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§0. A solution for an elliptic equation, even it may satisfy the equation in a
weak sense, is expected to have certain regularity properties in the interior of the
domain in question. In this paper we treat the elliptic equation of the following form

0.1 —Au+2,~11b,~(x)%+c(x)u=f(x),

where A denotes the Laplace operator in R". We denote by B(x, r) the ball in R"
with the center x and radius », and Bgx=B(0, R) in abbreviation. Since we are
interested in the interior regularity properties of the solution u, we may confine our
considerations within a neighborhood Bg, of the origin. We impose the following
conditions on b, ¢ and f.

c and f belong to L!(Bg,), b;’s belong to L?(Bg,) and there exist constants
B, C, F and 0 (0<6< 1) such that the following inequalities hold

=i 1b;(N)12 dy < B2+, le(r)] dy<Crr-2+0

(02) B(x,r)NBRrgy SB(x,r)nBRo
S L f(y)ldy < Frn—2+9 for every ball B(x, r) in R".
B(x,r)NBRr,
We say that u € H'(Bg,) (the L2-Sobolev space of order 1) is a weak solution of
(0, 1) in Bg,, when u satisfies

n p Ou -
SBRO Vu~V(p+ Zj-_-l bja—x.’:(D'i‘Cuq)dx—gBROf(pdx

for all @ € C§(Bg,). Since bj(du/0x;) and cu? are integrable under the conditions
(see Lemma 1.2), the above definition makes sense.
Now we state our main result in this paper.

Theorem. Under the condition (0.2), if a function ue H'(Bg,) is a weak
solution of (0.1), then u is equivalent to a Hélder continuous function with
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exponent 0 (0<0< 1) in the interior.

We should mention some other conditions which guarantee the Holder
continuity of the solution. If b=0 and ¢ and f satisfy the Stummel condition

0.2y SUPS (lc—lz_'-ﬂld<L2 for som tants L and 6 (0<6<1/2
. I O e T 25 ) y< e constants L and 6 (0<6<1/2),
the theorem is contained in Lemma 5.1 of S. Agmon [1]. We can see easily that
if ¢ and fsatisfy (0.2)' for some 0, then they satisfy (0.2) with the same 6. If b belongs
to LP(Bg,) and f to LP/2(Bg ) for some p>n, the theorem is essentially included in
the works of C. B. Morrey and G. Stampacchia (see [2] and [3]). It can be easily
seen that (0.2) holds with 0=2(1—n/p) in this case. When n=2, the theorem is
included in §5.4 of C. B. Morrey [2]. So we may confine ourselves to the case
n >3 in the following considerations.

We remark that the considerations in this paper carry over without any essential
changes to the system of equations of the following form,

— Aii + BVii + Cii =/,

where #="(uy, tgeers tin)y J="(F1s Farerms fi), va:(gz

(ci](x))
Finally 1 want to express my thanks to professor H. Isozaki who, reading the
manuscript, gave me valuable advices. :

L), B=(b,(x)) and C=

§1. To begin with, we prepare some lemmas which will be used in the proof of

the theorem. We denote the partial derivative of u in x; by Vju, [Vul2=3 2,

|V ju|?, the volume of the unit sphere in R” by y, and I',=(n—2)y,. We abuse K to

denote various constants which do not depend on the coefficients or solutions.
Lemma 1.1. Any ue H{(BR) is represented as

(x;=yj)

oyl VO

S
(L1) u =2
almost everywhere on By.

Proof. Since '["__IilT“T is a fundamental solution for the Laplace operator,
n

(1.1) holds obviously for a smooth function with compact support. The result fol-
lows by approximating to u in H(Bg) by such smooth functions.

Lemma 1.2. Let ¢ belong to LY(Bg) and u to H'(Bg,,) (a>0). Suppose that
there exist constants C, L and 2 (0<A<n—2+0) such that

(1.2) S leldy<Cr-2+0  (0<f<1)

B(x,r)NBr

(1.3) S [Vul2+|ul2dy <L** (0<A<n—-2+480) for each B(x,r), then

B(x,r)NBr+a

cu? belongs to L'(Bg) and satisfies



A Remark on the Hélder continuity 611

(1.4) S leu?|dx < KCL2r®~**40<e<@0), where K depends only on n,

B(x0,r)NBr
e, R and a.

Proof. When we choose a smooth cut-off function ¢ which is equal to 1 on
By and whose support is contained in Bg,,, we have by Lemma 1.1

|V (ew)(y)l 4

H
<__
Iu(x)l\y" e

dy

N

K| w7+ u))dy

<K<§BM —|x—§»|n-=dy)m(§.m,, oy (Ve P+ )Ry )

<k(R+ay"( | e (Va2 +u()Ddy ) .

BR+a |x y

Then we have

S Ic(x)I(IVu(y)lf+ 2P gy, .
B(xo, r)nBR BR+¢ ’ Ix yl" te

S lcu?|dx< K(R +a)® S
B(xo,r)NBr

We divide the mtegral into two parts I, +1, where

al]d IZ=S

11=S S S L
B(x0,r)NBr JBRr+aNB(x0,2r) B(x0,r)NBr /Br+a \B(x0,2r)

i) Estimate of I,. In order to evaluate the integral, we set
@(p, y) =§ le(x)ldx.
B(xo,r)NB(y,p) NBr

Then we can see that ¢(p, y) satisfies

Cpn-2+6 if 0<p<gr

(1.5) @(p, ¥)< [ )
Crn—2+6 if p=r,

and that the integral with respect to x can be written as

3r
S —l—L(x—..)-lrd)C=S p "2t dep(p, y) for |x—yp|<3r
B(xo0, r)anl _vl

where the integral of the nght hand side is taken to be the Lebesgue-StleltJes 1ntegral
with respect to p=|x—y|. Using (1.5), we find .

(1.6)

e e — g (p, )|+ (n—2 Ssr S '
= n y — + n +e , d
Smm,rmm——ﬂnfn—» x=p e(p, y)| +(n e)) p @(p,y)dp

< KCr®:(0>¢).

Inserting the inequality (1.6) into the integral I,, we have
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AV + a1 (§ U dx )y

1 =§
1 -
Br+aNB(x0,2r) BrNB(xo,r) | X — y|"~27Fe

<KCr""S [Vu(p)2+|u(py)|?dy < KCL3*r0+4,

BRr+aNB(x0,2r)

ii) Estimate of 1,. We set, as above
Up, x =S Vu(p)?+|u(y)|*dy.
p, X) s s \Blso. 3110 Bep) IVu(y)?+lu(y)|>dy
Then # satisfies
L2p? if 0<p<R
(1.7) U(p, x)<
L2R* if p=R.
Since x € B(xy, r) and y € Bg\B(x,, 2r) in this case, |x — y| > r holds for these x and y.
Then we have

o2 5
I= (| VU4 u)E g
2 B(xo.r)ﬂBRI ()| BRr+a\B(x0,2r) |x — y|n—2+e Y
2R+2a
=S IC(X)I (S p_"+2_5 d%(p, x))dx (p:lx—yl)
B(x0,r)NBRr r
2R+2a 2R+2a
= o s IC(x)I[p‘””“%(p, x)f +(n—2+s)S prHi=eqy(p, x)ddex
x0,r)NBRr r ’
<KL2(1+r—n+2—a+l)S Ic(x)ldx
B(xo0,r)NBRr

gKCLZrO-z'l'l'
Thus we find

g |cu?|ldx < K(R +a)*CL?r%-2+2
B(x0,r)NBRr

and obtain the lemma.

Remark. Since the constant KCr® ¢ can be made arbitrary small as r—0,
we observe that the form J[u]=$ |Vu|?2+clul?dx, ue H'(R") is bounded below
R'l

under the conditions. However we shall not use this fact in the following arguments.

Lemma 1.3. Let g and h belong to L*(Bg) and satisfy

(1.8) lg|2dy < G2rr—2+8 (0<6<1)

SB(x,r)nBR
(1.9) S |h|2dy < H?*r* (0<Ag<n—-2+0) for every B(x, r).
B(x,r)NBr

Then V(x)=rL S {f)(c—ylf)(l—ﬂ’_)—zl dy is defined for almost all x and belongs to H'(D)
n JBgr -
for any bounded domain D in R". Furthermore V(x) satisfies
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(1.10) S IVV(x)2 +|V(x)2dx < K(GH)*r*%  for every B(xo, ).
B(x,or)

Proof. Since g(y)h(y) € L'(Bg), we find V(x)e L'(D) for any bounded domain
D. By approximating to gh in L1(Bg) by smooth functions, we can see easily that

1 X;i—=)j ,
(1.11) ViV(x)= 7 gBR |x_y|’,.g(y)h(y)d.\

holds for almost all x, where the derivatives are taken in a weak sense.
We devide the integral in the right hand side of (1.11) into two parts as I;(x)+
1,(x) where

I,(x)=§ and Iz(x)=S

Br N B(xg,2r) BRr\B(x0,2r)

i) Estimate of I,(x). We have, by Schwarz’ inequality,

1 S lg(y)I? )”26 |A(y)|? )1/2
I < ——d d 0<e<®).
| ](x)l VYn \JBrnB(x0,2r) |x—y|" T BRrN B(x0,2r) |x—y|”_‘ 7 ( =¢ )

By the same argument as in obtaining (1.6), we have

2
(1.12) S IDE_ 1 < kG2 (0<e<0).

BrNB(xo,2r) | X — y|""2*¢

Then it follows

[, inrax<xe| (| )y
B(x0,7) BrNB(x0,2r) B(xo,) [ X — V1

< KGzr"S |h(y)[2dy

BrNB(xo,2r)
< K(GH)2po+4,

ii) Estimate of I,(x). When we set

o(p, x)= S 19()A(y)Idy,

[BRr\B(x0,2r)1NB(x,p

we can easily verify

GHp(n+0+).)/2—l lf 0<p<R

o(p, x)s[ .
GHR(n+0+).)/2—1 lf p> R.

Since |x — y| > in this case, we have, as in the proof of Lemma 1.2,

3R
[1,(y)I <)+ S p " ldo(p, x) (p=lx—yl)

n

1 nt1 3R 3R _
<5 [p " w’r +(n—1)S p"o(p, x)dp:|

< KGH(1 + p(-n+0+4)/2),
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Then it follows

S |1,(x)|2dx < K(GH)?ro+4,
B(xo,r)
Thus we obtain

S IVu(x)[2dx < K(GH)2ro+4.
B(xo,r)

We observe that the estimate of V(x) proceeds just as above, and the lemma follows.
The following propositions are direct consequences of the preceding lemmas.

Proposition 1.4. (see Theorem 3.7.5. of C.B. Morrey [2]). Let f belong to
LY(BR) and satisfy

S |fldy<Frn=2%*6 (0<6<1)  for every ball B(xq, r). Then
B(xo,r)NBRr

WR(X) =_1!‘—"_ SBR |x{_(;:|)n—2 dy

belongs to H\(D) for any bounded domain D in R" and satisfies

(1.13) S o ‘|VWR(X)|2+|WR(X)|2dx<KF2r"“2+20.
)

B(xo,r

Proof. The proposition follows from Lemma 1.3 by putting g(y)=sign (f (})j X
SN2, h(»)=If(»)'/? and A=n—2+0.

Proposition 1.5. Suppose b; belongs to L%(Bg) and satisfies

[bl2dy < B2r"=2*%  where |b|2=3 ;2 |b;|%
B(x,r)NBR

Suppose also u belongs to H'(Byg) and satisfies
|Vul2dy <L** (0<A<n—2+0). Then

L &y)Vuly)
e N

n

SB(x,r)nBR

belongs to H'(D) for any bounded domain D in R", and satisfies
(1.14) [ UM+ U< KBELE0+
(xo,7) L ) )

Proof. To verify this, we have only to substitute b for g and V u for h in
Lemma 1.3.

Proposition 1.6. Suppose ¢ belongs to L'(Bg.,) and satisfies

SB leldy<Crm=2*%. Suppose also u belongs to HY(Bg.,) and satisfies
(x,r)NBR
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S |Vul2+|u|?2 dy< L?r* (0<A<n—2+40) for every B(x,r).
B(x,r)NBR+a

Then

VR(x)=FLS culy) ,

N
belongs to HY(D) for any bounded domain D and satisfies
(1.15) SB( )|VVR(x)|2+ [Vr(x)|2dx < KC2L2r0+2+0=5) where K depends on
x0,7
n, & R and a (0<e<®).
Proof. By Lemma 1.3, it follows

S lcu?|dy < KCL?r®=#**  for every B(x, r).
B(x,r)NBr

The proposition follows from Lemma 1.3 by putting g=sign (c(y))lc(y)|'/?> and
h=|c|'?u.

Finally, since —I" ~1|x|7"*2 is a fundamental solution for the Laplace operator,
we can see easily the following proposition.

Proposition 1.7. Let f belong to LY(Bg). If we set

e == { L0y,

Br Ix_)"|"—2

then we find

S VWR-V<pdx=S fodx  for all ¢e CLBg)
Br Br

§2. Now, we can prove the theorem. Our proof is based on the following Diri-
chlet growth theorem which is called Morrey’s lemma.

Lemma 2.1. (see Theorem 3.5.2 in C. B. Morrey [2]) Let u belong to H'(Bg.,)
and satisfy

n—2+26 '
2.1) g |Vu|2dy<L2<%> (0<0<1) forall xeBy and 0<r<
B(x,r)

a with a constant L. Then u is equivalent to a Hélder continuous function in By
and satisfies

—x'I\¢
lu(x) —u(x")|< KLal“"“(lx—ai—l) for almost all  |x—x'|<af2.

Owing to the lemma, we can see we have only to show that Vu satisfies the growth
condition (2.1) to prove the theorem.
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Proof of the theorem. Let ue H!(Bg,) be a solution of the equation
—Au+3X ;2 b;Vu+cu=f.

For any R'(0<R’<R,) and large integer N, we can choose concentric balls B, of
radius R; such that R"=R,y<R,y_;<:-+<R; <Ry and R;_, —R;=constant, say
2a. We put

_ b(»)-Vu(y) ,,

U, () = - SBM )Yl
(2.2) Vi, (¥) = Iln SBR] %ﬁ—d}l
Wi, (9) =7~ SBR, L

Then we can see, by Proposition 1.4, 1.5, 1.5 and 1.7, that the integrals make sense
and vg, =u+ Uy, + Vg, — Wy, satisfies Avg, =0 in a weak sense in the interior of
Bg,. Furthermore by Proposition 1.5 and 1.6 with L= ||u||,,1(BRo,, A=0 and r=R,,
it follows

(2.3) lor,llL2(Br,) < K1 [(B+C) U]l nt(peg) + F1. .

Since vg, is equivalent to a harmonic function Bg,, the magnitude of vy, and
Vg, in By, can be estimated by the I?-norm of vg, in Bg,. Thatis:

24 [vR, () + Vo, ()| < Ka™""?|[vg, || L2 (B,
<Ka "2[(B+C)|u| H'(Bry) T F)]
holds for almost every x in Bpg,.

Using Proposition 1.5 and 1.7 with L=ully1(g,, 4=0 and R=R,, we have

SB( VU 41U, < KBl agor”
X0,T)
(2.5)
[V Vi |2+ Ve, [2dx < KC?[u || {1 (ppyr®*?~® for every B(x,, r).

B(xo0,r)

Using Proposition 1.4 with R=R,, we have
(2.6) S |V Wi, |2+ | Wy, [2dx < KF2pn=2+20,
B(xo,r)
We recall that u= — Uy, — Vi, + Wi, +vg,. Then it follows, by (2.4), (2.5) and (2.6)

2.7) S |Vu|?2+|ul2dy< L3r® for every B(x, r), where L, depends on
B(x,r)NBg,

B) C; "u“H1(BR°)a etc.

Next we employ again Proposition 1.5 and 1.6 with L=L,, R=R; and A=80.
Then we obtain
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S IVUpg |2+ |Ug,[2dx < KB2L3r20
B(xo,r)
2.8)
IV Ve, |2+ | Vg, [2dx < KC2L3r20+0-¢ for every B(x, r).
) 3 3

B(xq,r

By Proposition 1.4 with R=Rj;, we have
S | Wi, |2+ | W, 2dx < KF2r=2+20 for every B(x, 7).
B(xo,r)

When we set, as above, vg, =u+ Ug, + Vg, — Wg,, g, is equivalent to a harmonic
function and

(2.9 [Vog,(X)| + |vg, ()| < Ka™""2[|vg,ll L2 (B,

< Ka "2[(B+C)|ul Hi(Brg) Tt F]
holds almost every x in Bg,. Since u= —Ug, — Vg, + Wg, +vg,, we find, by the same
argument as above,

(2.10) [Vu|2+|ul?dy < L3r?® for every B(x, r).

gB(x,r) NBr,

Repeating these arguments k times, we obtain

2.11) [Vul?+|ul>dy < L3, r*o for every B(x, r).

SB(x,rnBR“
Since we can choose beforehand sufficiently large N such that NO exceeds n—2 + 26,
we conclude

S |Vul2dy < L?2rn—2+20 for every B(x, r)in R".
B(x,r)NBgr”

The theorem then follows from Morrey’s lemma.

Added in proof: If n>3, u=logr (r?=3;", x?) belongs to H'(Bg) and is
a solution of
n—2

—Au+e(x)u=0 where C(x)=r2—log_r'

Then it follows that we can not expect the Holder continuity (even the
boundedness) of the weak solution, when we assume, instead of (0.2),

le(p)ldy <C———

SB(x,r)nnR,, [log r| ~

ScHooL oF ECONOMICS
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