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On a short time expansion of the
fundamental solution of heat equations
by the method of Wiener functionals

By

Hideaki UEMURA

O. Introduction.

Let (M, g )  be a  d-dimensional compact smooth Riemannian manifold and
ap(t, x, y) be the fundamental solution of the heat equation — u= Q u  with respectat

to  the Riemannian volume Vdetg(x)dx where Q= 1 4m +ha, dm  be ing the
2

Laplace-Beltrami operator and ha a smooth vector field. H.P. McKean and I.M.
Singer [6] studied the following asymptotic expansion of p(t, x, x):

(0.1) (27rt)dl2p(t, x, x) = 1±k 1(x)t±lc2(x)t 2+•••-kk„(x)t n +o(e ) a s  t 0

and obtained that

(0.2) k1(x) = R(x)/12— div h(x)I2— Jh(x) I'/2

where R(x) is  the scalar curvature, div h(x) and I h(x) I the divergence and the Rie-
mannian norm of h(x), respectively.

In the case of h=0, they also showed that

(0.3) 1c2(x) — (—2
5  M x ) — IiRi,(x)112 +iiRijki(x)112)/7 2 0 + const. dm R(x)

where IIR"(x)I I and I IRu k i (x)I I are the Riemannian norms of the Ricci tensor R1 (x)
and of the curvature tensor R i j k ,(x) respectively. The universal constant of 4m R(x)

was found by S.A. Molchanov [7] to be  1  
120

(0.2) can be obtained by a direct calculation, but it is too complicated to obtain
(0.3). In fact, McKean and Singer avoided such a direct calculation and, instead,
they first determined the possible types of monomials in components of the curvature
tensor and its derivatives which will appear in lc,, and showed that coefficients of
these monomials are universal, i.e. independent of a manifold and its dimension.
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Finally they determined them by computing on concrete manifolds.
In the present paper we give a  probabilistic approach to computing above

ki , k2 , Our method consists of, first, representing p(e2 , x, x), e  >0, a s  a
Wiener functional expectation E[0(e, x, w)] and then expanding the functional as

(0.4) 0(e, x, w) = e - d(0,(x, w)-1- e0,(x, w)-Pe 2 0 2 (i, w)-P • • •
en (x, w)-Po(e")) a s  e J,. 0 .

Then (0.1) can be obtained by taking the expectation of (0.4).
Since we are dealing with the fundamental solution, the above expectation

cannot be understood as the usual sense but as a certain sense of disintegration of
Wiener measure expectation. Recently, S. Watanabe [10] discussed such a gener-
alization of Wiener measure expectation in the framework of Malliavin calculus:
By introducing a family of Sobolev spaces formed of both smooth and generalized
Wiener functionals, the above expectation E[0(e, x, w)] and the expansion of 0(e,
x, w) can be given a correct mathematical sense and the coefficients 0,i (x, w) can
be computed explicitly. Evaluating E[0„(x,w)] is reduced to computing conditional
expectations of certain multiple Wiener integrals and we obtain a general rule of
such computations in Theorem 3.1. This corresponds to the principle of "pairwise
contractions" in McKean-Singer [6] (cf. Also [2]), usually proved by appealing to
H. Weyl's invariant theory, which enables us to determine the possible types of
monomials in components of curvature and its derivatives. Moreover, Theorem
3.1 asserts the universality of coefficients of these monomials.

Here, the author wishes to express his thanks to Professors S. Watanabe, S.
Kotani and T. Fujita for their valuable suggestions.

1. Asymptotic expansion of Wiener functionals.

In this section we summarize notions and results in S. Watanabe [9] as are
necessary for the further discussions. We use the notation of D (E ), s E R , l<  p <
C O ,  to denote the Sobolev space of E-valued Wiener functionals defined on the
r-dimensional Wiener space (W , P), where E is a separable Hilbert space. Roughly
speaking, D (E ) consists of E-valued Wiener functionals F(w) which satisfy I
j(I—L)0 FI Ip < œ, where L is the Ornstein-Uhlenbeck operator (the number operator)

and I • ip is the norm of L (E ) , the usual LP-space of E-valued Wiener functionals.
We omit E and write simply D; if E = R .  Let H c  Tfq; be the usual Cameron-Martin

Hilbert subspace of W .  T h e  H-derivative D; DF(w)[h]----lim
F ( w +  e h ) — F ( w )

e;o

hE H , and its dual D *  are well defined as continuous operators D: D 1 (E ) -
D;(H O E) an d  D * : D r i (HOE)—> Dj(E), and L = — D * D . Here H O E  is the
Hilbert space formed of all linear operators H —>E of Hilbert-Schmidt type endowed
with the Hilbert-Schmidt norm. (cf. N. Ikeda and S. Watanabe [5], S. Watanabe [9],
H. Sugita [8])

s,0 1<p<-s> 0 i<p<- s>0 1<p<°.
Set D - (E )= fl r 1  D (E ) ,  IJ- (E )= U  D (E ), u  n  Dis (E)
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and D ( E ) = U  U  D ( E ) .  For G E .Iir  and 0 E D - -  (or for G G f r  and 0
s>01<p<c.

E h." ) , G . 0  (-0  •G ) E D —  is defined by D -.0  •  0 ,  F > , -= D --< 0 , G . F> oo
[resp.= -D--<0, G • F>y,-] where F E D - .

Let F (w) = (Fi (w), • • • , F d (W)) e  Is °  (R d )  be given, equivalently F i (w) E D ,
i=1, •••, d. The Malliavin covariance c(w)=(a u (w )) of F  is defined by au =
<DFi , DF; >,, j, j=1, • •• , d. If F is non-degenerate in the sense that c(w) is positive
definite a.s. and det a(w) 1 E  ( 1  LP, then for any T et.S'(R d ), a tempered Schwartz

distribution on R d ,  its pull-back  T (F ) under the Wiener map w-->F(w) can be
defined a s  an  element of and, for every GE the natural coupling
ys--<T(F), =  D -.‹G  • T(F), 1>D - ,  which we denote also by E [T (F )• G ] or
E[G • T(F)], coincide with T(I5) where sb E  S (R d )  is given by 0(x)=E[GIF=x]• p(x),
p(x) being the C - -density of law of F .  That x  0(x) is C  can be deduced from
the expression çb(x)=E[G •  (F)] and continuity of pull-back.

Let F(e, w) be a  family of Wiener functionals indexed by e, 0 < e  < 1 . If
F(e, w )ED - (E ) for all e and, for every s> 0 and every 1<p< 00, iiRe, =-
o(en ) as e 0, n being a  fixed integer, we say F(e, w)=o(e n ) as e 0 in D - ( E ) .  In
a similar way, we can speak of F(e, w)=o(e n ) in f r( E ) ,  in 15— (E ) and in D ( E ) .

For instance, F(e, w)=o(e n )  in /5 - (E) if for every s> 0 there exists p = p 3 E (1 , co)
such that F(e, w)e M E )  for all e and I IF(e, w)11p ,s =o(e n ).

Let F(e, w )ED - (E ), 0<e < 1. We say that F(e, w) has the asymptotic expan-
sion

(1.1) F(e, fo(w)+ efi (w)d- • • • + f,,(w)+ • • • in D ( E )  as  e 0

if f i E D - (E ), i=0 , 1, •  exist such that, for every n,

F(e, w) = A M -H A M + •-• ±enf„(w)-Fo(en) in D ° (E )  as  e 0.

Asymptotic expansion in the space D - (E), - - (E ) and D ° (E )  can be defined in a
similar way.

Let F(e, w )ED - (R d ) ,  0 < e  < 1 . We say that F(e, w) is uniformly non -degene-
rate if F(e, w) is non-degenerate for every e and furthermore

(1.2) lim Ildet a(e, C>9 for every pE(1, 00) ,
E j 0

where c(e, w) is the Malliavin covariance of F (e , w ). The following theorem is due
to S. Watanabe [10].

Theorem 1.1. L e t a f am ily  F(e, w )ED - (Rd), 0 <  e < 1 , be uniformly non-
degenerate and has the asymptotic expansion (1.1). Then, for every T ES'(Rd),
T(F(e, w ))ED- - — has the asymptotic expansion in D — a s  e  0:

(1.3) T(F(e, w))--- 00 (w)± e0 i (w)d- • • • as  e 0  in .

The coefficients 0,(w), i=0,1,••• are computed from the form al Taylor expansion
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of T:

(1.4) T (F(e , w )) = T (fo )d- 8 T(fo )(e fl + e 2f 2 + ••.)

1 ±  
2  

a 2 4.foXeli+ e 2.4+ - ') 0(e.ii+ 6 %+***)

+...

where OT is  a distribution derivative of T , i.e. OT--( 8   T aTUD•a 0 X d

(e.fi+ 62.1.2+ ...)=_ 1 (-L  T )( f 0 )- f i if

a2 T uo )(efi + 6.2f2+...)0(6A + 6 21'2+ ...)= ( 1 9 2 .T )U oV i. f ok(w)
i,i= 1

o f  th e  coefficient o f  eh in  (1.4). Fo r example, 0 0 = T (f ,), ø , =  a T ( fo ) f l  an d
1 

0 2 =  
2  

(624.4)A.O.fi)+0TUD.f2.

Corollary. With the same assumptions of the above theorem,

(1.5) E[T(F(e, w ))1-- E[0 0 (w)]+ eE[0,(w)]+ • • • a s  e 0 .

2 .  An application to solutions of S.D.E..

In this section we apply Theorem 1.1 to the case that F(e, w ) is obtained as a
solution of a stochastic differential equation (S.D .E.). Consider the following
S.D.E. on .1?" over the r-dimensional Wiener space (W , P).

dX,(w) e
 j  L .(X  i (w)). ( 0 +  e 2L 0 (X t (w)) dt

(2.1)
X0(w) = x o

where xo E R d  , e , 0 <e <1 , is a fixed constant and L .= (L .1 , • • • , L„d ) with LL E C r(R d
) ,

a=0, 1, •••, r, and o d e ( t )  is a  stochastic integral of the Stratonovich ty p e . Here
C r(R d ) is the totality of bounded C - -functions whose derivatives are all bounded.

We denote by r ( t ,  x0, w) the solution of S.D.E. (2.1). Note that X 1 (e2 t, x 0 , w)--•
r ( t ,  x 0 , w), and we will treat r (1 , x 0, w) instead of X 1 (e2 , x 0 , w). Then it is easy
to see that, for each fixed x ,  and e, x 0 ,  w )  D °° (R d) and it has an asymptotic
expansion as e 0 in D -  (R d ):

(2.2) X (l , x 0 , w )---1,(w )d-ef ,(w )+••• as e 0  in D 0 0 ( R d )

and moreover f p (w )=(f  l
p (w), • • • , f d

p (w)) G  D 'IR d ), p =0 , 1,—, are obtained explicitly.
These facts would be proved in the following Proposition 2 .1 . To describe them,
however, we have to introduce the following notations: For m , m * E Z  such that

m * >0 and m * <m , and k =  {k(1), k(2), k(m*)}  c N  satisfying 1 k ( 1 ) <
k(2)< •-• <k (m * )<m  if nz* 1 and otherwise being empty, we set

w e w rite  e f ,± e 2f 2 + • • • -=- (f l , • • , fd), and

is  a  sum
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(2.3) F(m, m*, k ) = =  ( i 1 , • • • , 1,0 G {0, 1, • , r} m ;

i f  jG k l .

For j2 ,•••, i)e m*, k ), denote the multiple Wiener integral Si(t, w) on
(W , P) by

tm-i
(2.4) Si(t, dwii (t i )  r i odw1202) • • • °dwim(tm)

where w° (t)=t, w(t)=(w 1(t), •••, wr(t)).

Proposition 2 . 1 .  For each fixed xo l t d  and e, 0<e <1, X 2 (1, x0 , w), the solu-
tion of S.D.E. (2.1), belongs to 1T (R ') and it has an asymptotic expansion as e  0
in .1) - (Rd) as (2.2). Moreover f ( w )  is given by

f o (w) x,,
(2.5)

f ( w )  = E E (V, o ... o  v12)(L 11)(x o)• S i(1 , w)
tn* 0 i€  F(m, m*, k)

rn* + 2(m - rn s ) -  P p 1, 2, ••• .

where V . is a differential operator corresponding to L.: V .(x )= L (x ) -8

ax'

Pro o f . Applying Itô's formula to (2.1) repeatedly, for any I we have

( 2 .6 )  r ( 1 ,  x0 , w) =x 0 +  E E en:*+20.-.09(vi w)
1 5 7 n 1  je  F(m. m*, k)
nx* 0

+  E E em*- F-gm - m*) odwgi(t i ) f 
t
-
,
odw i2 (t 2) .. •

. - 1 + 1  tEF(.2,m*,k) 0 0
In* 0

r
•• ( Vi

'

0 • •• 0Vi 2 )(L i i )Gla . )0dwim(t „i ) .

i. t, -  1.
It is easy to see that S 1(1, w) and odivii(t,) 0dw 8 2 ( 2 ) • • • 

i m  

( V 1  0  • • . 0  V,.2 ) (L 1 1 )
o o o

(X ; )0dwim(t,„) belong to D ( R d )  and  that m *+2(m — m *)>/+1 if m > / + 1  and
m A m .  Therefore X 2(1, x0 , w ) has an asymptotic expansion as e ,j, 0  and f ( w )
can be obtained as a coefficient of co in (2.6).

From now we assume that a i (x )= E  L (x )L (x )  is  positive definite at x0.
rd =1

Then X 2(1, x0 , w) is non-degenerate for each e ,  so for a ll x R d  we can define
ax(ro, x0 , w)) as an element of ñ .  but it is never uniformly non-degenerate.
However, setting F(e, w)—(X 2 (1, x0 , w)— fo (w))1e, it is easy to show that F(e, w ) is
uniformly non-degenerate, so in this case the smooth density p(5 2 , .x0 , x) of the law
of X 2(1, .x0 , w ) exists and has the asymptotic expansion when x = x , because, first,
p(6 2 , x0 , x0) E [ a . 0 (X 2 (1, x0 , w))]--- e - dE[So (F (e, w ))] , secondly by Theorem 1.1,
60 (F (e, w)) has an asymptotic expansion, and finally by Corollary of Theorem 1.1,
E[60(F (e, w))] can be expanded as e 0 :  We set
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(2.7) p r y / y . 1 1 (625 x0, x0)^•-• Co(4 - 1-  e cAx0) +6 2 c2(4 - 1 - • • • as e 0 .

We describe c ( ; )  explicitly in Proposition 2.2 with the following notations:

When Inv , m , k„ are given for all i)= 1 , ••• ,j, i e l l  F(m v ,  m ,  k ) is defined by
V= 1

(2.8) i(i)) = (i1,1 ,1 2 , 1 ,  * * * ,  i tont)

and we denote i = ( 1(1), i(2), •••, i(m1 -1-•••-km ; )), and by -(k(1), k(2), ••• , k(mP± • • •
•+m )} ,  we mean the empty set if nin - •••+ 4 = 0  and otherwise the totality of

n —1 n —1 n —1
(2.9) k(1) k n (1— E m;,')+E m, w h en  E mt</

V=1 V= 1 v = v =

For i E f J  F(m ,, m ,  k , ) ,  define the multiple Wiener integral S k t, w) on ( W , P )  by
1)=1.

.(1) . )
(2.10) w) = S ' ( t ,  w)•S

( 2

i (t, w) ••• Si c l ) (t, w).

For i' — (41'), •••, 1(n'))eF,,= {1, • •• , d } ", define

(2.11) a i t  —

an

 

• • •  a x i ( ' ' ' )  •

Then by Theorem 1.1 we have

(2.12) a0(F(6, w))'— i  en Ê 6i'a0kii(w))f1')(0
n = 0 j = 1  A „  l 'e r j

as e 0  in  .6- -
and by Corollary of Theorem 1.1

(2.13) Pj 
W

Cx (X 0)
=  (2 7 0 ' E  E  E  1- Efai'aci(A(w))f 1')(w) 

j = 1  A , ,  i ' e F j  
,

where f (w ) is as in (2.2) and

(2.14) A =  { p  =  (p i , •••, p f ) e N i ; Pi + •-• =  n,131 2 , ••• ,p ; 2)- .

In (2.5) we have the explicit description for f p (w ), p=0, 1, •••, so it is easy to
see that f (— w )=fp (w ) when p  is even and otherwise f ( — w ) - - f p (w), and that
ai'ao ( f1(—w))=(-1)-1.30 0( f i (w)) when i' F i . Thus i f  w e change w  t o  —w in
(2.13), we can easily see c (x 0)= 0  if  n  is odd. Now putting (2.5) to (2.13) we obtain
the following Proposition 2.2.

Proposition 2 .2 .  c,„(xo) is given by

2n
(2 .15 ) c2n(x0) = (27r)(1/2 E E E E E  IT •  •  •  o V 0 •

J=1 A 2 , , B  C  D  0 =1 zV,2 lv, 1

T E [a i '8 0( L a ,(x0)W`(1))S1(1, w)]
j! 06=1
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where A,„ is as in (2.14) and

(2.16) B  = {(m,, run E  Z 2 , = 1 , • • • , j ; rre,r +2(m,—m?) = p
1<m v < p „ ,0 < n l< m v )-

(2.17) C = {141), lc,(4 ) ) -  c N ,  = 1 ,  • • - ,  j ;
1 < k v (1)< • . c X in)

(2.18) D = {(i, i') H F(m„, m ,  k v ) xv=i

Especially in  th e  c a se  o f  r = d ,  denoting L  as a  matrix ((LL(x0) ) ,  then

det L * 0  by the assumption for LL(x0). Thus, for i' E Fi ,  ai' so ( L ( x 0)w (1))
.=1

=  E  (L - 1 ) e ?  8,(w(1)) where (L - 1 )i'? =11 ( L l i
(

) T  (1/ ) if we express i' = (i(1'), • ••,
i,EF;

i ( j ' ) )  and by (L - 1 )1i (i, j)-component of Therefore we have the following
proposition.

Proposition 2 .3 .  In the case of r =d, c 2 .(x o ) is represented as follows;

2n

(2.19) c 2 ,: (x0) =  (270 12 E Z  Z E E  E,=1 A 2 „  B  C  D  7.,E.F;

1 (Vi0 . . . 0 V ; ) (1 2 ( ''') )(x,,)(L - 1 )"  • E[a. ao(w(o)s"io, INA
14,2 1014=1 /) "10 ,1 - j!

where A2 „, B, C, and D are as in Proposition 2.2.

3. Computation of E[8i' 8,(w(1)),S7(1, w)].

W e consider th e  d-dimensional W iener space ( W6
0', P )  a n d  compute

E[8i/ (70 (w(1))Si(1, w)] by the following methods: First we note that

(3.1) EP/80(w(1))S2(1, w)] = (-1)jai'E[8 x (w(1))S 2(1, w)] I

when i' E F J , and that

(3.2) E[8x(w(1))S1(1, w)] = E[S(l , w)1 w(1) = x] • (27r)- ' exp(  21
_ 2 ) .

Set ii,- (t)— w(t)— tw(1)+tx, then

(3.3) w)lw(1) = x] = E[S t (1,

and finally E [Sk l, OA can be computed by the definition of the stochastic integral,
i.e. S'i(1, fii) is approximated by the step functions, that is the multiplication of the
form e(t)—iiiAt'), and the expectation of this type can be computed easily.

It is more convenient to use Itô's stochastic integral instead of Stratonovich's
one. So  in the following, St(t, w), first introduced in (2.4) and (2.10), is defined
by Itô's integrals. It is clear that the same conclusions of Theorem 3.1 below remain
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valid in the Stratonovich case with different universal constants.

First, we consider E [S k l, w ) f w (1 )= 4  For this we introduce some notions.

Definition 3 . 1 .  Suppose all ic,„ v= 1,  . . . , j  are given, so is {k(1), ••-,

k (m t +••• . The set r c {k(1), •••, k(;n? +  •• • + 4 ) ) -  is called a collection of
singles i f  m ? + • • • + 4 -$ z  is even, $r denoting the power of z.

Definition 3 .2 .  Suppose A  be any set whose power is even 21. Then 0A  is
called a pairing decomposition of A i f { a 1 ,  f l , j

 U ••• U {al , fi l l  where -Cab

i =  1, •••, l) - = A .  H ere the order of the sets {a,, j9,}, •••, {al , 19,} is a rb itrary .
Especially when A = {1, • • •, 211, we denote (121 instead of CA ,  and when A = {k(1),

• ••, k ( m t  ••• +4 )1 \ r ,  ct, instead of 0A .

N o w  0  denotes r U CT ,  i.e. .75: -(k(1), •••, 4 4 + • •  •  +1 1 1 » fr i , •-•, U
la 1 , f ij- U ••• U lai, /9 4  where 2/ ± ••• +m ,l' a n d  {r 1 , • ••, rh, a 1, •••, al,
PI , •••, = -(k(1), •••, k(mt + • •• + m )} .

Lemma 3 . 1 .  Suppose all m „ v= 1, •-•, j ,  are  given. T h e n  f o r all

F(m „n4,`, k„) and x G R d,
V= 1

(3.4) E [S (l, w )  I w (1 )-x ] c(o)agoiimpi) • ag o 1 ),(131) X i ( 1 1 )  • • • X i "

where c(0 ) is a  universal constant depending only on m„, k,„ u=1, ••• , j, and 0.
Especially c(0) is independent of d.

For the proof of this lemma, we need the following two propositions.

Proposition 3 . 1 .  L et w(t) be the 1-dimensional Brownian m otion , and  ( t )  be
the 1-dimensional Brownian bridge on [0, 1], i.e. W (t) = w (t)-tw (1 ). Then f o r all
t i e[0, 1], i=1, •••, 21,

E[W(t i )k t,) ••• W (t 2 1)] = E IT E[W(t. i ) î ( t p )]

where 0,1 = U  la i , f ia .
1=1

Pro o f . The following fact is well known;

(kt,), • • • , W(t21))---N(0, v i ; ) w h e re  v; ;  =  (t ;  A t; ) (1 -  t ;  V t; ) .

So, this proposition can be easily proved by derivations of a characteristic function.

Proposition 3.2. On ( W g, P), set w =(w l , .« , w ) G  W g . Then for all t i E [0, 1],
i=1, •••, 21,

E [0 ( 1 ) (t ) • •• W' ( 2 1 ) (t 21)] = E E[0(c`i)(t,„ ; )1;v' i(gi)(t s i )]•a g . , ) ,( p i )  •
0_2 1

Pro o f . Let O be a decomposition of the set {1, ••-, 24 into a union of d dis-
d d

joint subsets, i.e. 0 : {1, •••, 2/} = U A ;  w here  U Ai = -(1, •••, 21)- and A i  n.A.,= 0  if
t=i
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*  j. Then

ENV" )(t) ••• )0 21) (t201 E  I Id E [ H  low)(t cop A  H  (l — )  •
0  j = i L e A M * 1 1

Here, s A i =1  if i(a)=i(f l)  for all a, fr A i , and otherwise Ai = 0 ,  and
if i ( a ) = i ( f l )  for some (a, 19) E (A m , A n ) ,  and otherwise 1 .4 A =

 1. Because
Ebi, l (t 1) liA t 2k +1)1=0 ,  it suffices to assume that each A i , j=1, •••, d , has even
powers. Now, for all a 21 = {a 1, fl,} U ••• U {a 1, fl,} , we set e, the totality of 0 such
that fo r each i, 1< i < l ,  there exists j  satisfying la i , c A p  a n d  we denote

. ;
a A i = U {a1 , ia; . } . Then by Proposition 3.1,

E [vvio)( t i ) „.„ i(20( t 2 )]

d

E  E II II E [vO 'i•o(t. ; ,,)10'i•o(tp,,,,)1-t7A ;(
1 — aA„,A)

Q . 4 1 . . . a a d  j= 1  1 = 1 " '* n

E  E II Ebim 'i)(tav )11, i
0 i ) (tp )1 . ••• H (1 —6Am A) •

0-2 r e o -  i= 1
171* n

Noting that, on U B i  where Bi , j=1, •••,n , are any sets,
.J=1

1 = (1 - 1 ,4 )  •-•  (1 -1 ,„)+E  ( 1 - 1 8 ) • • • •-/ • • • (1 - 15)1 81

i
z ••••/•••\/••• J+  ••• +1 B , ••• 15 .

where 1 , ,  denotes the indicator function of Bp  and •/  the exclusion of the i-th
component, we can easily show that

aA  •-•c7A , H ( 1 - 6 ,1, 0 aiw i c o o  ••• ag000d •
ea- *„

Therefore we obtain the assertion of Proposition 3.2.

Proof of Lemma 3.1. Let i/ (t) be w (t)— tw (1)+tx =k t)+tx , and let viP(t)=t,
then by (3.3)

E[S (l, w )jw (1)=x ] = E[S k l, ii')]

= E[fdiV ( 1 ) ( t ) r i  d 2 ) (t 2) •••
„

0 0 0

(where as for each diDi ( mi+ - +mv+ 1 ) , i) = 1 , • • • , j-1 , the integral is taken on [0, 1])

=  lim lim ••• lim
14,1+0 d 1 1 4 2 1+ 0  4 2 I 1 p o ) 14 1 + .,. + m i l + 0  m i + . , m i  It p ( 1 , . . + „v  - 1 )

E [40  i ( 1 ) (t p(o) • • • 4i(m1 'm i)(tp(m i+ -+ .5))]

where di = {0, 1/2, •••, (2"-1)/2", 1} is a division on [0, 1] such that zli C z 11 if i < j
(i.e. 4;  is a  refinement of zli ), t p w  C zfi , t p w  E  4 t p ( j _1) i f  we denote by 4 ;  t p w  a
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division on [0 , t i,( 0] by zip  bu t especially d; It p o n i ,...± .0 , v =1, ••.,j— 1, divisions
on [0, 1], and i n in which t ( „) is  the next point of
t p ( , ) in .4„1t p ( ,..„) . Then

E[4tiv i ( 1 ) (t p ( D ) • • • d  ( m 1 + . " - E m

= E [4 W ( k ( 1 ) ) (t p (kw)) • • • 4171, ( O ( " 1 4 - . . . + m i ) ) ( t p(k(ns1+...+rts'0 1 *  P i( t )

= E[411,4.61)(t p(„, i )) • • • Zia, i ( c
p (,), I ))Zhi, i ( 8 1 ) (l p op) • • • A lil i( 1 3 1) ( t p od)1

•1.

•x i  ( h) • • • x i  (Id • P2(t)

=  E  Erzifi,i(wi)(t p ( c,i ) )zhi,i(gi)(t p ( 0 1 01 • •• E[4h 1 ' d ( t p ( ) )44 1o d ( t p o 1 ) )1

•a i( . 1)io i r ••a ic.d iod  •x i ( Y1) • • • x ' ' ) •P2(t)

=  E  P 3(t)•a i ( .,)1 (
1) • •• aico 1) i ( p ) • x i ( ?1 ) •••

d,

where Pi ( t ) =  11[ (t ) —t p ( „)) which depends only on m „, 4 , and k ,, j,
fv; ioo =

P3( t)=P 1(t) I I  ( t /
p ( k (,)) —t p (k (,))) which depends only on PM ) and r,  and P3(t)

; k(),-)
depends only on P 3( t )  and 0 .  So P 3( t )  depends only on 0 ,  m „, in?, and
v =1, . . . , j ,  and is independent of d. Thus

E [Si(1, w)lw(1)= x] = E  c (0 ) • a ( „,1 ) i(1 3 , ) ••• S i ( c ., ) , ( pd •xio'd ••• x icid
(Is

where c(0) is  a  universal constant which depends only on 0 , m ,, m '„, and k ,,
v =1, •••,j.

Example 3.1. In the case that j=  2 ,  m, = m 2= 2 ,  m l ic = 4 = 1 ,  and k,(1) —

k2(1)=2,

E[Si(1, w)Iw(1)= x] = E[( 1 dt l Ç l  dw  ̀( 2 ) (t2))( '  dt3d W i ( 4 ) ( t 4 ) )  I w ( 1 ) = x ]
0 0J o Jo

1  a i 1 i i ,  ;
=  i. , `'i(2)i(4) - T-  4  x  ,-)X-(4) .

Example 3.2 (L ev y 's stochastic area). In the case j= 2 ,  m 1= m 2 = 2 ,  1 4 =
4 = 2 ,  and k 1= k 2=11, 21,

E[Skl, w)l w(1)—x]
1 t i t

=  ER  .Ç dw' ( 1 ) (t 1) 1 div i ( 2 ) (t 2))(
o

d w "( i 3) 3dw i m(i4))1w( 1 )=x ]
0 0 0

1 11
—  v  i(1)i(2) ai(3)i(4)1 -

 1 24
i(i)i(3) 6  i(2)ic4)— a i(i),(4) ,(2).(3)

_  1   a 1(3) ,( 4) , . x i(2)+  1   a i (  ) i ( 4 )  x io.) x i(3)   a .  s .  , x , (1) x io )
4 12 2 1 2  1 ( " " )

1 1 1
1-7

2
-- aiw ico x" Si(i)j(3)xi(2)xio)— i ( 1 ) i (2) x i ( 3 )  X i ( 4 )

12



Fundamental solution of heat equations 427

1 x̀ (1 )x i mx i ( 3 ) .0 4 )

4

Now consider Levy's stochastic area A(t, w), i.e. for w e Tys

(3.5) A(t, w) = wl(s)dw2(s)—i: w 2(s)dw 1(s))

and let's compute E[A(1, w)2 1 w ( 1 ) = 4  By (3.5)

A(1, w)2 =   4
1 i(  o wl (t)dw2(t)) 2l i ( t ) d w 1 ( t ) ) 2

1r i
w i (t)dw 2( t ) ) ( 0

1 w2(t)dw l (t))

so, by the above equation, we obtain

1 1 x'12E[A(1, w) 2 1w(1)— x] —
12 12

Remark 3 . 1 .  This can also be obtained by the following way:
Let K(x, 2)=E[exp -R/ — PAO, wA-jw(1)=x], then by M. Yor [11]

K(x, 2) = ( 1 /sinh (  2) )•  exp 1( 1 —  
2  coth 2  )  I x .

2 2 2 2 2

Especially K(x, 2)=K(x,  — 2), so E[A(1, 0 24 +1 1 w(1)= x] =0, and E[A(1, w)2 1 w(1)= x]

12 12
Finally we treat E[(80 0(w(1))54 (1, w)]. Before stating the theorem, we

introduce the following notation: Suppose m v , m , and k , ,  v = 1 ,  •••,j, are given
and int +••• ±mt H-n = 2 l .  Let A = {k(1), • • • ,k(mt ± • • • +nit» U {l', •••,n1, then we
denote lip instead of a ,  i.e.

(3.6) *: {k(1), •••, ••• +14 )}  U {1', 11- = U ••• u

Remark 3 .2 .  All can be decomposed as follows: r be a collection of singles
on {k(1), •••, k (m n - • - •+4 ) ) -  such that its power is less than n  i.e. r: {k(1), •••,
k (ne 4 - • • • d- m7)1 = fr i , • • • , r and h < n .  a T b e  {a i , U  •••  U  {at , fip}. Define

as a pairing decomposition on {r„ •••, r h , 1 ', ••-, n'}  such that each partner of
r i , i=1, • •• , h, is  som e  2/ (1 v <n), i.e. a,' : -(ri, • • •, r,, 1', • •• , U -•-

U  fai , i9/1 and {a p + i , •-• =  {Ti, r i„)- Then for all *  there exist r, a T , and
as above such that =C T U (4.

A
Theorem 3 . 1 .  For all F(m,, k„) and i' F „ ,

V= 1

Ef 9i'a0(w(1))s2(1, w)] (27r)- " ' c(*)ag,,,,),(pi ) aic.diod
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if  rn7+•••+4+n =21, and otherwise 0 , where c (* ) is a universal constantwhich
depends only on 1G., m,, m?, k,, p=1, and n.

P ro o f  As stated at the beginning of this section

E[ai'ao(w(i))ski, w)] (—War E[ski, w(1) =x] (27r) - d/2 e x p  1
2
x 1 2 )

  

So, by Lemma 3.1

(3.7) E[Skl, w) I w(1)=.x] = E c(o)s g ) , (0 i )  •  • •  s i ( „„) ,( ty xim) • • • X i ( l h )

and 0= a, U r  for some collection of singles r. Therefore if n< h, or n> h and n—h

is odd, ai'xich ) —x i o'h) exp(  1  x  12 ) = 0 , and if n>h and n—h is even
2

I
(3 .8) & 'x ( i) x h ) exp( ' x 2

2 E • • •  ai w a f i d
x=o

  

where a, is as in Remark 3 .2 .  Thus, combined (3.8) with (3.7), we can conclude
the proof of theorem.

4 .  Main theorem.

In this section, we consider the asymptotic expansion of the pole p(t, x, x)
a s  t 0  for the minimal fundamental solution p(t, x, y )  of the heat equation
a u  1—=— zIm u on a Riemannian manifold, 4 , being the Laplace-Beltrami operator.at 2
Note that p(t, x, y ) is the density of the law of X t with respect to the Riemannian
volume, where X , is the minimal Brownian motion on M starting at x at t= 0 .  In
the previous section we studied the solutions of S.D .E. on R d as Wiener func-
tio n a ls . We first state a  localization result which reduces our problem to that of
S.D.E. on IV.

Lemma 4.1. On a Riemannian manifold (M, g) , f or any fixed point xo e M  and
positive numbers v, R,0<2v<R, such that W(xo , v+R)= {y eR d  ; x 0—yi
is in a local chart of x„, let X , be the minimal solution of the following S.D.E. on M;

dX, L . (X )o d e ( t )+ L o (X,)dt
1 X , ----

where (ail)=LL* is elliptic, be its minimal diffusion on W(xo , R), p(t, x„, y ) be the
density of the law of X , with respect to the Riemannian volume, and p(t, x„, y ) that of

„  Then there exist positive constants c„ c, such that for all yeW (x o , R-2v)

(4.1) p(t, x„, y)—p(t, x„, exp (—c,  v 2 ) .
t
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Pro o f . Let r(w)=inf {t> O, Xt W ( x o , R))- . By R. Azencott [1], there exist
positive constants c, c' such that

P (r (w )_ t ,

where r <4 2  and I x0 —y I + 2 < R .  Noting that

p(t, x 0 , y) = lim P(X , W (y , r))/vol(W(y, r)) ,
r  0

xo, Y) lim P(X t eW (y , r), r(w )>t)Iv ol(W (y , r))

and
P(X, e  W(y, r)) — P(X i e W (y , r), r(w )>t) = P(r(w )<t,  X e  W (y, r)),

we can easily conclude (4.1).

Remark 4 .1 .  By the above lemma, it suffices to treat 1, instead of X, in our
problem, and î can be identified with a minimal diffusion on a compact subset of
R d . So, again by the above lemma with M =R ', we can replace Xt by a diffusion
X, on R d  obtained as the global solution of S.D.E. on Rd whose coefficients
coincide with L,,(x) in a coodinate neighborhood of x0 .

By Remark 4.1, it is enough to analyze —

1  
4,-diffusion on a local chart of x 0 .

2
So taking a normal coodinate with center x , and extending this coodinate to the
global Euclidean coodinate of R d , it is enough to study the solution of the following
S.D.E. on Rd over the d-dimensional Wiener space (wg, P);

d r t .k e a " ( X p o d e ( t ) + 6 24(X e
t )dt

1 =

where r t = rt.29 ,„ 5 x et ,a) ,  0 .(x ) =  g -112( x ) ,  c y t)(x )  = 1  g i j w r ,1 i (x ) ,_  1  (  a .
2 2  a.)c.,

aa 4 (x))• a i( x )  in  some neighborhood of 0  and both a ( x )  and a ( x )  belong to

C r (R d ) .  Here W A- are the Christoffel symbols and (e )  the inverse of (g i i ).
By Cartan's formula, we have the following expansions of a (x ) and a 0(x ) in

the normal coodinate. (cf. B.Y. Chen and L. Vanhecke [3])

(4.3) aPq(x) =  a p q --
1

R

P i "
• •x i xi— 

 12 i
1  EV  •R

P i °
 xixixk

6  i d ,J,k 

120 E m g '  3 .÷ 1 E  3r • R
7

R, i p ;  Ro o )x i xi xk ± o(i x 1 5)

• 1 (4.4) or, (x) E R„j i x' E
24

(V „sR i i - 617

3  i  
1 

360 
E (9v, Rik - 3611;R „,k+8 E R t• RPl•P Ink

— 16 E R i p h R„,p k dx i xix k +o(lx1 4)
p.g

(4.2)
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where 17 means the covariant derivative and values of monomials in components of
the curvature and its derivatives are taken at the origin. Now we can apply above
results to obtain the expansion (2.7). Then,

c2 (x0)  =  (27r)  —3
1 R k(xo) )E [0—a

x k  ao (w(1)) ( t  ) d  t l

+( - -3
1 Rdp e l  0))E[ a a

x k
 (30(W(1)) r 0

14A S ° dw13(s)°dw6(t)]}

= R(4112 .

Similarly we can compute c4 (x0 )  to be  1  ( - 5  R 2(xo) - -  iRiAx0)112+ iRipa (41i 2)7 2 0  2
+4R(x 0)/120. This computation is elementary but quite complicated, and for
higher c 2 (x0)  it is , of course, too much complicated. So we would give some
informations for c2 (x0) in the following Theorem 4 .1 .  Before stating the theorem,
we introduce the notion of order.

Definition 4.1 (cf. P. Gilkey [4]). be a totality of monomials in components
of the curvature tensor and its covariant derivatives. A function ord: ..4Z—›/V is
defined as follows:

ord(17
p A,..R i i k i )  =  2 + m ,  a n d  ord (R .R2) = ord (R0+ ord (RD, R„

If ord(R)=m , RE R , then we say R is of order m.

Theorem 4 . 1 .  c2 (x0) is a linear combination of the contractions of the elements
in o f  order 2 n . Moreover the constants of this combination are universal, i.e.
independent of a manifold and its dimension. Here, a contraction means a contraction
of all indices with respect to a pairing of them.

Remark 4 .2 .  Theorem 4.1 is not new, in fact, M. Beals, C. Fefferman and
R. Grossman [2] and P. Gilkey [4] have showed the same theorem by first determining
the order of elements of .R  which appear in c2 (x0 ) and then appealing to Weyl's
invariant theory to show that these elements are given by the contraction. Our
assertion is that this theorem can also be proved by the probabilistic methods.

Proof of  Theorem 4 .1 .  Fist we determine the order of elements of .91Z. which
appear in c2„(x0). By Cartan's formula we have the following expansions of aPq(x)
and a (x )  in (4.2):

(4.5)
aP(x) = ap q +E  R„,... 0 5 ; p q  x 'i••••eid-o(lx1")

2 = 2

o (x )  =  E
1
...,„ .,x6 i• • •x ' i ± o (  I x I n )

where R. i ...„,p ,[resp. is a symbolic representation for a linear combination
of elements in ..R  whose order is j  [re sp . j+ 1 ]. So if we set (V,. 0 ••• 0 V, )•
• (Lf ( v ) 00)=Rick„(1»...i(k v (4)i(v)(x0) in Propositions 2.2 or 2.3 applied to (4.2), this



Fundamental solution of heat equations 431

is a  linear combination of elements of order p , - 1 in R .  Consequently, by (2.15)
or (2.19),

(4.6) c ,„ ( ;)  =  (2 7 )d/2 E E E E  D
, vi(k(i)).-ick(mt-E-+mpi(i , )-i(y)(x0),-111-2„ C  / )

• _
1  

Erai
,
a0(woDs2(1, w)]

i!
where the sets .42 8 , B , C , and D  are as in (2.14), (2.16), (2.17) and (2.18), respec-

tively, a n d  R o k ( , ) ) ...i ( / g m t + ...+ „,1) ) ; ( ,, ) „. i ( p ) (4 - 1 1  R i(k v ( i ) ) , . . j (k v ( , , ,V ) i (y ) (X 0 ),  S O  it  i s  a

combination of elements of order p 1 +•••±p 1 — j ------2 n .  Now we apply Theorem 3.1

to evaluate E[ai'a0 (w(1))S(1, w)] which completes the proof.
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