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with double characteristic roots, II
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In this paper, we consider the Cauchy problem of systems with double
characteristics ;

{ () Pu=Dau+ 3 A%t \)Dou+Bu=f, in QCR.XRE,
2) ult,, )=u.(x),

where Ai(t, x) and B, x) are of order N and A%, x) are real (1=i/<n). We
assume the following :

Assumption 1. Each characteristic root 7=2,(t, x ; &) of det P,(, x; 7, £)=0
is real, of constant multiplicity and at most double.

Let 2; be double for 1<j<r and be simple for r+1=<j=<s. As well known,
under the assumption 1, the following condition (L) is necessary for the & well-
posedness.

1 .
(L) COPpPscoPp'}"WCDPP {PP’ caPp} |T=1jEO ’ (].é]é?’) ’

Here, P,, P, and ®P, are the principal symbol of P, the subprincipal symbol of
P and the cofactor matrix of P,. In the previous paper, we considered 1) the
consequence of the condition (L), 2) the existence of stably non-hyperbolic oper-
ators with only real characteristic roots, 3) sufficients conditions for the & well-
posedness, restricting ourselves to the case of n=1. In this article, we shall
generalize the results in the sections 1 and 3 in [26]. However, there exists
some difficulties proper to the case in higher dimension domains. Therefore the
results in this article are a little rougher than those in [26].

We shall use the notation and the definitions given in [26] without mention
of it. We shall name the sections in the previous paper [26] and this paper with
the straight numbers. Then, we shall start from the section 4. (If we say “the
section 17, it means “the section 1 in [26]”.)
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§4. Smoothness of the eigen-vectors—the case of higher dimension—.

In this and the next sections, we shall establish the similar theorems in the
domain of dimension n+1 (n=2) as those in the sections 1 and 3. If all of the
coefficients of P, depend only on ¢, we can obtain the results exactly correspond-
ing to those in the previous sections. However, in the general case, some
essential difficulties occur when n=2. In order to avoid one of such difficulties,
we assume the following through this and the next sections. Let us set
Rjt, x, E)=rank Py(t, x; 2,(t, x; ), 6), (1=j=r) and Q,={t x, € 2XR™\{0}|
Rit, x, £)=N—1}.

Assumption 2. The projection of the boundary of each connected component
of 24 to £ lies on a family of some disjoint spacelike hypersurfaces {T7},
(1=j=<r), in general, as a subset.

Remark The determination of such hypersurfaces is not unique.

4.1° Theorems of the smoothness of the eigen-vectors.
In this section, we show that the condition (L) implies the piece-wise smooth-

2 : .
ness of the eigen-vectors of A,(f, x; &)= X A'({, x)§; under the assumptions 1
i=1

and 2.
(T3}, devides 2 into a family of open connected subdomains {2}, and a
closed set 37, where R/, x, £) is constant on each /X R™\{0}, EJQKLJ T7 and

Si=g, (1<j<r). If R;=N—2 in kkj Qix R\ {0}, R; becomes identically N—2

on 2XR™\{0}. Then P, is strongly hyperbolic in £, if all R; are equal to
N—2 on kk) QIXR™\ {0}, (1=j=r). Therefore, we consider the case when R;,

takes the value N—1 on QX R™ {0} for some j, and k,, (1=j,=7).
Corresponding to Theorem 1.3, we can obtain the following theorem.

Theorem 4.1. (Smoothness of the eigen-vectors on T*(2)\{0}.)
Under the assumption 1 and 2, we suppose that P=P,+ B satisfies the condi-
tion (L).
(i) If R;=N—1 on QX R™\{0}, we can take the real unit eigen-vector &t, x, &)
of Ay, x; &) belonging to A(t, x, &) in C=(RIx R™\{0}), 1<j=<r).
(il) When R;=N—1 on Q]\JQ}, by virtue of (i), we can take ¢; in C=(2Ix R™\{0})
and in C=(Q2]x R™\{0}), respectively. If &é,t, x, &) is continuously connected
on (024N0R2}) X R"\{0}, it must belong to C*(2]Ix R™\{O}).

We shall prove this theorem at the last of this section.
Since no bicharacteristic curve is tangent to 992{X R™\ {0} under the assump-
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tion 2, the following corollary is immediately derived from Theorem 4.1.

Corollary 4.2. (Smoothness of the eigen-vectors along the bicharacteristic
curves.)

Suppose that the same assumptions in Theorem 4.1 hold and that R;=N—1 in
QIXR™\{0}. Let n(s) be an arbitrary bicharacteristic curve belonging to A,(t, x, ).
Then, é5t(s), x(s), &(s)) taken in Theorem 4.1 is smooth on wN\Qix R"\{0}, where
w is a neighbourhood of w(s) in T*(Q).

Remark. By virtue of Theorem 4.1 and Corollary 4.2, the condition stated
in Y. Demay [3], [4] is not realized under the assumption 2, because ¢; in

Corollary 4.9 must satisfy the equation of type %ej—:ae,- along the bicharac-

teristic curve in T*(£), if there exists Sj(t, x;&). (See the remark 2 of Theo-
rem 1.3.)

Without some additional assumption like the assumption 2, the continuity of
¢j(t, x, &) is not, in general, guaranteed in the case of n=2, even if the coef-
ficients of P, are real analytic. (See Theorem 1.5 and the example 4 in the
section 1.) However, we can relax the assumption 2 in this case.

Theorem 4.3. (Real analyticity of the eigen-vectors.)

Suppose the real analyticity of the coefficients of P, and the assumption 1.
Then, only one of the following two cases arises for each j;

(I) R;=N-2in T*\{0}.

(1) R;=N—1 1n T*\{O} except an analytic set.

Here, the exceptional set is the support of the discontinuity of Rit, x, &). If
its projection to 2 is a family of spacelike hypersurfaces in £ with respect to
D,—2t, x; D;) (except its singular points), we can take 24t x, §) in the real
analytic class in T*(2)\{O}.

This theorem is brought from theorem 4.1 and de I’'Hopital’s theorem.

4.2° Proof of Theorem 4.1 —Reduction—.

From now on, we prove Theorem 4.1. The proof depends on the same idea
as that in Theorem 1.3. However, since there exists an essential difference in
the case of n=2, we give the detailed proof again.

Suppose that P=P,+ B satisfies the condition (L). We consider the behaviour
of 8,(t, x, £) near 02{X R™\ {0} through reducing the condition (L) to the first
order partial differential equations with respect to the elements of A,(t, x; &).
We consider mainly the property (i). The property (ii) will be obtained immedi-
ately through the proof of (i).

At first, let us reduce the equation (1) to a family of systems of type 2X2
and scalar equations.
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Lemma 4.4. 1) The condition (L) is invariant under an arbitrary spacelike
transformation.

2) Let 1t x; &) be regular and homogeneous of degree 0 in &, and more-
over, let J1_,(t, x; &) and J_,(t, x; &) be of degree —1. Let us set JU(t, x; D)=
Ne(t, x; Dp)+T_4(t, x; D) and '@, x; D)=(T0)"(t, x; D)+NL,(¢, x5 D). If
P satisfies the condition (L), the principal and subbrincipal parts of 9I(t, x; D)
<P, x; Dy, D)V, x; D;) also satisfy the condition (L).

Proof. 1) was proved in H. Yamahara [25]. 2) is easily proved by the
following :

Ul(fnan/):moprno_l (Eﬁp) , coﬁp:mocoppmo—l ,
A1) oo NNPN)=3,BIy*+ ;0 TNPR Ny + E TP Ppesy 05

+ 3 IO P Ty i+ Ty Pyl 4 TPy,
=1 Q.E.D.

Lemma 4.5. For arbitrary (t, x, &) in 2XR™\{0}, there exists a neighbour-

hood w of (¢, x) in 2 and a conical neighbourhood I' of & in R™\ {0} such that

At, x; &) has a real C*-“emblocking” matrix B, which is homogeneous of degree
0 in & Here, B, satisfies

(4.2) A, Bo=B,C,, where Ci= er

and C{ is of type 2X2, real and homogeneous of degree 1 in & (1=j=<r).

Proof. The projection p; to the root space belonging to 2; is given by
(43) ps=(1/270] (7= A/ 18D,

where 7; is a circle including only 2;/1&|. Obviously, p; is smooth in a neigh-
bourhood of (¢, x, &) and homogeneous of degree 0 in &. This implies Lemma 4.5.

Q.E.D.
We use ~ in order to express the asymptotic equivalence.

Lemma 4.6. For arbitrary (i, x, &) in @XR™\{0}, there exists a neighbour-
hood w of (t, x) and a conical neighbourhood I of & such that P(t, x; D,, D.) has
an “emblocking operator” B(t, x; D) which satisfies the followings in wXI.

(i) 8¢, x;86)~ li‘,o B_(t, x; &), where B_,(t, x; &) is homogeneous of degree

—k and the right-hand side is a formal series.
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(i1)
44) Pt x:D, D) 8¢, x; D)=3(, x; D;)-Ct, x; D, D;) mod.S™™.
ot
& 0
(45) @, x; Dy, D)= “er :

O CT-H
.'cs
where C(t, x; 1, E)~Ci(t, x; 7, &)+ ?‘;,o CLit, x;8), CL, is of type 2X2 when

1=<j<r and is scalar when r+1=j<s, (—1=k). Here Cit, x;, &)=tI—C{(t, x; &)
when 1=j=<r and Cit, x; 7, &)=t—2At, x, §) when r+1<j<s. B, and Ci are
those in Lemma 4.5, (1=<j<r).

(i) C{+Cj satisfies the condition (L) with respect to At, x, &), if and only if
P satisfies the condition Lit, x, £)=0 in 2XR™\{0}, (1=<j=7).

Proof. Let us set formally 8(, x; D)~ g:o B_4(t, x; D). Then,

U6 P O~E- P98 sw=PrBet( 5 PO Buot B Py 8 )t o,

where P,=P,, P,=B, P_.;=0 (1=k) and 7, k and « in the summation run over
0<h<l1, k=0 and |a|=0, respectively. On the other hand,

1 n ;
QC’VZ? Q—k(a)c—t(a):‘gocl'l‘(g) Qo(l)cl(i)+—@oco+ 3-161)‘[‘ ey,

where [, £ and a in the summation run over /=—1, k=0 and |a|=0, respec-
tively. Multiplying 8! to the above formulas from left, we get

4D (BB (878 =T BB OC

1
_271—' B'PY B _hrtCom-vy

where h, [, B and a run over 0ZhZl, —1=Z/Sm—2, 0=k=<m—1 and |a|=0
satisfying —h+k+|al=m—1 or I+k+|a|=m—1. Let us set

By B , B
(48) Q—mEQEIQ—m= ﬁ?—lm’ —@.izmy """ , Q'gsm
Qilmr Qé-zm’ """ ’ -’-‘B.s—sm

where 8%, is of type 2X2 when 1=i, j<r, 2X1 when 1</<r and r+1=<j<s,
1X2 when r+1=/<s and 1=<j=r, and a scalar when r+1=7, j<s. We also set
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C .
o
where 7, is of type 2X2 when lgj_s_r and a scalar when »+1=<j<s. First,
we set $,=I and Cj=c[—CJ (¢, x;&). Then equation (4.7) is equivalent to the
following (4.7%).
4.7) Cl Y, — 89,0 =the known terms—d;;C. cn-1) ,
(m=1 and 6;; is Kronecker’s 4.)

If 7#j, we have the unique solution 8%, of (4.7") by virtue of 2;#21;, and if

i=j, we put Cm_p=(—1)X(“the known terms” in the right-hand side of (4.7))

and 8Y,=0. Here, we notice that ¢/ ,_,, and 8%, are smooth in wxI even if

the rank of A;/—¢{ changes. Since @, is regular and smooth in wXI, B_,=

BB _ and C_, belong to C*(wXI") and moreover they are homogeneous in £.
By virtue of the determination of ¢Z;, (/=0), we have

. . n .
(4.8) Cl=the corresponding part of [.@;‘B.‘Bﬁ— 2 Bi'P, P By
1=0
n . n . n .
-+ g‘ﬁ BT PPy Bot igl BF'DOP, Bocyy— ;1 By'D Bo1yCy

+61$0_1-@—1+Q51-@—101:| .

Therefore, we can prove the invariance of the condition (L) by the same way as
the proof of Lemma 4.4. Moreover, since C is emblocked, the condition (L) of C
is equivalent to those of C7 (1<j<r). (See also K. Kajitani [11].) Q.E.D.

4.3° Proof of Theorem 4.1 —Continued—.

Let us take P=P,+ B which satisfies the cpndition (L). By virtue of Lemma
4.6, P(t, x; D,, D;) is reduced to a family of systems of type 2X2 and scalar
operators modulo S™. Cj+C} satisfies the condition (L) (1<j<r) since P satisfies
the condition (L). We set Cl=(r—2,{t, x; &) —A] and
allt, x; &) bt x; &)
it x;6) dit, x; 8]

Ai has a double eigen-value 0. Then,
dit, x; &)=—a’t, x; &), (a’lt, x; E))+bt, x; E)c/(t, x;6)=0,
(Ait, x;€)*=0 and “ci(t, x; &)=(c—A,t, x; ENI+A{t, x; ) in oxT.

~ .
Aj=

(4.9) {

Let us omit the suffix j. We assume that

R(t, x, &)=rank Py, x; At, x; &), §)y=N—1 in 2,XR™\{0},
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that is, |b(t, x;&)|+clt, x;E)|#0 in Q,XxR"\{0}, and that a part of 9%,
consists of T :t=¢(x) and £, is in the side of t<¢(x). Let us write A instead of
A, By virtue of ABA+AD A+ AGAP+AAR=0 (0=</=<n), the left-hand
side in the condition (L) is equal to

@10)  (G-DI+ A C—g B 1E—DBI- AR} [ (6—DI+A)

5 (G DI+ AL B {E—DPT— A9} (= Do T+ Aco)

= 3 G Dol Aol (G DO I+ A |

§o=12

=AAw+ il Ay AP —2D A} + é AAu AP+ ACA .

0 0
Let us set ali—ma(t, x; &), aei—TEi—a(t, x; &) and

C(,:—«/—_lr()(t’ x;8) Bt x;&)]'
7’0([7 X ; 5) 50(tr X 1 E)

By virtue of (4.9), (4.10)=0 becomes the following ;

@1y (—a/m—{E B B del—albe 0 3 (—asbre—asty,
—B.(=a/by—(a,—d,)(—a/b)+7.=0,  when b+0,

@12 (@/—{ E nasan— 3 el e B @soare,

—roa/c—0,—a,)a/c)+B.=0,  when c#0.

Now, we set g=-—a/b, h=a/c, a=Rea,, B=Refp,, r=Rer,, and 6=Regd..
Then, the real parts of (4.11) and (4.12) become

@) g B deget B (o= a—beg)ge,— f8"—(a—0)g+7=0,

8

Il
-

(4.12’) ht— Zeih""i_’_ é (/21',;+aJ,',;_czih)héi_rhz_(a_a>h+ﬁzo .

1

Here, gh=1 holds if g#0 and h+#0. (4.11’) and (4.12’) have the solution g=—a/b
and h=a/c when b#0 and when ¢#0, respectively.

If a, b and ¢ depend only on ¢, (4.11/) and (4.12’) are expressed as the following :
(4.11), &i—pg—(a—d)g+r

n n
(Egt_ ,lefig‘ri—{- Z lzigei—ﬁgz— (a—5)g+7’=0),
i= i=1
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(4.12%), hi—rh®*— (G—a)h+8
(=h,— ﬁlzeih,ﬁ f;lzzihei—rhz— (6—a)h+B=0).
i= i=

Here, both of the derivations operate on g and h along the bicharacteristic curves.
Then, we can obtain the result as detailed as Theorem 1.3.

Let us seek for the solutions of (4.11’) and (4.12") which coincide with —a/b
when b0, and with a/c when ¢#0 in (wN2,)X T, respectively. Let d be %a,

that is, the derivative of a along the characteristic curve of (4.11’) or (4.12").

i=1, i=—V, £=V,2—V,a—gV.b,
(4.117) {

g=pg*+(a—d)g—r,

i=1, i=—V, €=V, 2+V.,a—h;c,
(4.127) { i

h=rh*+(@—a)h—8.

We consider the case when o intersects T :¢t=¢(x). We may assume that
o2, does not intersect {T,} without T and that @ is compact. (See Figure 6.)

Figure 6.

At first, we consider (4.11”) and (4.12”) in (wN\$2.)XI. Let us set

(4.13) x(0)=x", &0)=¢£°, HO=¢(x")—e, (=t°),
where (t°, x°, £°)ewX[ and ¢,>0. Moreover, we set

(4.19) g0)=—a(t®, x°; &7)/b(t°, x°;&°) if b(t°, x°;£°)#0,
or

(4.15) h(0)=a@°, x°; £°)/ct®, x°;§°) if c@°, x°;&°)#0.

At least, one of (4.14) and (4.15) can be always defined. If g(0) makes sense,
there exists the solution (¢(s), x(s), &(s), g(s)) near (¢°, x°, &°, (—a/b)t°, x°;&°))
and if h(0) makes sense, there exists the solution (¢(s), x(s), &(s), h(s)) near

@°, x°, 8% (a/o)t®, x° 5 €°)).

Lemma 4.7. Suppose that (4.14) makes sense and let (I(s), x(s), &(s), g(s)) be
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the solution (4.117) with the data (4.13) and (4.14). t=1(s), x=x(s), £=£&(s) and
h=1/g(s) are the solutions of (4.12"), (4.13) and (4.15) as long as g(s)#0. Con-
versely, the assertion exchanging the places of g and h is also true.

Proof. By the uniqueness of the solutions, #(s), x(s), &(s) and g(s) satisfy
(4.16) g(s)=—a(t(s), x(s); &(s))/b(t(s), x(s); &(s)),

as far as b(i(s), x(s); &(s)) does not vanish. g(s)#0 implies c(t(s), x(s); &(s))#0
by virtue of (4.9). Then, because of the equality h=1/g(s)=a(t(s), x(s); &(s))
Jc(t(s), x(s); &(s)), we can see the followings;

£(8)=V22—Voa—(—a/b)Vab| ct, 2, r=ctcer, zcor, 000>

=V, 24+Va—(a/c)Vzcl bz =ctier. 2o, 600
(4.17) h(s)=(1/g(s)=—&(s)/(g(s))?
=—{Bg’+(a—0)g—1}1/8% | t.z.t. >=Ct(s). 203, 60>, g 53

=7h?+@—a)h— Bl z.e. ny=ctesr, (2. 602, 17882 +

This shows that t=t(s), x=x(s), §=£&(s) and h=1/g(s) are the solutions of (4.12"),
(4.13) and (4.15). The converse can be shown by the same way. Q.E.D.
By virtue of Lemma 4.7, the characteristic curves of (4.11’) and (4.12’) coincide
each other in 2.
Let us put M=sup{|Ved|, |V:2|, [Vzal, |Vzbl, |Nzcl|, lal, |8, I7], 181},
where (¢, x, §) runs over wXS¢™?, and let 6, and 6, be Arctan 2 and Arctan 3,
respectively.

Lemma 4.8. For ¢,<(0,—0,)/2M, let the initial surface be T XR™ {0},
where T is defined by t=¢(x)—e,.

D If 1g@)I=la(t®, x°;&°)/b¢°, x°;E°)=1, (where t°=¢(x°)—e,), (4.14)
makes sense in a neighbourhood U of (t°, x°, &%) in TXR™\ {0} and there exists
the solution of (4.11”7) with the data (4.13) and (4.14) starting from U across
TxR™"\ {0} in C>-class.

2) If |h@)|=la(t", x°;&°)/ct®, x°;&°)| =1, (4.15) makes sense in a neigh-
bourhood U of (t°, x°, &°) in TXR™\ {0} and there exists the solution of (4.12")
with the data (4.13) and (4.15) starting from U across TXR™ {0} in C-class.

1 .
3) If —2—<|a(t°, x°58°)/b(t°, x°;€°)| <2, there exist both the solutions of

(4.11”) with the data (4.13)—(4.14) and of (4.12”) with the data (4.13)—(4.15),
which start from a neighbourhood of (t°, x°, &°) in T and which cross over T.
Here, neither g(s) nor h(s) vanishes on the interval from T to T and g(s) and
h(s) satisfy the equality g(s)h(s)=1.

Proof. (4.11”7) and (4.12”) have the same major equations :
{X:M, E=VAMQ2+G)E, O=—/uM2+G)6O,

(4.18) .
G=2M(G*+1),
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where |[xi(s)|=X(s) (1=i=n), [&(s)|=E(s), @<S)§g§§l6i(3)l and |g(s)| =G(s).

Then, we prove only 1), since 2) can be proved by the same way as 1) and
since 3) is immediately derived from 1) and 2). (4.18) have the following solu-
tions and the estimates :

X=X.+Ms, E=ZE,expbv/ nMs), ©=6O, exp(—5+/ 1 Ms)

(4.19) {
G=tan(2Ms-+Arctan G,), when G=<3.

The projection of the solution of (4.11”) to (¢, x)-space is tangent to the family
of the projections of the bicharacteristic curves of P,. g(s) exists across T
because of ¢,<(f,—6,)/2M and |g(0)] <2. Moreover, we see that |x(s)—x°]
<Me, and (max|&; Dexp(—5v/ n Me,)=max|€i(s)| =max|[§(s)| = |€° [exp(5v/ 7 Me.,),

where 7 and s run over 1=</<n and 0=<s=e¢,. Then, |&(s)| never vanishes if
|€°|#0. It is obvious that the solutions of (4.11’) belongs to C=-class as far as
they makes sense. Q.E.D.

By virtue of Lemma 4.8, there is a neighbourhood w’XI"” (CCwXI') of
(f, %, &)e(TNnw)XI" such that there exists the solution g(t, x, &) of (4.11’) or
h(t, x, &) of (4.12") which satisfies the equality g(t, x, &)=—a(t, x; &)/b(t, x ; &)
or h(t, x, &)=a(t, x; &)/ct, x; &), respectively, in (0’ N2,)XI". Moreover, if g
makes sense and does not vanish, & also makes sense and satisfies the relation
gh=1. The converse is also valid.

From now on, we write @ and I instead of ' and I”. Now, let us define
the unit eigen-vector ¢(t, x, &) on (wN2,)XI. The unit eigen-vector of C}
belonging to A(t, x, &) is given by =+(1/+/a*+b%)'b, —a)==+1/vVI+gd)41, g) if
b+#0, and by +(1/+/a*+c®4a, ¢)=+1/VI+h®4h, 1) if ¢+0, when t<d(x). Let
us define

i(l/'\/l_i_gz)[(oy ] 0! :

i(l/,\/l_}_hZ)t(O’ Tty 0»

211_11 ’ 0; Ty 0) s
(4.20) et x, 6)= 2j-1 2j
h’ 1’ 0’ e ’ O) b

using the solutions g of (4.11’) and & of (4.12’), where the signature is chosen
suitably as @&’(¢, x, &) becomes continuous. Thus, we can get ¢'({, x, &) in
C=((wn2)X ). Then, ¢=|8,¢'| '8¢’ is the unit eigen-vector of A, x ;&)
belonging to A(¢, x, &) in (wN\2,) X1 which is real and belongs to C*(w\2;)x ).

8(t, x, &) can be connected on 0. X R™ {0} in C=-class since the eigen-space
of A, belonging to 2 is of dimension one and since each ¢ in (wN2)% T is taken
real. Then, the proof of the property (i) is completed.

Now, we prove the property (ii). Though g(¢, x, &) or h(t, x, &) is defined
across T xI starting from T'XI, (4.20) does not always express the eigen-vector
of C{ in t>¢(x). However, if R;=N—1 in (o\T)XR™\ {0}, we have the solution
g of (4.11") or h* of (412) in @ which starts from T.xI" and coincides
—a(t, x:8)/bt, x;& or alt, x;8)/ct, x;& in (wNnR)XI, where T.=
{t=d(x)+e.}, Li={t>Px)}, 2.={t<¢(x)} and we take the same signature in
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all terms. If [(—a/b)t°, x°; &°)| is less than or equal to 1 on (T.nw)XI, g*
exists in wX /I and it is bounded on TXI. If g~ or 1/h~ coincides with g* on
TxTI, they coincide each other on w\2-XxI because of the uniqueness of the
solution of the Cauchy problem. Therefore, g* coincides with —a(t, x;§)
/b, x; &) in (w\T)XI and it belongs to C(wXxI"). Then, we can take ¢(t, x, &)
in C=-class in w. In the case when |(a/c)(t°, x°;&°)| is less than or equal to 1,
we also obtain é(t, x, &) in C*(wXI') under the assumption in (ii). Continuing
them, we obtain &(t, x, &) in C=(2,UQ_X R"\{0}). Thus, the proof of Theorem
4.1 is completed. Q.E.D.

4.4° Jordan’s normalizer.

Theorem 4.1 implies the following corollary, which will be used in the next
section.

Corollary 4.9. (Jordan’s normalizer.)

Under the assumptions 1 and 2, suppose that the condition (L) is satisfied. If
® in Lemma 4.6 is covered by Q,\JRQ,, there exist “ Jordan’s normalizers” Ji*
and Jt of ¢ in (NQDXT and (wnQDHX T, respectively, (1<j<r), that is,

Cit, x; Dy, Dg)-47(t, x; D2)=47@, x; Do) D(t, x; Dy, D),
mod S°%, (v==Fk, {),

D, x37 O~ 57, O+ D L x5 8),

A [lj(t, x;8) eft, x; E)]
@{(tr X577, E):r[— ’

0 At, x5 6)
al b
eit, x; &)=bit, x; &E)—c(t, x; &) in wX I, where C’j=(r—lj)1—[ ],

¢ dl
*

E3

*
D, x; 5):[0 ] if e;(t, x;6)+0,

2O~ B8R x50, =k D,
where D5 and 4%y are homogeneous of degree —s in E.

Proof. 1f rank Cit, x; 2)t, x; &), 6)=0 in £2{, 4** may be I, and if
rank C{(t, x; 2,(¢, x; &), £)=1 in £, the existence of 4/* is guaranteed by Theo-

* *
rem 4.1. When ¢;%#0, the condition (L) implies that the type of 9j is [ ]
%

(See, for example, H. Yamahara [25].) Q.E.D.
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§5. Theorems for the hyperbolicity in the domain of higher dimension.

In this section, we establish two theorems on the hyperbolicity of P in 2

under the condition (L), supposing the assumptions 1, 2 and an additional one,
where £ is a domain in R**! (n=2).

5.1° Case with real analytic coefficients.

Theorem 5.1. (Hyperbolicity in the case with real analytic coefficients.)

Suppose the assumption 1, and the real analyticity and the boundedness of the
coefficients of P, and suppose that the projection of the support of the dis-
continuity of R, x, &) to 2 is a family of space-like hypersurfaces in 2 with
respect to D,—A;t, x; D;), (1=j=<r), (except their singular points). Then P is
hyperbolic in 2 under the condition (L).

Here, the loss of regularity in £ is 1 if the case II arises for some j and it
1s 0 if the case II does not arise for any j, (1<j=<r).

Remark. For the local hyperbolicity in £, we need not the boundedness of
the coefficients of P,.

By virtue of Theorem 4.3, we can obtain the above result by the same way
as the proof of V.M. Petkov [19], [20] or H. Yamahara [25]. (H. Yamahara set

the stronger assumptions than those of V.M. Petkov, but they can be relaxed to
Petkov’s through a little more precise consideration.)

5.2° Case with coefficients in C*-class.

If the coeflicients of P, belong only to C>-class, we need some additional
conditions besides (L) for the hyperbolicity of P in £2. (See the section 3.) Here,
wesonly propose the theorem corresponding to Theorem 3.2.

First, we state a proposition on the finite propagation under the assumptions
1, 2, and 3.

Assumption 3. {7Tj}, in the assumption 2 does not accumulate on arbitrary
compact set K in £ for each j, that is,
(4) There exists a positive constant dx such that

dist(TiNK, TiNK)=0y , if k#1, (1Zj=r).
Remark. Under the assumption 3, Z’zkl} Ti.

Proposition 5.2. (Finite propagation.)

Under the assumption 1, 2 and 3, if the condition (L) is satisfied, the solution
of the Cauchy problem (1)—(2) has a finite propagation speed Amax(t, x)=
n;:ajxll,(t, x;&)|, where & and j run over the unit sphere and 1=j=<s, respectively.

Proof. Let {£2i}, be the family of the connected subdomains of 2 devided
by ij{T{},. In order to obtain the proposition, we need establish only the local
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uniqueness at each point in 2. On the other hand, obviously, the propagation
speed iS Ana,(f, x) in each 2;. (See H. Yamahara [25].)
Now, let (t., x.) be a point on \U{TJ}, and let T, ---, T, be the elements of
J

\jJ{T{}, which pass on (t,, x,). Here, p is at most » by the assumption 2 and

there exists a lense-shaped neighbourhood w of (¢,, x,) which contains only
Ty, -+, T, by the assumption 3. Let T, be the piecewise smooth hypersurface
which is composed by the i-th piece of {T:N\@2¢.}:\J{i=t,}. Obviously, T.=
{t=t.}. If there is not the i-th piece, we adopt the (/—1)-th piece. (See the
figure 7.)

T,
T,

oS

Figure 7.

If u,(x)=0on £2;, and f(t, x)=0 in 2, each of the solutions u(t, x) vanishes
on the closures of the domains surrounded by 7, T, and 0w, because the pro-
pagation speed in each 024 1S Amax(t, x), and T and 0w are piecewisely space-like.
Therefore, especially, u(t, x) vanishes on TyN\@. This implies that u(¢, x) vanishes
on the closures of the domains surrounded by 7%, 7T, and dw. Thus, step by
step, we can see u(f, x)=0 on f,. Q.E.D.

Now, we are in a position to state the theorem.

Theorem 5.3. (Hyperbolicity in the case with C®-coefficients.)
Suppose that the coefficients of P, belong to C()N\B%) and that the

assumptions 1, 2 and 3 are satisfied. Then, P is hyperbolic in Q2 under the condi-
tion (L).

Heve, the loss of regularity on K from t, is at most max £{Q}; QNK{+ O
J
and Rj(t, x, &)=N—1 on T*($2)\{0O}), where K is lense-shaped.

Remark. For the local hyperbolicity, we need not the boundedness of the
coefficients of P, in £.

5.3° Proof of Theorem 5.3 —Reduction—.
For convenience sake, we set @=I_,XR" (=[t,, t,]X R™). Since the principle
of superposition holds good by virtue of Proposition 5.2 and the boundedness of
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Amax= supo Amax(t, x), we only need show the solvability of the Cauchy problem
t, x)ES

(1)—(2) in [?,,t,+e]XR" for arbitrary u. (x)e9D(K), [, x)e&,,; DK)) and
t,el,, where K is an arbitrary compact set and ¢ is independent of the choice
of t,. We take a compact set K’ which satisfies the relations K'DK and
dist(K, K")> Zmax- (ta—11).

By virtue of the assumption 3, we can take a positive constant ¢, such that
the distance between arbitrary TiN{,XK’) and Tin(I,xK’) is at least 44,.
Then, for arbitrary point (¢, x.,)el. XK', w,=1.%X0, (=[t,—6.,1t,+0,]1X
{x]lx—x,1<0d,}) intersects at most one of {T7},, (1=<j<r). On the other hand,
we can take a positive 07 such that Lemma 4.6 and Corollary 4.9 hold good for
a finite {3} in w,=[t.—0,, t.+0,]X {x||x—x,]|<d.}, where &, depends only on
K’. We set d=min{d,, 0.}, 6,=0/10, ,=0,(Amay)" Y, [,=[t.—¢1, t.+e;] and o=
I, X0=I,X{x||x—=x,|<6}. Moreover, we take K; (0=:=5) in R™ such that
K;CK;,, and dist(K;, K;+.)=06, (0<i<4), where K,=6. By virtue of the principle
of superposition and the compactness of K, we only need consider the Cauchy
problem in I,XR™ for the data u.(x) in 9(8) and the right-hand side f(¢, x) in
e, ; 90)).

We seek for a Fourier integral operator U(t, s; x, y, D,) of size NXN which
satisfies

P(t, x; Dy, D,)-U(t, s; x, y, D,)=0, mod. S,
o1 (t.<s<t=<t,+e),
UG, s; x, 3, Dy)=C(0I,

and

(5.2) suppe, »U(t, s x, ¥, DS, x)|dist(x, K)SAmax- ((—5), t=5},

where {(x)eC$(K,) and {(x)=1 on K,. By the property (5.2), we can modify the
coefficients of P out of I,XK’. We can find a modification such that the
assumption 1, 2 and 3 are kept correct in 2 and the coefficients are independent
of x outside a compact set. Of course, the condition (L) may be violated out of
I, XK’. We follow the process in H. Kumano-go [13]. We write P in order to
express the modified P. Now, for each (¢,, x,)€I; X R", we can take 3B(, x;§)
in wxI; and 47, x ;&) in (wNQ)XT.

Let {n«(&)}; be a partition of the unity belonging to {/%}, which is homo-
geneous of degree 0. We construct the solution U through the principle of
superposition with respect to the following U,.

5.1 { P(t, x; D, D)-Uit, s; x, v, D,)=0, mod.S™,
Uis, s; x, 3, D)=ILx)n{Dy).

From now on, we omit the suffix 7. Let us extend B(t, x;&) out of I' as it is
regular and homogeneous of degree 0 in & on I, X R"X R™\ {O}. Set

(5.3) Ui, s; x, y, D)=38, x; D,)-V(t, s; x, vy, Dy), mod.S™.

We have the following :
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(5.4) Ct, x; Dy, Dy)-V(t, s; x, 9, D,)=0, mod.S™.
(5.4) is equivalent to the following (5.4").
(5.4 Cit, x; Dy, D) Vit, s; x, 9, D,)=0, mod.S™, (1=<j=5s),

where V/=!(2j—1)-th row vector of V, 2j-th row vector of V), (1=j=r), and
Vi=(j+r)-th row vector of V, (»+1=<j<s). Here, we consider only the case
where 1=<;j=<r since the case where »+1=<j=<s is easy.

5.4° Determination of W/,

Let us extend 47* suitably out of (wN\29)XI" as it becomes regular and
homogeneous of degree 0 in & on ;X R*X R™\{O}. Setting

(5.5) Vitt, s; x, y, D)=4"*@t, x; D)-Wit, s; x, y, D,), mod.S™™,
we obtain the following :

(5.6) Dit, x; Dy, D)-Wit, s; x, y, D,)=0, mod.S™™.

Let the symbol of W, s; x, y, D,) be

{ Wit, s; x, y, )=wit, s; x, Hexplig (¢, s; x, §)—iy-£],

(57 o
wlt, 55 x, )~ 3 wlat, s x,8),

where w’,(t, s; x, &) is homogeneous of degree —m in &, and where ¢,(t, s; x, &)
is real and homogeneous of degree 1 in & ¢, s; x, ) is defined by

[ %gﬁl_lj(ty S5 X, vz¢]):O ’
¢j(sv S5 X, E)':X'E.

There is a positive constant ¢ (Ze¢,), independent of s and j, such that the
solution of (5.8) exists on IXR"=[t,—e¢, t,+e] X R" for arbitrary sl and
arbitrary t,1I,. (See, for example, H. Kumano-go [13].)

For a while, we omit the variable s. We write V instead of ¥V, and 0,
instead of d/0t. Let us set
(5.9) hit; v, x, E)=hi{t, s; 3, x, E)=,(t; y, E)—,t; x, E)—(y—x)-V,t; x, &).
By L. Hormander [6], [7], we have

(5.8)

(5.10) e-"¢fo(g>fo)~k2mﬂJ£,,(t, x5 0005 Vo wlina(t; x, H+Z Dwln(t; x, &)

+Z1/a NDL @, x5 VPN win(t; y, e risv-=O) |y 4,
(k=z—1, m=z—1, |a|Z=1)

~Dit, x; 0.$; VpHwit; x, §)+D.wit; x, &)

+ 3 D[, x5 Ig)Dawllts x, O+ DU, ¥; T wit; x, €)
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+m2___2(«/—_1/a DD, x ;3 Vg )Pjcar(ts x, Owi(t; x, &)
+9{t, x; 0.8 VpHw(t; x, &)+ .

—eit, x; V¢j)
0

the above equality is valid on I,XR"XR™\ {0}, we solve (5.10)~0, which is

equivalent to (5.6). By virtue of (5.1’) and (5.3), the initial data of V is given

by the following :

0 _
Here, 9{(t, x; 0:¢;, V¢,~)=[O ] in (wunQ?)X I, but, regarding that

{ vi(s; x, 6)=0, wvis; x, E)=L(x)n) B (s, x; &),
(5.11)

Vom(S; %, E)=B5'(s, x;6)Gn(s, x, &5 v —1SIEm—1),

where V(s; x, y, &)~ Zlv_m(s;x, &etwé-ivt and G, is a function of s, x, &
sl

and v_;, (—1=I<m—1). (5.5) and (5.11) bring the following :

Jl wi(s; x, £)=0, wi(s; x, =Ly FH) (B,
(5.12)

win(s; x, )= Chis, x, &; w_y; —1=<ISm—1),

j-1 25
00710 0.0 N
where (B! is Byt and where G, is of size 2X N and is a
0--0 01 0---0

function of s, x, £ and w?,, (—1</<m—1). From now on, we omit the suffix j.

(i) The case of e=0 in (woNQ,)XTI.
We regard thet ¢e=0 on IXR"X R"\ {0}, then (5.10)~0 is equivalent to

(5.13) Dow-m— i)l APD w0 A Dow - — TV —1/a DAV Gy
=Fnlt, x,§; ¢, woy; —1=l=m—1), (m=-1),

where F, is a function of ¢, x, §, ¢ and w_;, (—1=[=m—1). (5.13) is solvable
with the initial data (5.12). Obviously, w,(t; x, £)=0, and supp,w_n(t; x, &) is
contained in K,={(, x)|dist(x, K)E2,.,-(t—s)} because the support in x of
w_n(s; x, &) is contained in K, and the support of the right-hand side is contained
in K,, (n=0)". Therefore,

supp w_n(t; x, SR XICIXK, XTI,

(ii) The case of €¢#0 in (wN2.)XI.
Di(t, x; 0.9, Vp) and D(t, x ; V¢) have the forms

1) (5.13) has the propagation speed Amax (£, X) (= 2max), Since Amax (¢, x) = D ax|le2; (¢ x36)],
»J

where ¢ and j run over the unit sphere in R and 1=j<s, respectively.
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0 —et, x; V) ; [dl(t,x;ngS) dg(t,x;ti)]
[0 0 } o 0 dt, x; )]

respectively, in (wN2,)XI. We extend them in IXR"XR™\ {0}, holding the
above forms. We also extend 9_,{¢, x ;&) there, which is smooth and homo-

* *
plt, x; V@) *
us put w_p=4Hwl,, wiy,), where wi, is of size 1XN, (=1, 2). Then, (5.10)~0
is equivalent to the following :

geneous of degree —j in &, (j=1). Let 9.,(¢t, x; V¢) be [ ] and let

(5.14), Diwlpe— é l(i)Dziwl—mﬂ_l |2=2(\/_-1/a !)Z(a)¢(¢x)wl—m+1+d1wl—m+1—€w3m

=FLat, x5 ¢ wiy, wine; =1, 2, —1=(=m—2),

(514)2 thzm_ il Z(i)Dziwzm— 22('\/:—1/61’ !)/z(a)ﬂzs(a)w3m+d4w2—m+‘0wl—m+1
1= la|=

=F4(t, x5 ¢; wiy, wWine; i=1, 2, —1=[=m—2),

where F%,_, and F?2, are the functions of ¢, x, ¢, wi, and wing. (=12,
—1=I<m—2), (m=0). Let us set wm= (W ns, |Elwin), wi=0 and Fny=
FY -y, |EIFY). (5.14), and |&€]| X(5.14), are equivalent to

i

(515) th<m>_ i—zll /z(i)D.zinn)
di— SV =T1/a DIy —elg] ]
S W¢em
ol€| di— SV 1/a 2 O]

=Fny, (m=0).

(5.15) is inductively solvable with the initial data (5.12). Obviously, the support
of wemy(t; x, &) is contained K, xI" (CIXK;xI).

5.5° Determination of V7 on IXK;XR™\{0}.

We get the solution of (5.10), which depends on ¢*, in the previous section.
However, since the validity of 4* is guaranteed only on (wn2,)xI, the
existence of the solution of (5.4’) is guaranteed only on the shaped portions
M, and M, in the figure 8 by the relation (5.5) and the propagation speed Zpay.
Let us set on M, (v=~k, 1),

(5.16) e v(t; x, O~/ aNF ROt x; VG w_i(t; y, HeEv- 2O ], .,

and

5.17) vt x5, O~ B vtalts 1, 8),

where v¥,, is homogeneous of degree —m in & Here, all of the derivatives of
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2
I W
\ l \ / t=s
7/

M,

2

|gradient| =2max

Figure 8.

valt; x, &) (v==~k, ) coincide each other on (TN {s} XR*)XR™"\ {0} because
vt x, &) satisfies the relation (5.11) on (M, {s} X R*)X R*\ {0} and the relation
(5.4) on M,xR™\{0}. Let us set

(5.18) Vit x, )=viiit; x, &) on TNM,, (m=—1, v=k, 1.

We solve once more the equation (5.4’) with the initial data (5.18) in 2, % R™\ {0}
(v=~, l), regarding T X R™\ {0} as the initial surface and reducing (5.4’) to (5.6).
'Here, we need start, in general, from vi(¢; x, £€), that is,

(5.19) Vilt; x, 3, O~ B vialt; x, ebssnomiet,
because vi(t; x, £ may not vanish on TXR™"\{0O}. We put

2j-1 2j
0.0 1 0 00
]j: N (lSer),

j+r
[,='0--0 1 0--0), r+1=j<s), and 3,=Ip,¢; x, ). Let us set
(5.20) e iuit; x, E)~T(/a) Bon O, x; VDLt ; y, £t v =0T ]y s,

where m, [, and @« run over m=0, [=—2 and |a|=0, respectively. Here, we
take a symbol u’/ (=u’'!) whose asymptotic expansion is given by (5.20) and
whose support is contained IX K;X I Thus, we get the solution U(t, s; x, v, D))
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of (5.1);

G.21) Ult, s; x, 3, D)=3 ,Z'. Wit; x, D)y,
where suppe, »hU(t, s; x, ¥, §)SIX K, and the order of U may be 2.

5.6° Construction of the fundamental matrix.
Let us construct the fundamental matrix ¢, s; x, ¥, Dy), which satisfies

{ P(, x; D, D,)-U¢, s; x, y, D,)=0,

(5.22)
UG, 55 x, v, DY)=CxI,

by the same method as in H. Kumano-go [13]. (See also Ch. Tsutsumi [22].)
Let us put

(5.23)  P(, x; D, D2)-U(t, 55 x, 9, D)=R(@, s; x, y, D))=R({, s)€S™,

(5.24), Ry(t, s)=—v—1R(, s),

and inductively,

(5.24), R, s)=S:R1(t, 5%, x', Dp) Ry_i(z, s; x7, y, Dy)de (k=2).
At last, we set

(5.25) R, 9= 3 Rutt, 9).

The right-hand side of (5.25) converges and satisfies

(526) Ra, s)=—+/—1R(t, s)—«/iﬂ:fe(t, t;x, &', D.)-Re, s; x, y, D)dr,

and

(5.27) suppe, R, s)SK,.

Now, we set

(5.28) Uw:SiU(t, i x, ', Dp)- Rz, s3 ¢, v, D,)dr,
and

(5.29) U=u+U-.

Then, U(t, s; x, y, D,) satisfies
{ P-U=v=10-Lx)R, s; %, 3, D),

(5.30)
OGs, s; x, y, D)=L,

and

(5.31) suppe. » U@, s x, v, D)CIXK;.
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Let us take u,(x) in @©(K,) and f(¢, x) in &,(I; 9(K,)), and let us set

¢
t

a(t, =00, t.; 5, 3, DYw.)+v=I] 0 55 x, 3, DSis, )ds.

u(t, x) satisfies the following :

(5.30")

Pi=f+~/=10-0{Ru.+( Rfds}=F,

i(ty, x)=u,(x),

where supp fCIX[K, V(KL NKs)]

By virtue of Proposition 5.2 and (5.31), we see the following :

(5.33)

supp #(t, X)CIX[K,\VEKNK)].

Let us take y(x)=C3(K,) which satisfies y(x)=1 on K, and let us set

(5.34)

u(t, x)=y(x)it, x).

u(t, x) satisfies (1) and (2) because the differential operator does not widen the
support of the functions. Therefore, r(x)J(, s: x, vy, D,) is the exact funda-
mental matrix for u.(x) in 9(K,) and f(¢, x) in &,(I ; D). Q.E.D.
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