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Introduction.

I n  th is  n o te  w e consider th e  problem  o f lo ca l isometric imbeddings (or
immersions) of complex projective spaces P (C ) endowed with the standard metric
into the Euclidean spaces. On this subject, the following results are already known:

(1) P (C ) is globally isometrically imbedded into R n 2 + 2 " (Kobayashi [5]).
(2) P (C )  admits a  solution of the G auss equation in codimension n 2 - 1

(Agaoka [2]).
( 3 )  P (C ) cannot be isometrically immersed into IV"' even locally (Agaoka-

Kaneda [3]).
But there is a  great difference between the dimension appeared in (1), (2) and (3).
And even in the case n=2, the least dimensional Euclidean space into which P 2 (C)
can be locally isom etrically im bedded is not determ ined. (F o r details, see [2]
p. 130.)

The purpose of this note is to improve the estimates of the type (3), namely
we prove the following theorem.

Theorem. Let P (C ) 2) be the complex projective space endowed with the
standard m etric . I f  P (C )  can be locally isometrically immersed into R 2 ' ,,  then

(6n— 4).
— 5

This theorem gives a  better result than that of [3] in the case 5. To prove
this theorem, we use several facts on the exterior algebra, which we show in §1.
Using these lemmas, we prove Theorem in § 2.

§  1 .  Lemmas on the exterior algebra.

L et V be a  finite dimensional real vector space with a positive definite inner
product ( , ). U sing the metric ( , ), an element o f  A' V can be considered as a
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ah =  tr h a
a ,+ •••+ a k ,p ap .

(a i d  are real numbers.) Hence we have

ap + 1  -  a p + 1 , 1 a1 4 -  • • • 4-  ap+1 , p ap{
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skew symmetric endomorphism of V in the following w ay. For a i , b 1 V ,  we

define a linear map E  a i  A b i : V--•V by

( E  a i  Ab i )v  ±{ (b 1,v ) b i l (v E  V) .

k k
We denote by rank (E  a i A b i ) ,Im  (E a i A b i ) the rank and the image of this linear

1=1 i=1 k k
map, respectively. Note that rank (E  a i  A b i ) is always even because E  a i  A b i  is(=I
skew symmetric. For the vectors al , •••, ah, we denote by <al , •••, ah> the linear

subspace of V spanned by a„ • • • , a .  By definition it is clear that 1m (E a i  Ab i )  is

contained in the space <a„ •••, ak , b„ •••,b k > and hence rank (E  a i  A b i )._2k.
,=1

Lemma 1. L et V be a real vector space and a„ •••, ah , b 1 , •••, b k be elements of

V . I f  rank ( E  a i A b i ) >_2I, then
1=1

dim <al , • , a h > ,  dim <b„ •••,b k> _ 1 .

Proo f . We assume that dim <a„ •••,a k> L < 1-1 . Then rearranging the indices
of fa i l  and fb i l  if necessary, we may assume that la 1, •••, ail  is linearly indepen-
dent and <a„ •••,a p >=<a„ ••, a k>  ( p _ 1 - 1 ) .  Then the vectors a p .4.1 , • • •, a k are
expressed in the form

E ai A b i  =  A (b i +ap+ L ibp+1+•••+ak,ibk)1=1
± • • • + a p A (b p + a p + ,, p bp + 1 + •••+ a k ,p b k ) ,

and this implies that rank (E a i  A b i ) <.2p __•5_2(1-1), which contradicts the condition
i=1

rank (E  a;  A b1) 2 1 .  H ence w e have dim <al , • ••, a h > ?=1. In the same way we

have dim <b1 , •••, bk> l. q.e.d.

The next lemma is easy to prove and we omit the proof.

Lemma 2 .  L e t  V „ V ,, V , be subspaces o f  V. I f  dim (V1 n17
2) :Ic  and

dim (V, n v3)_1, then dim (V, n k+ l—d im  V2-

Now we prove the following key lemma.

Lemma 3 .  L et a 1 , •••, ak , b l ,  • ••, b k be elements o f  V and V 1 , V 2  be subspaces
of  V spanned by {a„ .••, ah )-, {b„ • ••, b} , respectively . I f  dim V,.> n1, dim V2 n 2

and dim V1 fl V, then rank (E a, Ab i ) __2(n 1 + n 2 — k — l). O r equivalently, if



{  d, =  al -F/90 1 ,, aq + 1 + • • • --I-flp ,, at,

a q =  a q +13 0 .1,q a q + 1 4- ••• 161 m ap ,
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dim dim 172 112 , and rank (E  a i A bi ) S2(n l -Fn2 —k—l), then dim V1 fl V2

Proof. We put p=d im  V1 ( n1). Then rearranging the indices if necessary,
we may assume that the vectors a1 , •••, ap  are linearly independent and the rest of
vectors 4 E1 , • ••, ak a re  expressed as a  linear combination of a, •••, ap ,  as in the
proof of Lemma 1. Using the same notation, we put

-hi = bf +a p ÷ ,a bp + ,+•••+o
k i bk{

Then we have

Moreover we have

and hence

E  ai A b i  E  ai Abi
i 1 i= 1

<b„ •••, bk> <bi, • •• ,bp, bp+1, • • bk>

dim <b1 , • • • , bp > n
2
— (k — p)n

1
+n 2 —k .

Now we put q= dim < -61 , bp > ( n1 H-n2 —k) and rearranging the indices, we
assume that 1)1 , —,b, are linearly independent. We express the rest of vectors
bq + „ •••,h p  in the form:

hq -Fi — fl q -Fio. bcf-  • • • ±  /9 0-1,q bq{

Then by putting

bp =b p +a p + 1 .p bp + ,+•••+a k ,p bk .

bp  =  p A bi + • • • +19  p,q bq  •

we have

E a i Ahi =  ia i Abi .

In addition, we have

<a1 , •• • , ap > = <d„ ••• aq+1, •••, a i> .

In  particular th e  vectors • -aq a re  linearly independent. We p u t r=
dim 0 1, •• • , aq >n<h,,• •, be )'. Then we have r S i  because the subspace <al ,
da> fl <bi , • •-, bg> is contained in V, n V2 . By changing the indices, we assume that
{14+15 •••5 aq, • **5 hql is the basis of the space <ai , • , a g >+<1),,, •••,b,>. Then
in the similar way as above, we may assume that the vectors es,, •••, a, span the
subspace <a1 , • • •, aq >n<b i , -•, -bq > and they are expressed in the form:



al = ruhi+ • • • +7 . 1,q  bq{

a, = r,,i hi+ • • • +  rr .4  
6

4  •
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Then we have

ai A hi = (ar+i — •  •  •  — A b,-Fi

+ . . .

+(ã,7 -  ri,q51 - r , , ,  hr ) A b q

+  E  (7-1 , i - r a b 1 A hi  .
16i<J6 ,

Because the vectors et r+1 —  ri,r+1171 • • • -  r r , r + lb r /  . . ./  aq b l  •  •  •  — r r , q h f ,  bp • • • ' I) ,

iare linearly independent, it follows that rank ( 'di A bi ) 2(q— r) 2(n i d-n2 — k— r)i =1
k —1). q.e.d.

§  2 .  Proof of Theorem.

We first express the curvature R  of P (C )  as a linear endomorphism of A 2 V
where V is the tangent space of P (C ) at one point. (Hence V is a 2n dimensional
real vector space endowed with the positive definite inner product.) Using the
suitable orthonormal basis {X1, • .•, X., Y1, •••, Y.} of V, the curvature R : A 2 V—>
A 2 V is given by

R(Xi A Xi ) =  Xi A Xi+ Yi Y i  ,

R (X i  A Yi ) = 2 X  A Yi + 2  ' ±  A Irk
k=1

R (X i  A Y1) =- Ai-1 A YI+ A Y1 ,

R(Y i A y d =  Xi A Xi+ Yi A Y 1,

for l i, j n (1 4 :1 ). (F o r  details, see [2] p. 132.)
Now we assume that P (C ) is locally isometrically immersed into R 2 . T hen

the curvature R  is expressed in the following form (the Gauss equation):

R  =  L i AL ;  ,i =1

where L 1 , •••, Lk are symmetric linear endomorphisms of V  defined by the second
fundamental form of the isometric immersion. (See [4], [1].) For the element
X  e  V, we denote by V (X ) the subspace of V spanned by the elements L,(X ),•••,
L k ( X ) .  Then, since rank R(X i  A 17

1)= 2n , we have from Lemma 1

dim V(Xi ) , dim V(Y i ) n

Next, since rank R(X, A X2)= 4 , we have

dim V (X ) V (X2) 2n —k — 2 .
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(In fact, we put n1 =n 2 =n, l=2n— k ---2, V 1 =V (X 1), V 2 =V (X 2 )  and apply Lemma
3.) In the same way, using the fact rank R(Y ,A  X2)=4, we have

dim V( Y,) n v(x2)._ 2n—k— 2 .

Therefore by Lemma 2, we have

dim V(X1) fl V(Y i ) 4n-2k -4— dim  V (X 2)

4n-3k--4 .

(Note that dim V (X 2) k . )  O n the other hand, since rank R(X, A Y1)=2n, and
Tm R(X,A 171)c V.(X1) - F V(Y 1) C  V, we have V =V (X )+V ( Y1). In particular

2n — dim V(X,)+dim V(Y1)—dim V(X1) n v(Yi )

S  2k—dim V(X1) n V(17
1) ,

i.e., dim V (X 1) (1 V(Y1) 2k- 2 n .

Combining with the above inequality, we have 4n-3k-452k-2n, namely, we

have k
1

—(6n-4), which completes the proof of Theorem.
—  5
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