
4j 4j Bj

We denote such a subspace by Az=Ag (L, J;, J.) or just by Az It is now an
easy matter to verify that Az={Z,|A, =4} is also a behaviour space if Aj is
a behaviour space.

Definition 2.2. A meromorphic differential ¢ on W will be said to have
Ag-behaviour if there is a neighbourhood U of the ideal boundary oW of W on
which it can be written as

¢:10+2nm+1eo

where 2, €A, Apn€ Apm and 2, Ao A
A meromorphic function f (not necessarily single-valued) on W is said to
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have Ag-behaviour if df has Ajg-behaviour.

Remark. Let Az be as above. Then the space

AB'=AB@Anm

satisfies
(0)/ AB'CAhse )
iy An:ABIEBiAﬁl ’

(i)’ VleAB.,g 1=0 if je, andS x,g i, if jel,
4 45 )Bj

for we know the orthogonal decomposition A,=A4,,N\A¥sePArmnPALn (cf. [1],
[5]). Hence Az is an immediate generalization of A, in [2] and also of 4, in
[5] (cf. Def. 6.1 in [2]). Conversely, every space Ajp satisfying (0), (i)’ and (ii)’
induces a subspace Ay as in Definition 2.1. To see this, we only need to note
that Adg=iA%*DiAtt,=iAdnn=A1n and hence we can consider the quotient space
Ap /Apm. In other words, the spaces which we now consider correspond to the
behavior space A,(J;, Jy) in [2], §6 in a one-to-one manner.

Definition 2.3. Two behavior spaces Az and Aj with the same partition
J=(J., J.) are called dual to each other if and only if Lo=L ;e Lj={z=2z;-z}|z;€ L;,
zze L} (j€]»), and

(Xb, ZF)EL(), for RDEAB and ZZEA/B.

In the following we assume that L,=KR. Let P be a regular partition of the
ideal boundary oW, and take the following real linear space of differentials.
AP={¢|¢ is an analytic differential on some Ue&(W) and (P)-semiexact}.
Here by &(W) we mean a collection of neighbourhoods of the ideal boundary oW.
Let . f:{gﬁeAPlL $=0 for jeJ; and SA é, SB gL, for jeJ, and A, B,cEU),
J j j
Af,={p= A%|$ has Ap-behaviour}. And so we consider the quotient space

Vip=AL/ Al .

Definition 2.4. The elements of V%, will be called (P)Ap-singularities, and
the subspaces of V%, will be called (P)Ap-divisors.

Definition 2.5. Let V=V(P, Az) be a (P)Ap-divisor. A regular analytic
differential 2 on W is said to be a multiple of V if there exist g€V, 2,4,
AnmE Apm and A€ Ao\ A* such that

Z=U+2b+zhm+2e0
on some Use(W).

In this case we say A has (P)Ap-singularity ¢. The following linear space will
be a basis for our work.
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D(V)={2]2 is a multiple of V}.
Now we are ready to give the uniqueness and existence theorems.
Theorem 2.6. (Uniqueness). Let ¢=D(V) be free of (P)Ap-singularities. If
S $=0 for jJ and S ¢,S $<L, for j ], then $=0.
4; 4j Bj

Proof. Since ¢ does not have (P)Ap-singularity, we can write
¢:Zb+2hm+zeo

on some Us&(W). Let 2 be a canonical regular region such that 62CU. Then
by Lemma 1.1

I¢1=(g, po=—i(p, ¢*)
=i\ 955,950,019

If we apply Lemma 1.1 to the first term in the right side

[, Joa=], Jut tunt 200+ Tunt L=~ ot umt Reo, 2+ 2Em 2000

+3(, 2, 2], 2], W,

since @=Ap+Anm+4eo 0N 02 and \ Apm=\ Axm=\ o=\ 2,=0. On the other
Aj Bj Aj B

J
hand, by the hypothesis in the theorem,

Squs:SAjz,,:o for jeJ, and

Im[SAj¢gBj¢_SBJ’¢SAJ‘¢:I:Im[SAijSszb—SBijSAij].:O for j& /e
And so
l@lle=Im(2p~+Anm+2Aeo, AF+Akm+20)e=1Im Pg.
Here
Po=(Ay+Anm+Aeo, 2+ Afm+ 450

By considering the orthogonal decompositions in § 1 one can get !lzlr{ly Im Po=Im Py
=0, i.e., |¢llfy=0, that is, ¢=0.

Theorem 2.7. Let {a;} jes, and {a;, Bj}jes, be given sets of non-zero complex
numbers such that «j, B;& L; for j€J,. Then there exist holomorphic differentials
$a(B) GEJ) and ¢3(A)) (j€J.) such that

(i) ¢aj(B,-) and ¢35 (A;) are free of (P)Ap-singularities, i.e., these have Ag-
behaviour,

(ii) SAk¢aj(B,.)=a,.<B,><Ak) for b, je],



Riemann-Roch theorem 323

Bo(B)) |, G5 (ADSLe for b JE]u (k%))

Ar

J
[, $osBotassLy |, s A0—fseLy for j€T.
|

$oBi). |, $u(BIELu, for j€ ]y and kE],

Ar
[, 6e/BI=], ufap=0 sor jeJ. and ke].
Ap Ap

These are uniquely determined.

Proof. Regard B; as an oriented analytic Jordan curve. Let R, be relatively
compact ring domain containing B, Define », C*-function on R,—B; as follows
{ —ia;: on the left side of B;

v=
0: on the right side of B,

We can extend v as 9€CiW—B;). Then doe A\(W). (cf. [2], [5], [7]). If we
consider the orthogonal decompositions

A= 13B A o= Anse N AF D A D AfnD oo
and
Ansen Afse= A5 Di A= ADi A5,
then
A= +ils+ 2 m+ 2m+Aeo

where 2y, 44 A5, Anm, ApmE Anm and o€ Ag. If we set
Pa (B)=(A+Anm)+i(A+ Anm)*,
then @, (B;) is a holomorphic differential on W and
Pa (B)=2Ap+ Anm+id0+2—12m—12e0
=1d0+ A+ )+ (Anm—1iqnm) —iAeo -

Obviously A+ €A, Anm—idpmE Apm and —ide< A Since dd has compact
support, this differential has Ajz-behaviour.
Let 7 be any cycle. Then we can write

[, 8o Ba=as(Bx 1=\ ot 2).

If we take A,, B, instead of y we obtain the period relations in (ii).

As for uniqueness, suppose that ¢, and ¢, are two admissible differentials.
Then ¢,—¢, satisfies the conditions in Theorem 2.6 and so ¢,—¢@,=0, i.e., ¢, =¢,.
The proof for the case ¢,gi(A,») is similar.

Before giving the existence of differentials with (P)A4g-singularities, we give
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some more terminologies. Let P: oW= LIJ B, and take fe{f,}. We say that
vel!

(P)Ap-singularity o is zero outside of B if we can find a representative ds (€ AZ)
of ¢ such that ds=0 on a neighbourhood of W —pA. In this case we call ds a
nice representative of g. Take a (P)Ap-divisor V. If all elements of V are zero
outside 8 then we say V is zero outside of §.

We denote by V(P, Ag; B, m) a (P)Ap-divisor which is zero outside of B and
is of dimension 7 (as a real vector space), 0<m=oco. We assume m#(0 whenever
B+a.

Theorem 2.8. (existence of differential with (P)Ag-singularity). Given o€V
=V(P, Ag: B, m) there exists a regular analytic differential ¢ on W such that ¢
has (P)Ag-singularity o. Moreover under the period conditions

S ¢=0 for j€], and S ¢,S peL; for je,
4j 4j Bj
@ is uniquely determined.

Proof. Let ¢ be a representative of ¢ near ¢W. The domain of definition
of o can contain the closure of some Ue&(W). Since ¢ is (P)-semiexact then
o|U can be extended to a differential 6= AYW) such that supp.8N\W—U is
compact (cf. [5]). Since ¢ is analytic on U then o—i6*=0 there. And so
6—i6*=0 near oW. Thus —ic*eA(W)CA(W). Because of the orthogonal
decompositions A=A, ;e\ AE D Ann® AP AY, and Ay enAfse=ApBiA%, we can
find 2, 4 A5; Anm AmE Anm; Aeor AenE Ao such that

G—16*=pHiAF+ Aam+ im0+ 2% .
And so we can get a harmonic differential

t=0——Am—Ae0=10*+iAF+ A n+ 25 .

If we set
1 . L1 [ , 1 . ,
§= 5 (Hit)=0+ 5 (W —iZ) = 5 (AnntZim) = 5 (Aot 2o

it is easily seen that this is a required differential. The uniqueness follows from
Theorem 2.6.

§3. A duality theorem and the Riemann-Roch theorem.

In this section our main object is to obtain an algebraic duality theorem
which gives rise to the Riemann-Roch theorem (cf. [1] pp. 325, [2] [3]). For
this purpose we need some new terminologies. Let @ stand for canonical parti-
tion of 0W. Let P be a regular partition such that oW =a\JBUr where g\Ur+@.
The partition P induces the partition Py: 62=ao\JBo\Uro of the relative bound-
ary of each canonical regular region £, such that ap, B and 7o are dividing
cycles homologous to «, B and 7 respectively!
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Given two dual behaviour spaces Ap=Ax(L’, |1, J.), Ab=As(L”, ],, J») and
two divisors Vo=V(Q, A, B, m), Vp=V(P, A}, v, n) we define the following real
vector space

M(VQ):{f=S¢|¢E D(Vg) and Squs:o for je ., SAj¢, SajngeL; for je Ju}.

To be able to define a well-defined bilinear mapping from M(Vg)X D(Vp) to
R we need the following lemmas (cf. [1], pp. 325. [2], [3], [5]).

Lemma 3.1. [f o=ds€ A%, weD(Vp) and feM(Vy), t€ AL,
lim ImS sw and lim ImS fr
2-w Bo Q-w TQ
exist and are finite.

Proof. Let Q,, 2, (D£,) be sufficiently large canonical regular regions, and
G be a region bounded by B8,=pgp, and B.=go,.
Applying Lemma 1.1 to G we get

Sﬂz—ﬁlsw: —la, w*)a_l-a%z(SAjagajw_Sa,-GSA,- w)

since SA 0=0 and SA w=0 for jeJ,. Moreover we have (o, W*)¢=—1(c, W)c=0
j j
since analytic and antianalytic differentials are orthogonal to each other. Also,

because of duality conditions in Definition 2.3,

IR R

Ima.z.rz SAjUSB,«w—SBjaSAjw):O'

sw=0, i.e, ImS sw=ImS sw. This means that ImS sw is inde-
Be-81 B2 81 Bo

pendent of the choice of £ provided that £ is sufficiently large. Thus

Hence ImS

lim ImS sw exists.
2-w g

A similar proof for the second part of lemma.

Lemma 3.2. Let feM(Vy) and weD(Vp). If f has (Q)Ag-singularity ¢ and
w has (P)A%-singularity =, then

}21_1‘.1}1', Imgmfw:hm ImSﬁgsow+!l)1_{£1V ImSTgfz-o.
for any nice representatives ds, of o and v, of v. Consequently,

lim Reig s w—ilim ImS
o-w - 2mi)eg  2m @-w ,s_qs"w
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and

. 1 1
lim Re 27:15 ST o i ‘mS Jzo

are independent of the choice of nice representatives ds, of ¢ and ¢, of t.

Proof. Write df=ds¢+A+Ahm+Ae0 and w=z,+A/+A}n+2% on some U.
Let £ be a canonical region such that 02CU. Since ds, and 7, are zero outside
of B8 and 7 respectively, then

[, fzuzgag+ﬁg+m<g(dso—l—,?{,-i—l;,m+léo))(zo+2{,’+15{m %)

Sa9+ﬂg+r9<g(2b+zhm+z o))(l Anmt Al )+S So(AY 424w+ 2L,

+, (@tsatio),

If we apply Lemma 1.1 to the first term and consider the hypothesis on differ-
entials, it follows that

S fw=—(, W5 +eat 2<SAj2LSBj2£'—SBjZ£SAj ',’/>+Sﬁ_@s°w+grgff°’

where

co=—L[(%, nDot s, 2D+ Rhm, Ao+ Ahm, AmHa
+@Ahm, 2oNo+ Ao, AP+ Ae0, imF)o+Rbo, Ao¥)e]
and })m‘%, Imep=0 by means of the orthogonal decompositions in §1. On the

other hand, as A5 and A% are dual w.r.t. R,

lim Im(Z, B¥p=0 and EIm(S zgg g—g ,z;,S %)=0.
W, Jg Aj Bj Bj A5
Hence

}21{1;1‘, ImS fw:_lol-r-];lv Imgﬁgsow—}-}}{% IerQfTO’ g.e.d.

-
uQ

From this lemma we give the following definition.

... 1
Definition 3.3. We call le Re— 517 Sﬁgsow (resp llrn Re-— 527 S fro) the
residue of sw at B (resp. fr at j) and write R%s sw (resp. Res fz), where o=ds
7

(resp. 7) is the (Q)Ap-(resp. (P)A%-) singularity of feM(Vy) (resp. we D(Vp)).
Similarly, we can define, for those f and w in Lemma 3.2, Res fw, Rgs fw, Res
a T

fw and Rﬁsfw.

With this definition the above result can be written as
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Lemma 3.4. Let f and w be as in Lemma 3.2. Then

Rfsfw—l—Rgsfw—i-Rresfw:Rﬂes sw—I—RTes fT.
Now we define the following real vector spaces.
SWolVe)={feM(Vyl| f is single-valued on W and R;esfr:O, VeVt
D(Vp| Vo= {weD(VP)lRﬁes sw=0, YdseVgy}.
After these definitions we state the duality theorem.

Theorem 3.5. (Duality Theorem). If

dim{M(V)/S(VlVe)]< o0,
then

MV )/ SVl Ve)y=D(Vp)/D(VpllVe)
holds.

Proof. 1f feM(Vy) and We D(Vp), then we have
—27 Res fu=3 Im(SAjd fSBj“’—SB,-deA, w) (finite sum).
For (f, w)e M(Vo)X D(Vp) and the (Q)Ajp-singularity ds=o of f, we define
h(f, w)=Rﬁes sw.

Because of Lemma 3.2, & is a well-defined bilinear mapping from M(V )X D(Vp)
into R. From Lemma 3.4 we can write

A/, w):—%;Im(SAjdeij—SBjdeAj w)—Res fr.

One can see that S(Vg|Vp) is the left-kernel and D(Vp|V,) is the right-kernel of
h. ((1], (2], [5]). The duality theorem follows.

Main Results:
From Theorem 3.5, as in [6] we can deduce the following theorems.

Theorem 3.6. If m s finite, then
dim S(VolVp)=m—+2—2min(#y, 1)—dim D(Vp)/D(Ve|Vy),
where 81 denotes the number of (ideal) boundary components of y.

This is a generalization of the Riemann-Roch theorem in [2], [6]. Indeed,

if J, (resp. J,) is empty, then Theorem 3.6 reduces to Theorem 4, [6] (resp.
Theorem 5, [2]).

Theorem 3.7. [f the genus g of W is finite then



328 Turgut Baskan

dim S(1/A)—dim D(A)=Ind. A—2g+2
where A=Vp|Vq, 1/A=V,||Vp and Ind. A=m—n—2min(gy, 1) is the index of A.

Let W, be any Riemann surface of finite genus and B=/{p,, ps, ***, P:},
7=1q1, g2, =, g5} disjoint subsets of W, such that BUrs@. Take the open
Riemann surface W=W,— Uy then oW=a\JB8Ur where a=0oW, Let (m;, m,,
-+, my) and (ny, n, -+, ns) be ordered sets of positive integers associated with 8
and with 7 respectively. We set 7710=;ml~, "°=‘j—" n; lf f=@ we take m,=0

and if y=@ we take n,=0.
As in [6] we consider the vector space V(B) spanned by the differentials w#1
and @#¢ which are holomorphic near oW and

dz (resp. V=1 dz ): near p;

wii (resp. wi={ 2" e
0 (resp. 0): near oW — {p;}
(1Zigr, 1Sp=my).

And the vector space V() spanned by the differentials

dgj (resp. V=1 dej) near g¢;
oy (resp. ¢;J‘)= ij Cj’

0 (resp. 0): near oW — {q;}
and

dCCll (resp. =1 dél): near ¢,

b (resp. ¢p)= %fk (resp, —+/—1 dé"): near g

0 (resp. 0): near W— {g,, qx}

(1=j<s, 2=y;=ny, 2=k<s) for y+@. If y=0 we take V(r)={0}. Then we
can write m=dim V(8)=2m, and n=dim V(y)=2n,—2min(n, 1). And so we
state the following theorem

Theorem 3.8.
dim S(1/A)—dim D(A)=2(m,—no)—2g+2,

Where A:VP” VQ’ VQZV(Q’ A/B; ﬁ’ "1); VP: V(P: Ag, 7 n)'
Finally we remark that by particular choice of the space Az our result

reduces to [3], which initiated the study of Riemann-Roch theorem on open
Riemann surfaces.
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