A note on local isometric imbeddings of complex projective spaces

Dedicated to the memory of Masaru Morinaka

By

Yoshio Agaoka*

Introduction.

In this note we consider the problem of local isometric imbeddings (or immersions) of complex projective spaces $P^{n}(\boldsymbol{C})$ endowed with the standard metric into the Euclidean spaces. On this subject, the following results are already known:
(1) $P^{n}(\boldsymbol{C})$ is globally isometrically imbedded into $\boldsymbol{R}^{n^{2}+2 n}$ (Kobayashi [5]).
(2) $P^{n}(\boldsymbol{C})$ admits a solution of the Gauss equation in codimension $n^{2}-1$ (Agaoka [2]).
(3) $P^{n}(\boldsymbol{C})$ cannot be isometrically immersed into $\boldsymbol{R}^{3 n-1}$ even locally (AgaokaKaneda [3]).
But there is a great difference between the dimension appeared in (1), (2) and (3). And even in the case $n=2$, the least dimensional Euclidean space into which $P^{2}(\boldsymbol{C})$ can be locally isometrically imbedded is not determined. (For details, see [2] p. 130.)

The purpose of this note is to improve the estimates of the type (3), namely we prove the following theorem.

Theorem. Let $P^{n}(\boldsymbol{C})(n \geqq 2)$ be the complex projective space endowed with the standard metric. If $P^{n}(\boldsymbol{C})$ can be locally isometrically immersed into $\boldsymbol{R}^{2 n+k}$, then $k \geqq \frac{1}{5}(6 n-4)$.

This theorem gives a better result than that of [3] in the case $n \geqq 5$. To prove this theorem, we use several facts on the exterior algebra, which we show in $\S 1$. Using these lemmas, we prove Theorem in $\S 2$.

§ 1. Lemmas on the exterior algebra.

Let V be a finite dimensional real vector space with a positive definite inner product (,). Using the metric (,), an element of $\wedge^{2} V$ can be considered as a

[^0]skew symmetric endomorphism of V in the following way. For $a_{i}, b_{i} \in V$, we define a linear map $\sum_{i=1}^{k} a_{i} \wedge b_{i}: V \rightarrow V$ by
$$
\left(\sum_{i=1}^{k} a_{i} \wedge b_{i}\right) v=\sum_{i=1}^{k}\left\{\left(b_{i}, v\right) a_{i}-\left(a_{i}, v\right) b_{i}\right\} \quad(v \in V)
$$

We denote by rank $\left(\sum_{i=1}^{k} a_{i} \wedge b_{i}\right), \operatorname{Im}\left(\sum_{i=1}^{k} a_{i} \wedge b_{i}\right)$ the rank and the image of this linear map, respectively. Note that $\operatorname{rank}\left(\sum_{i=1}^{k} a_{i} \wedge b_{i}\right)$ is always even because $\sum_{i=1}^{k} a_{i} \wedge b_{i}$ is skew symmetric. For the vectors a_{1}, \cdots, a_{k}, we denote by $\left\langle a_{1}, \cdots, a_{k}\right\rangle$ the linear subspace of V spanned by a_{1}, \cdots, a_{k}. By definition it is clear that $\operatorname{Im}\left(\sum_{i=1}^{k} a_{i} \wedge b_{i}\right)$ is contained in the space $\left\langle a_{1}, \cdots, a_{k}, b_{1}, \cdots, b_{k}\right\rangle$ and hence rank $\left(\sum_{i=1}^{k} a_{i} \wedge b_{i}\right) \leqq 2 k$.

Lemma 1. Let V be a real vector space and $a_{1}, \cdots, a_{k}, b_{1}, \cdots, b_{k}$ be elements of V. If rank $\left(\sum_{i=1}^{k} a_{i} \wedge b_{i}\right) \geqq 2 l$, then

$$
\operatorname{dim}\left\langle a_{1}, \cdots, a_{k}\right\rangle, \operatorname{dim}\left\langle b_{1}, \cdots, b_{k}\right\rangle \geqq l
$$

Proof. We assume that $\operatorname{dim}\left\langle a_{1}, \cdots, a_{k}\right\rangle \leqq l-1$. Then rearranging the indices of $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ if necessary, we may assume that $\left\{a_{1}, \cdots, a_{p}\right\}$ is linearly independent and $\left\langle a_{1}, \cdots, a_{p}\right\rangle=\left\langle a_{1}, \cdots, a_{k}\right\rangle(p \leqq l-1)$. Then the vectors a_{p+1}, \cdots, a_{k} are expressed in the form

$$
\left\{\begin{array}{c}
a_{p+1}=\alpha_{p+1,1} a_{1}+\cdots+\alpha_{p+1, p} a_{p} \\
\cdots \cdots \cdots \cdots \cdots \\
a_{k}=\alpha_{k, 1} a_{1}+\cdots+\alpha_{k, p} a_{p} .
\end{array}\right.
$$

($\alpha_{i, j}$ are real numbers.) Hence we have

$$
\begin{aligned}
\sum_{i=1}^{k} a_{i} \wedge b_{i}= & a_{1} \wedge\left(b_{1}+\alpha_{p+1,1} b_{p+1}+\cdots+\alpha_{k, 1} b_{k}\right) \\
& +\cdots+a_{p} \wedge\left(b_{p}+\alpha_{p+1, p} b_{p+1}+\cdots+\alpha_{k, p} b_{k}\right)
\end{aligned}
$$

and this implies that $\operatorname{rank}\left(\sum_{i=1}^{k} a_{i} \wedge b_{i}\right) \leqq 2 p \leqq 2(l-1)$, which contradicts the condition $\operatorname{rank}\left(\sum_{i=1}^{k} a_{i} \wedge b_{i}\right) \geqq 2 l$. Hence we have $\operatorname{dim}\left\langle a_{1}, \cdots, a_{k}\right\rangle \geqq l$. In the same way we have $\operatorname{dim}\left\langle b_{1}, \cdots, b_{k}\right\rangle \geqq l$.

The next lemma is easy to prove and we omit the proof.
Lemma 2. Let V_{1}, V_{2}, V_{3} be subspaces of V. If $\operatorname{dim}\left(V_{1} \cap V_{2}\right) \geqq k$ and $\operatorname{dim}\left(V_{2} \cap V_{3}\right) \geqq l$, then $\operatorname{dim}\left(V_{1} \cap V_{3}\right) \geqq k+l-\operatorname{dim} V_{2}$.

Now we prove the following key lemma.
Lemma 3. Let $a_{1}, \cdots, a_{k}, b_{1}, \cdots, b_{k}$ be elements of V and V_{1}, V_{2} be subspaces of V spanned by $\left\{a_{1}, \cdots, a_{k}\right\},\left\{b_{1}, \cdots, b_{k}\right\}$, respectively. If $\operatorname{dim} V_{1} \geqq n_{1}, \operatorname{dim} V_{2} \geqq n_{2}$ and $\operatorname{dim} V_{1} \cap V_{2} \leqq l$, then rank $\left(\sum_{i=1}^{k} a_{i} \wedge b_{i}\right) \geqq 2\left(n_{1}+n_{2}-k-l\right)$. Or equivalently, if
$\operatorname{dim} V_{1} \geqq n_{1}, \operatorname{dim} V_{2} \geqq n_{2}$, and $\operatorname{rank}\left(\sum_{i=1}^{k} a_{i} \wedge b_{i}\right) \leqq 2\left(n_{1}+n_{2}-k-l\right)$, then $\operatorname{dim} V_{1} \cap V_{2} \geqq l$.
Proof. We put $p=\operatorname{dim} V_{1}\left(\geqq n_{1}\right)$. Then rearranging the indices if necessary, we may assume that the vectors a_{1}, \cdots, a_{p} are linearly independent and the rest of vectors a_{p+1}, \cdots, a_{k} are expressed as a linear combination of $a_{1} \cdots, a_{p}$, as in the proof of Lemma 1. Using the same notation, we put

$$
\left\{\begin{array}{l}
\bar{b}_{1}=b_{1}+\alpha_{p+1,1} b_{p+1}+\cdots+\alpha_{k, 1} b_{k} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\bar{b}_{p}=b_{p}+\alpha_{p+1, p} b_{p+1}+\cdots+\alpha_{k, p} b_{k} .
\end{array}\right.
$$

Then we have

$$
\sum_{i=1}^{k} a_{i} \wedge b_{i}=\sum_{i=1}^{p} a_{i} \wedge \bar{b}_{i} .
$$

Moreover we have

$$
\left\langle b_{1}, \cdots, b_{k}\right\rangle=\left\langle\bar{b}_{1}, \cdots, \bar{b}_{p}, b_{p+1}, \cdots, b_{k}\right\rangle
$$

and hence

$$
\operatorname{dim}\left\langle\bar{b}_{1}, \cdots, \bar{b}_{p}\right\rangle \geqq n_{2}-(k-p) \geqq n_{1}+n_{2}-k .
$$

Now we put $q=\operatorname{dim}\left\langle\bar{b}_{1}, \cdots, \bar{b}_{p}\right\rangle\left(\geqq n_{1}+n_{2}-k\right)$ and rearranging the indices, we assume that $\bar{b}_{1}, \cdots, \bar{b}_{q}$ are linearly independent. We express the rest of vectors $\bar{b}_{q+1}, \cdots, \bar{b}_{p}$ in the form:

$$
\left\{\begin{array}{l}
\bar{b}_{q+1}=\beta_{q+1,1} \bar{b}_{1}+\cdots+\beta_{q+1, q} \bar{b}_{q} \\
\bar{b}_{p}=\beta_{p, 1} \bar{b}_{1}+\cdots+\beta_{p, q} \bar{b}_{q} .
\end{array}\right.
$$

Then by putting

$$
\left\{\begin{array}{l}
\bar{a}_{1}=a_{1}+\beta_{q+1,1} a_{q+1}+\cdots+\beta_{p, 1} a_{p} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\bar{a}_{q}=a_{q}+\beta_{q+1, q} a_{q+1}+\cdots+\beta_{p, q} a_{p}
\end{array}\right.
$$

we have

$$
\sum_{i=1}^{p} a_{i} \wedge \bar{b}_{i}=\sum_{i=1}^{q} \bar{a}_{i} \wedge \bar{b}_{i}
$$

In addition, we have

$$
\left\langle a_{1}, \cdots, a_{p}\right\rangle=\left\langle a_{1}, \cdots, a_{q}, a_{q+1}, \cdots, a_{p}\right\rangle
$$

In particular the vectors $\bar{a}_{1}, \cdots, \bar{a}_{q}$ are linearly independent. We put $r=$ $\operatorname{dim}\left\langle\bar{a}_{1}, \cdots, \bar{a}_{q}\right\rangle \cap\left\langle\bar{b}_{1}, \cdots, \bar{b}_{q}\right\rangle$. Then we have $r \leqq l$ because the subspace $\left\langle\bar{a}_{1}, \cdots\right.$, $\left.\bar{a}_{q}\right\rangle \cap\left\langle\bar{b}_{1}, \cdots, \bar{b}_{q}\right\rangle$ is contained in $V_{1} \cap V_{2}$. By changing the indices, we assume that $\left\{\bar{a}_{r+1}, \cdots, \bar{a}_{q}, \bar{b}_{1}, \cdots, \bar{b}_{q}\right\}$ is the basis of the space $\left\langle\bar{a}_{1}, \cdots, \bar{a}_{q}\right\rangle+\left\langle\bar{b}_{1}, \cdots, \bar{b}_{q}\right\rangle$. Then in the similar way as above, we may assume that the vectors $\bar{a}_{1}, \cdots, \bar{a}_{r}$ span the subspace $\left\langle\bar{a}_{1}, \cdots, \bar{a}_{q}\right\rangle \cap\left\langle\bar{b}_{1}, \cdots, \bar{b}_{q}\right\rangle$ and they are expressed in the form:

$$
\left\{\begin{array}{l}
\bar{a}_{1}=r_{1,1} \bar{b}_{1}+\cdots+r_{1, q} \bar{b}_{q} \\
\cdots \cdots \cdots \cdots \cdots \\
\bar{a}_{r}=r_{r, 1} \bar{b}_{1}+\cdots+r_{r, q} \bar{b}_{q} .
\end{array}\right.
$$

Then we have

$$
\begin{aligned}
\sum_{i=1}^{q} \bar{a}_{i} \wedge \bar{b}_{i} & =\left(\bar{a}_{r+1}-\gamma_{1, r+1} \bar{b}_{1}-\cdots-\gamma_{r, r+1} \bar{b}_{r}\right) \wedge \bar{b}_{r+1} \\
& +\cdots \\
& +\left(\bar{a}_{q}-\gamma_{1, q} \bar{b}_{1}-\cdots-\gamma_{r, q} \bar{b}_{r}\right) \wedge \bar{b}_{q} \\
& +\sum_{1 \leqq i<j \leqq r}\left(\gamma_{j, i}-\gamma_{i, j}\right) \bar{b}_{i} \wedge \bar{b}_{j}
\end{aligned}
$$

Because the vectors $\bar{a}_{r+1}-r_{1, r+1} \bar{b}_{1}-\cdots-r_{r, r+1} \bar{b}_{r}, \cdots, \bar{a}_{q}-r_{1, q} \bar{b}_{1}-\cdots-r_{r, q} \bar{b}_{r}, \bar{b}_{1}, \cdots, \bar{b}_{q}$ are linearly independent, it follows that rank $\left(\sum_{i=1}^{q} \bar{a}_{i} \wedge \bar{b}_{i}\right) \geqq 2(q-r) \geqq 2\left(n_{1}+n_{2}-k-r\right)$ $\geqq 2\left(n_{1}+n_{2}-k-l\right)$.
q.e.d.

§ 2. Proof of Theorem.

We first express the curvature R of $P^{n}(\boldsymbol{C})$ as a linear endomorphism of $\wedge^{2} V$ where V is the tangent space of $P^{n}(\boldsymbol{C})$ at one point. (Hence V is a $2 n$ dimensional real vector space endowed with the positive definite inner product.) Using the suitable orthonormal basis $\left\{X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{n}\right\}$ of V, the curvature $R: \wedge^{2} V \rightarrow$ $\wedge^{2} V$ is given by

$$
\begin{aligned}
& R\left(X_{i} \wedge X_{j}\right)=X_{i} \wedge X_{j}+Y_{i} \wedge Y_{j} \\
& R\left(X_{i} \wedge Y_{i}\right)=2 X_{i} \wedge Y_{i}+2 \sum_{k=1}^{n} X_{k} \wedge Y_{k}, \\
& R\left(X_{i} \wedge Y_{j}\right)=X_{i} \wedge Y_{j}+X_{j} \wedge Y_{i}, \\
& R\left(Y_{i} \wedge Y_{j}\right)=X_{i} \wedge X_{j}+Y_{i} \wedge Y_{j},
\end{aligned}
$$

for $1 \leqq i, j \leqq n(i \neq j)$. (For details, see [2] p. 132.)
Now we assume that $P^{n}(\boldsymbol{C})$ is locally isometrically immersed into $\boldsymbol{R}^{2 n+k}$. Then the curvature R is expressed in the following form (the Gauss equation):

$$
R=\sum_{i=1}^{k} L_{i} \wedge L_{i}
$$

where L_{1}, \cdots, L_{k} are symmetric linear endomorphisms of V defined by the second fundamental form of the isometric immersion. (See [4], [1].) For the element $X \in V$, we denote by $V(X)$ the subspace of V spanned by the elements $L_{1}(X), \cdots$, $L_{k}(X)$. Then, since rank $R\left(X_{i} \wedge Y_{i}\right)=2 n$, we have from Lemma 1
$\operatorname{dim} V\left(X_{i}\right), \quad \operatorname{dim} V\left(Y_{i}\right) \geqq n$.
Next, since rank $R\left(X_{1} \wedge X_{2}\right)=4$, we have

$$
\operatorname{dim} V\left(X_{1}\right) \cap V\left(X_{2}\right) \geqq 2 n-k-2 .
$$

(In fact, we put $n_{1}=n_{2}=n, l=2 n-k-2, V_{1}=V\left(X_{1}\right), V_{2}=V\left(X_{2}\right)$ and apply Lemma 3.) In the same way, using the fact rank $R\left(Y_{1} \wedge X_{2}\right)=4$, we have

$$
\operatorname{dim} V\left(Y_{1}\right) \cap V\left(X_{2}\right) \geqq 2 n-k-2 .
$$

Therefore by Lemma 2, we have

$$
\begin{aligned}
\operatorname{dim} V\left(X_{1}\right) \cap V\left(Y_{1}\right) & \geqq 4 n-2 k-4-\operatorname{dim} V\left(X_{2}\right) \\
& \geqq 4 n-3 k-4 .
\end{aligned}
$$

(Note that $\operatorname{dim} V\left(X_{2}\right) \leqq k$.) On the other hand, since rank $R\left(X_{1} \wedge Y_{1}\right)=2 n$, and Im $R\left(X_{1} \wedge Y_{1}\right) \subset V_{0}\left(X_{1}\right)+V\left(Y_{1}\right) \subset V$, we have $V=V\left(X_{1}\right)+V\left(Y_{1}\right)$. In particular

$$
\begin{aligned}
& \quad \begin{aligned}
2 n= & \operatorname{dim} V\left(X_{1}\right)+\operatorname{dim} V\left(Y_{1}\right)-\operatorname{dim} V\left(X_{1}\right) \cap V\left(Y_{1}\right) \\
\leqq & 2 k-\operatorname{dim} V\left(X_{1}\right) \cap V\left(Y_{1}\right), \\
\text { i.e., } & \operatorname{dim} V\left(X_{1}\right) \cap V\left(Y_{1}\right) \leqq 2 k-2 n .
\end{aligned}
\end{aligned}
$$

Combining with the above inequality, we have $4 n-3 k-4 \leqq 2 k-2 n$, namely, we have $k \geqq \frac{1}{5}(6 n-4)$, which completes the proof of Theorem.

Department of Mathematics
 Kyoto University

Present Address

Faculty of Integrated Arts and Sciences Hiroshima University

References

[1] Y. Agaoka, Isometric immersions of $S O(5)$, J. Math. Kyoto Univ., 24 (1984), 713-724.
[2] Y. Agaoka, On the curvature of Riemannian submanifolds of codimension 2, Hokkaido Math. J., 14 (1985), 107-135.
[3] Y. Agaoka and E. Kaneda, On local isometric immersions of Riemannian symmetric spaces, Tôhoku Math. J., 36 (1984), 107-140.
[4] H. Jacobowitz, Curvature operators on the exterior algebra, Linear and Multilinear Algebra, 7 (1979), 93-105.
[5] S. Kobayashi, Isometric imbeddings of compact symmetric spaces, Tôhoku Math. J., 20 (1968), 21-25.

[^0]: Received March 25, 1986
 *) Postdoctoral Fellow of Japan Society for the Promotion of Science.

