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§0. Introduction.

Let BSU be the classifying space of the infinite special unitary group SU.
Let E be a complex oriented theory. Then E4BSU is a subring of E4BU. (See section
2) In [8], S.O. Kochman determines the generators for the polynomial ring
HBSU. (See also [6] and [7].) A. Baker gives also polynomial generators for
E,BSU in [3] by use of a geometrical construction yielding elements in the homology
of BSU(3). (See also [4].)

In this note, we give polynomial generators for ExBSU in the words of E4BU
by a simple algebraic method.

In section 1, we study the Gysin sequence of an S'-bundle BSU—BU.

In section 2, we introduce some algebraic notations and define pf ; E E,;4j) BSU
as the coefficient of some formal power series. By the result of [6], one can easily
show that linear combinations of pf ; are polynomial generators for HxBSU. Then
the Atiyah-Hirzebruch spectral sequence says that linear combinations of pf ; are
polynomial generators for E4BSU.

In section 3, we give a geometrical proof of the Proposition 2.3 which is the
key for our main result.

§ 1. The Gysin sequence.

Let i: SU—U and j: U(1)—U be the usual inclusions. Let Bdet: BU—>BU(1)
be the map induced from the determinant map det: U— U(1). Then the com-
position BdetoBj is an identity map. The map Bi: BSU—BU is a S'-bundle
and is the inclusion of the homotopy fibre of Bdet.

Then we have a Gysin sequence

d
(1.1) <e+—> EyBSU — E4BU — Ey_,BU — Ey_BSU —>+--

In the case of the ordinary homlogy, H¢BSU is a polynomial ring with the
even dimensional generators. (See Adams [2].) So (1.1) splits as the short exact
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sequences
(1.2) 0 — HyBSU — HyBU — Hyy_,BU — 0.

The first thing to do is to study the homomorphism d. Let us recall the struc-
ture theorem of E,BU. (See Adams [1].)
Let x2€ E2BU(1) be the Euler class of E.

Theorem 1.3.
(i) E4BU(1) is a free Eypt-module generated by BE, B%, -+-, BE, -« where B¥ is the
dual of (x®).
(i) ExBU=Eypt[BT, B, -+, Br. ]  where B =BjypF.
(i) @Br=i+;-n BT QB7.

We often omit the superscript E for the simplicity.
Let a=E,BU and yE*BU. Then by the definition of the Gysin sequence,
we obtain an equality

(1.4 {de, y> =<a, ty)>

where ¢ is the Thom class of the complex line bundle which is classified by
B det: BU— BU(1).

Let #5(X, Y)=3"af ;X'Y’ be the formal group of E. Then we have the
following proposition.

Proposition 1.5.

() df,=B,.,  forn>O0.
(i) d(ab)=3a;;d'a-d’b  for a, bE ExBU where d°=id.

Proof. Llet w: BUX BU—>BU be the map induced from the Whitney sum
and m: BU(1) X BU(1)— BU(1) the map induced from the tensor product of the
line bundles. We consider BU and BU(1) as H-spaces by these maps. Since
Bdet is an H-map,

w*(Bdet*xf) = pE(1 @1, 1Q1).
By the duality, we get
B, 17> = Bjufi, > = {Bi, Bj*t’) =By, (XFY> =8,

So B, ty>=<88,, t @ y>=LB,-1, y>. Thus (i) is proved.
Put 0*y=313)'®y”. Then we have the following equality

Lab, ty> = a@®b, o*(1y)> = <a®b, #E(tQ1, 1Q1) - wy*)
=33 3 a;,Ka, 17y H<b, ty")
= 31 3 a;, Kd'a, y'><d’b, ">
= 3 a; Kd'a®d'b, 32 y'Qy"> =<3 a; ;d'a-d’b, y> .
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Example. In the case of the complex K-theory, let t € K,(pt)==Z be the gene-
rator such that #®(X, Y)=X-+Y+tXY. So we obtain

dg,=1,d8, =8, and d(28,—(8)*+18) =0.

§2. Polynomial generators.

Let R be a (graded) commutative ring with a unity 1R and A4 a (graded)
commutative and unitary R-algebra. Let A[[X;, X;, ---, X,]] be the ring of formal
power series in indeterminants X;, X,, -+, X, over 4 (deg X;=—2). Let f: A—»B
be an R-module homomorphism. Then f is extended naturally to the R-module
homomorphism

f: A[[Xl’ A,2’ °tt Xn]] - B[[Xb X2’ *tt Xu]] .

We put R=FE,pt and A=E, BU. Let S(X)E A[[X]] be 250 F;X’. Then we
deduce the following lemma from (1.5).

Lemma 2.1.
() dEO=XA(X), _
(i) d(fIX, Y)g(X. Y)=3a; ;df (X, Y)d'g(X, Y)
for f(X, Y), g(X, Y)EA[[X, Y]] with the degree zero.

Since A(X) is a unit in A[[X]], we can define P(X, Y)E A[[X, Y]] by the follow-
ing formula

(22) P(X, Y) = (B(X)B(Y)B(«*((X, Y))'.
Then we have the following proposition.
Proposition 2.3. dP(X, Y)=O0.
Proof. By (2.1), we have
dBXB(Y)) = 2 a; ;EBX)IB(Y) = S a; ; X VBXOBY).
So we have
dP(X, Y) = 3 a; ;d/(B(X)B(Y))d(B(u(X, Y))™)
= B(X)B(Y) 2 a; j(u(X, Y))d(B(u(X, Y))7).
We have also the following equalities
0 =dl = d(8(u(X, Y))(B(a(X, Y)™)
= 3 a;,;d'Bu(X, Y)I(B(u(X, Y))™)

= 3 a;,(u(X, Y)IB(u(X, Y)I(B(u(X, Y))™)
= Bu(X, Y)) 33 a;, {(u(X, Y))d(B(u(X, Y))T).
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Since A(u(X, Y)) is a unit, dP(X, Y)=0.

Let pf ;€ Ey;4BU be the coefficient of P(X, Y) at X'Y’. Since P(0, Y)=
P(X, 0)=1,

P(X, Y)= 1+2;,1>0PﬁiXin .

For each n& N, we put

@=ssal) G- ()

Then v(n) is p if n=p°, p prime, and 1 if n is not a power of a prime. Let
2415 n2s ***5 Ay -1 be integers such that

o) = A0+ Aua() o+ Auna(, ") -

We take p; such that BiwpF=2, pE, 142,,p5 22+ 42 4o1Ptaoy for n>1.
Then we are ready to prove the main result.

Theorem 2.4. EyBSU=Eypt[p$, p§, -+, pi, -] as an Eypt-algebra.

Proof. First we prove the theorem in the case of E=H. By (2.2), one can
easily show that p,-,,-E—<i_l|._j )/9,-4_,. modulo decomposables. So Biyp,=—v(n)8,

modulo decomposables. Then the theorem follows the result of Kochman [6,
Theorem 3.3].

Let us consider the Atiyah-Hirzebruch spectral sequence Hy(BSU; Eypt)=>
EyBSU. Then the monomials p; p;, - p;, give an Eypt-base for the E’term.
Since all differentials vanish, the result follows.

Remark. In the case of E=H, we can prove that the subalgebra generated by
{pi,j} i j>0 is @ polynomial ring Z[p,, p;, ---] by the algebraic method. (See [1] and
[51)

Let 4, ; (i, j>0) be the indeterminants. Put F(X, Y)=1+33; j5o4;,; XY’ and
set F(X+Y, Z)F(X, Y)—F(X, Y+ Z)F(Y, Z)=3 B; ; A X’Y'Z*. LetI be the ideal
of Z[A; ;; i, j>0] generated B, ;, and A; ;—A; ;. We define L as the quotient

Z[A; ;5 i, j>0}/1. Since B; ; ;= (i?_j)A,-,,j.,,—(kj.'j)A,-,jH modulo decomposables,

one can prove that each A4; ; (i+j=n) is written as a multiple of A4,=2,,4,_;,+
+24 4-14;,,-; modulo decomposables. (See Hazewinkel [5], 4.2., binomial coefficient
lemma.) Let Z[t,, t;, +--] be the polynomial ring generated by the variables
ty tg, ++- and ¢: Z[t,, 15, +-:]— L be the ring homomorphism defined by ¢(,)=A4,,.
Then ¢ is an epimorphism. We define §: L — A to be the ring homomorphism by
the equality 6(4; ;)=p; ;. Clearly fop is a monomorphism. Thus ¢ is a ring
isomorphism and the result follows.
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§3. The geometrical proof of (2.3).

Let : BU—BU be the classifying map of the inverse bundle and let ¢: BU(1)—
BU(1) be the induced map from the complex conjugation.

We can consider E4xBU[[X]] as (E ABU,)«BU(1), where X is the image of x*
by the Boardman map B: E4( )—>(E ABU,)«( ). E4«BU[[X, Y]] is also identified
with (E ABU,L)«(BU(1). ABU(1),).

Then, one can easily show that A(X)€E4BU[[X]] is represented by the com-
position

Bj eNid
BU(1), —> BU, = SABU, —> EABU,
and A(u(X, Y))€ELBUJ[X, Y]] is the composition of this map and m: BU(1), A
BU(1),—BU(1),. (See Lemma 6.2. in [1], part 2.)

Then, P(X, Y) in section 2 is represented by the composition
(¢ Aid)owo(zoBf A w)o(m A Bj ABj)od: BU(1), ABU(1), — E ABU, .

where 4 is the diagonal map of BU(1),ABU(l),. Since mo(BdetA Bdet)==
Bdetow, coBdet = Bdetor and Bdeto Bj=id, we have the following homotopies

Bdetowo(ro Bj A@)o(mABj ABj)od
= mo(Bdet A Bdet)o(roBj A w)o(m A Bj ABj)od
== mo(coBdetoBj A\ Bdetow)o(m A\ Bj A Bj)od
= mo(c Amo(Bdet A Bdet))o(m A Bj A Bj)od = mo(c Aid)o(m Am)od .

Thus, Bdetowo(roBj Aw)o(mABj ABj)od: BU(1),ABU(1),— BU(1), is null-
homotopic. So we have another proof of the fact that P(X, Y) is the image of
Biy: E4BSU[[X, Y]]— E«BUI[[X, Y]]
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