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§ 1. Introduction.

In this paper we shall deal with the harmonic dimension and the bilinear
relations of open Riemann surfaces. The harmonic dimension was introduced
by M. Heins [10] as a remarkable property of open Riemann surfaces of
infinite genus. Afterward some authors studied and modified it ([7], [11],
[19]-[21]). Recently, S. Segawa [26] has shown certain relation between
the harmonic dimension and the space of bounded harmonic functions.

Next, the extension of the classical bilinear relations to open Riemann
surfaces has been a significant problem, and many authors obtained several
types of generalized bilinear relations ([1], [2], [12], [17], [22] etc.).
Especially, Y. Kusunoki [12] showed the bilinear relations for any pair of
square integrable harmonic differentials of the classes O’, O” defined in terms
of the extremal length. Recently from the viewpoint of the quasiconformal
deformations on open Riemann surfaces, this research is in the limelight ([15],
(16]).

Here, we shall investigate further the above subjects and extend some
known results. At first we shall consider in Sec. 2, 3 the cluster sets of
bounded harmonic functions and their convex hulls, and then we shall give
a sufficient condition in order that the Heins’ end should have finite harmonic
dimension (Theorem 3.1). This result is an extension of the one obtained
by S. Segawa ([26]).

In Sec. 4, by using extremal length we shall first define new classes of
open Riemann surfaces which contain the Kusunoki’s class O”, and next, prove
the bilinear relations for square integrable harmonic differentials on Riemann
surfaces of our classes. Finally, we shall show some applications of the bi-
linear relations.

The author wishes to express his deepest gratitude to Professors S. Mori
(Kyoto Sangyo Univ.), Y. Kusunoki (Kyoto Univ.), and M. Taniguchi (Kyoto
Univ.) for their valuable suggestions and kind guidances.
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§2.

Let G be a non-compact subregion of a parabolic open Riemann surface
with only one ideal boundary component such that the relative boundary 0G
consists of a finite number of analytic closed curves. We call such G a
Heins® end or simply H-end. Let P; be a family of positive harmonic functions
on G which vanish identically on 8G, and Qg be the set of v in Py satisfying

the normalization J (0v/0n)ds=1, where 7 is the inner normal on 0G.
aa

Then we define the harmonic dimension of an H-end G as the minimum
nummber of the generators of Pg; provided that such a finite set exists, other-
wise as oo. It is known that the harmonic dimension of G is equal to the
cardinal number of mutually non-proportional minimal positive harmonic func-
tions in Qgz([10]). Therefore the harmonic dimension is equal to the cardinal
number of Martin’s minimal boundary points ([8]). It is known that there
exist examples of H-ends which have finite (countably infinite or continuum)
minimal points at the ideal boundary ([7], [10], [11]).

Definition 2.1. Let HB(G) be the family of complex valued bounded
harmonic functions on G. And the cluster set of u at the ideal boundary,
which is denoted by CI(u), means the set

(2.1) Cl@)=n u(Va,

where {V,.}? is a sequence of subends of G converging to the ideal boundary

of G.

Theorem 2.1. For each u in HB(G), we put P,= {x; = j u (0v
G

/0n) ds,vEQa}, then P, is a closed convex domain and
i P.OCl),

(i) Let Ex(P,) be the set of all extreme points of P, then
Ex(P,) CCl().

Proof. It is known that for any p in G,
u(p) =5 [, u@a,/0m)ds
2r Joc

where ¢, is the Green’s function of G with a pole at p.
For each x in Cl(x), there is a sequence {p;} in G such that lim « (p;)

ko0

=z. And we may choose the subsequence of {g,} which converges to some
2nv (ve Qg) uniformly on any compact subset on G. Otherwise, by Harnack’s
inequality, {g,} is unbounded on any compact subset. On the other hand
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ZLI (09,/0n)ds=1, thus we may easily show the contradiction.
7 Joa

Hence x=lim | % (0¢g,,/0n)ds= j u(0v/0n)ds by the above formula,
e aG

k—oo

and Cl(x) CP, Since Qg is convex, P, is also convex and obviously
bounded. From the compactness of Qg (whose proof is similar to that of
{gp7) it follows that P, is closed.

To prove (ii) we shall show the following lemma.

Lemma 2.1. Let v be a mapping of Pginto R¥(INZ=1) satisfying the
Sfollowing conditions;

1) v(v,+v) =v(v) +v(v,) for any v, v,E Py,

(2) v(kv) =kv(v) for any vE Pz and any positive number k,

8) If {v.}t is a sequence of Py converging to v in P; uniformly
on every compact set in G, then limy(v,) =v(v).

Then for any x in Ex(V(QG)'S_:m there is © in Qg such that ¥ is a
minimal positive harmonic function and v(9) =zx.

Therefore for any z in v(Qg), there exist at most (N+1) minimal
positive harmonic functions in Qs say Oy, +++, 9, (RN+1), such that for

k k
certain non-negative numbers c,, -+, cy, satisfying Y c;=1, v(3 ¢,0;,) =z.
J=1 j=1

Proof. (cf.[9]) Let {si}; be a countable dense subset in G, then we
define a sequence {v,}} in Qg inductively as follows;

1 v(v) ==,

(2) For any k21, put E,={veQs; v(v) =2, v(sy) =vi(sy), =1, -,
k—1}, then vy, is in E, and satisfies

Qi+1(se) =sup v (se).
1€ Ey

From the compactness of Qg v(Qg) is closed, and so E.#@. (k=1,2,--).
Clearly {v;}; possesses a limit ¥ in Qg and v(9) =x. Further 9 is a
minimal positive harmonic function. To see this, we show that ¥ is an ex-
treme point of Qs If =1 —¢) w,+tw, where 0<¢t<<1 and w,, w,EQy,
then y(w,) =v(w,) =x. If ¥Fw,, there exists a least natural number m such
that 9 (sn) #w,(s,). But then by the hypothesis, ¥ (s,) <<max{w, (s,), w»
(sm)} and w;, w,€ E,. Hence the ¥ (s;) =vUn4 (Sn) =supv(s,) is violated.
So, 7 =w,=w,. vEEn

Since an extreme point is a minimal positive harmonic function in Qg. the
first assertion is proved.

As for the second assertion, by the elementary theory of convex sets in
finite dimensional Euclidean spaces, each point of v(Qg) is the barycenter of
at most (IN+1) extreme points of ¥(Qg) (cf. [6] p. 15). Hence we conclude
Lemma 2.1.



864 Hiroshige Shiga

On proving (ii) of Theorem 2.1, we set for v&Qy,

»(v) = Lau (0v/0n)ds =y ().

Then by Lemma 2.1, for any x in Ex(P,) =Ex(1.(Qg)) there is a
minimal positive harmonic function ¥ such that 1,(9) =x.

On the other hand % =ck, where b is a point in the Martin’s minimal
boundary, &, is the Martin kernel at o and ¢ is a constant (cf. [8] Hilfssatz
12. 3, Satz 13.1). Thus we take {p;} CG converging to & in the Martin’s
compactification, then certain subsequence of {g, /27} converges to c¢’k, and

we find that c=c¢’ by calculating the flux along 8G. Consequently, lim « (p,)

n—oc0

= j\ u (Ock,/0n)ds = f u(00/0n)ds=zx. Hence Ex(P,) CCl(u).
a0 o0

Corollary 2.1. ([10]) If u is in HB(G) and is real valued,
2.2) Clw) =P, .
Proof. Obviously, both sides of (2. 2) are the segments on the real axis.

On the other hand, two end points of P, are contained in C/(x). Therefore
P,cCl(), so P,=Cl(u) by Theorem 2.1, (i).

Recently S. Segawa [26] has shown the following result.

Lemma 2.2, Let B, be the set of u€ HB(G) which possesses the
limit O at the ideal boundary, and let By=HB(G)/B, If either the
harmonic dimension of G or dim By is finite, then

(2.3) h.d.(G) =dim By,
where h.d.(G) denotes the harmonic dimension of G.
When 4.d.(G) =N, and 9, -+, Dy are the distinct minimal positive harmo-

nic functions in Qg, clearly Qg is the convex hull determined by o, ---, Ty,
So, from Theorem 2.1, we have

Lemma 2.3. If h.d.(G) =N, then for any u in HB(G), P, is a
convex polvgon with at most N vertices.

Furthermore from Lemma 2.2, we have

Theorem 2.2, Let G be an H-end of harmonic dimension N, then
Sfor any convex polygon P with at most N wvertices there exists u in

HB(G) such that P,=P.
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Proof. From Lemma 2.2 there are u, **+,uy in HB(G) which are the
representations of the basis of Bg Set ,,(9) =c¢y(,j=1,, N). Then
NX N matrix (c;) is regular since u, :--, #y are independent in Bg Hence
the equations

N
(2.4 iZ:,a‘m:z; (=1,-,N)
have solutions for any =z, **-, 2.

N
Set u=>  au;. (2.4) means
i=1

(2.5) (D)) =2, (=1, N).

Namely, P, is a convex polygon with vertices 2, :*-, 2.

§ 3. Sufficient conditions for h.d.(G) <+ oo,

In this section we give sufficient conditions for A.d.(G) <+ oo. One con-
dition is stated in terms of the extremal length, and another is in terms of
the divergence of a sum of modules. The latter condition is given in [26].

Let R be an open Riemann surface in Oy with only one boundary
component and G be an H-end in R. We take a regular exhaustion {R,}{
of R such that R—R,CG.

©

. Lemma 3.1. For u in HB(G) we set S,= D u(0R,). Then
l=1n=1
S.DEx(P.),

where P, is as same as in Theorem 2.1.

Proof. If some x€Ex(P,) is not in S,, then for large » u(0R,) is
contained in some neighbourhood of P, and for V,, some neighbourhood of
z, V.Nu(0R,) =0.

Without loss of generality we may assume |z|>|y| for any y in Ex(P,)
—V,. Then by the maximum principle, CI (%) is contained in the disk with
the radius max{|lu(p)|; p€0R,}. Hence Cl(w) NV,.=0, but z€Cl(x) from
Theorem 2.1, This is a contradiction.

Theorem 3.1. Let F* be the family of all l-cycle B such that f8
is a sum of at most N closed curves in G and B separates 0G from the
ideal boundary of G. If the extremal length 2(F*) =0, h.d.(G) <N.

Proof. From Lemma 2.2 we must show that any elements #,, -, uy,,
in HB(G) are not linearly independent in B.
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We choose p as the density on G such that

N+1

D |grad u,||dz| on G—R,
3.1 oldz| =4 7~

0 on GNR,.

N+1 N+1
Since ¢*= (121 lgrad ) :<< (N +1) 12 |grad %;|* on G—R;, we have
= =1

N+1
jLodedyg(NH) 2 Do-n, () <+

Because of A1(§*) =0, we may choose a subsequence {c;}{ of F* such that
{ci}T converges to the ideal boundary of G and

(3.2) lim | oldz|=0.

k—oo c
Hence by (3.1) and (3.2)
(3.3) lim [ fulldz]=0 (G=1,-+, N+1D).

Put ¢, =BV ---UBL, (each Bj is a closed curve, and N (k) <N), then there
exist a subsequence {c,} and ay(1=</SN+1, 1<j<N) such that for any

i, u;(B%?) converges to a; as k,—>+oco. Obviously the vectors (ay, ', aiw)
(i=1, -+, N+1) are not linearly independent, so for certain linear combina-
N+1

tion w=Y,7u; u(c;,) converges to zero. From Lemma 3.1 and Theorem
i=1

2.1 this means that x has the limit zero at the ideal boundary. Hence {u;} ¥+’
are not linealy independent in Bg.

Corollary 3.1 ([26]). Let G be an H-end and {A,}T be a sequence
of a union of at most N disjoint annuli with analytic Jordan boundaries
on G satisfying the condition that for each n A,., separates A, from the
ideal boundary, A, separates 0G from the ideal boundary, and {A,}y con-

verges to the ideal boundary.
If the sum of the modules of A, diverges, then h.d.(G) =<N.

Proof. Let F* be the family of all @ such that 8 is contained in A,
and separates 0G from the ideal boundary, then it is well known (cf. [5]
IV) that

(3.4) A(F}) =2n/mod A4, .
Since A; N A, =0 (I,

3.5) A0 FD =31
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(cf. [14] p. 264). On the other hand, by the monotonicity of the extremal
length,

3.6) AEH <A D,

where §* is in Theorem 3. 1.

From (3.4)-(3.6), 1(*) =0. Hence A.d.(G) XN, by Theorem 3.1,

§ 4.

In this section we shall show an extension of the bilinear relation obtained
by Y. Kusunoki [12] on some classes of Riemann surfaces defined by the
conditions similar to that of the preceding section.

To begin with we recall the definitions and the results given in [12].
Let R be an open Riemann surface and {§ be the family consisting of all
l-cycle # such that # is a sum of at most finite analytic disjoint dividing
curves (A dividing curve is a closed curve separating R into two components.)
and separates a fixed compact set from the ideal boundary of R.

And let {A,}7 be a sequence of a union of at most finite number of
disjoint annuli with analytic Jordan boundaries on R such that for each 7 any
annulus of A, separates R into two components, any components of the
complement of A, is non-compact except only one component R, and {R,}{
become a canonical exhaustion of R.

Definition 4.1. We shall denote by O’ or O” the classes of Riemann

surfaces for which () =0 resp. i: mod A, = + oo,
n=1

From these definitions we may show that O” C O’ C Oy, and the inclusion
O’ COq4 is generally strict, while O”"=0"=0; in the case of finite genus

([12]).

Proposition 4.1. For each Riemann surfuce R in O, given w, and
w, in I'y(R), then there exists a canonical exhaustion {R,}{ of R such that

p(n)
(4. 1) (0)1, *(02) =lim Z (I [OR j‘ 52— j\ (O] I 52),
noo f=1 4, By B, 4,

where p(n) is the genus of R, and {A;, B;}?™ is the canonical homology
basis of R, modulo OR,.

Proposition 4.2. For each R in O”, there exists a canonical exhaus-
tion {R,}7 of R such that for any w, w, in I'y(R), (4.1) is wvalid for
certain subsequence {R,}T.
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These proofs are given in [12], so we omit them.

Further, we note the following result about the extremal length on com-
pact bordered Riemann surfaces.

Let R be a compact bordered Riemann surface, and the boundary of R
be partitioned into a®, @', 7°, 7', where a’, ' are nonempty.

Now, we shall consider the Kerékjarto-Stoilow compactification R* of R,
then the sets of contours a® a', 7°, v’ correspond to finite points sets a*, a'*,
7 r'* of R¥*,

Let ¥ be the class of arcs in R*¥—7"™ which go from a"™ to a'.
Let §* consist of all § such that 8 is a sum of closed curves in R*—p'*
and separates a®™ from a'*.

The following relation between the extremal length A(¥) and A(F*) is
well known (cf. [25] p. 124):

Proposition 4.3. On a compact bordered Riemann surface R,

4.2) AF) =2 =D,

where u is the harmonic function on R which is 0 on &', 1 on &', 0u/0n
=0 on 7° and constant on each contour of 7' with zero flux on each
contour of 7.

Considering a subregion 7T on an open Riemann surface, we call it a ¢7ous-
sers with n-legs or n-trousers simply, if T satisfies the conditions;

i) T is planar, and relatively compact,

ii) The relative boundary 07 consists of mutually disjoint (z+41) closed
analytic Jordan curves.

Definition 4.2, We shall denote by Oy (#=1,2,:-:) the class of
Riemann surface R for which there exists a sequence {7T,}; of sets on R
satisfying the conditions;

p”
i) T,=U T, where T,; is a k,(j)-trousers, k,(j) <k, and TyyNT,
121
=0 (i#)).

ii) Each T,; divides R into two components, any component of R—T,
is non-compact except only one component R, and {R,}{ become a canonical
exhaustion of R.

iti) Putting 0Ty =an,Van,---Yak;¥ as the sum of closed curves such that
aby is 0T,y NOR,, we consider F"™ and i’ such that F™ consists of all # which
is a sum of closed curves and separates a; from aj,U---Uaks? and s’ con-
sists of all # which is a closed curve in ¥™. Then

(4.3) il 1/:§J1(3gf)/1(g"1) — too.
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Lemma 4.1. If RO, and G is an H-end on R, then h.d.(G) <k.

Proof. Let {T% be a sequence of trousers on G contained in T, in
Definition 4.2, and U¢ be the harmonic function on T¢ such that U% is 0
on a®"(=0T¢NOR,), and 1 on a®'VU...Uad* (=9T9—a%°, and AS<E).
Then from Proposition 4. 3, 2(Fs) = Dre (U%), where 5 consists of all #such
that @ is a sum of closed curves separating a@%° from a@®!'U...Ua%*. We

put Vé=4U¢% such that IGO*JV‘Z:ZH. We may easily show that A(%%)
Qn’

=21/tt,, and 2(Fa) ZA(F6.0), thus it follows that i,a,,= + o0, from (4.3).
n=1

On the other hand, T'¢ is mapped by V&+./—1*V% to the rectangle
{a++v/—=1b; 0<a<py, O0<b<2r} with holizontal slits, where *V¢ is the
harmonic conjugate function of V8 The number of these slits is less than
2t—1, where ¢ is the number of zeros of dVS¢+4/—1*dV% on T9S. Since
dV94,/=1*V?¢ is considered as a holomorphic differential on T, the double
of T¢ with respect to 0T¢, and the genus of T is %%, t=k%—1, so 2t—1
=2k —3. We denote these slits by s, -*-, sy (N (22) <2k8—3) and s;={a
+v/=1b; di<a<p,, b=const} (j=1,-, N(n)) supposing &\ =-=dywm.
Considering the rectangles {a++/—=1b;d; ,Ja<d;, 0<b2r} (j=1, -, N(n),
and d,=0), we may find the rectangle in them such that its holizontal side is
longer than #,/2k. And the pre-image of the rectangle on T'§ cousists of at

most £ annuli. Hence from ) #,= + oo, the H-end G satisfies the condition

n=1

in Corollary 3.1, so we conclude h.d.(G)<k.
Now, we shall show some examples in Of.

Example 1. Since 1-trousers is an annulus and for 1-trousers Ty, 2(F")
=2(@’) =2r/mod Ty, (4.3) implies Y mod T,= +oo. Thus, if ReOy,
n=1

ReO” and vice versa.

Example 2. Let {a,}° be a monotone increasing sequence of positive
numbers satisfying lim a,= + oo, and {b,} be another sequence such that

n—>c0

a,<b,<a,,, for all n. Set I,=(a,,b,), and W={|z|<{+ oo} —1,. We choose
an,1—b, so largely that

(4.9 i}lx/m__,.Mn = +oo,
where m,=log (b,/a,), and M,=log(a,+1/b,).

Now, we take % copies of W, say W,, :-, W, and identify, along I, the
upper edge on W, with the lower edge of W,;,,, where Wi, =W, We
obtain a k-sheeted covering surface R.

For the k-trousers T, lying over {a,<l|z|<lan..}, A(§") ~'=M,/2kn, and
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2@y '=m,/2kn. Hence by (4.4), it follows that R is in Oy.

Theorem 4.1. The following relations are valid;

(4.5) 0" = ;’;og-.-go:go;'“.--ckf_jlo;’;oa,
(4.6) 0G0’ for E>2,

and in the case of finite genus,

4.7 =0 = =0f=--=0g.

Proof. The inclusion Of COy,, is immediate from the definition and
Oy C Oy is obvious from the condition of the parabolicity in terms of the
extremal length (cf. [14]). And O”=0; by Example 1., further (4.7)
is trivial from the fact that O” =QOjf in the case of finite genus ([12]).

4

It suffices to construct the examples belonging to Oj,,— Oy, O,;—kUl k>

and Of —O’ for k=2,

The example in Oy,,—O;. We use the surface in Example 2.. We
may take each I, so shortly on {|z|>1} that there exists a positive continuous
function # in {1<{|z|<+ oo}, satisfying; (1) u is zero on {|z|=1}, (2) u(x)

=log z, for any xr& D I, (3) u is harmonic in {|z|>1} —G I,,and (4) u
n=1 n=1

is bounded on (—oo, —1]. As Example 2., we take (k£+1) copies and (k+1)
covering surface R in Of,;. Then from the argument in [10] Sec. 10, the
H-end lying on {|z|>1} is with harmonic dimension £-+1. Hence R is not
in Oy from Lemma 4.1.

The example in OG—G O;. By the method of Z. Kuramochi [11] or
k=1

C. Constantinescu und A. Cornea [7], we may construct an open Riemann sur-
face R in Oz with only one boundary component which has infinite harmonic
dimension. Then for any %, R is not in O} because of Lemma 4.1. Thus
R iS in Og—'U O;’.
k=1

The example in Of —O' for k=2. Tt suffices from (4.5) to show the
example in O] —O’. We consider the surface R in O; —Of given at the
first case for 2=1. Then R has only one H-end whose harmonic dimension
is two. From Theorem 3.1, it follows that R is not in O’. Q.E.D.

n
Let R be an open Riemann surface in Oy, and {7T,.}7 (T,.=U T, is
j=1

a sequence of the union of trousers with at most k-legs in Definition 4. 2.
We consider a harmonic function #, on each 7, such that #,; is 0 on aj,

and is constant s,; on ah,U---Uaks?® (k, () <k) so that J\ao!*du,,j=27'r. The
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pﬂ:
the quantity f, is known as the harmonic modulus of T, and #;'= jzlﬂ;}, Un

is the harmonic modulus of 7T,. Further as in the proof of Lemma 4.1.
Fag=ttny++/—=1%u,; maps T,; conformally onto the rectangle {a++/—15; 0=Za
Sy, 0<b<2r} with at most 2k,(j) —3 horizontal slits, and #,;=2n/2(F"?).
We denote these slits in the rectangle by s}, -, sitay (N () <2k, (7)) —3),
and sM'={a+v/=1b; d,<a<<p,;, b=const} (r=1, -, N(nj)) supposing d}’
<dy/<+-<dil.;. Considering the rectangles {a++/—1b; d}!,<a<d}’!, 0
<b<27} (r=1,-+. N(nj)) and d3’=0), we may find the rectangle in them
such that its horizontal side is longer than u,;/2k. And the pre-image of the

rectangle on T,; consists of at most 2 annuli. We denote it by A,.

Lemma 4.2. Let w,, 0, be differentials in I'y(R), then there exist
1-cycle &, on A,;, a close curve £y, in T, and a subsequence {n,} such that

(4.8) lim 2 o [ 0y =0
ny—so0 J=1 Jen, g
and

tim 3, 1o [, loud=0

ny—oe0 §=1

lim 2L”|a>1| o law =0

ny—seo J=1 in,9

4.9)

Proof. We may choose the density p on R_such that
(4.10) o= (lgrad k| + Igrad A,|)

where w,=dhA, and w,=dh,. Suppose that A,; is the preimage of the rectangle
{a+v=1b; dy}<a<d;?,. 0<b<2r}, then from the choice of A, ty/(d™,,
—d;)) <2k. We consider the annuli, the components of A,, say Uk, -,

UeD (1 (nj) <k (nj)), then obviously mod Ui;=2r(di—d})/L,, where

L,; is the height of f,;(Ut,), therefore ZL,,,=27L'.
t=1

For each U}, we take (%, in the set of the level curves of #,, contained
in U%; such that

(4.11) f‘pldz|=inf{J‘ pldzl},
Bnl Up=C
' ing)

where infimum is taken in the set of all level curves in U%,. Set £,,= Ug:,.
{=1

And we take £, in ¥’ satisfying for given 7>1,

(4.12) Lo!pldzlgn inf”p|dz|;ce;§:f}.

Then by (4.10), (4.11), and Schwarz’s inequality, we have
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[, pld=l=2VERma (ol FTaili)

Obviously f lwil_S_I oldz| (Z=1, 2), thus
{njy Lny

4.13) [, Jod=2vEEmu ol F Tols.) .

On the other hand, by the definition of the extremal length and (4.12)

a1 [, lol< [, pldzl<ov2A G TToilk, F o).

Hence by (4.13), (4.14), and sy =21/A(F"), we have

Joul [y loxl S21VERTGEHAG) 400,

4.15) ol [, ol S20 VRGN 4. ),

r

ol {0 SR 4.1)

Jeng J

S4RVAE) A ) 4.3,

where 4,(j) =|wi|z,,+ |7,
Summing up from j=1 to j=p,, we have

?n — Pn
5[, il f, ol <20v2R BVAGEHIGE) 4.()

<2vzhy 5102 @F Y 5 4.0)
(4.16) <27v2k ﬁ: TEOAE (loullt, + a2,

23 T —
B ol [, Jod=20V2E SVIGIE ol +lslk),

#n Pn N AT AN S AT A
PR Ln,lwll L”,lmgz;k ZYAGOAE) (lonlt, + lodlz).

Hence we have

(4.17) 2(2( Lwlwll Lnllwd + L&,lw‘l mezl
N L”J‘lel J;lez|>> (:gl ‘/W)_l

<107k (f|l 0|7+ (el 7) <+ oo .
From (4.3) and (4.17), we may find the subsequence {7} satisfying



Open Riemann surfaces 873
(4.8) and (4.9). Q.E.D.

Remark. By noting (4.15) and (4.16), we show that if
sup max AFHAF) <+ o0

Pn

or S AGENAGF ) =+ o0

n=1 f=1

is satisfied instead of (4. 3), the above assertions are also true.

Let {L!,} is the mentloned above, then there is an index ¢ such that

{,=2rn/k because of ZL,.,—ZH and 7 (nj) <k. Set i=1.

Lemma 4.3. Let differentials w,, w, and a subsequence {n,} be the
same as in Lemma 4.2, then there exist a level curve oLy of *u, on
Ty(GE=1,--,i(nj)), such that o4, intersects with Bi,, and

. by iy
lim S35 [ oul o lo)

ny—so0o j=1\1{=1 J
(4.18) Pn, (t(nj)

lim S8 (¢ oul {0 lodl) =0,

ny—oo f=1

. bn, si(nd)
lim Z( s l0)1| Lx |0)2>
(4.19) M o

iz

. b, si(nf)

lim 2( o |0)1|j |0)z|>
-1\ io1 B

Proof. We choose the same density o as in the proof of Lemma 4. 2.
We may take a level curve .., of *u,, intersecting with fi; and satisfying
for given 7>1,

0

’ -

Ii

0,

(4. 20) [ o|dz|gninf{j pldzl},
°n4 ¥y g=t

where the infimum is taken in the set of all level curves intersecting with

;. Then by Schwarz’s inequality, we have

4.21) [« pldel <7V @ /LE) 4.0,

where 4,(j) = “ (O ”g'n]+ ”wz";nj'
Furthermore, by (4.11) we have

(4.22) [ﬂi |wm|§ji oldz| (m=1,2)
nj n

<\/(2L J/(dro+1 dr"loj) An(])
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From (4.21) and (4.22) we have

j o] j o N0 S 20V (U / (@I = &) 4,5)

<27V2k4,(5).
Summing up from =1 to i=i(nj) (Zk) and from j=1 to j=p,,
bn i(ng) . '
2 [0 ol [ loxl<878 Clorlr, + Julz,)
=1 i1 JBny ng

This implies the first equation of (4.17), and the second is obtained simi-
larly.

Especially for oL, from L};=>27/k, we have
pn g ) — , \
> [ ol [ Jod<znivE (ol + sl

j=1 i=1

This implies he first of (4.19), and the second is similarly.

Theorem 4.2. Let R€Oy, then for any w,, 0,y (R) there exists
a subsequence {R,} such that

p(ny)
(4. 23) (0)1, *CDg) = ].lm j Wy J\ (Dz— [ON J w2>
ny—c0 j=l Ay By By 4;

Proof. To begin with we take a point p.; on 8%, and arcs 72y, *++, 7857,
where 7%, is an open analytic arc from p%; to pi; in the region bounded by

Angy Bayy o, and RIS, and i, N7y, =0(i5=i’). Using Stokes’ formula for the
P t(n]) i(njg)
relatively compact region R} cut along U ( U Bi,u U rt;), we have
i i=

p(n)
(0, ¥02) gy = Z(I (oh J‘ 03— w;j‘ 52) + j 0,0, ,
=1\ Ja By By Ja OB,

where 0, (z) = jw And aR+—u em,uu (m)*U(rﬂ,)‘, where (73,)* a

(ri,) ~ are two sides of r%,.
For each z on 7i;, we denote it by 2*, 2~ considered on (75)*, (74,) 7,
respectively (=2, -+, 7(n5)) (Fig. 1). Then we have

0,(2%) =0, (z7) — j ey

— ()t ="
RGO REN NN

Fig. 1.

i
nj
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Therefore

.20 fot 0= fig 0 Jon o

ind)
We join B, and B85, by a sum of subarcs of ohys ohys Ong, and £y (= ¢U1 By,

and denote it by d%;. Then 7%, is homologous to di, plus certain parts of £,
(Fig. 2).

i
dnris

Fig. 2.

Hence

(4.25) | ]L;Iw;g lon] (m=1,2).

j‘(nj+£nj+"ﬂl+"ﬂ/
By (4.24) and (4.25) we have

(4. 26)

oty a0

<j‘ i) 0, .
B/l ll lnj+£nj+vnl+0nil 21
Since @, is semi-cxact and O, (p7) — 0, (pF) = j -1 , w;, we have
,,,+2‘. Bnj
_ i)
(4.27) - Ul 0.3, L (0, 0,(p})) B
1(ng)
& (ml(i’ ) — ml(i’ ) @,
<t(n1> | |
w
<3 [ o fiu od v 8 [y ol fo a0 Jo
<t(nj) r i(ng)
w o .
== qu'wli jﬁf»/' 2|+4§ jﬁful d 7i/+ln1|wl|

Summing up (4.26) and (4.27) from j=1 to j=p, and using (4.25),
we know that Lemma 4.2 and 4.3 are applicable to them, that is, there
exists a subsequence {7} such that

bn,
lim j 0,0,|=lim | X i(nm 0,0,|=0
ny,-»00 ny—oo| f=1 ,,'/+ (T"y!)

Hence we have
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ny

. r(ny)
= lim 2 <J\ W, Ez-‘ j Wy j Eg).
ny—oo f=1 Ay By By LY

Remark. A Pfluger [22] has shown the following; Let W be the same
as in Example 2., but we need not suppose the condition (4.4). And we
construct the two sheeted covering surface R of W, and W,, two copies of
W, as Example 2.. Then fro any o,, w, in I",(R), the bilinear relation (4. 23)
is valid.

We have not shown completely his result from Theorem 4.2, that is,
we may show the bilinear relation when (4.4) is valid (R€O}) or {m,}p
is divergent (R€O;). Since he used the symmetricity of R in his proof and
we do not use it, we may show the bilinear relation on non-symmetric surfaces
to which his result is not applicable.

(Cl)], *a)g) = lim (a)], *(l)z) R
ny—00

Other classes of Riemann surfaces.

Considering Remark of Lemma 4.2 and the proofs of Lemma 4.3 and
Theorem 4.2, we may show the following;

Theorem 4.3. (a) We define ReO,(k=1,2,:--) if there exists a
sequence {T,}v as in Definition 4.2 such that instead of (4.3) it
satisfies the condition

n=1

(4. 28) il//gl(%}:’)l(%"’)=+°°~

Then for any w,, 0, e (R), (4.23) is wvalid.
(b) If there exists a sequence {T,}y in R as in Definition 4.2 such
that instead of (4.3) it satisfies the condition

sup max A(F)AGFEY) <oo.
n i
Then for any w,, 0,E [y (R),
1)
(wl, *wz) = lim Z(I (O j Wy — [OR j~ ZEg).
n-soo =1\ Jd4y By By 4y
Proof. It may be omitted.

From the inequalities for a;, &,>0,
A P\ -1 pn
(jgl ajbf)—l§<~/!§ djbj) ém(‘;\/(l!b’)_l R

we conclude Of C Oy, and if R has a finite number of ideal boundary com-
ponents, then Oy =0%. And from Theorem 4.3, O; COgp. Furthermore,
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Theorem 4.4. The following relations are valid;

(4.29) 0{S 05+ GO0iGOk C UG O
(4. 30) +rGO0:, 0.¢O0,
(4.31) U 0N 0G0, .

k=1

Proof. From the above remark and Theorem 4. 1, we may show (4. 29)
and (4.31). And O;¢ Og implies Oy SO} because of Of COzC Ogp. Hence
it suffices to construct the example belonging to O — Og.

Let {g;} be a sequence of real numbers, 0<{q;<<1. We denote by E{q;}
the generalized Cantor sets, the point set constructed as follows;

Let E, be the closed interval [0,1]. We construct inductively, sets
E,(q,, -+, q,) consisting of 2" disjoint closed intervals. To pass from E,(q,, -,
q,) to E,.;(q, "', dn+1) we remove from each interval, symmetrically about
the midpoint, subintervals the sum of whose length is the ratio g¢,,, to the
original interval, that is, for each interval [A,, B,] (=1, -, 2" in E,(q),
. q,) we take four points @, @nj. bas, bny such that Ay<lany<lan,<bn;<bu

<B,,_j, a,,, - A,,J = Bﬂ/ _bnj = % (bnj — :,/) = —}qn.“ (B,,/ — Anj) N and they are sym-
2n

metric about —;-(BM+A",), then we set E,.1(q, ***, @ur1) = U [ans, any]V [0y,
7=1

b,;]. The set E{q;} is defined as EE,L(q,, < )
n=1
Then we know analogously to [56] IV 24B. that if

(4.32) —k;: 27*log ¢ (1—gqp) <+ o0,

E{q)} has positive logarithmic capacity, that is € — E{g;} is hyperbolic.

On the other hand, we take a sequence of union of 2" annuli (=1, 2, ---)
such that on the above symbol in E,. (g, ***, ¢.+;) we take two annuli on
each interval [A4,;, B,;] (=1, ---,2"), one annulus is bounded by the circle

whose diameter is [A,.,, %(a;, +bf,,)] and the circle whose diameter is [a,,
a,;], and another is bounded by the circle whose diameter is [% (@ns+b2y),

B,u] and the circle whose diameter is [b},, b,].

Then the sequence satisfies the conditions of O] except (4.28). Since
AG¥) =2(FY) = (a modulus of annulus) ™'-27, (4.28) implies

(4. 33) S22 log 1/(1—gq,) = + 0.
k=1

We may give a sequence {g,}r which satisfies (4.32) and (4.33), for
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example ¢, =1—exp(—2¥?). Hence we constructed the desired surface.

§ 5. Applications.

In this section, we shall extend some results on compact Riemann srface
the Kusunoki’s class O” to our class Oy. But the methods are similar to
the previous ones. So we shall remark only the results and the references.

To begin with, we notice that the following is shown by the same way
as Theorem 4,2,

Theorem 5.1. Let R be in Oy, then for any Abelian differentals
df;, (1st or 2nd kind) and df, with finite number of singularities which
have finite Dirichlet norms outside the neighbourhood of their singularities,
there exists a subsequence {R,} such that

(5.1) 27V —1 3 Res.Fd fy= — lim p%?(j dflj dfs
R 4y By

ny—mc0 o1

- Ljdf L’dfz),

where F,(2) = j‘df, .

By using this theorem we may show Riemann-Roch theorem and Abel’s
theorem on R€ Oy analogously to the classical cases. Furthermore, for the
classes referred in the last part of the preceding section, the similar extensions
are possible for the restricted differentials and functions (cf. [14], [18], [23]
[24]).

Another application is the one on quasiconformal deformations. Let R,
be a marked Riemann surface in Oy with a canonical homology basis {4,
B;} modulo ideal boundary as in Theorem 4.2. We consider a K-quasicon-
formal mapping fr of R, onto R. Then f; induces on R a canonical
homology basis, and we denote it also by {A;, B;}. By the definition R be-
longs to Oy.

Let 6,1, (R,), then we may show that there exists a unique differential
0TI, (R) having the same A-period with 0, (cf. [16] Proposition 2). Hence
by the method of Theorem 1 [16]. we have

(5.2) 10 fr—0u],= (K—1) 0], .

Furthermore, we may show the continuity of norms and the analyticity
of periods on the Teichmiiller space of R, analogously to [16] Corollary 3
and [15].
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