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Introduction.

In this note we consider the problem of local isometric imbeddings (or
immersions) of complex projective spaces P"(C) endowed with the standard metric
into the Euclidean spaces. On this subject, the following results are already known:

(1) P*C) is globally isometrically imbedded into R***2 (Kobayashi [5]).

(2) P"(C) admits a solution of the Gauss equation in codimension n*—1
(Agaoka [2]).

(3) P"(C) cannot be isometrically immersed into R**~! even locally (Agaoka-

Kaneda [3]).
But there is a great difference between the dimension appeared in (1), (2) and (3).
And even in the case n=2, the least dimensional Euclidean space into which P*C)
can be locally isometrically imbedded is not determined. (For details, see [2]
p. 130.)

The purpose of this note is to improve the estimates of the type (3), namely
we prove the following theorem.

Theorem. Let P"(C) (n=2) be the complex projective space endowed with the
standard metric. If P"(C) can be locally isometrically immersed into R™**, then

kg%(6n—4).

This theorem gives a better result than that of [3] in the case n=5. To prove
this theorem, we use several facts on the exterior algebra, which we show in §1.
Using these lemmas, we prove Theorem in § 2.

§ 1. Lemmas on the exterior algebra.

Let V be a finite dimensional real vector space with a positive definite inner
product (,). Using the metric (, ), an element of A%V can be considered as a

Received March 25, 1986
*) Postdoctoral Fellow of Japan Society for the Promotion of Science.



502 Yoshio Agaoka

skew symmetric endomorphism of V in the following way. For a;, b;€V, we

define a linear map ﬁ a;\b;: V-V by
k k
(2 a; b))y = 2{(17:, v)a;—(a;, v)b;} ver).

We denote by rank (Z a; \b)), Im (2 a; \b,) the rank and the image of this linear
map, respectively. Note that rank (2 a; \b;) is always even because 2 a; \b; is
skew symmetric. For the vectors a,, +:+, a;, we denote by <{a, - a,,) the linear
subspace of V spanned by a,, *:+, a,. By definition it is clear that Im (2 a;\b)) is
contained in the space <ay, ***, a;, b,, ***, b,> and hence rank (2 a; \b )<2k
Lemma 1. Let V be a real vector space and ay, *+, ay, bl, «++, b, be elements of

V. Ifrank (é a; \b;)=2l, then
i=1

dim<al* ) ak>s dim<bla R bh>gl-

Proof. We assume that dim <{a,, +--, a,><I—1. Then rearranging the indices
of {a;} and {b;} if necessary, we may assume that {a,, --+, a,} is linearly indepen-
dent and <ay, -+, a,p=<ay, =+, a,y (p=I—1). Then the vectors a,y, -+, a; are
expressed in the form

Apyy = Oppy 1y o+ 0,

..................

(@;,; are real numbers.) Hence we have

M-

a;\b; = al/\(b1+ap+1,1bp+1+"“l‘ak.lbk)
"|‘"'+ap/\(bp+ap+1,pbp+1+"'+ak,pbk) s

and this implies that rank (E a; \b;) <2p=<2(I—1), which contradicts the condition
rank (2 a; \Nb)=2l. Hence we have dim<a,, +**, q,>=/. In the same way we
have d1m by, oy by =1 q.e.d.

The next lemma is easy to prove and we omit the proof.

Lemma 2. Let V,, V, V; be subspaces of V. If dim(ViNV)=k and
dim (V,N Vo=, then dim (VN V) =k4-[—dim V.

Now we prove the following key lemma.

Lemma 3. Let a,, -+, a. by, -+, b, be elements of V and V,, V, be subspaces
of V spanned by {a,, -+, a;}, {by, ==, b}, respectively. If dim V,=n,, dim V,=n,

and dim VNV, =<1, then rank (Zk a; \b;) = 2(m+n,—k—1). Or equivalently, if
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k

dim V,=n,, dim V,=n,, and rank (3] a; Ab;)<2(n,-+n,—k—1), then dim VN V,=1.
i=1

Proof. We put p=dim V; (=n,). Then rearranging the indices if necessary,

we may assume that the vectors gy, -+, g, are linearly independent and the rest of

vectors a,4, -+, @, are expressed as a linear combination of g, -+, a,, as in the
proof of Lemma 1. Using the same notation, we put

b, = b +ap+1 1bp+1+ +ak 164
p+ap+1.p pr1t —I—ak 20k

Then we have

hz a;/\b; = é a;/\i); .

i=1 i=1

Moreover we have
Kby s by = By, o0 By byisy o0 B>
and hence
dim &b, +++, b,> = n,—(k—p) =n+n,—

Now we put g=dim <y, :*+, b,> (=m~+n,—k) and rearranging the indices, we
assume that b, -+-, Bq are linearly independent. We express the rest of vectors
bg+1> ***» b, in the form:

Then by putting
{ @ = i+ B 11001t +B,,10,
A, = a;Boi1,gGgnrt 85,09

we have

In addition, we have

<al’ e, ap> = <d1, o0y gy Qgygs ooy ap> .

In particular the vectors @, ---,a, are linearly independent. We put r=
dim<ay, +++, a,> N<dy, **+, b,>. Then we have r=<I because .the subspace <{g, -,
a,»>N<b,, -+, b,> is contained in ¥;N ¥,. By changing the indices, we assume that
{3,415+, @, by, -+, by} is the basis of the space <ay, -+, @,>+<b,, --, b,>. Then
in the similar way as above, we may assume that the vectors a,, ---, @, span the
subspace <@y, **+, @,> N<d,, **+, b,> and they are expressed in the form:
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@ = 11,0+ 11,00,
4, = ryabik o 1raby.
Then we have
5 6AB; = @ —Tornbi— 718 Ab
aen
+@,— 71,5 —7,..5,)\b,
+ X (rji—ri)bi\b;.

15i<isr
Because the vectors @,4;—71,,410:—*** =Ty p41Dps =+ G—71,0By—++—71,,,b,, by, -+, b,
are linearly independent, it follows that rank (42 aGNAb)=2(q—r)=2(nm+n—k—r)
i=1
=2(n+n,—k—1). q.e.d.

§ 2. Proof of Theorem.

We first express the curvature R of P"(C) as a linear endomorphism of A2V
where V is the tangent space of P"(C) at one point. (Hence V is a 2n dimensional
real vector space endowed with the positive definite inner product.) Using the
suitable orthonormal basis {X;, «--, X,,, Y}, -*+, Y} of V, the curvature R: A*V—
AZV is given by

RXGAX) = K AX;+YAY;,
RXGAY) = 2X,A Y231 G\ Y,,
k=1
for 1<i,j<n (i=%j). (For details, see [2] p. 132.)

Now we assume that P"(C) is locally isometrically immersed into R***, Then
the curvature R is expressed in the following form (the Gauss equation):

k
R=>L,A\L;,
i

where L,, -+, L, are symmetric linear endomorphisms of V defined by the second
fundamental form of the isometric immersion. (See [4], [1].) For the element
X eV, we denote by V(X) the subspace of V spanned by the elements L,(X),-:-,
L,(X). Then, since rank R(X;A Y;)=2n, we have from Lemma 1

dim V(X;), dim V(Y))=n.
Next, since rank R(X; A X;)=4, we have

dim V(X)) N V(X)) =2n—k—2.
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(In fact, we put n;=n,=n, I=2n—k—2, V;=V(X),), V,=V(X,) and apply Lemma
3.) In the same way, using the fact rank R(Y; A X;)=4, we have

dim V()N V(Xp)=22n—k—2.

Therefore by Lemma 2, we have

dim V(X) N V(Y))=4n—2k—4—dim V(X,)

=4n—3k—4.
(Note that dim V(X;)<k.) On the other hand, since rank R(X;A Y,)=2n, and
Im R(X; A Y)CV(X)+V(Y,)CV, we have V=V(X))+V(Y)). In particular
2n = dim V(X)~+dim V(¥,)—dim V(X) N V(Y))

< 2k—dim V(X)) NV (Y),

ie., dim V(X)) N V(Y)<2k—2n.

Combining with the above inequality, we have 4n—3k—4=<2k—2n, namely, we

have k= %(6n—4), which completes the proof of Theorem.
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