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Triple coverings of algebraic surfaces according
to the Cardano formula

By

Hiro-o TOKUNAGA

§0. Introduction

In this article, we consider a triple covering of an algebraic surface. In case of
a cyclic covering, that is, its rational function field is obtained by a cyclic extension
of degree 3, its structure is well-known. But in case of a non-Galois covering the
structure is not well-known. In [6], R. Miranda obtained some results about a non-
Galois triple covering by using a rank 2 vector bundle (called the “Tschirnhausen
module”). T. Fujita and R. Lazarsfeld proved a beautiful theorem about a non-Galois
triple covering over P (n=4) (see [3], [5]). In this paper, we study a non-Galois
triple covering by using the Cardano formula. An outline of our method is as follows:

Let p: X—Y be a finite normal triple covering of a normal variety Y. First, we
define the discriminant variety D(X/Y) and the minimal splitting variety X associated
to the triple covering p: X—Y. For these varieties, we have a commutative diagram:

D(X/Y)

/B,

For details, see §1 below. To study the triple covering p: X—Y, we study structures
of the morphisms B,: D(X/Y)—Y, B.: X—D(X, V), and a: X—X.
Our main results are as follows:

X
f/j\‘f’
X pl
N
Y

Proposition 3.1. Let p: X—Y be a finite totally ramified triple covering of a
smooth projective variety Y. Assume that

(i) X is smooth,

(i) Y s simply connected.
Then, p is cyclic, and the branch locus of p is smooth.

Proposition 3.4. Let p:S—2 be a finite triple covering where S and X are smooth
surfaces. Assume that A(S/2) (the branch locus of p) is an irreducible divisor and has
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singularities whose local euations are
x*4y**=0,

where k is a natural number. (For two different singularities, corresponding k may be
different.) Then the structures of B.: D(S/2)—2, B.: S-D(S/3) and a: S—S are as
follows :

(1) D(S/%) is a normal double covering branched at A(S/Z%).

(i) S is a nomal cyclic triple covering of D(S/X) branched only at Sing (D(S/2))
and singularities of S are of Ax_, type.

(iii) There exists an involution ¢ on S, and we obtain S as quotient surface of S
by .

The above result is a slight generalization of the result of R. Miranda [6], Lemma
5.9.

Theorem 3.9. Let p:S—2 be a finite triple covering where S and X are smooth
surfaces. Assume

() the surface S is smooth,

(ii) 2 is either a minimal rational surface or an abelian surface,

(iii) the Kodaira dimension k(S) of S is 2.

Then, the structures of p, Br: D(S/2)—3, and B.: S—D(S/3) are one of the fol-
lowing :

(i) p:S—2 is a cyclic covering.

(ii) p:S—2 is non-Galois and one of the following occurs:

ii-a) X is an abelian surface, P* or P'XP'.

A(S/2) is an irreducible divisor with ordinary cusps (i.e. (2, 3)-cusp) and the structure
of a triple covering at a small neighborhood of each cusp is isomorphic to Example 3, in § 2.

ii-b) X is F, (n=2).

If A(S/%) is irreducible, the structure of p is the same as case ii-a).

If A(S/%) is reducible, then, 4(S/2)=s,+D where D~ as. for some acN and D is
irreducible with some ordinary cusps.

(@) n=2k (kEN), B.:D(S/2)—~2X is a double covering branched at A(S/%) and
B:: S—D(S/Z) is a cyclic triple covering branched at Sing (D(S/2)). A

(B) n=3k (k&N), B;: D(S/2)—~2 is a double covering branched at D and B,: S—
D(S/2) is a cyclic triple covering branched at Bi'(s.) and Sing (D(S/2)).

Notations and Conventions. N, Z and C mean natural numbers, integers, and
the complex number field, respectively.

k(X): the rational function field of X (k: the ground field).

Sing (X): the singular locus of X.

k(X): the Kodaira dimension of X.

Let f: X—Y be a morphism between X and Y where both X and Y are normal
varieties.
For x X, we say that “f is ramified at x”, if f is not étale at x.
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For yeY, we say that “f is branched at y”, if f is not étale over y.

Therefore a ramification divisor is the divisor on X, and a branch divisor is a
divisor on Y.

For a divisor D on Y, f~'(D) denotes a set theoretic inverse of D, and f*(D) de-
notes the ordinary pull back of the divisor D.

§ 1. The Cardano formula and preliminaries

In this section, we assume that the ground fields & is algebraically closed and its
characteristic is neither equal to 2 nor 3. We review the classical “Cardano formula”.
Consider an equation

x4+ax+b=0 (1.1)

where a, b are elements of a field K (Dk).

As is well-known, we can obtain solutions of the above equation as follows:

Put x=u+v. Then, (u*4+v*+b)+(u+v)Buv+a)=0. Therefore, to obtain solutions
of (1.1), it is sufficient to solve the equations

ul+vi=—>b
up=—2
3
So, we obtain solutions of (1.1) as follows:

Y
bivE+y-L-vE

3
x1=\ _—

3 b — 3 b —_
xz_w\/—'z“'*'\/R +C02\/—7——\/R

xs=wzi/—»g—+«/?? +wi/——g——«/F

where w’=1, w#1 and R=0b%/4+a%/27.

Assume Re&K. The above process consists of three parts.

Step 1. We have a quadratic extension K,=K(f) with §*=R.

Step 2. We have a cyclic cubic extension K,=K,(f) with §°=—b/2+R. K,is the
minimal splitting field for the equation (1.1). By the assumption on the characteristic
of the ground field &, it is a Galois extension of K and its Galois group is isomorphic
to &, (the symmetric group of degree 3).

Step 3. There exists a K-automorphism o¢&Gal (K,/K) and the solution of (1.1) is
contained in its invariant subfield K.

In the case that R is contained in K, we put K,=K in the Step 1, and omit the
Step 3. ‘

Let p: X—Y be a finite triple covering where X and Y are normal projective
varieties. Let k(X) and k(Y) be their rational function fields, respectively. We apply
the above argument to the fields k(X), k(Y). First, if R is not contained in k(Y), take
a quadratic extension of k(Y) corresponding to K, in Step 1, and we also denote it K.
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If R is contained in k(Y), put K;=k(Y). Take the K,-normalization of Y. (For the de-
finition of the K,-normalization, and its properties, see litaka [4], §2.14.).

Definition 1.1. Let p: X—Y be a finite triple covering where X and Y are normal
projective varieties. By the discriminant variety D(X/Y) of Y, we mean the K-
normalization of Y.

Remark. If p is a cyclic covering, D(X/Y) is equal to Y.

Next, we consider a cubic cyclic extension of k(D(X/Y)) corresponding to K, in
Step 3, and also denote it by K,. Take the K,-normalization of D(X/Y), and denote
it X.

Definition 1.2. Let p: X—Y be the same as above. We call X obtained as above
“the minimal splitting variety of X”.

Remark. If p is a cyclic covering, X is isomorphic to X.
The following proposition is easy to prove, but important in our theory.

Proposition 1.3. Let p: X—Y and X be the same as above, and i X-Y be the
induced morphism. Then, the birvational map over Y induced by an element of
Gal (k(X)/k(Y)) is an automorphism of X.

Proof. Let ¢ be an element of Gal (k(X)/k(Y)). Then ¢ induces a birational map.
:X--—X. Consider a commutative diagram

Since X, Y are projective and p, is finite, 4 is a morphism by litaka [4], Theorem
2.21, 2.22. Therefore, ¢ is an isomorphism by Zariski’s Main Theorem. Q.E.D.

By Proposition 1.3, if p: X—Y is not cyclic, we obtain X as a quotient variety of

X for an automorphism & of order 2 where & is an isomorphism of X induced by an
element g =Gal (k(X)/k(Y)) of order 2. This corresponds to Step 3.

By the argument above, to study a triple dovering p: X—Y, it is important to
study pi: X—Y, D(X/Y), and the automorphism group induced by the Gajois group
Gal (k(X)/k(Y)). Moreover, in case Y is smooth, the following lemma plays an import-
ant role.

Lemma 1.4. Let A(X/Y) and A(X/Y) be the branch loci of p and p,, respectively.
(Both of them are divisors by the purity of the branch locus, Zariski [9].) Then, we have
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AX/Y)=4(X/Y).

Proof. Case I. p: X-Y is cyclic. In this case, X is equal to X. Therefore,
our statement is obvious.
Case II. p: X—Y is non-Galois. Consider a commutative diagram

<

v N

X P D(X/Y)

P\ /B
Y

where a: X—X is a double covering, Bi: D(X/Y)—Y is a double covering, and f,: X—
D(X/Y) is a cyclic triple covering. Assume A(X/Y)24(X/Y). (Note that AX/Y)D
A(X/Y).) Let D be an irreducible component of A(X/Y)NA(X/Y). Since p,: X—-Y is
a Galois covering, p*D is a part of the branch divisors of a. (Notice that p*D is a
reduced divisor.) Consider the action of automorphism group induced by Gal (k(X)/k(Y))
on a neighborhood of smooth parts of p¥D. Then, we know that the components of
p¥D is fixed by the automorphism & of order 2 by which we have X=X/<&> (See
Figure 1.) This means that o =Gal (k(X)/k(Y)) inducing ¢ commutes with an element
of order 3 of Gal (k(X)/k(Y)). This contradicts to the assumption that Gal (k(X)/k(Y))
is the third symmetric group. Q.E.D.

o

(Figure 1)

§2. Typical examples

In this section, we consider typical examples of triple coverings.

Examples 1. Put Y=P!. Let X be obtained by C(P!)(#)-normalization of Y,
where 0 satisfies an equation X°®+ X+t¢=0, and ¢ is an inhomogeneous coordinate of
P'. We will consider the structure of X, D(X/P") and the action of an automorphism
group induced by Gal (C(X)/C(PY)) for X and P'. Note that Gal(C(X)/C(P?) is iso-
morphic to the symmetric group &, of degree 3. Note that we have R=27t*+4.
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Since C(D(X/PY))=C(P')Y~R), the double covering D(X/P")—P"' is illustrated os
follows :

PO ca— e

_[-4 _4
27 27

(Figure 2)

Therefore, D(X/P")= P, and B,: D(X/P")—P"' is given by

. 2T
Buia— =05 g (5D

where z is a suitable inhomogeneous coordinate of D(X/P!). Using the above coordi-
nate z, we obtain

2+—1 z
* = =
VBIR=303 71
« _2v—12"+1
Bt =55 71
and
Ly grpov—124l
18 t+pB¥R= VT I
Since

cex=cox/ Py —%ﬁ*t—W)

—cwx/ Py v=isvEi)),

The cyclic triple convering X—»D(X/P‘) is illustrated as follows:

s Ty~
X N I NS
. |

(Figure 3)

Therefore, X= P!, and the morphism B.: X—>D(X/P‘) is given by

41
B:: w%—% (=2),

where w is a suitable inhomogeneous coordinate of X. Next, let us consider the action
of an automorphism group induced by Gal (C(X)/C(PY). On D(X/PY), there is an in-
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volution ¢ which is induced by the non-trivial element of Gal (C(D(X/P*)/C(P")). By
using the above coordinate z, this is represented by

g.2——>—2Z2.

This involution induces an involution & on X. By using the above coordinate w, & is
represented by

G.wWrH—>—.,
w

Finally, let us consider the action of an automorphism z of order 3 induced by an ele-
ment of order 3 in Gal(C(X)/C(P*)). Then, ¢ is represented by

TIWH—>Ew,

2rv—1
=5

By the above argument, we obtain the structure of D(X/P?), X and the action of
the automorphism group induced by Gal (C(X)/C(PY). The following figure explains
relations between P', D(X/PY), X and X.

where e=exp (

X i
a i | i
N\
{ | |
! | | D(X/P")
i <O T D e G— o
X | | |
N
: : L p

_ \/ L4 4 e
27 27
(Figure 4)

Example 2 (Corollary to Example 1). Put Y=P? and let [z,:2,:2,] be homo-
geneous coordinates of P2 Let X be a finite triple covering defined by the C(P2)(§)-
normalization of P2, where 0 satisfies an equation x°+x-(z:/z,)=0. Then, the minimal
resolution of X is a rational ruled surface of degree 3, that is P(OpiPOpi(3)). And X
is obtained by contracting its negative section.

This fact is easily proved by blowing up at [0:0: 1] and we reducing the problem
to Example 1.

Example 3. Put X=C? Y =C? and consider a covering
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T: X—=>Y
(x. ) —> (u, v)=(xy, x*+y°).

Clearly, X is a Galois covering of ¥ with Gal (X/Y) isomorphic to ;. The Galois
group &; adts on X by
o:(x, y)—>(y, x)

T (x, ¥)—>(ex, €?y)

2/ —1

3 ), &,=(0, 5, 0*=1*=(07r)*=1. Consider a diagram

where e=exp (

X

SD(V \f(r)

X/<a> T X/

”<0\>\ »/7'-'<r>
Y

Let us analyse X/{g), X/{r) and their ramification loci. The morphism @(s;, P¢cy, %(ayr
and x, are written explicitly as follows:

@r: X —> X/Ka)=C"
(x, ) (z, w)=(x+y, xy)

Tioy: X/Kay -—> Y
(z, w) —> (u, v)=(w, 2°—3zw)

Pyt X = X/{t)=Spec (C[ty, t5, t,]/(ti—tts))
(x, )—> (&, B, L)=(x*, »°, xy)

Note that X/{o¢) has a unique singularity and it is an A, singularity. The morphism
¢ IS given by
Ty . X/<T> e )f

(fly Iy, Ig) —> (u, v)=(,, {,+1,)

The ramification locus R, of 7 is a divisor defined by an equation (y—x)(y—ex)-
(y —e?x)=0 where e=exp (2r v —1/3). The support =(R,) is a divisor B, on Y defined
by an equation (v*/4)—u®=0. Let us consider the ramification loci of ¢, and z(s,.
The ramification locus ¢.,, is a divisor defined by an equation y—x=0. The support
of its image of ¢, is a divisor defined by an equation w—(1/4)z*=0. Similary, we
obtain the ramification locus of =, and it is a divisor on X/{¢) defined by an equa-
tion w—z?=0. Note that images of w—(1/4)z2=0 and w—2z?=0 are the same divisor
on Y defined by an equation (v?/4)—u®=0. Finally, let us consider the ramification
loci of ¢, and m(,. It is clear that the ramification locus of ¢, is one point (0, 0).
And its image of ¢, is the unique A, singularity of X/<{z). The ramification locus
of my is (m7'(B.))ea- The following figure explains the above results.
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X y—wx=0
<y—-w2x=0
P> e P>
X/Ko> gt . 4 X{T)
2
M—%—f:O
Ty v o

(Figure 5)

Remark. In the above example, m: X/<o)—Y is a non-Galois triple covering.
This is a typical example for the case of dimension 2. Locally, it is the same triple
covering as the “generic triple covering of a surface” in the sense of Miranda [6].

§3. Applications

In this section, the ground field is always the complex number field C.

(I) A totally ramified triple covering. Let p: X—Y be a finite triple covering
of a smooth projective variety Y. We call p totally ramified, if for any irreducible
component of the ramification divisors of p, its ramification index is equal to 3. For
a totally ramified triple covering, we have the following:

Proposition 3.1. Let p: X—Y be a finite totally ramified triple covering of a smooth
projective variety Y. Assume that

(i) X is smooth,

(ii) Y s simply connected.
Then, p is cyclic, and the branch locus of p ts smooth.

Proof. Assume that p is not cyclic. Then, from the arguments in §1, there
exists varieties D(X/Y) and X. For these two varieties, there exists the commutative
diagram
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X
YN
X p D(X/Y)

P\\»/ﬁn
Y

Since Gal (C(X)/C(Y)) is isomorphic to &, there is no ramification point of p; whose
ramification index is equal to 6. Hence, by lemma 1.4, a is étale. But this fact indi-
cates that B, is étale. Since D(X/Y) is irreducible and Y is simply connected, this is
a contradiction. By Proposition 3.3, [8], it is easy to show that the branch locus of
p is smooth. Q.E.D.

As is well-known, a trigonal curve is a curve which has a rational function of
degree 3. Hence, we can regard C as a triple covering of P!. As an easy applica-
tion of the above proposition, we have the following.

Corollary 3.2. Let p: C—P! be a triple covering. We denote the branch points of
D by Py, -, (r22).  Assume that p7i(p:) (G=1, -, ¥) consists of one point, that is,
the ramification index of p~'(p:) is 3. Then, p: C—P* is a cyclic triple covering.

Remark 3.3. We can easily determine the cubic equation corresponding to the
above triple covering p: C— P! There are three types.

(Type I) X”+g——pl)'t:(t—_pr)=0 r=0 (mod 3)

(t—Pr-z)(t—pr-1)2(t—Pr)2:0

tr+l

(Type 1) x°4 4= r=1 (mod 3)

(Type 1) xo4 =P @b dC=0 o (104 3)

tr+1

where ¢ is an inhomogeneous coordinate of P

(II) Triple coverings of surfaces. In this part, we study a triple covering of a
surface. Let p:S—23 be a finite triple covering where both S and X are smooth sur-
faces. By S and D(S/X), we denote the minimal splitting surface and the discriminant
surface, respectively.

Proposition 3.4. Let p:S—3 be the same as above. Assume that A(S/2) (the
branch locus of p) is an irreducible divisor and has singularities whose local equations
are x°+v**=0 where k is a natural number. (For two different singularieties, corre-
sponding k may be different.) Then, the structures of P,: D(S/2)—2, B.: S—D(S/2)
and a: S-S are as follows:

(i) D(S/2) is a normal double covering of X branched along A(S/2).

(i) S is a normal cyclic triple covering of D(S/X) branched only at Sing (D(S/2))

and slngularities of S are of Ax_ type.
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(iii) There exists an involution ¢ on S such that S is obtained the quotient surface
of S by ¢, and a is regarded as the quotient map.

Proof. By the argument in §1, the statement (iii) is clear. First we prove the
following :

CLAIM 3.5. p:S—2 is not a cyclic covering.

Proof of Claim 3.5. Assume that p is cyclic. Then, since 4(S/2) is an irre-
ducible divisor and deg p=3, S is embedded in a total space of a line bundle over 2.
(See Tokunaga [8]. Proposition 3.3.) But in this case, S is singular. Therefore, p
is not cyclic. When p is not cyclic, we have a diagram

7 |\
S D(S/2)

N v B
p)

where 8, is a double covering, 8. is a cyclic triple covering, and a is a double cover-
ing. Since 4(S/2) is an irreducible divisor, there are three possibilities.

1) Both B, and B, are ramified at divisors, that is, 8, is ramified to 4(S/3) and
B. is ramified at B7'4(S/2).

2) P, is branched at 4(S/2), but B, is not ramified at B87'(4(S/2)).

3) B, is branched at $7'(4(S/2)) and B, étale.

Case 1). In this case, the Galois covering p,: S—J3 is branched at 4(S/X) and the
ramification index of p7Y4(S/2)) is equal to 6. Consider the action of the Galois
group at a smooth point of p7'(4(S/2)). Then, Gal (C(S)/C(2)) have an element of
order 6. This is a contradiction.

Case 2). In this case, D(S/2) is a normal surface with A,_, singularities. There
are two possibilities

2—a) B, is étable, 2—b) B, is ramified.

Case 2—a). Let x be one of singularities on D(S/%). Then, B3'(x) consists of 3
points which are A;,., singularities. Since S is smooth, the branch locus of « is a
divisor on S by the purity of branch locus (see Zariski [9]). Moreover, a(B3;'(x)) is
contained in this divisor. This means that at least one of 3 points of §83!(x) has the
stabilizer group &,. This is a contradiction.

Case 2—b). By case 1), B, is branched at most some points. By the purity of a
branch locus, they are singular points. Moreover, by the proof of 2—a), they consist
of all singularites of D(S/%). Let x be one of singularities and let U be its small
neighborhood. Since singularities are all of type A;..;, we can take U in such a way
that there is V(CC?) a small neighborhood V(CC?) of origin of C? and that n: VU
is the quotient map by the group action of Z/32Z. Moreover, m|y\o.0y: VN0, 0)—
UN{x} is étale. Since the local fundamental group =, (UN\{x}) is isomorphic to Z/3kZ
and B:ls;iwvy is cyclic and étale. B3'(U)\Bz'(x) is isomorphic to a quotient space
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of V\(0, 0) by a subgroup Z/kZ. Moreover, since S is normal double covering of S,
B3'(x) is an isolated hypersurface singularity. Therefore, f37(x) is an isolated hyper-
surface singularity. Therefore, f3'(x) is an A,_, singularity.

Case 3). Clearly, D(S/2) is smooth, and 83%(4(S/2)) has singularities. Therefore,
S must be singular by Tokunaga [8]. Proposition 1.1. Hence a is not étale. Let x
be smooth point of 4(S/2), and let U be its small neighborhood. Consider a ramifica-
tion index of B3'A7'A(S/ZNNMp7iU) and a *p W A(S/2)NNp7*U). They are equal to
each other. But the ramification index of B3'A7(4(S/2)Np7'(U) is equal to 3 and the
ramification index of a™'p Y (4(S/2)Mp7(U) is even number because of a is a double
cover. This is a contradiction.

By Cases 1), 2), and 3), only the possible case is Case 2-b). This proves proposi-
tion. Q.E.D.

Next, we consider the case that S is a smooth surface. In the following, @, 8, f:
po mean the same morphisms which appear in the proof of Proposition 3.1, and S is
always smooth.

First, we analyse the ramification divisor of p,: S—3. Let R, 4(S/2)X=4(S/2)) be
the ramification locus and the branch locus of p,, respectively. Let x be a point of R.
Then, a stabilizer at x (we denote it G.) is a non-trivial subgroup of Gal (C(S)/C(2)).
In the case that p is cyclic, G,=Z/3Z by Catanese [1], Proposition 1.1. In the case
that p is not cyclic, there are three cases

1) 1G.1=2, 2) |G.|=3, 3) |G,|=6, i.e., G,=&, where |G.| is the order of
the group G..

Case 1) By taking a suitable system of local coordinates, (u, v), the action of G,
is one of the following:

a) o:(u,v)—>(—u, —v)

b) o:(u, v)—>(—u, v)
where G,=<¢)>, o?=id.

In case a), a quotient surface S/<s) has an A, singularity. On the other hand,
there is an isomorphism over C(X) between C(S) and C(S/<{a>). Since S/{¢> is normal
and finite over ¥, S{¢) is isomorphic to S by litaka [4], Theorem 2.21, 2.22. Since
S is a contradiction. In case b), there exists a smooth divisor through x and for all
points on it, the stabilizer group is isomorphic to Z/2Z.

Case 2) By taking a suitable system of local coordinate at x, the action of G, is
one of the following:

a) 7:(u, v)—(eu, )

b) 7:(u, v)— (eu, ev)

c) 7:(u,v)—(eu, v)

. 2rv/—1
G,.=<t), °=id, and e=exp <—3——)

Since &; has a unique subgroup of order 3, the rational function field of the quoti-
ent surface S/G, coincides with C(D(S/Y)). By the uniquness of C(D(S/Y))-normali-
tion of I (see litaka [4], §2.14), S/G. is equal to D(S/X). Since D(S/X) is a normal
double covering, singularities of D(S/2Y) must be hypersurface singularites. Therefore
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case b) does not occur, because in case b), S/<t> has a rational triple point which can
not be a hypersurface singularity. In case a), S§/<tX(=D(S/2)) has an A, singularity.
Since Y is smooth, B; is not étale. Therefore, by the purity of branch loci, there
exists a divisor on X which passes through p,(x), and §8;: D(S/2)—2% is branched over
its divisor. This show that the order of G, is equal to 6. This is a contradiction.
In case c¢), there exists a smooth divisor through x, and for all points on it, the stabilizer
group is isomorphic to Z/3Z.

Case 3) By taking a suitable local coordinate system, the action of G.(=S;) is
represented as follows:

a:(u, v)—> (v, u)

7 (u, v)— (eu, &)

G,=(o, 1) o*=7v"=(or)*=id, and e=exp (2_1;&)
Hence, in this case, the situation is the same as Example 3 in §2. Thus, we obtain
the following result.

Lemma 3.6. Let p:S—2X be a finite triple covering where both S and 2 are smooth
surfaces. Assume that p is not étale and S is smooth. Then, if p is cyclic, the branch
locus is a smooth divisor, while if p is not cyclic, there are two cases

(a) the branch divisor is a smooth divisor.

(b) the branch divisor has singular points and its singularities are all ordinary cups.

(i.e., (2, 3)-cusp)

Lemma 3.7. Let D be a divisor on D(S/2) contained in the ramification locus of
B D(S/%). Assume that D is smooth. Let D, be an irreducible component of D.
Then, B3'(D,) consists of 3 components which are isomorphic to each other.

Proof. Since p,: S—23 is Galois, Bz'(D) is either irreducible or reducible with 3
components which are isomorphic to each other. Assume that 83%(D,) is irreducible.
Clearly, B3'(D,) is a component of the ramification divisor of p,. Therefore, there
exists an automorphism ¢ such that o(x)=x for x&p3%(D,) and ¢*=id. Let r be an
automorphism with order 3. Then, by irreducibility of B3'(D,), v*(83'(D.)=pz'(Dy).
Let x be an arbitrary point of B3'(D,). Consider a stabilizer at z(x). Since z(x)=
BzY(D,), we have o(r(x))=1(x). Moreover, we have o7 '(r(x))=7o(x)=7(x). There-
fore, G.;y=<0, tot™')=&,. Hence, r(x)=x. Since x is an arbitrary point on B3'(D,),
this is a contradiction. Q.E.D.

Now we consider the case that X is a minimal rational surface or an abelian sur-
face. We need the following lemma on connectedness of a divisor on a minimal rational
surface and an abelian surface.

Lemma 3.8. Let D be a divisor on a minimal rational surface or an abelian surface.
Then, the divishr D is one of the following types:
a) 2X=an abelian surface
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a-1) D is connected
a-2) D=E,+ - +E,
E;: an elliptic curve, E.E;=0, for all i, ].
b) X=P?
D 1is connected.
c) 2=F, (a rational ruled surface of degree n, n=2)
c-1) D: connected
c-2) D=fi+ - +fx
fi is a fibre of the fibration F,— P
¢-3) D=s,+D
So 1S a megative section of F,. (i.e., s,=P', si=—n)
D is a divisor linear equivalent to ks. where k is a integer and s. is a positive section
of Fo. (i.e., so=P!, si=n)
d) 2=P'XP!
d-1) D is connected
d-2) D=fi+ - +fa
=P fif;=0, for all i, ].

Proof. Case a), b) and d) is clear. We will prove case c). Let D be a divisor
on F,. Assume that D=D,+D,, D,D,=0, and D,~a,s¢+b:f, D:~a,s,+b,f, where ~
denotes linear equivalence, and f denotes a fibre. If one of D; contains a fibre, then
both D, and D, must be a finite sum of fibers. This is case ¢-2). From now on, we
assume that neither D, nor D, are contained in a fibre. From D,D.=0, we obtain

—na102+axb2+azb1:0, alazio, ai>0, Z:l, 2.
Put e=g.c.d.(a,, a,). Then,
aib.=as(na,—b), asby=ai(na,—b,),

where a,=aie, a,=aje.
Therefore we obtain
{ D,~a,sy+aikf

Dz’\/agsl)—l-aé[f

where k£ and [ are intergers satisfying k-+/=ne. Without loss of generality, we may
assume k<[, i.e., k<[ne/2] ([ ] denotes Gaussian symbol). Then,

Di=—nat+2a,ak=a,a{2k—ne)<0.

Hence D, contains at least one irreducible component whose self-intersection number
<0. We denote it J,.

CLamM. D,=s,.

Proof of Claim. Assume D,~as,+bf, a>0. Then
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{ 5?=a(2b—na)

D.Kr,=na—2a—2b, (Kp,: a canonical divisor of F)

Hence,
D+ DiKp, =(a—1)2b—na)—2a.

Since D, is irreducible, J¢+5J,Kp =—2. So, from an inequality Di=a(2b—na)=<0,
a>0, we conclude a=1. Moreover, soDi=—n+b<—n+2b<0, and equalities can not
hold simultaneously. Therefore, so=2D,, and our claim is proved.

By the above claim, we obtain

{ D:$o+D’
D'~as,
This is the case c-3). Q.E.D.

The rest of this section is devoted to prove the following.

Theorem 3.9. Let p:S—3 be a finite triple covering where both S and X are
smooth surfaces. Assume the following:

1) S is smooth,

2) X is either a minimal rational surface or an abelian surface.

3) the Kodaira dimension &(S) of S is 2.

Then the structures of p, B: D(S/2)—2, and B.: S—D(S/3) are one of the fol-
lowing :

Q) p:S—2 is cyclic.

(ii) p: S—2 is non-Galois and there are two possibilities

ii-a) 2': =an abelian surface, P* and P'XP*.

4(5/%) is an irreducible divisor with ordinary cusps (e.e. (2, 3)-cusp) and a structure
of a triple covering of a small neighborhood of each cusp is isomorphic to Example 3, §2.

ii-b) X=F, (n=2)

If A(S/2%) is irreducible, the structure of p is the same as case ii-a).

If A(S/2) is reducible, then A(S/X)=s,+D where D~as. for some a=N and D is
irreducible and has ordinary cups.

(@) n=2k (ReN) B.:D(S/2)~2 is branched along A4(S/%) and B::S—D(S/3)
s branched at Sing (D(S/2X)).

(8) n=3k (k&N) B,:D(S/2)—Z is branched along D and B,:S—D(S/X) is
branched at B1'(s,) and Sing (D(S/2)).

Remark. 1) If £(S)<2, the above theorem dose not necesserally hold. See Ex-
ample 2, in §2.

2) If Y is a ruled surface whose base curve has a genus greater than 1, then the
above theorem does not necessarily hold. For example, put ¥=CX P! where C is a
curve with g(C)=2. Take a triple covering p: C’'— P! where g(C’)=2. Consider

p:S=CXC’ —> Cx P!
(xr y)_’(x) 5(3’))
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This is a typical counter-example.

Proof of Theorem 3.9. We consider the case that p is non-Galois covering.

Case ii-a) If Y=P? then 4(S/X) is always connected. Therefore, D(S/2) is
either smooth or one of the types in the statement in case ii-a). If 4(S/2%) is smooth,
the fundamental group m,(P*\4(S\2)) is an abelian group. Therefore, p is cyclic.
This is a contradiction. If Y=P!X P! or an abelian surface, a disconnected divisor is
one of the types stated in Lemma 3.5. Therefore, if 4(S/2) is disconnected, then
£k(S)<2. This is a contradiction. Hence 4(S/2Y) is an irreducible divisor and it is
smooth or one of the types in our statement. Assume that 4(S/2) is smooth. In case
2J=P'x P', the fundamental group =,(P'XP\4(S/%Y) is abelian by Catanese [1],
Theorem 1.6. Therefore, the situation is the same as the in case Y=P2. In case 2
is an abelian surface, possible situations are as fojlows:

(1) Bi: D(S/%)—2% is branched at 4(S/%) and B,: S—D(S/Y) is étale.

(2) Bi: D(S/2)>2 is étale and §,: S—D(S/%) is branched at B7'(4(S/2)).

Case (1). Since 4(S/2) is an ample divisor on X, B37'(4(S/2)) is also an ample
divisor on D(S/X). Hence B3'B7'(4(S/2))is ample, and smooth. So, it is an irreduci-
ble divisor. But by Lemma 3.7, this is a contradiction.

Case (2). By the same reason as in case (1), f¥4(S/2) is a smooth ample divisor
on D(S/%), and D(S/%) is an abelian surface. By Tokunaga [8], S¥4(S/X)~3L for a
suitable LePic (D(S/2), and S is embedded in the total space of L. Since deg Bi=2.
A(S/2)~3L for a suitable L ePic(X). (Cf. Catanese [2] Lemma 4) Therefore, L—g%L
€Pic’(D(S/2)). But since both D(S/Y) and X are abelian surfaces and f§; is étale,
Pic’(2)—Pic®(D(S/2)) is surjective (see Mumford [7], p. 81). Therefore, L:[-)*;(L~ +17)
for a unique 7€Pic%(2). Consider a diagram

Xx3sD(S/%) - D(S/2)
2 l B

v
X — 2%
f
where X is a smooth cyclic triple convering branched at 4(S/2) and it is embedded
in the total space of the line bundle L+ Note that 7 is the same as B:.  Therefore,
XxsD(S/3)=8. But this is contradiction, since C(S) is a Galois extension of C(X)
with Galois group ©,. From the above argument ii-a) follows.

Case ii-b). Assume that 4(S/2) is a connected divisor. Then we obtain the same
rosult as in the case ii-a). In the following, we assume that 4(S/2%) is a disconnected
divisor. Then by Lemma 3.5, 4(S/2)=s,+D where D is an effective divisor which is
linearly equivalent to as.. for some a=Z. Possible cases are as follows:

Case (1) B, is branched at s,+D, and B, is branched at Sing (D(S/2%)). In this
case, Sing (D) is donsists of (2, 3)-cusps.

Case (2) B; is branched at s,+D and S, is étale.

Case (3) B: is branched at D, and B, is branched at p¥(s,)\USing (D(S/2)),
(Sing (D(S/2)) may be empty.)
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Remrrk. The case that B, is branched at s, is impossible, since the class of s, in
Pic (2) is not divisible by 2.

Case (1) Since the class of s,+D in Pic(X) is divisible by 2, the integer n of F,
is even. This case is ii-b—(a).
Case (2) B¥(B7YD)) is a smooth irreducible divisor. By Lemma 3.4, this case does

not occur.
Case (3) We can show that the integer n of F, is divisible by 3. Moreover if D

is non-singular, B¥(87%(D)) is a smooth irreducible divisor. Therefore, by Lemma 3.4,
D must be singular. This case is ii-b-(j3). Q.E.D.
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