Some remarks on meromorphic functions on open Riemann surfaces

Dedicated to Professor Yukio Kusunoki on his sixtieth birthday

By

Yoshikazu SAINOUCHI

Introduction. The generalization of Abel's theorem to open Riemann surfaces in the form analogous to the classical one has been studied by many authors (for recent references, Maitani [4], Sainouchi [6], [7], Watanabe [8]). In this paper, we define a class $\mathscr{M}(\mathscr{M}_0)$ of meromorphic functions on an arbitrary open Riemann surface (for the definition of $\mathscr{M}(\mathscr{M}_0)$, see section 2) and give a necessary and sufficient condition for the existence of a meromorphic function of $\mathscr{M}(\mathscr{M}_0)$ which has the given divisor. It has a similar formulation to classical Abel's theorem, but we do not assume the finiteness of divisor. In the last section, for certain class of Riemann surfaces with a metric condition, we give some sufficient conditions in order that a meromorphic function should belong to the prescribed class.

1. We shall consider an arbitrary open Riemann surface R and denote its genus by g ($0 < g \le +\infty$). Let $\{\Omega_n\}$ (n=1, 2,...) be a canonical exhaution of R, then there exists a canonical homology basis $\{A_i, B_i\}$ (i=1, 2,..., k(n),...) with respect to $\{\Omega_n\}$ such that $\{A_i, B_i\}$ (i=1, 2,..., k(n)) for a canonical homology basis of $\Omega_n \pmod{\partial \Omega_n}$. Let \mathcal{D} be a class of an enumerable number of semiexact holomorphic differentials dw_i (i=1, 2,...) on R such that $\int_{A_j} dw_i = \delta_{ij}$ (Kronecker's δ) and set $\int_{B_j} dw_i = B_{ij} = \xi_{ij} + i\tau_{ij}$ (ξ_{ij}, τ_{ij} ; real). Also a class of the square integrable semiexact holomorphic differentials having the same property as above is denoted by \mathcal{D}_0 . The class \mathcal{D} (\mathcal{D}_0) always exists on an arbitrary open Riemann surface, but does not be determined uniquely for given canonical homology basis.

2. Let \mathscr{M} be a class of meromorphic functions on R such that each function f belonging to \mathscr{M} has the following two properties: (1) there exists an integer n_0 such that for all $n \ (\geq n_0)$

$$\int_{\gamma_n^{(i)}} d\log f = 0 \qquad (i = 1, 2, ..., m_n),$$

where $\gamma_n^{(i)}$ are the components of $\partial \Omega_n$ and do not contain the zeros and poles of f.

Communicated by Prof. Kusunoki Oct. 27, 1984.

Yoshikazu Sainouchi

(2)
$$\lim_{n\to\infty}\int_{\partial\Omega_n}w_id\log f=0,$$

where $dw_i \in \mathscr{D}$ and $w_i = \int_{p_0}^p dw_i = w_i(p)$ with a fixed point $p_0 \in R$.

If \mathscr{D} is replaced by \mathscr{D}_0 in (2), we use \mathscr{M}_0 in place of \mathscr{M} . We note that $\int_{\partial \Omega_n} w_i d \log f \ (n \ge n_0)$ do not depend on the choice of branches of w_i and the number of zeros of f in Ω_n is equal to that of poles of f.

Now let $\delta = \prod a_i / \prod b_i$ be a divisor on R and $\delta_n = a_1 \cdots a_{l(n)} / b_1 \cdots b_{l(n)}$ its restriction to Ω_n , where we assume $\partial \Omega_n$ does not contain a_i and b_i (i = 1, 2, ..., l(n)). Also let us denote by γ_i a singular 1-chain in Ω_n such that $\partial \gamma_i = b_i - a_i$ and set $c(n) = \sum_{i=1}^{l(n)} \gamma_i$.

Proposition 1. The necessary and sufficient condition for the existence of single valued meromorphic function f of $\mathcal{M}(\mathcal{M}_0)$ whose divisor is exactly δ is that the conditions

(3)
$$\lim_{n \to \infty} \left\{ \int_{c(n)} dw_i - (m_i - \sum_{j=1}^{k(n)} n_j B_{ij}) \right\} = 0$$

hold for all differentials $dw_i \in \mathcal{D}(\mathcal{D}_0)$, where m_i and n_j are integers.

Proof. Take a simply connected region U_i containing a_i and b_i and set $U = \bigcup_{i=1}^{l(n)} U_i$. Since the square integrable analytic and anti-analytic differentials are mutually orthogonal, we have

$$(dw_i, *\overline{d\log f})_{\Omega_n-U}=0.$$

On the other hand, by the Green's formula we have

(4)
$$(dw_i, \, \overline{*d\log f})_{\Omega_n - U} = \sum_{j=1}^{k(n)} \left(\int_{A_j} dw_i \int_{B_j} d\log f - \int_{A_j} d\log f \int_{B_j} dw_i \right) - \int_{\partial(\Omega_n - U)} w_i d\log f.$$

Set $\int_{A_j} d \log f = 2\pi i n_j$ and $\int_{B_j} d \log f = 2\pi i m_j$ (n_j , m_j ; integers), then the right

hand side of (4) becomes to

$$2\pi i \sum_{j=1}^{k(n)} (\delta_{ij}m_j - n_j B_{ij}) - \int_{\partial \Omega_n} w_i d\log f + \int_{\partial U} w_i d\log f$$
$$= 2\pi i (m_i - \sum_{j=1}^{k(n)} n_j B_{ij}) - \int_{\partial \Omega_n} w_i d\log f + \int_{\partial U} w_i d\log f.$$

By the calculation of residue we have

$$\int_{\partial U} w_i d \log f = 2\pi i \sum_{j=1}^{l(n)} (w_i(a_j) - w_i(b_j)) = -2\pi i \int_{c(n)} dw_i.$$

Hence we obtain

66

Meromorphic functions on open Riemann surfaces

(5)
$$\int_{c(n)} dw_i - (m_i - \sum_{j=1}^{k(n)} n_j B_{ij}) = -\frac{1}{2\pi i} \int_{\partial \Omega_n} w_i d \log f.$$

Therefore by (2) we have the desired result (3).

Conversely, let $d\varphi$ be a meromorphic differential which has a simple pole of residue 1 (-1) at a_i (b_i) (i=1, 2,...), respectively and add to $d\varphi$ an appropriate holomorphic differential, then we can get the meromorphic differential $d\psi$ such that

$$\int_{A_j} \psi = 2\pi i n_j, \quad \int_{B_j} d\psi = 2\pi i m_j \quad \text{and} \quad \int_{\gamma_n^{(i)}} d\psi = 0$$

Set $\psi = \int d\psi$ and $f = \exp \psi$, then f is a single valued meromorphic function with given divisor and $\int_{\gamma_n^{(i)}} d\log f = 0$. Hence if (3) is satisfied, it follows from (5) that $\lim_{n \to \infty} \int_{\partial \Omega_n} w_i d\log f = 0$. Thus f belongs to \mathscr{M} and the proof of proposition is completed.

3. When dlog f is the distinguished harmonic differential, a single valued meromorphic function f is defined to be quasi rational (Ahlfors-Sario [1]).

Proposition 2. The quasi rational function belongs to class \mathcal{M}_0 .

Proof. Since a distinguished harmonic differential is semiexact outside a sufficiently large regular region, the property (1) is clear. Also we can put

$$d\log f = \omega_{hm} + \omega_{eo} + \tau,$$

where $\omega_{hm} \in \Gamma_{hm}$, $\omega_{eo} \in \Gamma_{eo} \cap \Gamma^1$ and τ is zero in each component of $R - \Omega_n$ for a large *n*. Since $\Gamma_{hm} \perp * \Gamma_{hse}$ and $\Gamma_{eo} \perp \Gamma_h$, we have

$$(d \log f - \tau, *\overline{dw_i}) = (\omega_{hm} + \omega_{eo}, *\overline{dw_i}) = 0.$$

While $d \log f - \tau$ is exact, so if we set $dh = d \log f - \tau$, then

$$(d \log f - \tau, *d\overline{w_i}) = \lim_{n \to \infty} (dh, *d\overline{w_i})_{\Omega_n}$$
$$= -\lim_{n \to \infty} \int_{\partial \Omega_n} h dw_i = \lim_{n \to \infty} \int_{\partial \Omega_n} w_i dh = \lim_{n \to \infty} \int_{\partial \Omega_n} w_i d\log f.$$

Thus the quasi rational function has the property (2).

A quasi rational function has the same finite number of zeros as poles and dlog f is exact in $R - \Omega_n$ for a sufficiently large n, and so there exists an integer k such that

$$n_j = \frac{1}{2\pi i} \int_{Aj} d\log f = 0 \quad (j > k).$$

Corollary. Let $\delta = a_1 \cdots a_l / b_1 \cdots b_l$ be the divisor of a quasi rational function, then

$$\int_{c} dw_{i} = m_{i} - \sum_{j=1}^{k} n_{j} B_{ij} \quad \text{for all} \quad dw_{i} \in \mathcal{D}_{0},$$

Yoshikazu Sainouchi

where c is a finite calin $\sum_{j=1}^{l} \gamma_j (\partial \gamma_j = b_j - a_j)$.

Let \mathscr{D}_{χ} be the set of square integrable analytic differentials φ such that the real part of φ has the Γ_{χ} -behavior, where $\Gamma_{hm} \subset \Gamma_{\chi} \subset \Gamma_{he}$ (Kusunoki [3], Yoshida [9]). Now we denote by \mathscr{M}_{χ} the class of meromorphic function f such that f satisfies (1) in section **2** and

$$\lim_{n\to\infty} \operatorname{Im} \int_{\partial\Omega_n} d\log f = 0,$$

where $\Phi = \Phi(p) = \int_{p_0}^{p} \varphi \ (\varphi \in \mathscr{D}_{\chi}).$

Proposition 3. The necessary and sufficient condition for the existence of a meromorphic function f such that f belongs to \mathcal{M}_x and its divisor is exactly δ is that the conditions

$$\lim_{n \to \infty} \operatorname{Re} \int_{c(n)} \varphi_{A_i} = integer$$
$$\lim_{n \to \infty} \operatorname{Re} \int_{c(n)} \varphi_{B_i} = integer$$

hold for the differentials φ_{A_i} , φ_{B_i} ($\in \mathcal{D}_{\chi}$), where φ_{A_i} and φ_{B_i} are the fundamental differentials associated to the homology basis A_i and B_i respectively.

The proof is obtained easily by the same way as in section 2 and so we shall omit it. Also let \mathscr{E}_{χ} be the class of meromorphic function f such that Re log f has Γ_{χ} -behavior, then $\mathscr{E}_{\chi} \subset \mathscr{M}_{\chi}$.

4. We take mutually disjoint annuli $D_n^{(i)}$ $(i=1,...,m_n)$ each of which includes exactly one contour of $\partial \Omega_n$. Let $D_n = \bigcup_{i=1}^{m_n} D_n^{(i)}$ and assume that D_n (n=1,...) are disjoint each other. If, in the definition of $\mathcal{M}(\mathcal{M}_0)$, (2) is replaced by the following (2'), then we shall use $\mathcal{M}'(\mathcal{M})$ in place of $\mathcal{M}(\mathcal{M}_0)$: (2') there exists a canonical exhaustion $\{\Omega_{n'}\}$ such that

$$\partial \Omega_{n'} \subset D_{n'}$$
 and $\lim_{n' \to \infty} \int_{\partial \Omega_{n'}} w_i d \log f = 0$,

where the sequence $\{\Omega_{n'}\}$ is the subsequence of $\{\Omega_n\}$ and depends of f and $dw_i \in \mathscr{D}(\mathscr{D}_0)$.

By the same way as in the proof of proposition 1, we have

Proposition 4. The necessary and sufficient condition for the existence of a single valued meromorphic function f such that f belongs to $\mathscr{M}'(\mathscr{M}'_0)$ and its divisor is exactly δ is that the condition

(3')
$$\lim_{n'\to\infty} \left\{ \int_{c(n')} dw_i - (m_i - \sum_{j=1}^{k(n')} n_j B_{ij}) \right\} = 0$$

holds for each differential $dw_i \in \mathcal{D}(\mathcal{D}_0)$, where the support of δ is contained in $R - \bigcup D_n$.

Now let $v_n^{(i)}$ be the harmonic modulus of $D_n^{(i)}$. If

(6)
$$\sum_{n} \min_{i} v_{n}^{(i)} = \infty$$

then the Riemann's period relation holds for any two differentials ($\in \Gamma_{hse}$) and so the class \mathcal{D}_0 is determined uniquely by the canonical homology basis and $B_{ij} = \int_{B_j} dw_i = \int_{B_i} dw_j = B_{ji} (dw_i, dw_j \in \mathcal{D}_0)$, and for each *n* the matrix $(\text{Im } B_{ij})_{i,j=1,2,...,n}$ is positive definite (Sainouchi [5], Kobori-Sainouchi [2]).

Proposition 5. Let $\sum_{n} \min_{i} v_n^{(i)}$ be divergent and f be a meromorphic function on R such that f satisfies (1) and

$$\|d\log f\|_{\cup D_n} < +\infty,$$

then f belongs to \mathcal{M}'_0 and so

$$\lim_{n'\to\infty}\left\{\int_{c(n')} dw_i - (m_i - \sum_{j=1}^{k(n')} n_j B_{ij})\right\} = 0$$

for each differential $dw_i \in \mathcal{D}_0$.

Proof. If $\sum_{i} \min_{i} v_n^{(i)} = \infty$, then there exists a canonical exhaustion $\{\Omega_{n'}\}$ such that (2') holds for $dw_i \in \mathcal{D}_0$ and f satisfying (7), and so we obtain the desired result by use of proposition **4**.

5. Next we shall consider the converse of above proposition. Here the finiteness of divisor is assumed.

Proposition 6. If
$$\sum_{n} \min_{i} v_{n}^{(i)} = \infty$$
 and $\lim_{p \to \infty} \sum_{i, j=1}^{p} n_{j} n_{j} \tau_{ij}$ converges and moreover
(8) $\sum_{j=1}^{l} \int_{a_{j}}^{b_{j}} dw_{i} = m_{i} - \lim_{n \to \infty} \sum_{j=1}^{k(n)} n_{j} B_{ij}$

for each $dw_i \in \mathcal{D}_0$, then there exists a single valued meromorphic function f such that (i)the divisor of f is exactly $\delta = a_1 \cdots a_l / b_1 \cdots b_l$ (ii) $d \log f$ is semiexact and its norm is finite outside of a compact subset of R, where m_i and n_j are integers. The function f is determined uniquely up to the multiplicative constant.

Proof. We use the Abelian differential $dw(a_j, b_j)$ which has the following properties (i) $dw(a_j, b_j)$ has two simple poles a_j and b_j with residue 1 and -1, respectively (ii) the norm of $dw(a_j, b_j)$ is finite outside of an arbitrary region containing a_j and b_j (iii) it is semixact outside of a suitable curve joinning a_j and b_j (iv) all A-periods of $dw(a_j, b_j)$ vanish. The existence of $dw(a_j, b_j)$ has been proved in [5] and in the present case it is determined uniquely.

 B_k -period of $dw(a_j, b_j)$ is obtained by the application of period relation and we

have

(9)
$$\int_{B_k} dw(a_j, b_j) = 2\pi i (w_k(b_j) - w_k(a_j)).$$

Put $dw' = \sum_{j=1}^{l} dw(a_j, b_j)$ and $dw''_p = \sum_{j=1}^{p} n_j dw_j$, where n_j are integers in the assumption. Then

$$\|dw_{p}''\|^{2} = (dw_{p}'', dw_{p}'') = \sum_{i,j=1}^{p} n_{i}n_{j}(dw_{i}, dw_{j})$$

= $-i \sum_{i,j=1}^{p} n_{i}n_{j} \left\{ \lim_{n''+\infty} \sum_{A_{k}, B_{k} \in \Omega_{n''}} \left(\int_{A_{k}} dw_{i} \int_{B_{k}} \overline{dw_{j}} - \int_{B_{k}} dw_{i} \int_{A_{k}} \overline{dw_{j}} \right)$
= $-i \sum_{i,j=1}^{p} n_{i}n_{j}(\overline{B}_{ji} - B_{ij}) = -2 \sum_{i,j=1}^{p} n_{i}n_{j}\tau_{ij},$

therefore, if $\lim_{p\to\infty} \sum_{i,j=1}^p n_i n_j \tau_{ij}$ is convergent, dw_p'' converges to $dw'' (\in \Gamma_{hse})$ in norm and we have

(10)
$$\int_{B_j} dw'' = \lim_{p \to \infty} \sum_{i=1}^p n_i B_{ij} \text{ and } \int_{A_j} dw'' = n_j.$$

Set $dw = dw' + 2\pi i dw''$, then by (8), (9) and (10) we get

$$\int_{A_k} dw = 2\pi i n_k$$

and

$$\int_{B_k} dw = 2\pi i \sum_{j=1}^{l} (w_k(b_j) - w_k(a_j)) + 2\pi i \lim_{p \to \infty} \sum_{i=1}^{p} n_i B_{ik}$$
$$= 2\pi i m_k.$$

Now set $f = \exp \int dw$, then f is a single valued meromorphic function on R and its divisor is exactly δ and $d \log f = dw$ is semiexact outside of a compact subset of R and has a finite norm. Let g be an arbitrary meromorphic function with the same properties as f, then by the application of period relation to the square integrable harmonic differential $d \log |f/g| \ (\in \Gamma_{he} \cap *\Gamma_{hse})$ we have |f/g| = constant and so f is determined uniquely up to the multiplicative constant.

6. Finally, we shall give a sufficient condition in order that a meromorphic function should belong to the class \mathscr{M}' . Let ω be a fixed square integrable holomorphic differential and set $dw_j = g_j \omega$ ($dw_j \in \mathscr{D}$). Also we denote by u + iv (v; conjugate of u) the function mapping $\bigcup D_n$ onto a strip domain; $0 < u < R' = \sum_{n=1}^{\infty} v_n$, $0 < v < 2\pi$, where v_n is the harmonic modulus of D_n .

Proposition 7. Let f be a meromorphic function such that $||df||_{\cup D_n} < +\infty$ and f satisfies (1), and set

70

Meromorphic functions on open Riemann surfaces

$$M_n^{(i)}(g_j) = \max_{p \in D_n^{(i)}} |g_j(p)|, \quad M_n^{(i)}(1/f) = \max_{p \in D_n^{(i)}} |1/f(p)|.$$

If
$$\sum_{n=1}^{\infty} \min \frac{v_n^{(i)}}{M_n^{(i)}(g_j)M_n^{(i)}(1/f)} = \infty$$
 for all j, then f belongs to \mathcal{M}' .

Proof. let $I_n = [\sum_{i=1}^{n-1} v_i, \sum_{i=1}^n v_i]$ and for $r \in I_n$ we denote by $\gamma_r^{(i)}$ the level curve $\{p \in R; u(p) = r\}$ contained in $D_n^{(i)}$. In $\bigcup D_n$ we can put $\omega = adu + bdv$ and $df = f_u du + f_v dv$, hence if we set $L(r) = \sum_{i=1}^m \int_{\gamma_r^{(i)}}^n |dw_j| \int_{\gamma_r^{(i)}} |d\log f|$ and $L_n = \min_{r \in I_n} L(r)$, then

$$\begin{split} L_{n} &\leq \sum_{i=1}^{m_{n}} \left(\int_{\gamma_{r}^{(i)}} |g_{j}|^{2} dv \int_{\gamma_{r}^{(i)}} |1/f|^{2} dv \right)^{1/2} \left(\int_{\gamma_{r}^{(i)}} |b|^{2} dv \int_{\gamma_{r}^{(i)}} |f_{v}|^{2} dv \right)^{1/2} \\ &\leq \sum_{i=1}^{m_{n}} \left(\int_{\gamma_{r}^{(i)}} |g_{j}|^{2} dv \int_{\gamma_{r}^{(i)}} |1/f|^{2} dv \right)^{1/2} \sum_{i=1}^{m_{n}} \left(\int_{\gamma_{r}^{(i)}} |b|^{2} dv \int_{\gamma_{r}^{(i)}} |f_{v}|^{2} dv \right)^{1/2} \\ &\leq 2\pi v_{n} \max_{i} \frac{M_{n}^{(i)}(g_{j}) M_{n}^{(i)}(1/f)}{v_{n}^{(i)}} \left(\int_{0}^{2\pi} |b|^{2} dv \int_{0}^{2\pi} |f_{v}|^{2} dv \right)^{1/2}. \end{split}$$

By integration with respect to $r \in I_n$ we have

$$L_n \left[2\pi \max \frac{M_n^{(i)}(g_j)M_n^{(i)}(1/f)}{v_n^{(i)}} \right]^{-1} \leq \|\omega\|_{D_n} \|df\|_{D_n},$$

hence it follows from the assumption that $\lim_{n\to\infty} L_n = 0$. Consequently there exists a subsequence $\{n'\}$ such that

$$\lim_{n'\to\infty} \left| \int_{\partial\Omega_{n'}} w_j d\log f \right| \leq \lim_{n'\to\infty} L_{n'} = 0, \qquad q. e. d.$$

With a slight modification we can prove

Proposition 8. Let f be a meromorphic function such that $||d\log f||_{\cup D_n} < +\infty$ and f satisfies (1). If $\sum_{n=1}^{\infty} \min_{i} \frac{v_n^{(i)}}{M_n^{(i)}(g_j)} = \infty$ for all j, then f belongs to \mathcal{M}' .

KYOTO INSTITUTE OF TECHNOLOGY

References

- [1] L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. press, Princeton, 1960.
- [2] A. Kobori and Y. Sainouchi, On the Riemann's relation on open Riemann surfaces, J. Math. Kyoto Univ., 2 (1962), 211-223.
- [3] Y. Kusunoki, Function theory-Riemann surfaces and conformal mappings (Japanese), Asakura Shoten, Tokyo, 1973.
- [4] F. Maitani, A generalization of Riemann-Roch theorem and certain algebra of meromorphic functions on symmetric Riemann surfaces, J. Math, Kyoto Univ., 25 (1985) 635–649.
- Y. Sainouchi, On the analytic semiexact differentials on an open Riemann surface, J. Math. Kyoto Univ., 2 (1963), 277-293.

Yoshikazu Sainouchi

- [6] Y. Sainouchi, On the meromorphic differentials with an infinite number of polar singularities on open Riemann surfaces, Ibid. 14 (1974), 499–532.
- Y. Sainouchi, On the multiplicative meromorphic functions on open Riemann surfaces, Memoirs of the Faculty of Industrial Arts, Kyoto Technical Univ., 30 (1981), 1-13.
- [8] O. Watanabe, Theory of meromorphic differentials with infinitely many poles on open Riemann surfaces, J. Math. Kyoto Univ., 17 (1977), 165–197.
- [9] M. Yoshida, The method of orthogonal decomposition for differentials on open Riemann surfaces, J. Sci. Hiroshima Univ. Ser. A-I, 8 (1968), 181-210.

72