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O . Introduction and statement of the results

Let X be an open set in R ,  n> 2, with a smooth boundary Y and R n\X  c B R =
Ix ; x <R } for some R >0. Suppose that Rn is provided with a smooth Riemannian
metric ds2 =g 1i(x)dx 1dx1 which is Euclidean outside the b a ll B R .  Set g(x)=
det (g i i (x)), g o f ' =6"t (Kronecker's index), i, k=1,..., n where th e  summation
convention is used . Let A9,

g u (x )=  g(x) - 1
-/2  

 o
a
x i (g(x)i/ 2gti(x)  e

a
x
i ( x ) ) ,  u  e  "(R n),

be the corresponding Laplace-Beltrami operator and H =  —Gig + V (X ) with some
real-valued function Ve C,T(BR ).

The operator H  will be considered as a self-adjoint operator in  L 2 (X ) (the
scalar product in L 2 (X ) is given by (u, v)=1

x
u(x)v(x)g 1/2dx) with boundary con-

ditions of Dirichlet (Neumann) type on Y. Throughout this paper Bpu =u o , while
Neumann boundary condition is of the form BN u = (

au 
 (x)+ y(x)u(x)) =0, wherev iY

y e C (Y )  is a real-valued function and v is the outward normal to Y, pointing into
Rn\X

The spectral function eu.; x, y), e R i , of the operator H  is determined as
the distribution kernel of the spectral projectors EA of H. Namely,

(Eau, v)=1 e(À.; x, y)u(y)v(x)g(x) 1 1 2 g (y )1 / 2 d x d y, u, v e C (X ) .
xxx

This function is closely related to th e  outgoing (incoming) Green's functions
G+ (2; x, y)(G - (2; x, y)) which are given by

(0.1) ( — Zig V ( X )  22)G ± (2 ; x, y)= by ( x )  i n  X , y e X ,

(0.2) BiG± = 0  i n  y e X  an d  j  =  D  o r  j= N ,

and by the outgoing (incoming) Sommerfeld's condition at infinity
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(0.3) IG±(A; x, y) l< C r ' ) / 2 , (1:  -T- iAG±)(.1; x, y )  < Cr- ( 1 +0 1 2

as r - yl = V (x - Y  1) 2 + + ( x n -  YO2 - ' 0 0

Here Sy(x) is  D irac measure (Sy (x), u(x)g(x)' 12 )=u (y ) , u e  C '(X ) . N ote tha t the
distributions G±(2; x, y) can be obtained by the principle of limiting absorption

G±(.1.; x, y)=1im, $ 0  G(A ±ie; x , y )  i n  130 (X  x X), ) e  R'\0,

where G(z ; x, y), Tm z 0 ,  is the distribution kernel of the resolvent (H - z 2) - '.
This paper is devoted to the asymptotics of the spectral function e(). ; x , y) and

the Green's functions G±() ; x , y) as
The function G(z; x , y ) is exponentially decreasing a s  I zH co in  th e  region

{z e C; 6 < + arg z <rr - 6 0 } fo r  any 6 0 > 0  a n d  x  y .  To obtain the asymptotics
of G±() ; x, y) as 2-> oo some additional restrictions on the geometry of X  are needed.
To formulate our main assumptions consider the generalized geodesics on X=X u Y
determined as the projections on X  of the generalized bicharacteristics of the operator

Zig (see [1 8 ] ) .  First we impose the nontrapping condition

(N )  There exists TR > 0 such that there a re  n o  generalized geodesics with
length TR within X  n BR.

Next we fix two points xo , y o e X .  It will be said that x , belongs to the illuminated
region Il(y o ) with respect to  y o if  there exists a  generalized geodesic connecting xo

and y o , otherwise xo is said to belong to the shadow . Suppose that xo GI1(y o )  and

(T )  Any generalized geodesic connecting xo a n d  y o m a y  h it  the  boundary
only transversally.

Let y: [0 , to ] D t—>X(t, y o , no ) be a  generalized geodesic having a  length t0 0 0  ( t  is
the natural parameter on y) and initial codirection go E Ty X \O and connecting the
points y o a n d  xo (y(0)= y o , y(t0)= x0). Then the curve [0, t] 3 s->x(s, y o , ri) may
hit the boundary Y only transversally for (t, n) close to (to , th,) and the map (t, g)->
x(t, y o , g) is well defined and smooth in  a  conic neighbourhoof of (to , no ). Next
we suppose that the differential of the last map is of maximal rank at (t o , im), i.e.

( C )  rank (c1 x)(t 0 , y o , g o )= n for any t o 0 0, no 0 0, such that x(to , y o , 1/0)=x 0 .

In case where the curve y: [0 , to ] e t-+x(t, y o , no) does not hit the boundary Y the
condition (C) means that y o  and xo are not conjugated points along y [15]. N o te
that the set of all the points xo E 11(yo ) that do not satisfy either (T) or (C) is closed
and nowhere dense in X  for any y o e X.

In view of the implicit function theorem there exist only finitely many generalized
geodesics yi : [0, 'Ti (x , y )]->X  connecting the points x and y (y; (0)=y, yi (Ti (x , y ))=
x ) , =1 ,..., J, whenever x e 11(y) and (T) and (C) are satisfied at (x, y). Moreover,
J is locally a constant and Tir can be chosen to be locally smooth functions.

The distributions G±(A; x, y ) have singularities only at the diagonal x = y  in
X  x X , which can be described by means o f  Hankel functions 10)(z )=J,(z )±
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iY„(z), 11 2 ) (z)=./,(z)—iY „(z), v e R t .  Namely, for x  sufficiently close to y, ,1>0
and for any v=0, 1, 2,... consider the distributions

x , y )= +i2-1 ,/n(
2 T ( x ,  y ) ) ( 2 - n ) / 2 + v

HW-2)/2_,(AT(x, y))

where T(x, y ) is the Riemannian distance between x and y and 1=1 in " + "  case,
1=2 in the "— " case. Note that the functions F .; x, y) are smooth outside the
diagonal of X x X  and near this set they behave like Ix —y12 - 1 2 v ln lx—yl when
(2 —n)/2+ v is a non-negative integer and as Ix — y12 - " +2 v otherwise.

To separate the regular part of G±() ; x, y ) from the singular one we need
some cut-off functions. First denote by r i  the injectivity radius of the exponential
map Ty Rn 3 V—>eXpy  y e R " related to the metric g  ( r 1 = sup {r; B y (r) n V—eXpy

is  a  diffeomorphism for an y  y e R H}  where By (r)= {v e Ty R "; g(y)vv-' < r 2 }).
For given x, y E X  set r o (x, y)=min (r, dist (x, Y), dist (y, Y)), where dist (x, Y)=
inf {T(x, z); z E Y } . Now choose the cut-off functions x i  e  C (R 1) , x 2 =1 — Xi
so that supp x i  c (—r0 /2, r 0 /2) and x i ( s ) = l  for Isl <ro /4. The main result in this
paper is

Theorem 1. Suppose the condition (N) fulf illed and  (xo , y o )e X  x X . T hen
there exists a neighbourhood K  of the point (x 0 , y o ) such that

(i) If  x o ll(y o ) then G±(A; x, y) is a smooth function in (0, co) x K  and

ID,IVID;G ± (A; x, Y )1<CA - N  i n  (20 , co) x K, 2 >O,

f or any  a, 13, y, N  and some constants C independen t o f , x, y).
(ii) If  x o  e Il(y o ) and (T) and (C) are fulf illed at (xo , y o ) then

(0 .4 ) G±(A; x, y)= x i (T(x, y )) E U,(x, y)F A; x, y)
v=o

J M-1+ E E x2 (T i )C& J  (x , y )e ± i . I . T i ( x , y ) A ( n - 2 v - 3 ) / 2 ±  R A ( ?
:  x ,  y ) ,

j
=

1  v
=

0

where /Or  e Ckm((0, oo) x K)), k m =M  — [n/2] ([n/2] is  the entire part o f  n/2) and

(0.5) IDIVID;Rii(A; x, 5=[n12]— M +113 1+ IY1
in  ()., oo)x  K  f o r a n y  2 > 0, [n/2] +  + IYI < M .  The f unctions U„ an d  Cv,i
are smooth in K, C,7, ; (x , y)= q ; (x, y) and

(0.6) Uo (x , y )=2 - ( n + 2 ) / 2 7 r ( 1 - n ) / 2 1 ' e t (02

73(X, 37)/ 49X0 Y)1 1/2( q (x ) g ( y ))-1/4

(0.7) Co,;(x, Y)=(-1)fiiiii2
- n - 1 / 2 n ( 1 - n ) / 2 T i ( x ,  y ) ( l - 3)/ 2

xIdet (0 2 T3(x, Y)/axaY)1 1 /2 (g(x)g(y)) - 1 /4 ,

where 11 =(3— n)/2+a ;  for som e integers ai , and f3 ,  coincides w ith the num ber of
reflections of  yi  a t  the boundary  in case of  Dirichlet problem , fli =0  in case of
Neumann problem.

The number oci  can be described as an index of a curve of Lagrange spaces as
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it was done in [6], [7], [10].

Theorem 2 .  Suppose the condition (N)fulfilled. Then e E C c° ( ( 0, G O ) X X x X)
and there exists a neighbourhood K of the point (x,, M e  X x X so that

(i) If  x0 14Il(y 0 ) then

de (A  x" y)
N

1<C A - N  incbt [2e, 0 0 )x Ao > 0  for a n y  N> 0,

(ii) If x, G MA) and (T) and (C) are fulfilled at (x0 , y o ) then

ddeA  (A 2 ; y )(0.8) (\ /
1 '
74 j:±10 y)(2T(xA, y)) 2

4 -
2
2 v (AT(x, y))

1 J  M - 1
E  E  x 2 ( T i ) Re(eiATAxmc+ .)A 0 - 2 v- 3 )/2 + R m ().; x, y),

- J=1 v=o

where Rm EM R 1  x K ) and Rm  satisfies (0.5) in ( i/L0 , 00) X K  for any  a , f i , y, M,
Ao> 0 .

Theorems 1 and 2 hold also in the case where X =  R " . The corresponding
results are formulated in §4.

The asymptotic behavior of the spectral function and Green's functions for
second order elliptic differential operators was investigated by many authors.
Results close to those of theorem 1 were obtained by Buslaev [2], [3] for Schr6dinger
operator H = - A +V in a domain X c R n , with Neumann boundary conditions on
Y, provided R"\X is  compact and strictly convex. More precisely the uniform
asymptotics o f G+(2,; x, y)/(x, y)e Yx Y was investigated in  [3 ] a s  A-9 cc an d
Ix  - y l «1 . As a consequence an asymptotic expression of G+(A; x, y) 1 a sas A->co
was obtained when x ell(y) and the line passing through the points y and x hits
the boundary transversally. A  result close to theorem 1 was obtained also by
Alber [30], provided n=3  and if there is only one ray (t-4 y + t(x - y), t > 0) in X
connecting the points x and y. In contrast to [2], [3], [30] we allow the points
x  and y to be connected with a multiple reflected r a y .  Moreover, the metric g
may not be Euclidean in X, thus the construction of an asymptotic solution to the
problem (0.1)-(0.2) by the usual method of geometrical optics breaks down when
x is far away from y .  We also write explicitly the first coefficients in the asymptotic
expressions.

An asymptotic expression of Green's functions including only the first sum of
(0.4) was given by Babich [1] but the remainder term Rm  was not estimated. The
asymptotics of the spectral function of the operator H in R n was investigated in [22].
The non-trapping condition assumed in  [22] is  a  little more restrictive than (N)
because it does not allow the geodesics to have self-intersections. Asymptotics
close to those of theorem 1 and 2 were announced in [23], [24] by the author.

An asymptotic expression of the spectral function e(2; x, y ) in case X = Rn
was obtained also by Vainberg [28], [29]. Without assuming the condition (C)

dehe proved that  c a (A; x, y) behaves as A-) oo like a global oscillating function given
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by Maslov's canonical operator. When (C) is fulfilled he obtained the asymptotics

de 
 ( À •  x

n

E
— 2  N co

E y, (0 )). - i/2 )ei(s/Ask(x , Y, co lvodco
d), " k=1  S " - 2 ( j=0

with some amplitudes 1/4,i  and phases Sk.

Note that the results obtained in this paper are connected also with the asymp-
totics of the scattering phase [2], [21] and the scattering amplitude [20].

The article is organized as follows. In §1 the distributions G± are written in
the form

G-±(A,; x, y)= ±eim(p(t)Y(±0U(t, x, y)dt+O(A - N)

w h ere  e C (R 1), 9 (0=1 in a neighbourhood of t= 0, Y (t) is  Heaviside function
and U(t, x, y) is the solution of the mixed problem

(DI? — H)U =0

(0.9)B U —  O,j = D ,  N

U(0, x, y)=0, U t (0, x, y)= (5(x — y)

To do this, we use essentially the decay of the local energy of U(t, x, y) as t—* co,
which is valid in view of the non-trapping condition ( N ) .  Let (pi e C (R 1 ) ,  9 ,±
92 = 9  and supp (pi ( —r0 , ro), co i (t)=1  for I  < ro /2. Consider the distributions

=  exp(i),09 k(t)Y(0U(t, x, y)dt k= 1, 2. The asymptotics o f GI(.1;, x, y) as
2—> co is investigated in  § 2 .  Note that for I tI <r 0  and (x, y) close to (xo , yo )  the
distribution U+(t, x, y)= Y(t)U(t, x, y) will be a solution to the problem

(0.10) J
 (14' — H)U+ = —c(t)5(x — y)

U ±  = 0

To obtain a parametrix for (0.10) we apply Hadamard's construction (see [9], [11]).
Denote by Zv, v> n/2 —1 the functions

Z y (t, x, y)=02— T 2 ( x ,  y » v + ( 2 - n ) / 2 1 r ( 1+v+   2—n2

for t> T(x, y) and Z, = 0 for t<  T(x, y). The distribution Z„ admits an analytical
continuation with respect to v in Re y> — 1 . Moreover, for It <r 0  the fundamental
solution of (0.10) can be written in the form

CO

U+(t, x, E y)Z,,(t, x, y)
v=o

for some suitably chosen smooth functions Uv(x, y). T he Fourier transform of
Z,, with respect to t is just F .

In §3 we consider the Fourier transform GI(A; x, y) of the distribution 9 2 (0.
Y(t)U(t, x, y ) which may have singularities only at the points (Ti (x, y), x, y) for
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(x , y) close to (xo , y o ). Near these points one can apply Chazarain's construction
of a parametrix for (0.9). In this way we present the distribution cp,(t)Y (t)U(t, x, y)
as a sum of Fourier oscillating integrals for (x, y) close to (xo , y o). In view of (C)
the corresponding Lagrange manifolds coinside with the conormal bundles of the
manifolds t =T i (x , y) near (Ti (x e , ye ), x e , ye ). This allows us to obtain a microlocal
representation of (p2 Y U(t, x, y) near (Ti , xo , y o) in the form

co

(0.11) eiO(TAx,Y)-t
0
 )  2 ( t ) a  j ( X 1  y  19)0 ( n - 1 ) " dO

with some amplitudes ai . In case where X = R n a  similar representation was found
by Y. Colin de Verdiére [5 ]. T h e  first coefficients C ( x ,  y) are obtained after a
careful analysis of the principal symbol a0  a i .

Note that GI(A; x, y) can be written also in the form

GI() ; x , y )=et'lf (i x ,y )*U(t)c,o2 (t)Y (t)dt

where ix o , is the inclusion map ix ,y (t)=(t, x, y) and the corresponding "pull-back"
map (ix ,y )* is a Fourier Integral Operator. In view of (T) and (C) it can be proved
that (ix ,y )* and U(t, x, y) have a transversal composition as Fourier integral operators.
which also leads to (0 .11 ). In §5 we impose a little more general condition than (C).
Namely, we suppose that the roots of the equation x(t, ye , ii) =x 0  with respect to
(t, n) form a smooth conic manifold W whose tangent space T(, ) W coincides with
the kernel of the operator P i ,,, = (dt ,,x)(t, ye , ri) for any (t, ri) E W , ;100 . Such a
situation occures for example in case where X  is a domain in R n , Y =OX  contains a
part of a circle cone and x o , y o are some points on the cone ax is . In  this case the
operators (ix ,y )* and U(t, x, y) have a clean composition which gives an asymptotic
expression for G+(il; x, y) close to (0.4).

Acknowledgments. The author would like to thank V. Petkov for the helpful
discussions.

§1 . An integral representation of Green's functions

We start this section with some remarks on the spectrum of the operator H.
This operator has no positive eigenvalues in view of Rellich's uniqueness theorem
and the unique continuation property for second order elliptic differential operators.
Moreover, the nonpositive poing spectrum of the operator H is finite in view of the
apriori estimate for elliptic problems in unbounded domains

11 14 H 2 (X) C ( HUM L2(X)± B  111(Y)+ II nIlL2(x n( I.. <p ) )

u e H 2 (X ), j = D, N and p> R, where Hs(X) is  the usual Sobolev space. The
continuous spectrum of the operator H coincides with R i= [0, on). Therefore H is
a direct sum H = HP HC of an operator H p  of finite ran kand a non-negative operator
H  with continuous (even absolutely continuous) spectrum. Denote  U ( t)=
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sin (t1-1112 ), Uc (t)= I-t» /2 sin (t1/1/2 )  an d  U(0= U p (t) 0  U (t) , t . Obviously
U(t) is the propagator of

(Eq — H)U(t)f =0

(1.1) B U (t)f j=N , D
dU(0)f = 0, U (t)f it_o=f , f  L 2 (X)dt

and the distribution kernel U(t, x, y) of the operator U(t) solves (0.9)
Denote by ei 2 tU(t, x, y)dt the partial Fourier transform of the distribution

U e S'(R' X X X X) with respect to t and set Y(t)= 1 for t > 0, Y(t)= 0 for t <O.

Proposition 1 . 1 .  Suppose the condition (N) is v a l id .  Then f o r any  compact
K =K , x K 2 ,  K i C  X , j= 1, 2 , there  ex ists a  num ber T K  su ch  th at f o r  any

e CP°(R 1 ), (p(t)= 1 on ( — TK, TK) we have

(1.2) G±(A ; x, y)= ±e"qp(t)Y (±t)U(t, x , y)dt+t1,(A , x , y)

where 11, is  a  sm ooth function in  a  neighbourhood o f  10 x K .  M oreover, the
estimate

(1.3) IDIADV4,r(A, x, y)I<CA - N

holds for 2> 1, (x , y ) K  with a constant C independent on 2, x, y.

Remark. A similar proposition was proved in  [22] in the case when Y= 0
(see also [2 9 ]) . The proof given in [22] can be modified to work also in our situation
Y0 ). Here we use another idea which is based on the decay of the local energy for
hyperbolic equations.

Proof of  Proposition 1.1. According to the principle of limiting absorption

(1.4) G±(yi; x, y)=1im 0  G(A ±is; x, y), ) e  R 1\0,

where the limit is taken in a distribution sense. For this reason we consider the
equality

_ OLIc(t)dt+

for +Im z > 0, Re z  0 ,  given by the functional calculus. Let .Yei  e C (R") j  = 1, 2,
.Yej (x)= 0 in a neighbourhood of the boundary Y and dri (x)= 1 for x in a neighbour-
hood of K  Choose a function cp e cvR1) such that 9(0= 1 on ( — T, T) for some
T which will be specified later. Let us write

(1.5) .yeafi - z2 )- 1 ,re2 = ei zqp(t)Y (±0.ri U(t).;r2 dt+R±(z)

for +Im z > 0, Re z 0 0 .  Here R±(z)=12P(z)+RI(z),
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1?(z )=A Pi (H p — z2 ) - 1 .Yea2 T - e 1 z t 9(t)Y (+ t)dr1 U p (t),Ye2 dt

R (z )= +eiz tO(t)Y (+ t).Y f i U c (t),re2 dt

and 1// E C '(R 1), tk(t)= O for any t e(— T, T), 110 = 1  for t sufficiently large.
Let us denote by 2 (11- s, Hs) the Banach space of bounded linear operators

mapping I-1- s(X ) into H s(X ). The distribution kernel of the operator go(t)Y (+ t).
U p (t)dr2  i s  a  smooth function in  RI x X x X  since the point spectrum of H

is finite and the corresponding eigenvectors are smooth functions in X.
Integrating N  times by parts we get the inequality

(1.6)

in {z e C ; IRe > 1, +Im z> 0}.
To estimate the norm of the operator RI(z) we use the decay of the local energy

of U ( t )  a s  t—> co . A cco rd in g  to  (N )  there  ex ists a  num ber T K  such that
any generalized geodesic beginning in  a com pact neighbourhood Oc X  x X  of
(supp x (supp .Ye2 ) leaves 0 by the time T K . We now set T = T K  so 9(0=1 on
[— TK, T O . According to the theorem for the propagation of the singularities
the function U(t, x , y) is smooth in [(— co, — T K ) x (T K ,  co)] x 0, i.e. the generalized
Huygens' principle holds. Thus the conditions (A ')-(C ') in  [27] are satisfied and
theorems 9 and 11 in [27] (see also (25], [19]) give

(1.7) ( (..* it ' c(t) ,7 e2f )11 1.2(x) co -  II fil L2 ( x ) , E L 2 ( X)

in  I ti > TK  and for some ô e R 1 and  any j> O. S in c e  (M  — H)U,(Of  =0 for any
distribution Je  1) 1(X ) and the functions </e;(x)= 0 for x in a neighbourhood of the
boundary 0 we obtain

IlD": Ue(t)A P2)112'(11-.,Hs)= 0 " , I t i >

for any s e R 1 and j>  O. M oreover t/i(t) = 1 for I tl > T k  and some Tk > T K , thus the
last estimate yields

(1.8) IIMRI(z)lly(H-s,n.),C(1+1z1)-N

on {z E C; ±Im z O, IRe > 1} and for any k, s, N .  Letting +Im z  0 in (1.5),
(1.6), (1.8) we obtain

ftai (H —(A 2 + i0)) - 1  Ye°2 = ± e iltcp (t)Y (± 0 ,e 1 U(t)A°2 dt + R±(A)

where R±(2) satisfies the estimate

(1.9) IIDIAR±(A)112(H-sx.)<ci,s,NA-N, A>1.

To prove (1.3) we use (1.4) and the estimate

x, y)I= I(V,,R±(A)MS, 1;"1.5)1<
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for .1> 1 and s>n+  I l +1,8I which is valid in view of (1.9). This proves the claim.

L e t  9 ; E C (R 1), 9 i + 9 2 =  9  a n d  supp ço, (—  ro , r0 ), 9 1 (0 =  1 for
t e (-2r 0 /3, 2r0 /3). Here ro =min (r 1 , dist (x0 , Y), dist (yo , Y)), ro is the injectivity
radius of the exponential map in Rn related to the metric gi ;  and cp is determined as
in Proposition 1.1. Consider the operator H= —  + V(X) in  Rn and denote by
U±(t, x, y) the solution of the problem

f (M. — H)U ±(t , x, y) = ±5(05(x — y)

U±(t, x, y)=0 f o r  + t<0

Let W(t, x, y) be the distribution kernel of the operator cos (t1-11/2 ). This distri-
bution solves the mixed problem

— H)W(t, x, ) = 0

(1.11) BiW= 0 , j = D , N

W(0, x, y)=.5(x— y), W(0, x, y)=0

As a consequence of Proposition 1.1 and the finite propagation speed for the solutions
of the wave equation (M. — H)u = 0 we obtain

Corollary 1.1. Suppose the condition (N) holds. T hen

(1.12) G-1(.1; x, y)= ±1eilt9 1 (t)U±(t, x, y)dt

eilt9 2 (t)Y(±t)W(t, x, y)dt+r±(A, x, y)

an d  r±(A, x, y )  are  sm ooth functions i n  a  neighbourhoof o f  R.I. x K  satisfying
(1.3) in [1, co) x K.

Let us turn now to the spectral function e(2; x, y). T h is  function can be written
in the form

(1
de
d . .d . .

(2 ; x, y )= (2 i) 1{G ; x, y)—G ; , Y)} f o r  .10

since the following identity is satisfied

d  E =(27ri) - 1 {(H — i0)-  1  — (H — i0) - 1 } .clA

Moreover G - (A; x, y)=G±(A; x, y) for x 0 y (the coefficients of H  are real functions)
and we obtain

(1.14)
d e  

 (A2 ; x, y) = -
1

ImG+(1; x, y) forc1,1, Tr

Note that formula (1.13) and Proposition 1.1 yield together

(1.10)
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de . .
(1.15) (77..0,2; x 5  „

"
) = /

A  
e t A t (P(OW(i, x, y)dt+r(A, x, y)

where r e C'(R.I. x K ) and r(A, x, y) satisfies the estimate (1.2) in [1, co) x K .  As
a consequences of (1.15) one can prove that e E C(Ri_ x K).

§2. Hadamard's fundamental solution

In this section we consider the asymptotics of the distribution Gt(2; x, y)=
eiAtgoi (t)U+(t, x, y)dt where U+ solves (1 .10). To evaluate Gt(A; x, y) as ,1,-* co

we use a local parametrix to the problem (1.10) the idea of which goes back to
Hadamard [11] and M. Riesz. At this point we use essentially the construction of
a parametrix which is due to Friedlander (see [9], §6.2).

Let (x 0 , yo )e X x X be such that T(x o , yo )< r 0 /2 and set

K i  ={x x X ; T(xo , x)<r 0 /16}, K 2  = {X e X ; T(y o , x )< r 0 /16}, K=K i  x K 2 .

Consider the functions Z„ defined by

(2 .1 )  Z y (t, x, y)= 02- T 2 ( x ,  O v + ( 1 - n ) /2 /r(V - i-  (3- n)/2) f o r  t> T(x, y),

Z y (t, x, y)= 0 f o r  t< T(x, y)

in RI x K  and for any y e C, Re v>(n - 1)/2 (F(v) is the usual gamma-function).
The distribution Z,, admits an analytical continuation with respect to y in the region
Re v > -1, which is described in  ([9 ], §6 .1 ). Moreover, there exist some real-
valued functions U,, e C d / ( K )  such that

itt-1
(2.2) U+(t, x ,  y ) -  E  U,(x, Y)Zv(t, x, y)e Ckm(R 1 x  K ),  km  = M -[nI2]

v=o

for M> n/2, where [n/2] is the entire part of n/2. The coefficients Uv(x, y) are
determined in K by some transport equations. More precisely U0 (x, y) is given by
(0.6) while U,(x, y), y> 0, have the form

Uv (x, y) = pU0 (x, y) fi H U„_  \ I
u

 1 y ( s ) ,  y ) s v - 1  ds,4 )0 \

where y(s)= expy (sv(x, y)), s e [0, 1], and X 9 x-v(x, y) e T X  is the inverse function
of the exponential map v--exp v defined in {x e X ; T (x , y )< ra , r , being the in-
jectivity radius of the metric g in R n . (see [9], §6.2).
The same construction holds also when the operator H  has the form H =  Ielcf+

h(x, D)+ V(x), h(x, D)= h i (x)D i ,  Di = -ialax i  an d  hi e C f (R " ) .  In this case
the function U0 (x, y) can be obtained by multiplying (0.6) with

exp (- i 7.
0

(x 'Y) h(cks(y, n(x, y)))ds)

where Os is the Hamilton flow of q(y, n)=(gii(x)n ini )'/ 2 and  q(x, y) is given by
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n(x, y)= (g i i (y)v(x, y)- ,..., g „J (y)v(x, y)i).
Now we shall investigate the Fourier transform of Z, with respect to t. First

note that

x, x , y )dt, A >0,

for (n — 3)/2 < Re v<(n —1)/2 (see [8 ], pp. 11 and 69) and since both sides are ana-
lytical distributions with respect to v in Re v> —1 we obtain the last equality for any
v with Re v>  — 1. Next we write

(2.3) e"qpi(t)Z v (t, x , y )dt=r,- (A ; x , y)+R,(A ; x , y)

in /21- x K .  For any positive and integer N  we have

ANR,= (— 1)N e1A t(1-9 1)14Z ,dt+eiA tip 3 (t)P(t, D t)Z ,dt

where 9 3 E Cg° (R 1), 9 3 (0= 0 for I tl <2/.0 /3 and P  is  a  differential operator with
smooth coefficients. Note that (1— ipl )DlivZ, is a smooth function in RI x K  which
is estimated by

1(1— (pi )M 7,(t, x , y )I <C(1 + p> 0,

in  RI x K  fo r N > p+2v  + 1—  n, while the function (p3 (t)P(t, Li t)Z„(t, x, y )  is
smooth in R' x K  and has a compact support with respect to  t. Therefore R y e
C '((0 , co) x K ) and satisfies the estimates

IDIVIDYy R,(A; x, y)i<CA - N  i n  P o , co) x K, ). > 0,

for any a, 11, y and N >0. I n  view of (2.2) and (2.3) we obtain
Af-1

(2.4) Gt(A.; x, y)= U ,(x , y )F -1„- (A ; x, y)+12 -k f , i (A; x, y)
v=o

where

R 1 (); x , y )= E  R,(A ; x , y)+ eiÂ qp i (t)S m (t, x , y )dt
v=o

M-1

and Sm  e Cm- [ n / 2 ]  (R 1 x  K ) .  Therefore /214,, E CM — [ " 1 2 1  ( (0, 00) x  K )) and is infi-
nitely differentiable with respect to A in .1.>  0 . Moreover, an integration by parts
yields the estimate (0.5) for R , ,  in P o , co) x K, A o  > 0 for any a, fl, y and M such
that M— n/2—

Similarly we get (2 .4 ) for Gj(A ; x , y )=eutcp,(t)U - (t, x , y )dt, where " + "
sign is replaced by " — " sign.

Now we have
M-1

(2.5) Gt(A ; x , y)—  GT(); x , y)= E  U,(x, y){F,F(A; x, y)— F,T(A; x, y)}v=o
+R m , i (A ; x, y).
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Note that the function

Ft,(A; x, y)—  F; (A ; x, i(2T(xA, y)) 2 h  2 ( „3, / ,(x ,  y ) )
2  v

is sm ooth in  {(x, y)e X x X ; T (x , y )< r i l  for any v e R 1 . I n d e e d  T - vJy ( T )  is
an analytical and even function with respect to  T e RI-. Moreover the square of
T(x, y )  i s  a  sm ooth function in  {(x, y) eXx X ; T (x , y )< r i )  since T(x, y)=-
1v(x, y)l q = V g i i (y)v(x, y)iv(x, y)i (T(x, j) is the geodesic distance between x  and y
along [0, 1] a s—>y(s)— expy  (sv(x, y)), see [15]) and the vector valued function v(x, y)
is a  smooth map for x close to  y  as the inverse function of the exponential map.
Therefore the remainder term R A"  is a smooth function in (0, cc) x K which satisfies
(0.5) in [A0 , oo) x K, A 0 > 0 for any a, fl, y and M.

§ 3 .  Fourier distribution related to W (t, x, y).

The fundamental solution W(t, x, y) of the mixed problem (1.11) can be written
for (x, y)e X x X , x e n (y ) and satisfying (T) a s  a  sum  of Fourier distributions
(see [4 ], [10 ]). For this reason we shall investigate Fourier distributions JE /- 1 1 4

(1? ' x X ; C) which Lagrangean manifold C has the form

C={(t, x, y ; 2, —ti)eT*(1?"+ 1 x X)\0; (x, )=1-t(y, ri), 2+  q(y, j ) = 0}

an d  q(y, ti)=(gii(y)ri 1ri1 ) 1 /2 . H e re  rt(x , ti)= (x (t, y , 11), 4t, y , t i ) )  i s  a  smooth
family of homogeneous canonical transformations which iwll be specified later in §4
where the results of th is chapter w ill be  applied  to  obtain  the asimptotics of
GI(A; x, y).

Suppose that

(3.1) rank (dr,,,x)(t, Yo, ti)=n

for any (t, e (R 1 \0) x TI0 X  such that x(t, yo, 11) = xo.
L et S'yK={n eTX ; q(y , .11)=1} an d  T> 0. D e n o te  b y  (Ti (x, y), y)) e

(R 1 \0) x j=1 ,..., J  all the solutions of the equation x(t, x, y )=x w ith respect
to  (t, n) for (x, y) close to  (x 0 , y o )  and such that 0< Ti (x, y)< T. These functions
are given by the implicit function theorem.

In this section we write /(t, x, y) near the point (Ti (x, y), x, y) as an oscillatory
integral with a phase function cp =0(77/(x, y)—t), B e R1 and compute the principal
part of the corresponding amplitude.

The principal symbol of I  is a section in the tensor product S2,1 2 (C )OL(C)
of the helf-density bundle Q1 1 2 (C) and the Keller-Maslov line bundle L (C ) over C.
The bundle S21 1 2 (C) has an intrinsic trivialisation. Indeed, the projection

C x T*(X ), tr,(t, x , y ; 2, )= (t , y , ti)

is a diffeomorphism; so the pull-back

1= 71 (1 0 1 / 2 01dY A  di1112)
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is  a  nowhere vanishing smooth half-density over C  which is obviously invariant
under the flow

(t, y, n) --> { (t, x , y ; T, —0 ; (x, ).=1-t(y , n), T d - q ( y ,  n)=0}

Denote by S , a nowhere vanishing section in L(C) which will be specified later in
the concrete situation (L(C) is a trivial bundle) and set e=  S 1 0 S 2 . Then the
principal symbol a of I is given by a= Zi(S 1 0 S 2 ), where el is a smooth function on
C.

Proposition 3 . 1 .  Suppose that (3.1) is satisf ied at the point (x o , y o ) e X  x X .

T hen there ex ist som e am plitudes a i e S°(Rn x X ; R1), ai — E a i  s (x, y)0 - s f or
s=o '

101> 1 such that

_n+1 1—n 5co
(3.2) /( t , X ,  y ) =  E ( 2 7 0  2 T i 2 e i[O (T i(x ,Y )-0± Y i/c/2 ]

T i< T 0

1 1X  a i (x , y, 0)0 c10

f or som e y e ZI4 in a neighbourhood of  (0, T)x  {x 0 } x { y o } .  M oreov er

(3.3) ai,o(x,y)=-.2-n/2Ti(x, y)(1-0/21 y)

where ei i (x, y)= cl(T ) , x, y ; — 1, 4T i , y, n i ), —n i (x, y)) and 10 2 T3I0x0y1 stands for
the corresponding determinant.

Remark. Formula (2.2) was first obtained by Colin de Verdière when rt
coinsides with the Hamiltonian flow of q(y, n).

Proof of  Proposition 3.1. The proof of (3.2) is based on the following

Lemma 3 .2 .  Suppose the condition (3.1) holds at (x o , y o ). T hen C is generated
by the phase function

x, y , 0)=0(T i (x , y )— t), (t, x , y , 0)e R n+ 1 x  X  x  R.f_

near the point p i =(T i (x o , y o ), x o , y o , — 1, « T a,  xo , —n1(xo, y o )).

P ro o f . In view of (3.1) one can choose (x, y, 0) as local coordinates in C near
p i , i.e.

C= { (Ti (x , y ), x , y ; — 0, Mx, y)0, —  n i (x, y)01

where ,; (x, y )=4 T i , y , ni(x, y)) and (x , y , 0)e R n x X  x R . S in c e  the symplectic
form dt A  Jr+ dx A  d + dy A  dn vanishes on C we have M x, y)=0Ti (x, y )/0x ,n(x , y)
= - 0 T i (x, y)/0y, which proves the claim.

Now formula (3.2) follows immediately from the definition of Fourier distri-
butions [13], [26] and Lemma 3.2.

To compute the amplitudes a 0  one should find the contribution of the phase
function 9= 0(T(x, y)— t) (the index j  is dropped for the sake of simplicity). First
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note that the critical set of go has the form

Zip = {(t, x, y, 0)E R n + ' X  X  X  R 1 ; t= T (x ,  y)}

Denote by Q1 : E,--).0 the diffeomorphism
Qi(t, x, y, 0)=0 ., x, Y; ( Pt , 9., (pr ), (t, x, y , 0)E E. ,. Then the m ap Q= n°421 Q:

x (T *X ) i s  a  diffeomorphism in  a  conic neighbourhood of the point
(T(x, y), x, y , 1) which provides I, with local coordinates (t, y , ri). The correspond-
ing density d, on I ,  (d , is the pull-back of Dirac measure under the map Q) is
given by

dx=1D(t, 37, iP0)ID(t, Y, x, 0 )1- 1 42 * (Idt101dY A 6 71)

where ID(u)/D(v)1 stands for the Jacobian o f u =u(v) (see  [1 3 ] , § 3 .2 ) . Since
a2 91aBax=aTIOX and n= -aTley, a short computation gives

dx = on-i
D (

-

(3T
0 T (x"  y ) ) I D ( x ,  0 )ey \0=1

Q*(IdtIOldy A  d ' î .

OTMoreover — (x , y )=  -  i(x, y) e S = q(y, 11)=1} for any (x, y) close to (x o , yo).ey
Let Rn - 1 n w.-*.f(co) e 4 be a local coordinate system on S, near - ' î ( x 0 ,  y o ). Then
R" \O (co, 0)->f(co)0e TX is locally a  diffeomorphism. For any y e X  denote
J (c), 0)=1D(f(c0)0)1D(co, 0)1 an d  to(x)=f - 1 (  y

T  (x ,  y ) ) .  Then using the chain
rule we obtain

_ g 0 ,  T ) /D( x, 0)11,,_,=ip(f (00, T)ID(co, 0, T)1 0 .,0 , , ! ( x ) x

xID(co(x), 0, T(x, Y))ID(x ,  0 )10=1=.1 (co, 1)1D(o)(x), T(x, y))1D(x)I .

On the other hand

D ( --
a—T 2 (x, y))/D(x) =2n1D(f(c0)0)1D1(0, 0)1 le-T(x, y ) xaY 1,0=w(x)

x1D(co(x), T(x, 01D(x)1=2".l(co, T(x, Y))1D(w(x), T(x, y))/D(x)I.

Since J(co, T)=Tn - 1 .1(co, 1) it follows that

\ /d=  2"/ 2 0( 1 - ) /2 T(x, y) ( - 1 / 2 14)2 (T 2 )/axayl - 1 / 2  x

x Q*(10 1/2 01dx A dril l /2 )

Translating Cl 0( - 1 ) 1 2 ,1 d ' via the map QV one obtains a half-density on C which
is equal to

T(n-1))22n12102(T2)la x ay l-112e i

According to H6rmander [13] the last density multiplied by i1 ±( 1 - 0 /2 S 2 is equal to
the principal symbol â ( S ,  Z 2 )  of the Fourier distribution I  for some tx e Z/4,
hence (3.3) holds. Thus Proposition 3.1. is proved.
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§ 4. Asymptotics of green's functions

In  this section we investigate the asymptotics o f G±(); x , y ) as .1.—> co in both
cases X  = R" and X0 R n . First we suppose that H  is  a self-adjoint operator in
L2 (X) (X  =R " is provided with the metric g u ) having the form H = — d a + h(x, D )+

V (x ), where h (x , D )=t  h i (x)D i , h i  e Co (R "), V eC o ( R n ) .  L et us assum e that
the following two conditions are fulfilled. F ir s t  the metric g i ;  i s  supposed to be
non-trapping, i.e.

( N )  Any geodesic RI e t—oexpy (tv), (x, v)e T(X ) goes to infinity as t--÷ co.

The second condition is

( C )  The points xo a n d  yo , (x o , yo ) e X x X , are  not conjugated along any
geodesic arc connecting them.

The latter condition meas that the differential dv(expyis  n o t  d e g e n e ra te d  a t
any point vo e Ty X  such that expy vo = xo ([15]).

L e t R ' 9 t—q)t(y, n) —(x(t, y, 71), 4t, y, 0 )  be th e  p ro jec tion  o f the  bichar-
acteristic strip (t, x (t, y , /7), q(y, n), y , 0), q(y , n) = ,/gui(y) of the operator

— H into T*(X ), 0°(y , Since fo r  any (t, y, v) e RI x T(X ), y  e S y =
{v e Ty X ;g i i vivi = 1} we have x(t, y, v*)= exp, (tv) with v* given by the  can onical
isomorphism TX n v—>v* =(g i i (y)vi gn i (y)v i)e Ty X ,  th e  c o n d itio n  ( C )  is
equivalent to

(4.1) rank (dt ,,,x)(t, Yo, ) = n

for any t 0, ri 0 such that x(t, Yo, )= x 0 .
Denote by G±(A ; x, y)=G(A +10, x, y) the Green's functions of the operator H

in X  = R"; G(z; x , y) being the distribution kernel of the  resolvent (H —z ) ' .  To
obtain the asymptotics of G±(A; x, y) as )—*cc we use essentially the results of the
previous section. Set

r t (Y , n)= My, n), (y, e T * X ,

and denote by Tf (x , y ) and y) e j=1 ,...,  J, respectively the length and the
unit codirection of the geodesic [0, Ti (x, y)] D t—q ; (t)=x (t, y , q i (x , y)) connecting
the points x  and y  for (x, y) close to (xo , y o ). Choose the functions x i ,  j=1 , 2
as in Theorem 1 with r o replaced by r 1 and denote

bi (x , y )=exp(— h(Os(y, y )))d s ), j=1 ,..., J.2 (.1
Theorem  3. Suppose the condition (N) fulf illed and  (C ) holds at (xo , y o) E

R 2 ". Then (0.4) and (0.5) are satisfied. The coefficients U 0 (x , y ) and C i (x, y)
are  giv en by  m ultiply ing (0.6) and  (0.7) by  b i (x , y). Moreover /3 i =0  and the
number oci  coinsides w ith the num ber of the points t e (0, Ti (x, y)) conjugated with
t =0 along the curve (0, Ti ) t—qi (t) and counted with their multiplicity .
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Pro o f . Arguing as in §1 one can prove that (1.12) holds with W solving the
Cauchy problem

f (1 )?— H )W (t, x , y )=0  i n  R 2 n + 1

1  W (0 ,  x, y)=S y (x), W r(0, x, y)=0

where (Sy (x), u(x)g(x)' 12 ) = u (y ) .  Since the asymptotics o f th e  first integral in
(1.12) is given by (2.4) it is enough to investigate

GI(A; x, eiÂtço2(t)W(t, x, t)dt

as A—> c o .  To apply the results of §3 we suppose that W is a half-density rather than
function in X  and that the operator H  acts on half-densities. Such a half-density
W112  can be obtained by multiplying W by the canonical half-density g(y)1/4g(y)1/4

on  X .  The correspoinding to  H  operator acting on half-densities is H112 =
gi14H g -114 . Then W112 is  a  sum o f tw o Fourier distributions W = I  + 1 - ,
I± e 1 - 1 1 4 (R 1 x X x X ; C ± ) where

CI = {(t, x, y; Of(y, q)=(x, T-±g(y, 71)=0} .

The integral

e'•"(p2(t)I-(t, x, y)dt

is rapidly decreasing with respect to A as A—> oo uniformly with respect to (x, y) in
a compact neighbourhood of (x o , yo )  since WF(I - ) C -  { ( t ,  x ,  y , T, q); T >  0}.

Consider the half-density

I 2 (A, x, y)=iA - 1 - eiA(92 (0I+(t, x, y)dt

for (x, y) close to (x o , yo ). According to (3.2)

I 2 ( A ,  x ,  y ) =  ( 2 n ) -
(n+1)/2i(3—n/2)(n-1)/2

X  
( E e ilT • l(x 'Y ) e i[4 0 -1 )(T i-0 — a fir/ 2 1  2 ' -

n-1}
(r)a x, y, 10)0 2 d e

O o

r2(A, x, y)

where the function r2(,1, x, y) and its derivatives are rapidly decreasing as 1—> ci.
The stationary phase method yields

(4.2)1 ' 2(1, x, y ) = (2n )(1-n)/2i(3-n)/2-cci A(n-3)/2

J  M -1x E  E  eiATAx , Y)b ,•(x  y )A - j +y,
j=1 v=0

and R i o  satisfies (0.5), which proves (0.4). What we have to do is to compute the
first coefficients bo ,i (x, y). First we define a  nowhere vanishing section e 2 o f
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L ( C )  (see [ 7 ] ) .  The manifold C+ n {t=0} is  the conormal bundle N*4 of the
diagonal d in X  x X .  Moreover L(N* 4) possesses a canonical constant section S 2

such that the Keller-Maslov part of the principal symbol of Sy (x ) is equal to S 2 .
Now we extend the section S 2 to a global one on C+ requiring it to be a constant
along the bicharacteristics t—>{(t, x, y; T, —11); q ( y ,  j ) = 0, ( x ,  ) =  Ot(y, 1)}.
As in §3 we write the principal symbol of I+ in the form a =  i i (S ,  e 2 ) .  Then

(2 0  -99Hg + 21 sub (H i / 2 ))a = 0
at 

where is the Lie derivative along the Hamiltonian field H q an d  sub (1/1 1 2 )=
h(x, is the sub-principal symbol of H .  In view of the choice of S i  and S 2 the
transport equation gives

(0,— Hq +2ih(x , ) ) ã = 0

while the initial conditions for W yield a(0, y, y,— q, j, — q)= 1/2. Therefore a" =
exp — j h(ck s(y , ti))ds) and according to (3.3) we have

0
n+2 1-n

bo , i (x ,y )= 2- T  i (x , y )  2 la 2 TliaXa3 , 11/2 exp — h(4) (y , rii (x , y )))ds).
s

Multiplying (4.2) by the canonical density g(x) - 1 1 4 g(y) - ' 1 4  o f  order — 1/2 in X  x X
w e get the asymptotics o f G1(1; x, y) as 1 —>oo. The first coefficients in this
expression are

(2 0 (1-n)/2i-cei+(3-n )/2 bo,M g ( x )g (y ))-114.

The assertion concerning oti  was proved by Colin de Veridère in  [5 ] .  Thus (0.4)
and (0.5) are proved for G+(2; x , y) and the first coefficients are found. Arguing in

dethe same way can obtain an asymptotic expansion for G - (2; x, y) and for — (A • x"  y ) .
Thus Theorem 3 is proved.

Remark 4 . 1 .  It can be proved that the half-density 12 ( ; x, y )=g(x ) 1 1 4 G-1(2;
x, y)g(y) 1 1 4  is a global oscillatory function ([31], def. 1.3.2) without assuming the
condition (C ) .  Then the results in  ([31], §4) may be used to obtain asymptotic
expansions of G+(2; x , y ) as co in some cases when (C) is not fulfilled.

Indeed, consider the Lagrange manifold

= {(x, y; —17)e T*(X x X ) ;  E S :, e  S'y'' and (x, )=4)t(y, ti) for some t E R 1 }

which can be viewed as a flow-out of the isotropic manifold A 0  = {(y, y; — ti);
e S'yk} along the bicharacteristic strips of q (y , q ) . Denote by i: c-*T *(X  x  X ) the

inclusion map.

Proposition 4.1. 1 2 (2; x , y )  is a g lobal oscillatory  function in R 2 " of  order
(n-3)/2 def ined by  the Lagrange im m ersion i ([31], §1.3).

P ro o f . First note that C+ is generated near any p ° = (t0. X0, y0 ; yio)e c+
by a non-degenerated phase function of the form
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0(t, x , y ,  0)=014x, y , 01101)- O K  0 e Rk+i, k > 0,

where t1r(x, y, oc), a e Sk = tot Rk-I-1 ; = 1 }  is  a  non-degenerated phase function
such that ilk defines i near p0 = (xo, yo ; noirrol) (for definition see [31], §1).
Indeed, suppose that 0(t, x , y , 0), O e Rk+ '  is a  non-degenerated phase function at
some point q°=(t o , xo , y o , 0°)E 10 {q; q  is  close to  q° and 4 0 =0 }  which
defines C+ near p°, i.e. rank do ,„,y ,o de ck(e)= k  + 1 and Co  C +  where Co = i4,(E,/,)
and id,(t, x , y , 0)=0, x , y ; d 4 , dx (/), dy 0), 10 (0 = p ° , (1 ' 0  is  an 2n+1 dimensional
manifold and 10: E0-

7 , * ( R 2 n + 1 ,)  is an  embedding, see [31], p . 214). Therefore
duk(q°)0 0 and there exist some smooth functions i/i(x, y, a )  a(t, x , y , a), a e St'
such that ck(q)=0 1(q)a 1(q) where 0 10, x , y , 0 = 1 0 1 0 1 1 ( x ,  y ,  0110I)- 0 and a i (t, x,
y, 0)= a(t, x , y , 01101)> 0 in a conic neighbourhoof of q°. Moreover E4, = E  and
id,(q)= x, y , Ola i (q)) for any q =(t, x , y ,  0 ) e / 0  c lose to  q ° . Therefore 0,
is a non-degenerated phase function which defines C+ near p ° . As a consequence
tfr(x, y, cc), CC E Sk is a non-degenerated phase function near (xo , yo , a0 ), « 0 = 00 /100 I.
Moreover, 10  defines i near p° since i,/,(x , y, cœ)=rt 1(i 1(kx, y, oc), x , y , a))E A  for
any (x, y, oc)e Eii,  where Iri (t, x, y; T, t ) =(x , y; n/iTi) and 7r1 m ap s C+
into A.

Let K  be a compact in R2 ". Choose some non-degenerated phase functions
tki (x, y, a), CC E ki > 0, j = J, such that Ç . defines i: Ac-4
point p i  and Olt, x, y, 0)= mop», x, y, 0/101)- 0  defines C + near some point
pi e C±, and

iy  id, i (E0)) n (supp ((pi ) x K )=ø,  7 r 2 (t, x , y ; T, n)= (t, x, y).

Since I+ e I - 1 1 4  (R 1 x X X X ; C+) there exist some amplitudes asieS ( n - k i - 1 ) 1 2 . ( R 2 n + 1

X R k i + 1 ) such that

x , y )= E e io i( t ,x ,Y ,o )a i( t ,  x, y ,0 )d0+Q(t, x , y )
j = 1 f fi

and singsupp Q n (supp ((pi ) x K ) = 0 .  Using again the stationary phase method
we obtain

(
2 )ki/2

12 (2, x , y )= e, eiAkfri(x,Ymb(x, y, a, A)daj.1  47r 1ski

where b.(x , y 5  cc  2) -  E  b ( x ,  y , oc)A0 - 3 ) 1 2 - v  as 2 -f cc . Therefore 12 (2; x, y )  is
v=o

a global oscillatory function of order (n -3)/2 defined by the Lagrange immersion
A _,T*(R2.) .

Now we turn to the case when X  is a domain in IV with a smooth boundary Y.

Proof o f  Theorem 1. First suppose x 0 (411(y 0 ). Then there are no generalized
geodesics connecting the points xo and y o , in particular x0 0 yo . According to the
propagation of singularities of the solution U(t, x, y) to the mixed problem (0.9)
we have (t, x o , singsupp U  for any t E I V .  Moreover U(t, x, y)= 0 in  a

T*(R2") near some
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neighbourhood of (0, x o , y o ) since the finite propagation speed for the solutions of
the wave equation (I)? — H)U = O. Then the function cp(t)Y (t)U(t, x, y) is smooth in
a neighbourhood of R' X {x 0 } x {yo } and has a compact support with respect to t.
Now (i) follows from Proposition 1.1.

Now suppose x o  e M A ). The asymptotic behaviour of the first integral in
(1.12) is given by (2 .4 ). Thus we have to investigate the asymptotics of G1

2
-(1;, x, y)

as A-4 co.
Let y: [0, To] n t—)x(t, yo, no) be a generalized geodesic connecting the points

x , and y o . Suppose that y meets the boundary Y only transversally at the times
t = t„ s=1,..., k, k = 0, where 0 < t t < t2 < • • • < tk < To .  Consider the broken Hamil-
tonian flow Ot(y , n)=(x(t, y, n), 4 t, y, n)) associated with T2 — gii(x) g i  in  T*(X)
for (t, x , n ) close to (To , y o , no). T h e n  q(dA y, ti)= q(y, n) for 0< t < To and
(y, g ) in  a nieghbourhoof of (y o , no). Let t ( y ,  n)=(x(r, y, n), y, n)) be the
Hamiltonian flow associated with 22 — g i i (X g g i  in T*(Rn) t is the dual variable to t).
For (y, n) close to (y o , no) we denote

ri,(Y, (P-Tqx(To, Y, n), M13, .Y,

It was proved in ([10], Proposition 3.7) that 4  is  a canonical transformation for
any te  R 1 . Moreover, 4 (y , g)= Of(y, n) for (t, y, n) sufficiently close to (To , y o ,
go), hence q(r(y , n))= q(y, g) and

CI = {(t, x, y ; T * (R n ± i  X  X ) \ 0 ;  q ( y ,  n)=o, (x, )=11,(y, n)}

is a Lagrange manifold in T*(Rn+ 1 x X).
According to Theorem 4.1 in [16] there exist some Fourier distributions 17 ± e

/ - 1 /4 (Rn+' x X ; C I) such that the solution W(t, x, y) of (1.1) can be written as a sum
W= 11 + +1/-  microlocally at the points p± =(To , xo , y o ; q ( y o , no), «To , y o , no),
— no) e C, i.e.

p±OWF(W— 17 +  —1/- ).

Let the conditions (N) and (C) be fulfilled. Then the equation x(t, y, n)= x
has only finitely many solutions (Ti (x , y), ni (x , y)) e (/?' \ 0) x S'y' in a neighbourhood
of (xo , y o ) , j=1 ,..., J. Moreover 'T.;  and ni  are  smooth functions near (xo , y o ).
Denote by 4, and Ct i the corresponding canonical transformations and Lagrange
manifolds. Then there exist some Fourier distributions Ill' e I - 1 /4 (R"+1 x  X ; CO ,
j=1 ,..., J, whose symbols vanish outside a small conic neighoburhood of the points

=(Ti (xo , y e), xo , y o ; — 1, ./(7.:/, y o , nj ), —n i (x o , y o ) )  and such that the distri-
bution W— E  VI is microlocally smooth at (t, xo , y o ;  — 1 , n) for any t /V\O

= t
and any ' e R " . Moreover the projection of 4 i (y, n) on the base Rn coincides
with the curve x(t, y, n) for (t, y, n) close to (Ti , y o , n i (x o , y o )), so the condition
(3.1) holds for g i . Now we apply Proposition 3.1 in the same way as it was done
in the proof of theorem 3. The distribution YI can be written in the form

VJ = (2.)-0+012i(1-.)12 e i[e(T,(x, y )-0-Faj ni2] a i (x , y  6)0 n i l  dO
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where ai  satisfies (3.3). Moreover corollary 4 .3  in  [1 0 ]  gives ei;  = 1/2 for the
"mixed" Neumann problem and di  =( -1)ki/2 for the Dirichlet problem, where ki

is the number of reflections of the geodesic yi : [0, Ti(xo, ye)] 3  t - x(t, Yo, ye))
at the boundary. The number oti  can be computed in the same way as in [7], [10],
[ 2 0 ] .  Denote c5i (t)= (d y „99 - 1 (V), t e (0, 'Ti (x o , ye )) where the differential is tacen
at the point (x, x  = - x (t, Y o , n(x°, y o )), Y o ,  n i ( x o ,  Y o ) )  and V=40, (50 E
7(X )TX ) is the vertical space in  7( X ) (T X ) .  Following closely the arguments in
[7], [10], [20] one can prove that at ;  = ind(6i )  (the index ind(Si )  of the curve c5i

was defined in [6], [13].
Arguing in the same way one can obtain (0.4) and (0.5) for G- (.1; x, y). T h e

equality C (x , y )= C 8 -,1 (x, y) holds since G ; x , y )=G + (.1 ; x , y )  fo r  x  y  a n d
the functions Cc (x, y) are smooth for (x, y) close to (x 0 , ye ). Thus theorem 1 is
proved.

deProof of Theorem 2. The function (,12 . x"  y) is smooth in  R 1  xX x  X  indA 
view of (1.15)and since fo r any 9 E C ( R 1 )  th e  function X x X 3 (x, y)-> <W(. ,
x, y), 9> belongs to Coe(X x X) (here the partial hypoellipticity of the wave operater

- H  with respect to x is used.) Moreover, (i) follows directly from Theorem 1.
To prove (ii) we write

de 
x , Y )= ( 2 0 - 1 {Gt -  G-1} + ( 2 1 0 - 1 {GI -

Then (2 0 -  {Gt - G -,} gives the first expression in (0.8) in view of (2.5) while (27 ri)- 1  •
{G-fi - G i .} gives the second one. This completes the proof of Theorem 2.

§ 5 . Some other results

In this section we investigate the asymptotics of the spectral function e(2; x0 , ye )
at some points (x 0 , yo ) which do not satisfy the condition (C). We still suppose that
the condition (T) holds at (x 0 , M e X  x X.

Consider the set W= { ( t ,  ) e R  x  7 X; x(t, y o , 1)=x 0 }  and for any (t, n)e W
denote by P linear map

Yo' '1)' P ,„ :  T ( ( „ ) (R i x T yKo X) Tx0X.

Instead of (C) we impose the following condition

(5 .1 )  There exist some reals T, j > 0 and some smooth conic manifolds17-11',, J
 1 1y 0 X

of dimention d+1, 0<d <n-1, j=1,..., J, such that W is a disjoint union of
Wd ,1 = {Td ,; } x 14 a , a n d  T( f ,,i ) Wd j = Ker ( P )  at any point (t, q)e W d j.

For exmaple consider a  domain in R" with smooth boundary Y which contains a
part of a circle cone I' = {(s, co); co e S n - 2 , a <s < b} and suppose that x, = y, lies on
the cone axis of F .  Then W contains the n-1 dimensional conic manifold i î ' 2 ,0
{ro.); we S" - 2 , >  0 }.
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Theorem 4 .  Suppose that (N ) is valid and (T) and (5.1) are  satisfied at the
point (xo , y o ). Then

de ( , 2 y  y ) „ E E  ,t(n+d-3)/2-v Re(C-09 Jo. v,d,j9 
j,a v=0

f or some complex number C,, ,d j  and Co ,c ; 0 0  when Wd ,i 0 0 .

P roo f. Denote by Ix 0 ,y 0 : R 1 -+R ' x X  x  X  the inclusion m ap ix o ,y o (t)= (t, xo ,
Yo) . Let (  Y o )

* b e  the corresponding "pull-back" map (see [13 ]). It is well
known that the composition e (t)=(i x o 0 )* W(t) is a  well defined distribution when
W(t, x, y) solves (1.11). Moreover (1.13) can be written in the form

de (A2 x°' y )= elÂtcp(t)W (t, x , y)dt)+0(.1 - N)

=0. - 1 1 eutço(t)S(t)dt +0(.1 - N) .-09

Note that (ix .," )*  is a Fourier integral operator with a  canonical relation D =
{(t, t ;  t, x o , y o , 2, 7 0 ,  T  0 } and (ix0,0* e  in/2(R 1, RI x X  x X ; D ) .  F o r given
flo e V-Vdj a n d  fo r  (t, Y, q )  close to  (Td,i9 yo , no) w e shall denote r td, ; (Y , /7)=
ct - - Td, i(x(Td ,i , y, ti), 4Td ,i , y, n)). Let C‘t i  be the corresponding Lagrange manifold
defined in §4.

Proposition 5 . 1 .  T he canonical relation D  and the L agrange m anifold C'd-

have a  clean composition A d j=  Do CS, i  with excess equal to d and A d j=  { (T d j, T ) ,

t< 0 } .

P roo f. Following the notations in [26] we denote L =D x C , M= (T*12 1\0)
x d*, where d* is the diagonal in T*(R 1 x R" x X ) x T *(R ' x  R n x X ) .  Let H  be
the projection H : T*(R 1)x  T *(R 1 x R n X X) x T*(R 1 x R n x X )-> x T X  defined
by 17((s; it), (t, x, y ;  T , , :9; 4 ) ) = ( t ,  E x 7 1 X .  It is easy to see
that the map / 4  T  p (L n m .)-+T„(wd ,i ) is an isomorphism at any point p =((t; t),
(t, x o , y o ; (t, xo, Yo; t,  , t i ) )  w h ere  t = Td j , x(t9 Y o, n)— x 0,  4t, y o ,n )=
and 2  q (y , n )=0 . Moreover (T L ) n (T M) -Ker T dj, is an isomo-
rphism and in view of (5.1) we get T p (L n .A4)= T p (L) n T p (M ) .  Therefore D and
C S  have a clean composition. The excess coincides with the dimension of the
fibres of the map L n M ep -q t, e  Ad d  which is equal to dim Wd 4 - 1 = d .  This
proves the proposition.

The theorem about the composition of Fourier integral operators [26] gives now

H 1—  J
e ( o =  E  E I

d 'i
. e  1(n+d)12+114(R1 ; A d d ) .

d=0 j=1 

Since the function cp(t, 0)=0(Td o ,- t), (t, 0) E T* R', 0> 0 defines A d j we have
CO

I d , ; ( t)= e"(Td , i - og d , i (0)d0
Jo
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where supp gd j  c R1 and gd E  g v d  j e(n+ d-1-2v)12 ,  0 _ ), c o ,  for some complex num-
bers g d J

 M oreover g o ,d, i 0  0 since the principal symbol of W does not vanish on
C ( W  is a Fourier distribution near j ). This proves the theorem.

Note that the regular part of G+ (t; x, y) can be written as a sum of global oscil-
latory functions in  E={ (x , y )e X  x  X ; x e ll(y )  a n d  ( T )  is  fu lfilled  a t (x, y)}.
Indeed, arguing as in Remark 4.1 we obtain

G±(A; x, y)—z i (T (x , y ) )  i o U(x , y )F(.1; x , y ) - FZ2(T(x, Y )) ki °
 of  gA ; x , Y)

as A.—>oo in any compact K E  if (N) is fulfilled. H e re  the functions xj (t), T (x , y )
are as in the introduction and g(x) 1/4 f (2 ; x , y )g (y ) 1/4 is  a global oscillatory fuc-
tion defined by the Lagrange immersion ik : A kc-)T*(Rn x X ) where

A,=- {(x, y; —ri)e T*(1?" x X ) ;  e Sx , u n Sy , (x , )=  r(y , ti) for some t c R 1 }.

The second sum in the last asymptotic expression is finite in (x , y) c K  since in view
of (N) and (T) there exist only finitely many k eZ such that

K  n {(x, y); (x, y; n) e ilk for some (5ri)} 0 0.

The half-density f(■1.; x, y )  has an asymptotic expansion as .1.—>oo similar to (4.2)
near any point (xo , y o ) which does not belong to the caustic set of Ak (the projection
map A, 3(x, y ;  y) eX  x X  is a diffeomorphism near (x o , y o )). Moreover,
some asymptotic expansions o f f  (11,; x, y) near the caustic sets of Ak may be obtained
using the results in ([31], §4).
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