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§ 1. Introd uction.

In  this paper we shall deal with the harmonic dimension and the bilinear

relations of open Riemann surfaces. The harmonic dimension was introduced
by M . H eins [1 0 ] a s  a  remarkable property of open Riem ann surfaces of
infinite genus. Afterward some authors studied and m od ified  it ([7 ], [1 1 ],
[1 9 ]- [2 1 ] ) .  Recently, S . Segawa [26] has shown certain relation between
the harmonic dimension and the space o f  bounded harmonic functions.

N ext, the extension of the classical bilinear relations t o  open Riemann
surfaces has been a  significant problem, and  many authors obtained several
ty p e s  o f generalized bilinear relations ( [1 ] ,  [2 ] ,  [1 2 ] ,  [1 7 ] ,  [2 2 ]  etc.).
Especially, Y. Kusunoki [12] showed the bilinear relations for a n y  pair of
square integrable harmonic differentials of the classes 0 ', 0 " defined in  terms

of th e extremal length . R ecen tly  from  the viewpoint o f th e  quasiconformal
deformations on open Riemann surfaces, this research is in the lim eligh t ([15],
[16]).

H ere , we shall investigate further the above subjects and extend some
known resu lts. A t  first we shall consider in  Sec. 2 , 3  the cluster sets of
bounded harmonic functions and their convex hulls, and then we shall give
a  sufficient condition in order that the Heins' end should have finite harmonic
dimension (Theorem  3. 1). Th is  result is an  extension  of the one obtained
by S . Segawa ([26]).

In  Sec. 4, by using extremal length we shall first define new classes of
open Riemann surfaces which contain the Kusunoki's class 0 ", and next, prove
the bilinear relations for square integrable harmonic differentials on Riemann
surfaces of our classes. F inally, we shall show some applications of the bi-
linear relations.

T h e  author wishes to express his deepest gratitude to Professors S. Mori
(Kyoto Sangyo U n iv.), Y . Kusunoki (Kyoto Univ.), and M. Taniguchi (Kyoto
U n iv .) fo r  their valuable suggestions and kind guidances.
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§2 .

L e t G  be a non-compact subregion of a  parabolic open Riemann surface
with Only one ideal boundary component such that the relative boundary 19G
consists o f  a  fin ite  num ber o f ana lytic  c losed  cu rves. W e ca ll such  G  a
H ein s ' en d  or simply H -end. Let PG be a family of positive harmonic functions
on G which vanish identically on 8G, and Q G  be the set of y in P o  satisfying

the normalization f  (av/an)ds = 1 ,  where n is  the inner normal on G .
80

Then we define the h arm o n ic  d im ension  of an H-end G as the minimum
nummber o f th e  generators of P o provided that such a finite set exists, other-
wise as Do. It  is  k n o w n  th a t  the harmonic dimension of G  is  equ a l to  the
cardinal number o f mutually non-proportional minimal positive harmonic func-
tions in  Q G  ( [ 1 0 ] ) .  Therefore the harmonic dimension is equal to the cardinal
number o f Martin's minimal boundary points ( [ 8 ] ) .  It is known that there
exist examples of H-ends which have fin ite  (countably infinite or continuum)
minimal points a t the ideal boundary ( [ 7 ] ,  [10] , [11] ) .

Definition 2 .  1 .  L e t  HB(G) be the fam ily of complex valued bounded
harmonic functions on  G . And the c lu s te r s e t  o f u a t  th e  ideal boundary,
which is denoted by Cl (u) , means the set

(2 .1 ) C l(u )= fl u (v ),
n=1

w here {17„}r is a  sequence o f subends o f G converging to the ideal boundary
o f G.

Theorem 2.1.  F o r  e ac h  u i n  HB (G) , w e  P u t  P u = ix; x = f u ( a v
aa

/872)ds,v Q0 1, th e n  P i ,  i s  a  c lo sed  co n v ex  d o m ain  an d

(i) P . D C/ (u),

(ii) L e t  E x  (Pa )  b e  t h e  s e t  o f  a l l  e x t re m e  p o i n t s  o f  P u , then
E x  (P u ) c Cl (u) .

P r o o f  It is known that fo r  any p  in  G,

u (p) -  u  (0 g / n)ds
27-c so

where gp  i s  the Green's function o f G  w ith  a  pole at P.
F or each x  in Cl (u) , there is a  sequence o k Ir in G  such that lim u (p

k—sco

= x .  And we may choose the subsequence o f ig , I r  which converges to some
27tv(vEQ a )  uniformly on any compact subset on G . Otherwise, by Harnack's
inequality, ( g }  r  is unbounded on any compact subset. O n  th e  other hand
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1 O n /an)ds = 1 ,  thus we may easily show the contradiction.
27z. JOG 

( g

- k

Hence x -= lim u ( a q , / â n ) d s =  f  u ( O v / a n ) d s  b y  th e  above  formula,
k—.co 8 0 80

a n d  C/ (u) C P „ .  S in ce  Q G  is convex, P ,  is  a ls o  c o n v e x  a n d  obviously
bounded. From  the compactness o f  Q G  (w h ose  p roo f is  s im ila r to  th a t of

{gpk} r )  it fo llow s that P i ,  is closed.
T o  p ro v e  ( i i )  w e shall show the following lemma.

Lemma 2 . 1 . L e t v  be a  m apping o f  P G  in to  II N (1■71 1 )  s a t is fy in g  the
fo llow ing  cond itions;

(1) 1) z)2) = i. (u l ) i) (y 2) f or any  v 1 ,  y 2 G PG,

(2) v (k v )=k v (v )  f o r  a n y  v E P G  a n d  an y  p o s it iv e  num ber k ,

(3) I f  { v i ,} r  i s  a  sequence o f  P ,  c o n v e rg in g  to  v  i n  P ,  unif orm ly
o n  ev ery  c o m p ac t  s e t  in  G , th e n  lirn p ( v,,) (y) .

Te , a 3

T hen  f o r  a n y  x  i n  Ex  (v  (Q 0 ) )  ,  th e re  is i n  Q G  s u c h  th at i s  a
m in im al Po sitiv e  h arm o n ic  f u n c tio n  an d  v (V )=x .

T h ere f o re  f o r  a n y  z  in  v ( Q ,) ,  t h e re  e x i s t  a t  m o s t  ( N  + 1 )  m in im al
p o sitiv e  h arm o n ic  f u n c tio n s  in  Q G  say  ii i ,• • • ,ii k ( k < N + 1 ) ,  s u c h  t h a t  f o r

c e rtain  non-negativ e  num bers c 1 ,••• ,c k ,  s at is f y in g  E c1 =1,
J=1

P ro o f .  (cf. [9]) L e t  {sk} r be a  countable dense subset in  G , then we
define a  sequence iv,„} r in  Q G  inductively as follows ;

(1) v (v 1) x ,
(2) F or any put E  k  =  { V  E  Q 0 ;  v ( v )  = x ,  V  ( S  =  V  k  ( S j  =  1, • • ,

k — 11, then v k ,  is  in  E k an d  satisfies

q 1 ( 4 ) =s u p  v (sk ) .
V E E k

From the compactness of Q G , y  (Q 0 )  is closed, and  so  E k * Ø . ( k  =1 , 2, • • •) •
C le a r ly  fv k l r  possesses a  limit in  Q 0 ,  and  1) (V ) = x .  Fu rther 'V is  a
minimal positive harm onic function. To see this, we show that V ' is  an  ex-
treme p o in t o f Q , .  I f  7- 3 = (1  —  u y2 + tw ,  w h ere  0 < t < 1  and w 1 ,  w2 E  Q 0 ,

then v ( w 1) =1)(w 2)  = x .  If there exists a least natural number m  such
that V' (S m )  * w ,  (s,„). But th en  by  th e  hypothesis, f.) (S m )  <m ax fw, (sm),
(s„,) }  and w 1 , w 2 E E m . Hence th e  V (sm) = vm+i(s,n) s u p  •v(sm ) is violated.

So, V  =  w , w 2 .
Since an extreme point is a minimal positive harmonic function in Q 0 ,  the

first assertion is proved.
As for the second assertion, b y  the elementary theory o f  convex sets in

finite dimensional Euclidean spaces, each point of v (Q 0 )  is  th e  barycenter of
at m ost (N +  1 )  extreme points of 1) (Q , )  (c f. [6 ] p. 15) . Hence we conclude
Lemma 2.1.
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O n  p rov in g  (ii) o f  Theorem 2. 1, we set for v E Q a .

v  (v )  =  f u(av O n)ds-=A u (v ).
oo

Then by Lem m a 2. 1 , fo r  any x  in  E x  (P u ) = E x  (A .(Qa))
minimal positive harmonic function V' such that /1 2,. (D) =x .

On the other hand Y  =ck b,  where b  is  a  poin t in  the M artin 's minimal
boundary, k , is  the M artin kernel at b  and c  is a  constant (cf. [8] Hilfssatz
12. 3, Satz 13. 1 ) . Thus we take -{P ,} c G  converging to b  in  the Martin's
compactification, then certain subsequence o f  {g1,,127r}  converges to  c'k b ,  and
we find that c =- c ' by calculating the flux a long G. Consequently, lim  u(po

= fu (Ock,/ On) ds = u ( / n )  d s  x .  Hence E x  (P s ) c  Cl (u) .
60 80

C oro lla ry  2 . 1 . ( [1 0 ]) I f  u  i s  i n  H B (G )  a n d  is  re al v alu e d ,

(2.2)C /  (u) = P .

P r o o f .  Obviously, both sides of (2. 2) are the segments on the rea l axis.
On the other hand, two end points o f P u  a re  contained in  C l (u). T h e r e fo r e
P u c  C l (u) , so P  C l  ( u )  by Theorem  2. 1, (i).

Recently S . S egaw a  [26 ] has shown the following result.

Lemma 2.2. L e t  B , b e  t h e  s e t  o f  u E H B ( G )  w h ic h  Po sse sse s  the
l im i t  0  a t  t h e  id e al b o u n d ary , a n d  l e t  B 0 =H B (G )/B 0. I f  e i t h e r  the
h arm o n ic  d im e n s io n  o f  G  o r  dim B o  i s  .f in ite , then

(2.3)h . d . ( G )  =dim  B o ,

w h e re  h .d .(G ) d e n o te s  th e  h arm o n ic  d im e n s io n  o f  G.

W hen h.d.(G) = I V  and V- , • • •, ù N  are the distinct minimal positive harmo-
nic functions in  Q 0 ,  clearly Q0  is  the convex hull determined by • • • ,  •VN .
So, from Theorem 2. 1, we have

Lem m a 2. 3. I f  h .d . ( G )  N ,  th e n  f o r  a n y  u  i n  H B ( G ) , P u  i s  a
c o n v e x  p o ly g o n  w ith  at  m o s t  N  v ertices.

Furthermore from Lemma 2. 2, we have

Theorem  2. 2. L e t  G  b e  a n  H - e n d  o f  h arm o n ic  d im en sio n  N , then
f o r  an y  c o n v e x  p o ly g o n  P  w i t h  a t  m o s t  N  v e rt ic e s  th e re  e x is t s  u  in
H B (G )  s u c h  th a t  P u = P.

th ere  is  a
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P r o o f .  From Lemma 2. 2 there are u1. • • • , UN  in  HB  (G) which are the
representations o f th e  bas is  o f 130 . S e t Au 1 (0 )  = e 11 (i, i - =1 ,  •  ,  N ) .  Then
N x N  matrix (c 11 )  is regular since u 1 , • • •, uN  a re  independent in  B , .  Hence
the equations

(2. 4) E a,c j i = z j  ( j =  1, • • •, N )

have solutions for any z„ • • • , zN .

Set u = E a,u i . (2 .4 ) m ea n s

(2.5)A u ( i ) j ) = z i  ( j = 1 ,  • • • , N ) .

Namely, P u  is  a  convex polygon with vertices z 1, •••, z N .

§ 3. Sufficient conditions for h.d. (G )<+ 00 .

In  this section we give sufficient conditions for h .d .( G ) <+ 00• One con-
dition is stated in terms of the extrem al length, and another is in  terms of
the divergence of a sum of modules. The latter condition is given in  [26 ].

L e t  R  b e  an open Riemann surface in O G w ith  o n ly  o n e  boundary
component and G  be an H-end in R .  We take a  regular exhaustion {R, } r
o f R  such that R — R ,cG .

Lemma 3.1. F o r  u  i n  H B ( G )  w e  set S „=- n U u(OR u ) . T hen
1=1 n=1

S u E x  (P u)

w h e re  P u  i s  a s  sam e  a s  in  T h e o re m  2. 1.

P r o o f .  I f  some x E E x ( P u )  is not in  S u ,  then fo r la rge  n  u (61?„) is
contained in  some neighbourhood o f P u  a n d  fo r  1 7 „ some neighbourhood of
x , n u(OR„) =0.

Without loss o f generality we may assume ix j > l y l  for any y in E x (P u )
—17x . Then by the maximum principle, C l  ( u )  is  contained in the disk with
the radius max {1 u  (p )  ; p  E 8R u l. Hence C/ (u) (1 V = ø, but x  C / (u ) from
Theorem 2. 1. This is a contradiction.

Theorem 3 .1 . L et b e  the f a m ily  o f  a l l  1 - c y c le  8  s u c h  th a t  8
i s  a  su m  o f  a t  m o s t  N  c lo sed  cu rv es  in  G  an d  8 se p arate s  aG f ro m  the
id e al b o u n d ary  o f  G .  I f  th e  e x tre m al le n g th  A( tr)  =0 , h .d .( G )

P r o o f .  From Lemma 2. 2  w e must show that any elements u„ •••,
in  H B (G )  are not linearly independent in  BG.
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We choose p as the density on G  such that

z i . -

1

 I grad uj i I dzi o n  G — Ri

(3.1)p l c i z i  =  I i= '
0 o n  G n R i .

N+1 N+1
Since p2 = ( E igrad u1 l) 2 (N  +1 ) E Igrad u, 2 o n  G— R1,  w e have

J =1 i =1

a p 'c lxd y _ (N  + 1 ) D  „ i ( u )< + o o
j = 1

Because o f A ( * )  =0 ,  w e  may choose a  subsequence {c,} r of such that
{ck } r  converges to the ideal boundary o f G  and

(3. 2)l i m cizi =0 .

Hence by (3. 1) and (3. 2)

(3.3)l i m I uj i =  0  ( j=  1, •••, N +1) .
k—,co

Put ck =gt u • • • u 1317,, (each di; is a closed curve, and N (k) , then there
exist a  subsequence {ck p }  and au (1 i< N + 1 , 1 j _ < N )  such that fo r  any

u,(8 1;20 converges to a u  as  k,-->+ 00. Obviously the vectors (a,„
N +  1 ) are not linearly independent, so for certain linear combina-

tion u= E u(ck„)
N+1

converges to  z e ro . From Lemma 3. 1 and Theorem

{Ili} f + 12. 1 this means that u has the limit zero at the ideal boundary. Hence
are not linealy independent in B .

C o ro lla ry  3 . 1  ( [2 6 ]).  L e t  G  b e  a n  H-end a n d  {A ,Jr be a  sequence
o f  a  u n io n  o f  a t  m o s t  N  d is jo in t  an n u li w ith  an aly tic  Jo rd an  b o u n d arie s
o n  G  satis f y in g  th e  c o n d itio n  th a t  f o r e ac h  n A ,  s e p a ra t e s  A.„ f ro m  the
id e al b o u n d ary , A , s e p arate s  8G f ro m  th e  ideal bo u n dary , an d  {A „}r  con-
v e rg e s  to  th e  ideal boundary .

I f  t h e  su m  o f  th e  m o d u le s  o f  A n  d iv e rg e s , th e n  h.d.(G)_<N.

P r o o f .  Let F :  be the family o f a ll ,3 such that ,3 is contained in  A„
and separates OG from the ideal boundary, then it is well known (c f. [5]
I V )  that

(3.4)( F : )  =  2 7 r  / m o d  A .

Since 211 n Ai  = 0 (i*;),
IR 711

(3. 5) U F —E (F t ) - 1

n=1 n=1
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(c f . [14 ] p . 264 ). O n  the other hand, by the monotonicity of the extremal
length,

(3.6) A (r) -5- A(g

where is in Theorem 3. 1.
From (3. 4) - (3. 6) , A(*) = 0. H e n c e  h.d. (G) SN, by Theorem 3. 1.

§ 4.

In  this section we shall show an extension of the bilinear relation obtained
by Y. Kusunoki [12] on  some classes of Riemann surfaces defined by the
conditions similar to that of the preceding section.

To begin with we recall the definitions and the results given in [12].
Let R be an open Riemann surface and a b e  the family consisting o f  all
1-cycle 8 such that 8  is a  sum o f  at most finite analytic disjoint d iv id ing
c u rv e s  (A dividing curve is a closed curve separating R into two components.)
and separates a  fixed compact set from the ideal boundary o f R.

A n d  le t { A a r  b e  a  sequence o f a  un ion  o f at most finite number of
disjoint annuli with analytic Jordan boundaries on R such that for each n any
annulus o f  A ,  separates R  into two components, any components of the
complement o f A n is non-compact except only one component R 7, and  {R n } r
become a  can o n ical exhaustion o f R.

Definition 4 .  1 .  We shall denote by 0 ' or 0" the classes of Riemann
CO

surfaces for which .1 () resp. E mod A n = +o0.
n =1

From these definitions we may show that 0" c O 'cO G , and the inclusion
0' cO, is generally strict, w h ile  0 "=  0 ' =OG in  th e  ca se  o f finite genus
([12 ]).

Proposition 4 .  1 .  F o r e ac h  R ie m an n  su rf ac e  R  in O ', g iv e n  to , an d
co, in h (R), th e n  th e re  e x is ts  a  canon ical ex haustion  {Rn }r o f  R su c h  th at

(4.1) (co„ *oh) = lim t ( n ) ( f w i  f
B , 

D 2 -  r
J B ,,

w h ere  p (n )  i s  th e  g e n u s  o f  R„ an d  14 1, .13,1f ( 3 )  i s  the  canonical hom ology
b as is  o f  R„ m odulo  8R„.

Proposition 4 .  2 .  F o r each  R in  0" , th e re  ex is ts  a  canonical ex haus-
t io n  IR ,J r  o f  R  s u c h  t h a t  f o r  a n y  to ,, w , i n  T h (R), (4 .1 )  i s  v a l i d  f o r
c e rtain  subsequence
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These proofs are given in  [12], so  w e omit them.
Further, we note the following result about the extremal length on com-

pact bordered Riemann surfaces.
L e t R  be a compact bordered Riemann surface, and the boundary o f  R

be partitioned into a°, a ',  y°, r i ,  where a°, a ' a re  nonempty.
Now, we shall consider the Kerékjârto-Stoilow compactification R *  of R,

, To,then the sets of contours a°, a 1, c o r r e s p o n d  to finite points sets a
°
*, a i* ,

r o*, r i *  o f  R*.
Let b e  th e  class o f a rc s  in  R * — e *  w hich  g o  from  a °*  to  a l* .

Let consist o f  a ll 8 such that 8 is  a  sum o f  closed curves in  R* —
and separates a

°
*  from  a'*.

T h e  follow ing relation between the extremal length 71( )  and A (R * ) is
w ell know n  (c f .  [25 ] p . 124) :

Proposition 4. 3. O n  a c o m p ac t b o rd e re d  R iem ann  su rf ac e  R ,

(4.2)( R * )  =  ( )  =  DR (
71

)

w h e re  u  i s  th e  h arm o n ic  f u n c tio n  o n  R  w h ic h  is  0 o n  a °,  1 on a', au/an
= 0  o n  r ° an d  c o n s tan t  o n  e ac h  c o n to u r o f  r i w i t h  z e ro  f l u x  on each
contour o f  r i.

Considering a subregion T  on an open Riemann surface, w e call it a  trous-
se rs  w ith  n-legs o r  n-trousers simply, i f  T  satisfies the conditions;

T  is planar, and relatively compact,
ii) The re la tive boundary OT  consists of mutually disjoint (n +1 ) closed

analytic Jordan curves.

Definition 4.2.W e  s h a l l  d e n o t e  b y  OZ (k  =1, 2, ••.) th e  class of
Riemann surface R  fo r  which there exists a  sequence {T „ } r  o f s e ts  on  R
satisfying the conditions;

P.
i) T U  T o ,  w here T „, i s  a k ,, (j) -trousers, k ,,( j):_ k , and T n j C1T.,

1=1

= 0  (i* j) .
ii) Each T n j d ivides R  into two components, any component o f R— T„

is  non-compact except only one component R,, and {R ,Jr become a canonical
exhaustion o f R .

iii) P u t t in g O T „i a= 0 , , j u a in J... u( j ) as the sum of closed curves such that
a°,,j  is aT io  n  OR,,, we consider A" and such that consists o f all j9 which
is a  sum o f closed curves and separates a 'n ,  from a'„j u • • • u ak,ou ), and av con-
sists o f a ll g  which is a  closed curve in Then

. 0 P . 
(4 .3 )E  1 / E . V A ( T o q ) 1 C i n j ) =  +pc' •

n =1 j  =1
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Lemma 4.1. I f  R O '  a n d  G  i s  an  H -e n d  o n  R ,  t h e n  h.d.(G )<k.

P r o o f .  L e t  {TG„}r be a  sequence o f trousers on G  contained in  T„ in
Definition 4. 2, and EIG„ be the harmonic function on 77, such that EI?, i s  0
o n  cen .° ( 6 7 7 !  naR n ) ,  and 1 on ct?,.'U • • • U aV g (rrr OV„ —  a V ,  and P k ) .
Then from Proposition 4. 3, D  (U °), where an, consists of a ll 8 such

that 49 is a  sum o f  closed curves separating a 'n ' '  from  cen •i t•J • • • U cen
4 . W e

put V?„ =fin U n
a  s u c h  th a t  f  *d V = 2 7 r . W e m ay easily show that A( „)

CO

=27-c/p„, and 2 (ai) 2  (and,o) , thus it follows that E + D o , from (4. 3).
n=1

On the other hand, T?, is mapped by V?, -1—V-1*V G„  t o  the rectangle
0 < a < it„ , 0 < b < 2 7 r } with holizontal slits, where *V?, is the

harmonic conjugate function of V .  T h e  number o f these slits is less than
2t — 1, where t  is  th e number o f  zeros o f  dV?, -1-.V- .*d17? on T .  S in ce
d V 4 -V -1 * -17?, is considered as a holomorphic differential on T ,  the double
o f T a

n w ith  respect to aT?„ and the genus o f  Pc,', i s  g ,  t — g - 1 ,  so  2 t-1
= 2k?, — 3. We denote these slits by s„ • • •, sm „,(N (n ) 2 k - 3) a n d  si  = {a
+\/—lb; d f < a < it ,„  b = c o n s t .}  ( j= 1 ,• • • ,N (n )) supposing di <•••
Considering the rectangles {a + V —  lb; d i _,<_a <df , 0<b<27r} (j =1, • • ,N(n) ,
and 4 = 0 ) ,  we may find the rectangle in them such that its holizontal side is
longer than /1„/2k. And the pre-image of the rectangle on V !, consists of at

CO

most k annuli. H e n c e  fr o m  E  =  0 0 ,  the H-end G  satisfies the condition
n=1

in Corollary 3. 1, so we conclude h.d.(G )<k.

Now, we shall show some examples in 0',.

Example 1 .  Since 1-trousers is an annulus and for 1-trousers 7 '  2 (a - )
2nymod T o ,  (4 .3 ) im p lies  E mod Tn =  0 0 .  T h u s ,  i f  R E 01 '

n=i
R E 0 "  and vice versa.

Example 2 .  Let fa n I r  be a monotone increasing sequence of positive
numbers satisfying lim a„=  +oo , and {b„}10 be another sequence such that

n—•co

a n <b n <a„ + ,  for a ll n. Set i n (a ,,,b 0 , and W-----  { z  <  00 } —  I n . We choose
a„, — b„ so largely that

(4.4) P l i ‘/ M n M n  +  0 0 ,

where ni,. = log (12„/a„), and M„ -= log (an+i/b.) •
Now, we take k copies of W, say W 1,•••, Wk and identify, along In , the

upper edge on  W i  w ith  th e low er edge o f  Wi + 1 ,  where W k + 1  =  W 1. W e
obtain a k-sheeted covering surface R.

For the k-trousers T n  ly in g  over {ar,<IzIGa.4 - 1} (an) - 1 .-- Mn/2k7r, and
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2(a 7:) - 1 2m n /2k7r. Hence by (4. 4) , it follows that R  is in  OZ.

Theorem  4 . 1 . T h e  f o llow ing  r e l a t i o n s  a r e  v alid;

(4.5)0 " = • • •C 0 •  •  C A O Z

(4.6)O Z  (4 0 ' for k>_•2,

a n d  i n  t h e  c a s e  of  f inite genus,

(4.7)= 0 ' 2 '  = • • • = 0 Z = • • •  =  O a  .

P ro o f .  The inclusion OZ cOZ.,., is immediate from th e  definition and
OZ C 00  is obvious from  th e cond ition  o f th e parabolicity in  terms of the
extrema! le n g th  (cf. [1 4 ] ) .  A n d  0" =CX' by Example 1., further (4.7)
is trivial from the fact that 0" in  the case of finite genus ([12]).

It suffices to construct the examples belonging to 0Z+ 1 -0 ,:, 0 0 — U
k =I

and 0 ' — 0 ' fo r  k>2.
T h e  ex am ple i n  0;:+ 1 - 0,:. W e u se the su rface in  Example 2.. We

may take each In  so shortly on {1z1> 1 } that there exists a positive continuous
function u  in (1 -1- oc}, satisfying; (1 ) u is zero on {1z1=1}, (2) u (x )

= log  x , fo r  any xE  U (3 ) u is harmonic in  {1z1>1} —U _ a n d  (4 )  U
n =1 n= 1

is bounded on  ( — co, — 1] . As Example 2., we take (k+1 ) copies and (k+1)
covering surface R  in  0 '; + 1 . Then from the argument in [10] Sec. 10, the
H-end lying o n  {1z1> 1 }  is with harmonic dimension k + 1 .  Hence R  is not
in  0;: from Lemma 4.1.

CO

T he  ex am ple  i n  0 0 — U  0 ;:.  B y th e  method of Z . Kuramochi [11] or
k=1

C . Constantinescu und A. Cornea [7], we may construct an open Riemann sur-
face R  in  OG w ith only one boundary component which has infinite harmonic
dimension. Then fo r  any k, R is not in  OZ because o f  Lemma 4 .1 .  Thus

R  is in 0 —  U CYI •
k=1

T h e  ex am ple i n  0 ' — 0 ' f o r  k > 2 .  It suffices from (4. 5) to show the

example in  0 2" — 0 ' .  We consider the surface R  in  Q' — 0 ; ' given  at the
first case for k = 1 .  Then R  has only one H-end whose harmonic dimension
is two. From  Theorem  3. 1, it follows that R  is not in  0'. Q.E.D.

At

L e t R  be an open Riemann surface in 0;:, an d  {T 7 } T  (T .=  U T n i ) is
5=1

a  sequence of the union of trousers with at most k- legs in  Definition 4. 2.
We consider a  harmonic function un j  o n  each T,, such that u,,5 is  0  on

and is constant ii„9 on  (4 1 u •••u tek,o(l) (k.„(j) < k ) so that *clu„i = 27r. The
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p.
the quantity fin, is known as the harmonic modulus of T„f , and /1;4 = E

.1 =1
is the harmonic modulus o f  T „ .  Further a s  in  th e  proof of Lemma 4. 1.

f  n j = — 1 * 2 1 ,,i  maps Tn i conformally onto the rectangle {a — 1b; 0<a
10. b 27t.} with at most 2 k ( j )  —3 horizontal slits, and g ni = 27t/a

We denote these slits in  the rectangle by 4-1 , •••, 4 J ) (N (n.j) <21?„ (j) —3),
and 4 1 = {a - I-  —  lb ;  cir <a<#,, f ,  b = co n s t .}  (r = 1 , •• • , N  (n j) )  supposing cir'
<4/<•••<ciV( „) ) . Considering th e  re c ta n g le s  (a + / 1 .b ; d rnl 1 < a < c7 i ,  0
<b<27r1 (r  • • • ,  N (n j) )  and d -f = 0 ), we may find the rectangle in them
such that its horizontal side is longer than ,u„,/2k. And the pre-image of the

rectangle on T n./ consists o f at most k an n u li. W e denote it by A„ .f .

Lem m a 4. 2. L et a .  (.02 be  d ifferen tia ls  in  T h (R ) ,  then there exist
1-cycle -e,,f  o n  An i , a close curve e n s f  in  T n f , an d  a subsequence {n,} such that

Pn„
(4, 8) lim f , 10,1=0,

,-m

and

pn, r
iim E j n 10,1 f 1,021 -0,{

n,,-..0  f = 1 in , f I n , f

P r o o f  We may choose the density p  on  R  such that

(4,10) to= (Igrad h1I Igrad h2 I) .

where to i =-dh i  and (02.-- db2. Suppose that A,1 is the preimage of the rectangle
{a -H/ —1b; drno.1<a<cl,.nol+ 1 ,  0<b<270-, then from the choice o f  A„f ,  A f g d i
—  dr

n
o
j )  < 2 k .  We consider the annuli, the components o f  A n i ,  say Uk,,•••,

U t r  ( i  ( n i )
 < k  (ni)), then obviously m od U ,  =- 27r (4,1+ 1 — d.:1) /L 5 , w here

tom
L„f  is  the height o f f  ( U  j )  ,  therefore E L i

n 1 =2rc.

F o r each Ufz i , we take 191,./ in the set of the level curves o f u,„1 contained
in  E l n .5

i  such that

(4.11) 191,p dzI =inf{ f  P  dzI} ,
i „=C

where infimum is taken in the set of all level curves in U l f . Set 4 =  
“ n i )

And we take in  av satisfying fo r  g iven  v> l,

(4.12) jp idzi<77  in filp idzi;

Then by (4. 10), (4. 11) , and Schwarz's inequality, we have

(4.9) pn,
lim E  f I f,a 10)21 —0 .

J .Gnd
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fi n  i Oldzi_2,r2—k7r,a,TAIlwili;.,,,+ 211%•

Obviously
I P

I (i = 1, 2) , thus
n J

(4.13) A I V2 k7r/47.1/ (00 )0 „,+ II(021IL )

On the other hand, by the definition o f th e  extremal length and  (4. 12)

(4.14) fn./ I o IdzI \I2A (av)(110,11L+riohii;.„,).

Hence by (4. 13) , (4. 14) , and p„i  — 27r / (a") ,  w e have

(4. 15)

ftnj I CO1 fAi I (021 . 272.■12kA (3v) A (a.-i) ( j ) ,

f4 j i fh 5 1(021 2kA (gV) (g n 4 n(i)

f ln lw I
 f I n )

 Ohl ( A ' n j )  dn (j)

< 4 k  (g 1V) A (an') 4n ( j) ,

where 4„(j) = Dcoll.,+ 110 24n,-
Summing up from j  = 1 to i=p, i ,  w e have

fi n  j i(021 f„,i(021 277.,/a - j ,/,z (g'oq ) A (g n  j ) 4  n(i)

<272 2k,N1 :21 A A (g--i),,/A  (j)

(4.16)< 2 7 ) , / g e (Tv) (a") (110),11 . +
= 5=1

f„ ) 1021 fI n .,1021 (a5.277va A.s/ (V ) n° (voiG.+11(02g„),

.L. Lnf t . ,10215_,4kAN/A(v) A (g") (11 iG + 211%)

Hence we have

(4. 17) coil fI n  ) 1°) 21 f„ ) 1(0,1 fI n ,1(021

ft n j la)11 St n . / 1(02i)) (A VA ( a v ) ,1( ani ) )--i

<100(11(0,111+11(0,112.)<+.
From  (4. 3) and  (4. 17) , we m ay find th e  subsequence in„}  satisfying
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(4 . 8 ) and  (4. 9) . Q.E.D.

or

Remark. B y noting (4 . 15 ) and (4. 16) , w e  show that if

sup max A (ô i)A (R " )< +  0 0
n j

".

E (E A( 70'5 )A (
O

5 ) ) - 1 / 2 =  C > C )

n=1 5=1

is satisfied instead o f  (4 . 3 )  the above assertions are also true.

L e t  {/ 5 }  i s  the mentioned above, then there is an index  i  such that

Lin j >27r/k because of E Li j  =27r and i (71j) k. Set j  =1.n
1=1

Lemma 4. 3. L e t  d if f eren tials  co„ co, and  a  subsequence { 1 0  b e  the
sam e as in  L em m a 4 . 2 ,  th e n  th e re  e x is t  a  le v e l c u rv e  O n )  o f  *u,„,„ on
T,v ( i= 1 ,• • • , i ( n j ) ) ,  such that 4 s,  in te rsec ts  w ith  43„i j ,  and

(4.18)

(4. 19)

u rn Iì .(1(1±-1)f
./

f  1021)=o,
• 5 = 1 19

Pn.(1(n ) )
urn E t 10 11 f 10 2 1) = 0

n , - . 0 3  5 = 1  1 = 1 c n i 19n1

u rnE t I(
Wi f„1 102 0 = 0 ,

• 5=1
f

1=1 g n i

P 0 ,  1 ( n ) )

lim  E  E I oi I 021) = 0
• j = 1  1 = 1 "../ P n

P ro o f .  W e choose the same density p a s  in  th e  proof o f  Lemma 4. 2.
We may take a  level curve 4 9  o f  *u„i  intersecting w ith and satisfying

fo r  given 77>1,

(4.20) OldZ1<71 inf if tOICIZI}
nj .u„j=c

where the infimum is taken in  th e set o f all level curves intersecting w ith

8fq. Then by Schwarz's inequality, we have

(4. 21) .kito I dz I -<77N/ (j),

where 4 .(i)=11(0111L+11(0211%,•
Furthermore, by (4. 11) w e  have

(4. 22)
.L 1

10.)„, I f  pi dz (m =1, 2)

<NI (2Lf 1 / (d 1+1— ci;i )  4 . ( j )
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F ro m  (4. 21) a n d  (4. 22) w e have

J I I 10)21. 27) , / ( f in 9 / ( d ; ' !+ i— d 7 ; f ) 4 . ( i )

< 2 72•\/2kzin  (i) •
Sum m ing up from  i =1  to  i j  (ni) ( k )  and  from j = 1 to

15 n  i(n i)
E E fai 1 oh 1.= 87710(11will,„ + 11 ()2 11,,).

8n1 ni

This implies the first equation o f  (4. 17), an d  th e  second is obtained simi-
larly .

E specially fo r  o l
n i ,  from  L i

n i ..27r/k, w e  have

pn « n i )
(I * G n  +  II a ) 24 . )  •A A SA J  I(Dii fc ii ,.,,Ia)21<277k2,/-7c

T h is im p lies  h e  first o f  (4. 19), an d  th e  se co n d  is  s im ila r ly .

T h e o re m  4 . 2 .  L e t  RECY :, then for any o),, w 2 E F ,( R )  there exists
a  subsequence {R n ,}  such that

(4 .23 )
POO

(COI, * W ) =Alin E ( f f F02— f f
n,, - .co  5 = 1  \ „ J B , ./ .4 ,

P r o o f  T o  b eg in  w ith  w e  tak e  a po in t p i
n j  o n  f i n

i  j  and arcs A i , • • • ,

w h ere  rni i  i s  an  open  an a ly tic  a rc  from P i
n  j to  pl ., in  th e  region bounded by

cen j , •-•, an d  3 .'„V ) , and  .7 ; 0 . Using Stokes' formula for the
P .  i (n i ) WO)

relatively com pact region  R : cu t a lo n g  U  ( U  44, t-) U  rni s ), w e  have
.f=1 i=1 j=1

p(n)
( 0 1, * 02) .1?;", == E( f col .63 2—  f  cot -652) 01652

j= 1 A i B i B i A i Rn•

rzP . i ( n i)
w h ere  0 1 (z ) =  0 1. A n d  a U U j ) j )  ,

=1 i 2
( r i n j )  a r e  tw o sides of

F o r each  z  o n  r , ,  w e  d e n o te  it  b y  z+, z -  considered on  (4.0 (r1 s) -

resp ective ly  (i = 2, •••, i(n j))  (F ig . 1) . T h en  w e  have

0 1 (z+) = 01(z - ) — i .

w h ere  (7-1,)+ and

a "
inf

Fig. 1.
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Therefore

(4.24) • ø 1 2
f i 3 f q f ( r in i ) - Y ) 2  •

tj ,  4 o : ( inWe join 8 1. 3 and 81 1 by a  sum of subarcs of n and 4 > ( =  6.1)8>) ,

and denote it by d i
n j . Then A , is homologous to d i

n i p lus certain  parts of t n j

(F ig . 2).

Fig. 2.

Hence

(4.25)
j
a)m 1 r j 1 0) mi ( M = 1 , 2 ) •

  

B y  (4 . 24) a n d  (4 . 25) w e have

(4. 26) fo-1.0, 4 - 01.0— c ( 7 ) 2 f i 9 / 1 1 i i  f t n 5 + 1 :5 + 4 4 + 4 5 1 6 6 2 1 •

 

Since Ft), is semi-exact a n d  o i (p n  -0 1 (pt) = (0„ w e have
rn>+ E 8 .51=1

(4.27)

 

Ltn j (C - 0 1( P t ) )
(Th

  

r
JA ,( 0 i (P n - o i ( p n y h

( ( I . ! )  r ( (n 1 ) r
102I+E p 1021 f,

p n j p n , i=2 p n j
r n j+

i ( n j )

1(0'1L  1(021+E 1021 Sr i ,  lo i l .
i i 5 n 3 , , n , i = 2  $5, , , n j  t n j

Summing up (4 . 26 ) a n d  (4 . 27) from j = 1 to i=p,„ a n d  using (4. 25) ,
we know that Lemma 4 . 2  a n d  4 . 3  a re  ap p lic ab le  to them , that i s ,  there
exists a  subsequence {n„} such that

   

An,
i(n, j)

5= 1 .1.1n,J+ E (rf., >) ± 2

i=2

 

lirn
Tt„ » c o

= lirn = 0 .

  

Hence we have
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( 0 1 , 4' 0 2 )  = urn (t01 , * NO 1?,„

R e m a rk . A  Pfluger [22] has shown the following; Let W be the same
as in Example 2., but we need not suppose the condition (4. 4). And we
construct the two sheeted covering surface R  o f W, and W2 ,  tw o  copies of
TV, as Example 2.. Then fro any a),, a), in Th (R ), the bilinear relation (4. 23)
is valid.

W e have not shown completely his result from Theorem 4. 2, that is,
we may show the bilinear relation when (4. 4) is valid  (R E 0 2" )  or
is divergent (R E 0 2" ) .  Since he used the symmetricity of R  in his proof and
w e do not use it, we may show the bilinear relation on non-symmetric surfaces
to which his result is not applicable.

Other classes of Riemann surfaces.

Considering Remark o f Lemma 4. 2 and the proofs o f Lemma 4. 3 and
Theorem 4. 2, we may show the following;

T h e o r e m  4 .3 .  (a )  W e def ine  RECY,(k=1, 2, •••) i f  t h e re  e x i s t s  a
se q u e n c e  {Tn }r a s  i n  D e f in it io n  4. 2 s u c h  t h a t  i n s t e a d  o f  (4 . 3) i t
satis f ie s  the  condition

(4. 28) its/L' A(V ) A ( '" ) =
n = 1 .1=1

T hen  f o r  an y  ro r__1, —2 —  -  hse (R ) , (4. 23) i s  v alid .
(b) I f  th e re  e x is ts  a  sequence {T „ }r  i n  R  a s  i n  D efin ition  4. 2 su ch

t h a t  in s t e a d  o f  (4 . 3 ) i t  s a t is f ie s  the  condition

sup max A (RV )A (R")<00 ,

T hen  f o r  an y  (01, (02 E r  I t s e ( R ) ,

(W I, * W )  =
POO
E( f f (T)2 —  f

B , 
0), f4 2 ) .

A , 8 ,  

P r o o f  It may be omitted.

From the inequalities for aj , b ,>0,

Pn( E  a i b E a j b j ) 's,17,-„(EN/ a i b j ) - 1  ,
1=1 1=1 1=1

P ( 7tv )= lim E  f  (Di @2— to. zo- 2 ) •
7 4 - 0 .  1=1 A i B i B i A i

we conclude OZ c (Y,, a n d  if  R  h a s  a  fin ite num ber o f  id ea l boundary com-
ponents, then CY,: = O .  And from Theorem 4. 3, CY„ c CY,cp. Furthermore,
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Theorem 4. 4. The f o llow ing  re lations are  v alid;

(4. 29)O  CCX••• cYk go'k + ,... c , Oi o /k

(4.30),  O k c I O O ,

(4.31) U n occo° .
k =1

P ro o f .  From the above remark and Theorem 4. 1, we may show (4. 29)
and (4. 31). And CYk (4 O p  implies OZ60'k  because o f G ri: C O G C 0  1 C D . Hence
it suffices to construct the example belonging to O'k  —  Oa.

L e t  {g a r  b e  a  sequence of real numbers, 0<q 0 < 1 .  We denote by E{q i }
the generalized Cantor sets, the point set constructed as follows;

Le t E o b e  th e  closed interval [0 ,1 ].  We construct inductively, sets
E n (q„ • • • , q„) consisting of 2' disjoint closed intervals. To pass from E, (q 1 , • • • ,
qn) to En-I-1 ( q 1 ,  •  •  • ,  qn -I-1 ) we remove from each interval, symmetrically about
the midpoint, subintervals the sum o f whose length is the ratio q„4 1 t o  the
original interval, that is, for each interval [ A n i , B„j ] ( j = 1 ,  • • , 2 ')  in  E„(q„
• ", q.) we take four points a„,, a n' 1 , bn j , b'„, such that A n i < a n i <a'„ J < K i < b n i

< B n j , a,, A n d = Bn j —b„, = I  (bq  — b'n  j ) = —
1

q, 1 (B„,— A ,,,), and they are sym-

metric about —

1

(B i d  A , , , ) ,  then we set E n +  ( a1 , • • • qh+i)2 j=i= U [a,,,, a'n j ]u [Y„,,
00

1,4 ].  The set Eiq i }  is defined a s  n E. (qi, • • •, qn)
n..1

Then we know analogously to [5 ] IV  24B. that if

(4. 32) E 2 'log  qk (1 — q,) < +  co ,
k

E {q }  has positive logarithmic capacity, that is e— E {q ,} is hyperbolic.
On the other hand, we take a sequence of union of 2' annuli (n= 1, 2, •••)

such that on the above symbol in  En + 1 (q 1 , • - • , q„4 1) we take two annuli on
each interval [A,,,, B„j ] (j =1, • • • , 2"), o n e  annulus is bounded by the circle

1whose diameter is [ A 5  
2

r o ,  — (an j +Y„ i ) and the circle whose diameter is [a„,,

a n' j ] , and another is bounded by the circle whose diameter is [ I1-• -  (a , +  b , ) ,,
2

Bn 9 ]  and the circle whose diameter is [140 , b,,,].

Then the sequence satisfies the conditions of 0 ;  except (4. 28). Since
( r ) (r )  =  (a  modulus of annulus) - '•27r, (4. 28) implies

(4. 33)
-E 2"Alog 1/ (1 — + 00 .

k 1

We may give a  sequence Iqk I r  which satisfies (4. 32) an d  (4. 33) , for
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example q0 =1 — exp ( - 2 0 "). Hence we constructed the desired surface.

§  5 .  Applications.

In  this section, we shall extend some results on compact Riemann srface
the Kusunoki's class 0 "  to our class O '. B u t  t h e  methods a re  similar to
the previous ones. So we shall remark only the results and the references.

To begin with, we notice that the following is shown by the same way
as Theorem 4. 2.

T h eo rem  5 . 1 . L e t  R  b e  in O ,  t h e n  f o r  a n y  A b e l i a n  dif ferentals
d f ,  ( 1 s t  o r 2 n d  k in d )  an d  d f , w ith  f in ite  n u m b e r o f  singu laritie s w h ich
have f in ite  D irich le t norm s outside the neighbourhood of  the ir s ingu laritie s ,
th e re  e x is ts  a  subsequence -(R,,,} su c h  th at

pcno
(5.1) 27r '■/— 1 E Res .F 1d f 2 = —lirn E(f d f i f  d f 2

n J.--1 Ai 13,

—  f d f 1 t i d f 2),

w h e re  F i ( z ) =  d f ,  .

By using this theorem we may show R iem ann - R och theorem and A bel's
theorem on R E O ," analogously to the classical cases. Furthermore, for the
classes referred in  th e last part of the preceding section, the similar extensions
are possible for the restricted differentials and functions (c f. [14 ], [18 ], [23 ]
[24]).

Another application is the one on quasiconformal deformations. L e t  R,
be a  m ark e d  Riemann surface in OZ with a  canonical homology basis {45 ,

modulo ideal boundary as in Theorem 4. 2. We consider a K - quasicon-
f o rm al  m ap p in g  f R  o f  R o o n to  R .  Then  f R  induces o n  R  a  canonical
homology basis, and we denote it also by {A 5, B y  the definition R  be-
longs to OZ.

L e t 00 E1' a (R o ) , then we may show that there exists a unique differential
0E „ ( R )  having the same A-period with 0o (c f. [16 ] Proposition 2 ) .  Hence
by the method o f Theorem  1 [16], we have

(5. 2) 110°fR — Oo II Ro = (K — 1) II0 oil R o •

Furthermore, we may show the continuity o f norms and the analyticity
o f periods on the Teichmaller space o f  R o analogously to [16] Corollary 3
and [15].

KYOTO SANGYO UNIVERSITY
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