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§0. A solution for an elliptic equation, even it may satisfy the equation in a
weak sense, is expected to have certain regularity properties in the interior of the
domain in question. In this paper we treat the elliptic equation of the following form

(0.1) — A u  +  ; !4 b  (x )   x
u

 i + c (x)u = f (x) ,

where A denotes the Laplace operator in  R " .  We denote by B(x, r) the ball in R 0

with the center x  and radius r,  and BR = B(0, R) in  abbreviation. Since we are
interested in the interior regularity properties of the solution u, we may confine our
considerations within a neighborhood BRo  of the origin. We impose the following
conditions on 01 , c and f .

c  and f  belong to IA B R 0 ) ,  /Vs belong to L2 (BR 0 )  and there exist constants
B , C, F and 0 (0<0 <1) such that the following inequalities hold

0 4 .012 dy  <B 2 1 , - . 2 + o , ic(Y )i dy <Cr" - 2 + 0

soc,onB120  j B ( x , r ) n B R o

If (A d y  F r n - 2 + 0 for every ball B(x, r) in R".
B(x,r)(1BR 0

We say that u E H I (BR 0 ) (the L 2 -Sobolev space of order 1) is a weak solution of
(0, 1) in BRo ,  when u satisfies

(p+cu(pdx = fyodx
B R 0 a X BRo

for all go e C (B R 0 ). Since bi (Ou/ax i )  and cu 2  a re  integrable under the conditions
(see Lemma 1.2), the above definition makes sense.

Now we state our main result in this paper.

Theorem . Under the  cond ition  (0 .2 ), i f  a  f u n c tio n  u e lP(B 4 O )  is  a  weak
so lu tion  o f  (0 .1), th en  u  is  eq u iv alen t to  a  Holder continuous function w ith

(0.2)
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exponent 0 (0 < 0 <1) in the interior.

W e shou ld  m ention som e o ther conditions w hich guarantee th e  Holder
continuity o f  th e  so lu tio n . If  b = 0 and  c  and f  satisfy th e  Stummel condition

(0.2)' sup
(I c 1 2 +  If  12) 

 dy<L 2 f o r  some constants L  and 0 (0 <  < 1/2),
S E R A °  BR0

y n — 4+ 2 0

the theorem is contained in  Lemma 5.1 of S . A gm o n  [1 ]. We can see easily that
if c and f satisfy (0.2)' for some 0, then they satisfy (0.2) with the same 0. If b belongs
to LP(B,,,) and f  to  LP/ 2 (B R 0 ) for some p> n, the theorem is essentially included in
the works of C. B. Morrey and G. Stampacchia (see [2 ] and [3]). It can be easily
seen that (0.2) holds with 0=2(1—n1p) in  this c a s e . When n= 2, the theorem is
included in  §5.4 of C . B. M o rrey  [2 ]. So we may confine ourselves to the case
n  3 in the following considerations.

We remark that the considerations in this paper carry over without any essential
changes to the system of equations of the following form,

where =qu i , u s) , f = r (fi, v ri=(° u i) , B =0 , i (x)) a n d  C=Oxj

(c, j (x)).
Finally I want to express my thanks to professor H. Isozaki who, reading the

manuscript, gave me valuable advices.

§1. To begin with, we prepare some lemmas which will be used in the proof of
the theorem . W e denote the partial derivative o f  u in  x j  b y  V u , u 1 2  = I
1Vi u12 , the volume of the unit sphere in R" by y„ and F „= (n -2 )y „ . We abuse K to
denote various constants which do not depend on the coefficients or solutions.

Lemma 1.1. A ny u e 1/6(8,) is represented as

((1.1) u(x) =-1- (xi— y )  V  .it(y)dv
v .) B R  lx —  Yl n•,

almost everywhere on BR.

„IX1Pro o f . Since
f 2

 i s  a  fundamental solution for the Laplace operator,
(1.1) holds obviously for a smooth function with com pact support. The result fol-
lows by approximating to u in H (B R ) by such smooth functions.

Lemma 1 .2 .  Let c belong to L'(B R ) and u to Hi(B R ,  a ) (a> 0). S u p p o se  that
there exist constants C, L and A (0 < A< n — 2 + 0) such that

(1.2) Icidy.‹Crn-2+8 ( 0 < 0 < 1 )
1B(3c,r)11BR

(1.3)
13(x,r)nBR,

iui2 dy <L 2 rl (O <A <., n -2+0 ) f o r each B(x, r), then

cu2 belongs to L 1 (B R ) and satisfies
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(1.4) 1042Idx<KCL2r°-E+1(0<E<O), where K  depends only o n  n,
t(xo,r) n B R

E, R and a.

P roo f. When we choose a  smooth cut-off function 9  which is equal to 1 on
BR  and whose support is contained in B „ a , we have by Lemma 1.1

lu (x ) i<J1 IV (9u)(Y )I  d
Y .  B R , — l

<K 1
BR,- x _ y r i (I V u(Y )I+Iu(Y )Ddyi  

dy)1/2( L .
< K

O B E + .  Ix —IYIn-8 2+e 0'7 1 1 (012 + 1140 2 ) 4 Y /2

< K ( R +0 1 2 (S 1BR*.lx_ y
- n-I  2+e OVU(Y)1 2 +1U(Y)1 2 )

d y ) 1 / 2 .

Then we have

Ic(x)1(1Vu(Y)12+
ii(x00)nBR B(xo,r)neRICU 2 Id X ‹ K(R + a)B

L + . . In-2+e
114 ° 2 )  dydx .

We divide the integral into two parts 1, +1 2  where

I", "=
B ( xo,r)nB R  B R  + . n B ( xo, 2r )

 a n d  /2 = Boco mn B R  B R +  0 111(x0,2r ) .

i) Estimate of I .  In order to evaluate the integral, we set

(to(P, Ic(x)jc/x.
B (x o , r )Û B ( r . o n B r t

Then we can see that 9(p, y) satisfies

cp.-2+() i f  O <p<r
(1.5)

Cr" - 2 +° if

and that the integral with respect to x can be written as

5 2 dX 0  frn+ 2 - .  d cp(p, y )
B(xo,r)nB.. vi„— 

3r
for lx - yl<3r

where the integral of the right hand side is taken to be the Lebesgue-Stieltjes integral
with respect to p = l x - y l .  Using (1.5), we find

(1.6)

1 3 (X 0 ,r )n B R  IX I
Icv(. 12+E dx  = p—n+2—r (p(p ,  y )

<KCr° - E(0>s).

3r 3r
- 2 + e ) p "+" - '9(p, y )dp

Inserting the inequality (1.6) into the integral 1,, we have
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B R + . n B ( x 1 3 , 2 r )  

(1 V 11 (.012 + 114 0 2 ) ( I C (X )I  dx )dy
eR n eix.,0 Ix -

BR + .nBCX0,219IV 
U ( Y ) I 2 1 1 1 ( Y ) I2  d Y  <

Estimate of / 2 • W e  set, as above

Q i(p, x )=1 IV u(y )I 2  + lu(y )I 2 dy .
[BR * „\e(x 0 ,2r)]ne(x,p)

Then gi satisfies

L2pÂ if 0 <p <R
(1.7) 611(p, x)<

L 2k 1 if p R.

Since x e B(xo , r) and y E B R\B(X0, 2r) in this case, Ix - y i  r  holds for these x and y.
Then we have

12= 10 4 0
ivu(y)12+ lu(y)1 2

—y1"-2+'
dy)dx

011BCX0, BR B R ,  ,,1B(x0,2r)

( r + 2 a
I C (X)I p— n+2— do11(p, x))dx

B(xo,r)n BR
(P= lx —y1)

B(xo,r)n B R  
Ic(x) 1 [ i f - 4 '2 - 6 7 (P, x) 

2R+ 2a 
+( n - 2 +E )

2 R - 1 - 2 a

x ) d p i d x

<K L 2 (i +r - n+2 - -" ) c(x)I dx
B(xo ,r) n BR

<K C L 2 r 9 - E+2 .

Thus we find

Icu 2 Idx <K (R  +a)eC L 2 r" - '+''
B(xo,r) n BR

and obtain the lemma.

Remark. Since the constant K C r' - ' can  be  m ade arbitrary small a s  r-*0,

we observe that the form J[u]=r IVul 2 +clul 2 c1x, u E 111 ( 1 2 )  is bounded below
JR

under the conditions. However we shall not use this fact in the following arguments.

Lemma 1 .3 .  L et g and  h  belong to L 2 (B R ) and satisfy

(1.8) 1g 12dy  G 2  r n— 2+ (0<0.< 1)
B(X,r)n B R

(1 .9 ) Ihi 2 dY <H 2 1 - ' (0<.).,<_ n - 2 +0 ) f o r  every  B(x, r).
B(x,r)n

a (  112( v11 Then V (x)= I" dy  is defined for almost all x  and belongs to Hi(D)
R  B R  Ix  - y  n1 —2

f o r  any bounded domain D in  R " .  Furtherm ore V (x) satisfies
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(1.10) S
. 1 3 ( x , o r )  

IVV(x)1 2 + I lAx)12 dx <K(GH) 2 r"-t f or every B(x„,,, r).

P ro o f . Since g(y)h(y) E L I ( B ) ,  we find V(x)E L 1 (D ) for any bounded domain
D .  By approximating to gh in L 1(BR )  by smooth functions, we can see easily that

; V (x)= 1 1  x i — g(y)h(y)dyY n BR IX  Yi n

holds for almost all x, where the derivatives are taken in a weak sense.
We devide the integral in the right hand side of (1.11) into two parts as /,(x)+

12 (x) where

a n d  /2 (x) --= •
B Rn B(X0,2r) B p113(x0,2r)

i) Estimate of 11(x). We have, by Schwarz' inequality,

g(y ) 2  dv)1/2(ç. Ih (y )2  )
1 / 2

(0<E<O).Iii(X )1<  I  

Y 11 0  BR n B(X0,2r) Y in  2 + 8 \ . )  i l Rn BOCCI, 2r) Ix — Yi n  8

, dy

By the same argument as in obtaining (1.6), we have

19 (.012  

(1.12) ..,n_2.„dy<K G2r9-' (0< s< O ).
EIR1-113(x0,2r) ix — yi

Then it follows

1 , d x ) d y- ' 1, „ i n
B (x 0,r) 

ili(x)1 2  dx<KG2r°
B R rIB Ix o,2r1

1 h ( 0 2 0

B( 3c o ,r) e ' —  Y  I

<KG 2 r 0
I h ( y ) 1 2 d y

BR nBcx0,20

< K(G H ) 2 r " - '1 .

Estimate of 12 (x). W hen  w e  set

(19(P, x ) = Ig ( 0 1 (y ) Id y ,
[B.kB(x..2r)] n B (x ,p )

we can easily verify
GHp(„1-e-i-A)12-1 if 0<p<R 

(P(P, 
x)

0+,1,1/2-1 if p..> R.

Since Ix — yl r in this case, we have, as in the proof of Lemma 1.2,

1/2(Y)1‹
y,,

1 ,3 R  P - "+ 1 d 9 (P , X) (P = IX — Y I)

91 3 R (n— 1)1 3 R  p - " cp (p , x )d p l

< K G H (1 -E r(-" '" )12 ).
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Then it follows

Thus we obtain

B(xo,r) 2
I I  (X )I 2  d  X  ‹ K(GH) 2 r°+2 .

IVu(x)1 2 dx<K (GH) 2 r° -" .
13(xo,r)

We observe that the estimate of V(x) proceeds just as above, and the lemma follows.

The following propositions are direct consequences of the preceding lemmas.

Proposition 1.4. (see Theorem  3.7.5. of  C . B . M orrey  [2]). L e t  f  belong to
Li(B R ) and satisfy

If IdY  Fr" - 2 +°  (0  <0 <l) for every ball B (x o , r). T h e n
B(xo,r)n B R

 ( f ( Y )  
W R ( x )  r n  i s .  i _y in_ 2 dY

belongs to Hl(D) f o r any bounded domain D in  I?" and satisfies

(1.13) IV WR (x)I + 1WR (x)12 dx < K F 2
r n - 2 + 2 0

B(xo,r)

Pro o f . The proposition follows from Lemma 1.3 by putting g(y)= sign (f (y)) x
If (Y)11 1 2 , h(Y )=I f (Y )1" 2 and A= n —2+ 0.

Proposition 1.5. Suppose b i  belongs to L 2 (BR ) and satisfies

B(x, r) n BR 
Ibl 2 dy <B 2 rn- 2 4 - 0  w h e re  ib l 2 =Z /I1 lb il 2 .

Suppose also u belongs to 1-11(B R ) and satisfies

ul 2 d y <L 2 1J. ( 0 <) <n —  2+ 0). Then
B(x,r)11BR

U R (X ) =  
JB„ 

b ( v ) .V u ( y ) ,

belongs to IN D)for any  bounded dom ain D in R", and satisfies

(1.14) IvU (x)1 2 +  UR R(x)12 d X K B2 L2 r°4

B(xo,r)

Pro o f . To verify this, we have only to substitute b  for g  a n d  V u fo r h  in
Lemma 1.3.

Proposition 1.6. Suppose c belongs to LI(B R + a ) and satisfies

IcIdy<Cr" - 2 . Suppose also u belongs to Hl(B R + a )  and satisfiestux,r)nBR
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, IV ul2+Iul2  dy <L 2 rÀ

11(x,r)nBR+.

Then

(0 < ).< n — 2 +0) f o r ev ery  B(x, r).

VR(X) — t, L C
ix

( Y )
 y
i g

n
Y22 dy

belongs to IND) for any  bounded dom ain D and satisfies

(1 .15 ) VR(x)12+ Vi t (x)12 dx < KC 2 L 2 re+A+( o- E) , w h e re  K  depends on
B(xo,r)

n, s, R  and a (0<s <0).

Pro o f . By Lemma 1.3, it follows

1B(x,r) n B R  
I cu2 Idy < K CL 2 r 6 - 8 +2f o r  every B (x , r).

The proposition follows from Lemma 1.3 b y  p u tt in g  g=sign(c(y))1c(y)I 1 / 2  and
h=ler/ 2 u.

Finally, since T ; 1 1x1- "+2 is a fundamental solution for the Laplace operator,
we can see easily the following proposition.

Proposition 1 .7 .  Let f  belong to 1 ) ( B , ) .  If  we set

W 1 (x ) = 
1 n B R  IXf—T  n - 2 d Y

then we find

1 V  W ,•7 7 9 d x  f i p d x
B R  B R

f o rai!  cp e C(B,)

§ 2 .  Now, we can prove the th eo rem . Our proof is based on
chlet growth theorem which is called Morrey's lemma.

Lemma 2.1. (see Theorem 3.5.2 in C. B. M orrey  [ 2 ] )  L et u
and satisfy

r
(2.1)

n-2+ 20
(0 < 0 < 1) f o ra i !

B(x,r)IV U1
2  dy  <L 2 Ç—a

the following Din-

belong to 111( B „ a)

x e B ,  and  0 < r<

a  with a constant L . T h e n  u  is equivalent to a Holder continuous function in BR

and satisfies

Iu(x )—  u(x ')I < K L al-"12(lx ) f or almost all Ix— x'1 <a12.a 

Owing to the lemma, we can see we have only to show that Vu satisfies the growth
condition (2.1) to prove the theorem.
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Proof of  the theorem. Let u e lP ( B R . )  be a solution of the equation

— A u +1,A 1 b iV it i+ C 1 4 = f.

For any R '(O <R ' < Ro ) and large integer N , we can choose concentric balls BR ,  o f
radius R i  such  tha t R' =  R2N < R 2N -1<••• <RI < Ro  and  R _ 1 —R  --constant, say
2 a .  We put

( b (y )•V  u (Y) dyUR i(x)= 3,3„, Ix — Yi n  2

1 c(Y )u (Y )  dv(2.2) V Ri (x ) = F
n  J B  I x — yl n - 2

f f ( Y )   dy .W R i(Y )= „ iB it
i

Then we can see, by Proposition 1.4, 1.5, 1.5 and 1.7, that the integrals make sense
and v R i = u +  UR I +  VR, —  W ,R, satisfies pv„, =0 in  a  weak sense in  the  interior of
B R , .  Furthermore by Proposition 1.5 and 1.6 with L = Ilu H io R o ) , '1= 0  and r  R i ,
it follows

(2.3) 11vR111L2(BR,)<Ki[(B+C)11u11,1(BR.)+Fl.

Since vR i  is equivalent to a  harmonic function B R i , the magnitude of v R i and
VvR i  in BR 2  can be estimated by the L2 -norm of v R i in B R .  That is:

(2.4) 1vR1(x)1+1VvR1(x)1<.Ka-n12111 vR1llL2(BR1)

<K a - "1 2 [(B+C)Ilullai(e R 0 )+

holds for almost every x in B R 2 .
Using Proposition 1.5 and 1.7 with 

L = 1 1 1 4 1 1 a 1 ( B R „ ) ,
 ) = 0  a n d  R =R i ,  we have

+ I uR,I2 dx  KB 2 11u
B(xo,r)

(2.5)

B(xo,r) 
IVVR,12+1VR,12dx<KC211u i i i ( B R o re +0 - 0  for every B(x o , r).

Using Proposition 1.4 with R = R 1 , we have

(2.6)
1VWRII

IW R 1I2dX  K F 2 r " - 2 + 2 0

B(x0,0 

We recall that u= —U R, —  VR, W R i +  VR,. Then it follows, by (2.4), (2.5) and (2.6)

(2.7) 1Vul 2 + 11412 dy <Lire  fo r  every  B (x , r), w here  L 2  depends on
B(x,r)n B R ,

B , C, 111411n1(aR0), etc.

Next we employ again Proposition 1.5 and 1.6 w ith L=L 2 ,  R =R 3 and /1.=0.
Then we obtain
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(2.8)
IVU

R3 
12  +IU R 3 12 dx<K B 2 L ir2 °

SB(xo,r) 

B (xo ,r) 
IVVR3 12  +IVR i i2 dx <K C 2 L ir2 ° " - E for ev e ry  B(x, r).

By Proposition 1.4 with R= R 3 ,  we have

IVN 3 12 +1 wR 3 I2 dx< K F 2 r n - 2 + 20 for ev e ry  B(x, r).
B(xo,r)

When we set, as above, v,, = u + U R3 + VR 3
—  WR 3 , VR 3 is equivalent to a harmonic

function and

(2.9) 1VvR3(x)I + I vR3(x)I Ka - I ■In I 2 I„vR3,.1.2
(B R 0 )

<K a - n1 2 [(B+C)Mullin(B R o )+F]

holds almost every x in B R , .  Since u= — R 3 -  V R 3 +  WR 3 +  VR3 ,  we find, by the same
argument as above,

(2.10) 1Vul2 +1u1 2 dy <L ir 2 ° for ev e ry  B(x, r).
B (x,r)f) B R4 .

Repeating these arguments k times, we obtain

(2.11) iv u i2+ 11412dy < Li krke for ev e ry  B(x, r).
B(x,rrIBR

2 k

Since we can choose beforehand sufficiently large N  such that NO exceeds n —2+20,
we conclude

1B ( x , r ) n B  
F u l2dy  L 2 r n-2+20 for ev e ry  B(x, r) in R .

The theorem then follows from Morrey's lemma.

Added in proof :  If n 3, u  =log r (r 2 = EJ ,±1 4 ) belongs to H' (B R )  and is
a solution of

n— 2
—  u + c(x)u = 0  w h ere  c(x)—

r2  l o g  r  •

T hen it fo llow s that w e can  not expect th e  H older continuity (even the
boundedness) of the weak solution, when we assume, instead o f (0.2),

rn - 2

/ 3 ( x , r ) I I B R 0  
le(Y)IdY

h o g  r l  •
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