Triple coverings of algebraic surfaces according to the Cardano formula

By

Hiro-o Tokunaga

§ 0. Introduction

In this article, we consider a triple covering of an algebraic surface. In case of a cyclic covering, that is, its rational function field is obtained by a cyclic extension of degree 3, its structure is well-known. But in case of a non-Galois covering the structure is not well-known. In [6], R. Miranda obtained some results about a non-Galois triple covering by using a rank 2 vector bundle (called the "Tschirnhausen module"). T. Fujita and R. Lazarsfeld proved a beautiful theorem about a non-Galois triple covering over P^n ($n \ge 4$) (see [3], [5]). In this paper, we study a non-Galois triple covering by using the Cardano formula. An outline of our method is as follows:

Let $p: X \rightarrow Y$ be a finite normal triple covering of a normal variety Y. First, we define the discriminant variety D(X/Y) and the minimal splitting variety \hat{X} associated to the triple covering $p: X \rightarrow Y$. For these varieties, we have a commutative diagram:

For details, see § 1 below. To study the triple covering $p: X \rightarrow Y$, we study structures of the morphisms $\beta_1: D(X/Y) \rightarrow Y$, $\beta_2: \hat{X} \rightarrow D(X, Y)$, and $\alpha: \hat{X} \rightarrow X$.

Our main results are as follows:

Proposition 3.1. Let $p: X \rightarrow Y$ be a finite totally ramified triple covering of a smooth projective variety Y. Assume that

- (i) X is smooth,
- (ii) Y is simply connected.

Then, p is cyclic, and the branch locus of p is smooth.

Proposition 3.4. Let $p: S \rightarrow \Sigma$ be a finite triple covering where S and Σ are smooth surfaces. Assume that $\Delta(S/\Sigma)$ (the branch locus of p) is an irreducible divisor and has

Communicated by Prof. Nagata. Received 16 December, 1988.

singularities whose local euations are

$$x^2 + y^{3k} = 0$$
,

where k is a natural number. (For two different singularities, corresponding k may be different.) Then the structures of $\beta_1: D(S/\Sigma) \to \Sigma$, $\beta_2: \hat{S} \to D(S/\Sigma)$ and $\alpha: \hat{S} \to S$ are as follows:

- (i) $D(S/\Sigma)$ is a normal double covering branched at $\Delta(S/\Sigma)$.
- (ii) \hat{S} is a nomal cyclic triple covering of $D(S/\Sigma)$ branched only at $Sing(D(S/\Sigma))$ and singularities of \hat{S} are of A_{k-1} type.
- (iii) There exists an involution ι on \hat{S} , and we obtain S as quotient surface of \hat{S} by ι .

The above result is a slight generalization of the result of R. Miranda [6], Lemma 5.9.

Theorem 3.9. Let $p: S \rightarrow \Sigma$ be a finite triple covering where S and Σ are smooth surfaces. Assume

- (i) the surface \hat{S} is smooth,
- (ii) Σ is either a minimal rational surface or an abelian surface,
- (iii) the Kodaira dimension $\kappa(S)$ of S is 2.

Then, the structures of p, $\beta_1: D(S/\Sigma) \to \Sigma$, and $\beta_2: \hat{S} \to D(S/\Sigma)$ are one of the following:

- (i) $p: S \rightarrow \Sigma$ is a cyclic covering.
- (ii) $p: S \rightarrow \Sigma$ is non-Galois and one of the following occurs:
- ii-a) Σ is an abelian surface, P^2 or $P^1 \times P^1$.

 $\Delta(S/\Sigma)$ is an irreducible divisor with ordinary cusps (i.e. (2, 3)-cusp) and the structure of a triple covering at a small neighborhood of each cusp is isomorphic to Example 3, in § 2.

ii-b) Σ is F_n $(n \ge 2)$.

If $\Delta(S/\Sigma)$ is irreducible, the structure of p is the same as case ii-a).

If $\Delta(S/\Sigma)$ is reducible, then, $\Delta(S/\Sigma)=s_0+D$ where $D\sim as_\infty$ for some $a\in \mathbb{N}$ and D is irreducible with some ordinary cusps.

- (a) n=2k $(k \in \mathbb{N})$, $\beta_1: D(S/\Sigma) \to \Sigma$ is a double covering branched at $\Delta(S/\Sigma)$ and $\beta_2: \hat{S} \to D(S/\Sigma)$ is a cyclic triple covering branched at Sing $(D(S/\Sigma))$.
- (β) n=3k ($k\in \mathbb{N}$), $\beta_j: D(S/\Sigma)\to \Sigma$ is a double covering branched at D and $\beta_2: \widehat{S}\to D(S/\Sigma)$ is a cyclic triple covering branched at $\beta_1^{-1}(s_0)$ and Sing $(D(S/\Sigma))$.

Notations and Conventions. N, Z and C mean natural numbers, integers, and the complex number field, respectively.

k(X): the rational function field of X (k: the ground field).

Sing (X): the singular locus of X.

k(X): the Kodaira dimension of X.

Let $f: X \rightarrow Y$ be a morphism between X and Y where both X and Y are normal varieties.

For $x \in X$, we say that "f is ramified at x", if f is not étale at x.

For $y \in Y$, we say that "f is branched at y", if f is not étale over y.

Therefore a ramification divisor is the divisor on X, and a branch divisor is a divisor on Y.

For a divisor D on Y, $f^{-1}(D)$ denotes a set theoretic inverse of D, and $f^*(D)$ denotes the ordinary pull back of the divisor D.

§ 1. The Cardano formula and preliminaries

In this section, we assume that the ground fields k is algebraically closed and its characteristic is neither equal to 2 nor 3. We review the classical "Cardano formula". Consider an equation

$$x^3 + ax + b = 0 (1.1)$$

where a, b are elements of a field $K (\supset k)$.

As is well-known, we can obtain solutions of the above equation as follows:

Put x=u+v. Then, $(u^3+v^3+b)+(u+v)(3uv+a)=0$. Therefore, to obtain solutions of (1.1), it is sufficient to solve the equations

$$u^3 + v^3 = -b$$

$$uv = -\frac{a}{3}$$

So, we obtain solutions of (1.1) as follows:

$$x_{1} = \sqrt[3]{-\frac{b}{2} + \sqrt{R}} + \sqrt[3]{-\frac{b}{2} - \sqrt{R}}$$

$$x_{2} = \omega\sqrt[3]{-\frac{b}{2} + \sqrt{R}} + \omega^{2}\sqrt[3]{-\frac{b}{2} - \sqrt{R}}$$

$$x_{3} = \omega^{2}\sqrt[3]{-\frac{b}{2} + \sqrt{R}} + \omega\sqrt[3]{-\frac{b}{2} - \sqrt{R}}$$

where $\omega^3=1$, $\omega\neq 1$ and $R=b^2/4+a^3/27$.

Assume $R \in K$. The above process consists of three parts.

- Step 1. We have a quadratic extension $K_1 = K(\theta)$ with $\theta^2 = R$.
- Step 2. We have a cyclic cubic extension $K_2=K_1(\tilde{\theta})$ with $\tilde{\theta}^3=-b/2+R$. K_2 is the minimal splitting field for the equation (1.1). By the assumption on the characteristic of the ground field k, it is a Galois extension of K and its Galois group is isomorphic to \mathfrak{S}_3 (the symmetric group of degree 3).
- Step 3. There exists a K-automorphism $\sigma \in Gal(K_2/K)$ and the solution of (1.1) is contained in its invariant subfield K_2^{σ} .

In the case that R is contained in K, we put $K_1=K$ in the Step 1, and omit the Step 3.

Let $p: X \rightarrow Y$ be a finite triple covering where X and Y are normal projective varieties. Let k(X) and k(Y) be their rational function fields, respectively. We apply the above argument to the fields k(X), k(Y). First, if R is not contained in k(Y), take a quadratic extension of k(Y) corresponding to K_1 in Step 1, and we also denote it K_1 .

If R is contained in k(Y), put $K_1=k(Y)$. Take the K_1 -normalization of Y. (For the definition of the K_1 -normalization, and its properties, see Iitaka [4], § 2.14.).

Definition 1.1. Let $p: X \rightarrow Y$ be a finite triple covering where X and Y are normal projective varieties. By the discriminant variety D(X/Y) of Y, we mean the K_1 -normalization of Y.

Remark. If p is a cyclic covering, D(X/Y) is equal to Y.

Next, we consider a cubic cyclic extension of k(D(X/Y)) corresponding to K_2 in Step 3, and also denote it by K_2 . Take the K_2 -normalization of D(X/Y), and denote it \hat{X} .

Definition 1.2. Let $p: X \rightarrow Y$ be the same as above. We call \hat{X} obtained as above "the minimal splitting variety of X".

Remark. If p is a cyclic covering, \hat{X} is isomorphic to X.

The following proposition is easy to prove, but important in our theory.

Proposition 1.3. Let $p: X \rightarrow Y$ and \hat{X} be the same as above, and $p_1: \hat{X} \rightarrow Y$ be the induced morphism. Then, the birational map over Y induced by an element of $Gal(k(\hat{X})/k(Y))$ is an automorphism of \hat{X} .

Proof. Let σ be an element of $\operatorname{Gal}(k(\hat{X})/k(Y))$. Then σ induces a birational map. $\bar{\sigma}: \hat{X} \cdots \to \hat{X}$. Consider a commutative diagram

Since \hat{X} , Y are projective and p_1 is finite, $\tilde{\sigma}$ is a morphism by Iitaka [4], Theorem 2.21, 2.22. Therefore, $\tilde{\sigma}$ is an isomorphism by Zariski's Main Theorem. Q.E.D.

By Proposition 1.3, if $p: X \to Y$ is not cyclic, we obtain X as a quotient variety of \hat{X} for an automorphism $\tilde{\sigma}$ of order 2 where $\tilde{\sigma}$ is an isomorphism of \hat{X} induced by an element $\sigma \in \operatorname{Gal}(k(\hat{X})/k(Y))$ of order 2. This corresponds to Step 3.

By the argument above, to study a triple dovering $p: X \rightarrow Y$, it is important to study $p_1: \hat{X} \rightarrow Y$, D(X/Y), and the automorphism group induced by the Gajois group $\operatorname{Gal}(k(\hat{X})/k(Y))$. Moreover, in case Y is smooth, the following lemma plays an important role.

Lemma 1.4. Let $\Delta(X/Y)$ and $\Delta(\hat{X}/Y)$ be the branch loci of p and p_1 , respectively. (Both of them are divisors by the purity of the branch locus, Zariski [9].) Then, we have

$$\Delta(X/Y) = \Delta(\hat{X}/Y)$$
.

Proof. Case I. $p: X \rightarrow Y$ is cyclic. In this case, \hat{X} is equal to X. Therefore, our statement is obvious.

Case II. $p: X \rightarrow Y$ is non-Galois. Consider a commutative diagram

where $\alpha: \hat{X} \rightarrow X$ is a double covering, $\beta_1: D(X/Y) \rightarrow Y$ is a double covering, and $\beta_2: X \rightarrow D(X/Y)$ is a cyclic triple covering. Assume $\Delta(\hat{X}/Y) \supseteq \Delta(X/Y)$. (Note that $\Delta(\hat{X}/Y) \supseteq \Delta(X/Y)$.) Let D be an irreducible component of $\Delta(\hat{X}/Y) \searrow \Delta(X/Y)$. Since $p_1: \hat{X} \rightarrow Y$ is a Galois covering, p*D is a part of the branch divisors of α . (Notice that p*D is a reduced divisor.) Consider the action of automorphism group induced by $\operatorname{Gal}(k(\hat{X})/k(Y))$ on a neighborhood of smooth parts of p^*_1D . Then, we know that the components of p^*_1D is fixed by the automorphism $\tilde{\sigma}$ of order 2 by which we have $X = \hat{X}/\langle \tilde{\sigma} \rangle$ (See Figure 1.) This means that $\sigma \in \operatorname{Gal}(k(\hat{X})/k(Y))$ inducing $\tilde{\sigma}$ commutes with an element of order 3 of $\operatorname{Gal}(k(\hat{X})/k(Y))$. This contradicts to the assumption that $\operatorname{Gal}(k(\hat{X})/k(Y))$ is the third symmetric group.

§ 2. Typical examples

In this section, we consider typical examples of triple coverings.

Examples 1. Put $Y = P^1$. Let X be obtained by $C(P^1)(\theta)$ -normalization of Y, where θ satisfies an equation $X^3 + X + t = 0$, and t is an inhomogeneous coordinate of P^1 . We will consider the structure of \hat{X} , $D(X/P^1)$ and the action of an automorphism group induced by $Gal(C(\hat{X})/C(P^1))$ for X and P^1 . Note that $Gal(C(\hat{X})/C(P^1))$ is isomorphic to the symmetric group \mathfrak{S}_3 of degree 3. Note that we have $R = 27t^2 + 4$.

Since $C(D(X/\mathbf{P}^1)) = C(\mathbf{P}^1)(\sqrt{R})$, the double covering $D(X/\mathbf{P}^1) \to \mathbf{P}^1$ is illustrated os follows:

Therefore, $D(X/\mathbf{P}^1) \cong \mathbf{P}^1$, and $\beta_1 : D(X/\mathbf{P}^1) \to \mathbf{P}^1$ is given by

$$\beta_1: z \longmapsto -\frac{2\sqrt{-1}}{3\sqrt{3}} \frac{z^2+1}{z^2-1} \quad (=t).$$

where z is a suitable inhomogeneous coordinate of $D(X/\mathbb{P}^1)$. Using the above coordinate z, we obtain

$$\begin{cases} \sqrt{\beta_1^* R} = \frac{2\sqrt{-1}}{3\sqrt{3}} \frac{z}{z^2 - 1} \\ \beta_1^* t = \frac{2\sqrt{-1}}{3\sqrt{3}} \frac{z^2 + 1}{z^2 - 1} \end{cases}$$

and

$$-\frac{1}{2}\beta_1^*t + \beta_1^*R = \frac{\sqrt{-1}}{3\sqrt{3}}\frac{z+1}{z-1}.$$

Since

$$C(X) = C(D(X/\mathbf{P}^1)) \left(\sqrt[2]{-\frac{1}{2}\beta_1^*t + \sqrt{\beta_J^*R}}\right)$$
$$= C(D(X/\mathbf{P}^1)) \left(\sqrt[2]{\sqrt{-1/3}\sqrt{3}\frac{z+1}{z+1}}\right),$$

The cyclic triple convering $\hat{X} \rightarrow D(X/P^1)$ is illustrated as follows:

$$\hat{X}$$

$$\downarrow \beta_2$$
 $D(X/P^1)$
(Figure 3)

Therefore, $\hat{X} \cong P^1$, and the morphism $\beta_2 : \hat{X} \rightarrow D(X/P^1)$ is given by

$$\beta_2: w \longmapsto -\frac{w^3+1}{w^3-1} \quad (=z),$$

where w is a suitable inhomogeneous coordinate of \hat{X} . Next, let us consider the action of an automorphism group induced by $\operatorname{Gal}(C(\hat{X})/C(P^1))$. On $D(X/P^1)$, there is an in-

volution σ which is induced by the non-trivial element of $\operatorname{Gal}(C(D(X/\mathbf{P}^1)/C(\mathbf{P}^1)))$. By using the above coordinate z, this is represented by

$$\sigma: z \longmapsto -z$$
.

This involution induces an involution $\tilde{\sigma}$ on \hat{X} . By using the above coordinate w, $\tilde{\sigma}$ is represented by

$$\tilde{\sigma}: w \longmapsto \frac{1}{w}$$
.

Finally, let us consider the action of an automorphism τ of order 3 induced by an element of order 3 in Gal $(C(X)/C(P^1))$. Then, τ is represented by

$$\tau: w \longmapsto \varepsilon w$$
,

where
$$\varepsilon = \exp\left(\frac{2\pi\sqrt{-1}}{3}\right)$$
.

By the above argument, we obtain the structure of $D(X/P^1)$, \hat{X} and the action of the automorphism group induced by $\operatorname{Gal}(C(\hat{X})/C(P^1))$. The following figure explains relations between P^1 , $D(X/P^1)$, \hat{X} and X.

Example 2 (Corollary to Example 1). Put $Y = P^2$ and let $[z_0 : z_1 : z_2]$ be homogeneous coordinates of P^2 . Let X be a finite triple covering defined by the $C(P^2)(\theta)$ -normalization of P^2 , where θ satisfies an equation $x^3 + x + (z_1/z_0) = 0$. Then, the minimal resolution of X is a rational ruled surface of degree 3, that is $P(\mathcal{O}_{P^1} \oplus \mathcal{O}_{P^1}(3))$. And X is obtained by contracting its negative section.

This fact is easily proved by blowing up at [0:0:1] and we reducing the problem to Example 1.

Example 3. Put $X=C^2$, $Y=C^2$ and consider a covering

$$\pi: X \longrightarrow Y$$

$$(x, y) \longmapsto (u, v) = (x v, x^3 + v^3).$$

Clearly, X is a Galois covering of Y with Gal(X/Y) isomorphic to \mathfrak{S}_3 . The Galois group \mathfrak{S}_3 acts on X by

$$\sigma: (x, y) \longmapsto (y, x)$$

$$\tau: (x, y) \longmapsto (\varepsilon x, \varepsilon^2 y)$$

where $\varepsilon = \exp\left(\frac{2\pi\sqrt{-1}}{3}\right)$, $\mathfrak{S}_3 = \langle \sigma, \tau \rangle$, $\sigma^2 = \tau^3 = (\sigma\tau)^2 = 1$. Consider a diagram

$$X \qquad \qquad X \qquad$$

Let us analyse $X/\langle \sigma \rangle$, $X/\langle \tau \rangle$ and their ramification loci. The morphism $\varphi_{\langle \sigma \rangle}$, $\varphi_{\langle \tau \rangle}$, $\pi_{\langle \sigma \rangle}$, and $\pi_{\langle \tau \rangle}$ are written explicitly as follows:

$$\varphi_{\langle \sigma \rangle} \colon X \longrightarrow X/\langle \sigma \rangle \cong C^{2}$$

$$(x, y) \longmapsto (z, w) = (x + y, xy)$$

$$\pi_{\langle \sigma \rangle} \colon X/\langle \sigma \rangle \longrightarrow Y$$

$$(z, w) \longmapsto (u, v) = (w, z^{3} - 3zw)$$

$$\varphi_{\langle \tau \rangle} \colon X \longrightarrow X/\langle \tau \rangle \cong \operatorname{Spec}(C[t_{1}, t_{2}, t_{3}]/(t_{3}^{2} - t_{1}t_{2}))$$

$$(x, y) \longmapsto (\bar{t}_{1}, \bar{t}_{2}, \bar{t}_{3}) = (x^{3}, y^{3}, xy)$$

Note that $X/\langle \sigma \rangle$ has a unique singularity and it is an A_2 singularity. The morphism $\pi_{\langle \tau \rangle}$ is given by

$$\pi_{\langle \tau \rangle} \colon X/\langle \tau \rangle \longrightarrow Y$$

$$(\bar{t}_1, \, \bar{t}_2, \, \bar{t}_3) \longmapsto (u, \, v) = (\bar{t}_3, \, \bar{t}_1 + \bar{t}_2)$$

The ramification locus R_z of π is a divisor defined by an equation $(y-x)(y-\varepsilon x)\cdot (y-\varepsilon^2 x)=0$ where $\varepsilon=\exp(2\pi\sqrt{-1}/3)$. The support $\pi(R_z)$ is a divisor B_π on Y defined by an equation $(v^2/4)-u^3=0$. Let us consider the ramification loci of $\varphi_{\langle\sigma\rangle}$ and $\pi_{\langle\sigma\rangle}$. The ramification locus $\varphi_{\langle\sigma\rangle}$ is a divisor defined by an equation y-x=0. The support of its image of $\varphi_{\langle\sigma\rangle}$ is a divisor defined by an equation $w-(1/4)z^2=0$. Similarly, we obtain the ramification locus of $\pi_{\langle\sigma\rangle}$, and it is a divisor on $X/\langle\sigma\rangle$ defined by an equation $w-z^2=0$. Note that images of $w-(1/4)z^2=0$ and $w-z^2=0$ are the same divisor on Y defined by an equation $(v^2/4)-u^3=0$. Finally, let us consider the ramification loci of $\varphi_{\langle\tau\rangle}$ and $\pi_{\langle\tau\rangle}$. It is clear that the ramification locus of $\varphi_{\langle\tau\rangle}$ is one point (0,0). And its image of $\varphi_{\langle\tau\rangle}$ is the unique A_2 singularity of $X/\langle\tau\rangle$. The ramification locus of $\pi_{\langle\tau\rangle}$ is $(\pi^{-1}(B_\pi))_{\rm red}$. The following figure explains the above results.

Remark. In the above example, $\pi_{\langle \sigma \rangle} \colon X/\langle \sigma \rangle \to Y$ is a non-Galois triple covering. This is a typical example for the case of dimension 2. Locally, it is the same triple covering as the "generic triple covering of a surface" in the sense of Miranda [6].

§ 3. Applications

In this section, the ground field is always the complex number field C.

(I) A totally ramified triple covering. Let $p: X \rightarrow Y$ be a finite triple covering of a smooth projective variety Y. We call p totally ramified, if for any irreducible component of the ramification divisors of p, its ramification index is equal to 3. For a totally ramified triple covering, we have the following:

Proposition 3.1. Let $p: X \rightarrow Y$ be a finite totally ramified triple covering of a smooth projective variety Y. Assume that

- (i) X is smooth,
- (ii) Y is simply connected.

Then, p is cyclic, and the branch locus of p is smooth.

Proof. Assume that p is not cyclic. Then, from the arguments in § 1, there exists varieties D(X/Y) and \hat{X} . For these two varieties, there exists the commutative diagram

Since $\operatorname{Gal}(C(\widehat{X})/C(Y))$ is isomorphic to \mathfrak{S}_3 , there is no ramification point of p_1 whose ramification index is equal to 6. Hence, by lemma 1.4, α is étale. But this fact indicates that β_1 is étale. Since D(X/Y) is irreducible and Y is simply connected, this is a contradiction. By Proposition 3.3, [8], it is easy to show that the branch locus of p is smooth. Q.E.D.

As is well-known, a trigonal curve is a curve which has a rational function of degree 3. Hence, we can regard C as a triple covering of P^1 . As an easy application of the above proposition, we have the following.

Corollary 3.2. Let $p: C \rightarrow P^1$ be a triple covering. We denote the branch points of p by $\mathfrak{p}_1, \dots, \mathfrak{p}_r$ $(r \ge 2)$. Assume that $p^{-1}(\mathfrak{p}_t)$ $(i=1, \dots, r)$ consists of one point, that is, the ramification index of $p^{-1}(\mathfrak{p}_t)$ is 3. Then, $p: C \rightarrow P^1$ is a cyclic triple covering.

Remark 3.3. We can easily determine the cubic equation corresponding to the above triple covering $p: C \rightarrow P^1$. There are three types.

(Type I)
$$X^3 + \frac{(t-\mathfrak{p}_1)\cdots(t-\mathfrak{p}_r)}{t^r} = 0 \quad r \equiv 0 \pmod{3}$$

(Type II)
$$X^3 + \frac{(t-\mathfrak{p}_1)\cdots(t-\mathfrak{p}_{r-2})(t-\mathfrak{p}_{r-1})^2(t-\mathfrak{p}_r)^2}{t^{r+1}} = 0$$
 $r \equiv 1 \pmod{3}$

(Type III)
$$X^3 + \frac{(t-\mathfrak{p}_1)\cdots(t-\mathfrak{p}_{r-1})(t-\mathfrak{p}_r)^2}{t^{r+1}} = 0$$
 $r \equiv 2 \pmod{3}$

where t is an inhomogeneous coordinate of P^1 .

(II) Triple coverings of surfaces. In this part, we study a triple covering of a surface. Let $p: S \rightarrow \Sigma$ be a finite triple covering where both S and Σ are smooth surfaces. By \hat{S} and $D(S/\Sigma)$, we denote the minimal splitting surface and the discriminant surface, respectively.

Proposition 3.4. Let $p: S \to \Sigma$ be the same as above. Assume that $\Delta(S/\Sigma)$ (the branch locus of p) is an irreducible divisor and has singularities whose local equations are $x^2 + y^{3k} = 0$ where k is a natural number. (For two different singularities, corresponding k may be different.) Then, the structures of $\beta_1: D(S/\Sigma) \to \Sigma$, $\beta_2: \hat{S} \to D(S/\Sigma)$ and $\alpha: \hat{S} \to S$ are as follows:

- (i) $D(S/\Sigma)$ is a normal double covering of Σ branched along $\Delta(S/\Sigma)$.
- (ii) \hat{S} is a normal cyclic triple covering of $D(S/\Sigma)$ branched only at $Sing(D(S/\Sigma))$ and singularities of \hat{S} are of A_{k-1} type.

(iii) There exists an involution ι on \hat{S} such that S is obtained the quotient surface of \hat{S} by ι , and α is regarded as the quotient map.

Proof. By the argument in § 1, the statement (iii) is clear. First we prove the following:

CLAIM 3.5. $p: S \rightarrow \Sigma$ is not a cyclic covering.

Proof of Claim 3.5. Assume that p is cyclic. Then, since $\Delta(S/\Sigma)$ is an irreducible divisor and deg p=3, S is embedded in a total space of a line bundle over Σ . (See Tokunaga [8]. Proposition 3.3.) But in this case, S is singular. Therefore, p is not cyclic. When p is not cyclic, we have a diagram

where β_1 is a double covering, β_2 is a cyclic triple covering, and α is a double covering. Since $\Delta(S/\Sigma)$ is an irreducible divisor, there are three possibilities.

- 1) Both β_1 and β_2 are ramified at divisors, that is, β_1 is ramified to $\Delta(S/\Sigma)$ and β_2 is ramified at $\beta_1^{-1}\Delta(S/\Sigma)$.
 - 2) β_1 is branched at $\Delta(S/\Sigma)$, but β_2 is not ramified at $\beta_1^{-1}(\Delta(S/\Sigma))$.
 - 3) β_2 is branched at $\beta_1^{-1}(\Delta(S/\Sigma))$ and β_1 étale.

Case 1). In this case, the Galois covering $p_1: \hat{S} \to \Sigma$ is branched at $\Delta(S/\Sigma)$ and the ramification index of $p_1^{-1}(\Delta(S/\Sigma))$ is equal to 6. Consider the action of the Galois group at a smooth point of $p_1^{-1}(\Delta(S/\Sigma))$. Then, $\operatorname{Gal}(C(\hat{S})/C(\Sigma))$ have an element of order 6. This is a contradiction.

Case 2). In this case, $D(S/\Sigma)$ is a normal surface with A_{k-1} singularities. There are two possibilities

2-a) β_2 is étable, 2-b) β_2 is ramified.

Case 2—a). Let x be one of singularities on $D(S/\Sigma)$. Then, $\beta_2^{-1}(x)$ consists of 3 points which are A_{3k-1} singularities. Since S is smooth, the branch locus of α is a divisor on S by the purity of branch locus (see Zariski [9]). Moreover, $\alpha(\beta_2^{-1}(x))$ is contained in this divisor. This means that at least one of 3 points of $\beta_2^{-1}(x)$ has the stabilizer group \mathfrak{S}_3 . This is a contradiction.

Case 2—b). By case 1), β_2 is branched at most some points. By the purity of a branch locus, they are singular points. Moreover, by the proof of 2—a), they consist of all singularities of $D(S/\Sigma)$. Let x be one of singularities and let U be its small neighborhood. Since singularities are all of type A_{3k-1} , we can take U in such a way that there is $V(\subset C^2)$ a small neighborhood $V(\subset C^2)$ of origin of C^2 and that $\pi: V \to U$ is the quotient map by the group action of $\mathbb{Z}/3k\mathbb{Z}$. Moreover, $\pi|_{V\setminus\{0,0\}}: V\setminus\{0,0\}\to U\setminus\{x\}$ is étale. Since the local fundamental group $\pi_1(U\setminus\{x\})$ is isomorphic to $\mathbb{Z}/3k\mathbb{Z}$ and $\beta_2|_{\beta_2^{-1}(U\setminus\{x\})}$ is cyclic and étale. $\beta_2^{-1}(U)\setminus\beta_2^{-1}(x)$ is isomorphic to a quotient space

of $V \setminus (0, 0)$ by a subgroup Z/kZ. Moreover, since \hat{S} is normal double covering of S, $\beta_2^{-1}(x)$ is an isolated hypersurface singularity. Therefore, $\beta_2^{-1}(x)$ is an isolated hypersurface singularity. Therefore, $\beta_2^{-1}(x)$ is an A_{k-1} singularity.

Case 3). Clearly, $D(S/\Sigma)$ is smooth, and $\beta_2^{-1}(\Delta(S/\Sigma))$ has singularities. Therefore, \hat{S} must be singular by Tokunaga [8]. Proposition 1.1. Hence α is not étale. Let x be smooth point of $\Delta(S/\Sigma)$, and let U be its small neighborhood. Consider a ramification index of $\beta_2^{-1}\beta_1^{-1}(\Delta(S/\Sigma)) \cap p_1^{-1}(U)$ and $\alpha^{-1}p^{-1}(\Delta(S/\Sigma)) \cap p_1^{-1}(U)$. They are equal to each other. But the ramification index of $\beta_2^{-1}\beta_1^{-1}(\Delta(S/\Sigma)) \cap p_1^{-1}(U)$ is equal to 3 and the ramification index of $\alpha^{-1}p^{-1}(\Delta(S/\Sigma)) \cap p_1^{-1}(U)$ is even number because of α is a double cover. This is a contradiction.

By Cases 1), 2), and 3), only the possible case is Case 2-b). This proves proposition.

Q.E.D.

Next, we consider the case that \hat{S} is a smooth surface. In the following, α , β_1 , β_2 p_0 mean the same morphisms which appear in the proof of Proposition 3.1, and \hat{S} is always smooth.

First, we analyse the ramification divisor of $p_1: \hat{S} \to \Sigma$. Let \hat{R} , $\Delta(\hat{S}/\Sigma)(=\Delta(S/\Sigma))$ be the ramification locus and the branch locus of p_1 , respectively. Let x be a point of \hat{R} . Then, a stabilizer at x (we denote it G_x) is a non-trivial subgroup of $\operatorname{Gal}(C(\hat{S})/C(\Sigma))$. In the case that p is cyclic, $G_x \cong \mathbb{Z}/3\mathbb{Z}$ by Catanese [1], Proposition 1.1. In the case that p is not cyclic, there are three cases

1) $|G_x|=2$, 2) $|G_x|=3$, 3) $|G_x|=6$, i.e., $G_x\cong\mathfrak{S}_3$ where $|G_x|$ is the order of the group G_x .

Case 1) By taking a suitable system of local coordinates, (u, v), the action of G_x is one of the following:

- a) $\sigma:(u,v)\to(-u,-v)$
- b) $\sigma:(u,v)\to(-u,v)$

where $G_x = \langle \sigma \rangle$, $\sigma^2 = id$.

In case a), a quotient surface $\hat{S}/\langle\sigma\rangle$ has an A_1 singularity. On the other hand, there is an isomorphism over $C(\Sigma)$ between C(S) and $C(\hat{S}/\langle\sigma\rangle)$. Since $\hat{S}/\langle\sigma\rangle$ is normal and finite over Σ , $\hat{S}\langle\sigma\rangle$ is isomorphic to S by Iitaka [4], Theorem 2.21, 2.22. Since S is a contradiction. In case b), there exists a smooth divisor through x and for all points on it, the stabilizer group is isomorphic to Z/2Z.

Case 2) By taking a suitable system of local coordinate at x, the action of G_x is one of the following:

- a) $\tau:(u,v)\mapsto(\varepsilon u,\,\varepsilon^2 v)$
- b) $\tau:(u,v)\mapsto(\varepsilon u,\varepsilon v)$
- c) $\tau:(u,v)\mapsto(\varepsilon u,v)$

$$G_x = \langle \tau \rangle$$
, $\tau^s = id$, and $\varepsilon = \exp\left(\frac{2\pi\sqrt{-1}}{3}\right)$.

Since \mathfrak{S}_3 has a unique subgroup of order 3, the rational function field of the quotient surface \hat{S}/G_x coincides with $C(D(S/\Sigma))$. By the uniquness of $C(D(S/\Sigma))$ -normalition of Σ (see Iitaka [4], §2.14), \hat{S}/G_x is equal to $D(S/\Sigma)$. Since $D(S/\Sigma)$ is a normal double covering, singularities of $D(S/\Sigma)$ must be hypersurface singularities. Therefore

case b) does not occur, because in case b), $\hat{S}/\langle \tau \rangle$ has a rational triple point which can not be a hypersurface singularity. In case a), $\hat{S}/\langle \tau \rangle (=D(S/\Sigma))$ has an A_2 singularity. Since Σ is smooth, β_1 is not étale. Therefore, by the purity of branch loci, there exists a divisor on Σ which passes through $\beta_1(x)$, and $\beta_1:D(S/\Sigma)\to \Sigma$ is branched over its divisor. This show that the order of G_x is equal to 6. This is a contradiction. In case c), there exists a smooth divisor through x, and for all points on it, the stabilizer group is isomorphic to $\mathbb{Z}/3\mathbb{Z}$.

Case 3) By taking a suitable local coordinate system, the action of $G_x(\cong \mathfrak{S}_3)$ is represented as follows:

$$\begin{split} \sigma: (u, v) &\longmapsto (v, u) \\ \tau: (u, v) &\longmapsto (\varepsilon u, \varepsilon^2 v) \\ G_x &= \langle \sigma, \tau \rangle \quad \sigma^2 = \tau^3 = (\sigma \tau)^2 = id, \text{ and } \varepsilon = \exp\left(\frac{2\pi\sqrt{-1}}{3}\right). \end{split}$$

Hence, in this case, the situation is the same as Example 3 in § 2. Thus, we obtain the following result.

Lemma 3.6. Let $p: S \rightarrow \Sigma$ be a finite triple covering where both S and Σ are smooth surfaces. Assume that p is not étale and \hat{S} is smooth. Then, if p is cyclic, the branch locus is a smooth divisor, while if p is not cyclic, there are two cases

- (a) the branch divisor is a smooth divisor.
- (b) the branch divisor has singular points and its singularities are all ordinary cups. (i. e., (2, 3)-cusp)

Lemma 3.7. Let D be a divisor on $D(S/\Sigma)$ contained in the ramification locus of β_1 . $D(S/\Sigma)$. Assume that D is smooth. Let D_1 be an irreducible component of D. Then, $\beta_2^{-1}(D_1)$ consists of 3 components which are isomorphic to each other.

Proof. Since $p_1: \hat{S} \to \Sigma$ is Galois, $\beta_2^{-1}(D)$ is either irreducible or reducible with 3 components which are isomorphic to each other. Assume that $\beta_2^{-1}(D_1)$ is irreducible. Clearly, $\beta_2^{-1}(D_1)$ is a component of the ramification divisor of p_1 . Therefore, there exists an automorphism σ such that $\sigma(x) = x$ for $x \in \beta_2^{-1}(D_1)$ and $\sigma^2 = id$. Let τ be an automorphism with order 3. Then, by irreducibility of $\beta_2^{-1}(D_1)$, $\tau^*(\beta_2^{-1}(D_1)) = \beta_2^{-1}(D_1)$. Let x be an arbitrary point of $\beta_2^{-1}(D_1)$. Consider a stabilizer at $\tau(x)$. Since $\tau(x) \in \beta_2^{-1}(D_1)$, we have $\sigma(\tau(x)) = \tau(x)$. Moreover, we have $\tau \sigma \tau^{-1}(\tau(x)) = \tau \sigma(x) = \tau(x)$. Therefore, $G_{\tau(x)} = \langle \sigma, \tau \sigma \tau^{-1} \rangle \cong \mathfrak{S}_3$. Hence, $\tau(x) = x$. Since x is an arbitrary point on $\beta_2^{-1}(D_1)$, this is a contradiction.

Now we consider the case that Σ is a minimal rational surface or an abelian surface. We need the following lemma on connectedness of a divisor on a minimal rational surface and an abelian surface.

Lemma 3.8. Let D be a divisor on a minimal rational surface or an abelian surface. Then, the divishr D is one of the following types:

a) $\Sigma = an \ abelian \ surface$

- a-1) D is connected
- a-2) $D=E_1+\cdots+E_n$

 E_i : an elliptic curve, $E_iE_j=0$, for all i, j.

b) $\Sigma = P^2$

D is connected.

- c) $\Sigma = F_n$ (a rational ruled surface of degree $n, n \ge 2$)
- c-1) D: connected
- c-2) $D=f_1+\cdots+f_n$

 f_i is a fibre of the fibration $F_n \rightarrow P^1$.

 $c-3) D=s_0+D$

 s_0 is a negative section of F_n . (i.e., $s_0 \cong P^1$, $s_0^2 = -n$)

D is a divisor linear equivalent to ks_{∞} where k is a integer and s_{∞} is a positive section of F_n . (i.e., $s_{\infty} \cong P^1$, $s_{\infty}^2 = n$)

- d) $\Sigma = P^1 \times P^1$
- d-1) D is connected
- d-2) $D=f_1+\cdots+f_n$ $f_i \cong P^1, f_i f_j=0, for all i, j.$

Proof. Case a), b) and d) is clear. We will prove case c). Let D be a divisor on F_n . Assume that $D=D_1+D_2$, $D_1D_2=0$, and $D_1\sim a_1s_0+b_1f$, $D_2\sim a_2s_0+b_2f$, where \sim denotes linear equivalence, and f denotes a fibre. If one of D_i contains a fibre, then both D_1 and D_2 must be a finite sum of fibers. This is case c-2). From now on, we assume that neither D_1 nor D_2 are contained in a fibre. From $D_1D_2=0$, we obtain

$$-na_1a_2+a_1b_2+a_2b_1=0$$
, $a_1a_2\neq 0$, $a_i>0$, $i=1, 2$.

Put $e=g.c.d.(a_1, a_2)$. Then,

$$a_1'b_2 = a_2'(na_1 - b_1), \qquad a_2'b_1 = a_1'(na_2 - b_2),$$

where $a_1 = a'_1 e$, $a_2 = a'_2 e$.

Therefore we obtain

$$\begin{cases}
D_{1} \sim a_{1} s_{0} + a'_{1} k f \\
D_{2} \sim a_{2} s_{0} + a'_{2} l f
\end{cases}$$

where k and l are intergers satisfying k+l=ne. Without loss of generality, we may assume $k \le l$, i.e., $k \le \lfloor ne/2 \rfloor$ ([]] denotes Gaussian symbol). Then,

$$D_1^2 = -na_1^2 + 2a_1a_1'k = a_1a_1'(2k - ne) \le 0$$
.

Hence D_1 contains at least one irreducible component whose self-intersection number ≤ 0 . We denote it \tilde{D}_1 .

CLAIM. $\widetilde{D}_1 = s_0$.

Proof of Claim. Assume $\tilde{D}_1 \sim as_0 + bf$, a > 0. Then

$$\left\{ \begin{array}{l} \tilde{D}_{1}^{2} = a(2b-na) \\ \tilde{D}_{1}K_{F_{n}} = na-2a-2b, \qquad (K_{F_{n}}: \text{ a canonical divisor of } F) \end{array} \right.$$

Hence.

$$\tilde{D}_1^2 + \tilde{D}_1 K_{F_n} = (a-1)(2b-na)-2a$$
.

Since \tilde{D}_1 is irreducible, $\tilde{D}_1^2 + \tilde{D}_1 K_{F_n} \ge -2$. So, from an inequality $\tilde{D}_1^2 = a(2b - na) \le 0$, a > 0, we conclude a = 1. Moreover, $s_0 \tilde{D}_1 = -n + b \le -n + 2b \le 0$, and equalities can not hold simultaneously. Therefore, $s_0 = \tilde{D}_1$, and our claim is proved.

By the above claim, we obtain

$$\begin{cases}
D = s_0 + D' \\
D' \sim a s_\infty
\end{cases}$$

This is the case c-3).

Q.E.D.

The rest of this section is devoted to prove the following.

Theorem 3.9. Let $p: S \rightarrow \Sigma$ be a finite triple covering where both S and Σ are smooth surfaces. Assume the following:

- 1) \hat{S} is smooth,
- 2) Σ is either a minimal rational surface or an abelian surface.
- 3) the Kodaira dimension $\kappa(S)$ of S is 2.

Then the structures of p, $\beta: D(S/\Sigma) \to \Sigma$, and $\beta_2: \hat{S} \to D(S/\Sigma)$ are one of the following:

- (i) $p: S \rightarrow \Sigma$ is cyclic.
- (ii) $p: S \rightarrow \Sigma$ is non-Galois and there are two possibilities
- ii-a) $\Sigma := an \ abelian \ surface, \ P^2, \ and \ P^1 \times P^1.$

 $\Delta(S/\Sigma)$ is an irreducible divisor with ordinary cusps (e.e. (2, 3)-cusp) and a structure of a triple covering of a small neighborhood of each cusp is isomorphic to Example 3, § 2.

ii-b)
$$\Sigma = F_n \ (n \ge 2)$$

If $\Delta(S/\Sigma)$ is irreducible, the structure of p is the same as case ii-a).

If $\Delta(S/\Sigma)$ is reducible, then $\Delta(S/\Sigma)=s_0+D$ where $D\sim as_\infty$ for some $a\in \mathbb{N}$ and D is irreducible and has ordinary cups.

- (a) n=2k $(k \in \mathbb{N})$ $\beta_1: D(S/\Sigma) \to \Sigma$ is branched along $\Delta(S/\Sigma)$ and $\beta_2: \hat{S} \to D(S/\Sigma)$ is branched at Sing $(D(S/\Sigma))$.
- (β) n=3k ($k \in \mathbb{N}$) $\beta_1: D(S/\Sigma) \to \Sigma$ is branched along D and $\beta_2: \hat{S} \to D(S/\Sigma)$ is branched at $\beta_1^{-1}(s_0)$ and $Sing(D(S/\Sigma))$.

Remark. 1) If $\kappa(S) < 2$, the above theorem dose not necesserally hold. See Example 2, in § 2.

2) If Σ is a ruled surface whose base curve has a genus greater than 1, then the above theorem does not necessarily hold. For example, put $\Sigma = C \times P^1$ where C is a curve with $g(C) \ge 2$. Take a triple covering $\tilde{p}: C' \to P^1$ where $g(C') \ge 2$. Consider

$$p: S = C \times C' \longrightarrow C \times \mathbf{P}^1$$
$$(x, y) \longrightarrow (x, \tilde{p}(y))$$

This is a typical counter-example.

Proof of Theorem 3.9. We consider the case that p is non-Galois covering.

Case ii-a) If $\Sigma = P^2$, then $\Delta(S/\Sigma)$ is always connected. Therefore, $D(S/\Sigma)$ is either smooth or one of the types in the statement in case ii-a). If $\Delta(S/\Sigma)$ is smooth, the fundamental group $\pi_1(P^2 \setminus \Delta(S \setminus \Sigma))$ is an abelian group. Therefore, p is cyclic. This is a contradiction. If $\Sigma = P^1 \times P^1$ or an abelian surface, a disconnected divisor is one of the types stated in Lemma 3.5. Therefore, if $\Delta(S/\Sigma)$ is disconnected, then $\kappa(S) < 2$. This is a contradiction. Hence $\Delta(S/\Sigma)$ is an irreducible divisor and it is smooth or one of the types in our statement. Assume that $\Delta(S/\Sigma)$ is smooth. In case $\Sigma = P^1 \times P^1$, the fundamental group $\pi_1(P^1 \times P^1 \setminus \Delta(S/\Sigma))$ is abelian by Catanese [1], Theorem 1.6. Therefore, the situation is the same as the in case $\Sigma = P^2$. In case Σ is an abelian surface, possible situations are as follows:

- (1) $\beta_1: D(S/\Sigma) \to \Sigma$ is branched at $\Delta(S/\Sigma)$ and $\beta_2: \hat{S} \to D(S/\Sigma)$ is étale.
- (2) $\beta_1: D(S/\Sigma) \to \Sigma$ is étale and $\beta_2: \hat{S} \to D(S/\Sigma)$ is branched at $\beta_1^{-1}(\Delta(S/\Sigma))$.

Case (1). Since $\Delta(S/\Sigma)$ is an ample divisor on Σ , $\beta_j^{-1}(\Delta(S/\Sigma))$ is also an ample divisor on $D(S/\Sigma)$. Hence $\beta_2^{-1}\beta_1^{-1}(\Delta(S/\Sigma))$ is ample, and smooth. So, it is an irreducible divisor. But by Lemma 3.7, this is a contradiction.

Case (2). By the same reason as in case (1), $\beta_1^* \underline{\mathcal{A}}(S/\Sigma)$ is a smooth ample divisor on $D(S/\Sigma)$, and $D(S/\Sigma)$ is an abelian surface. By Tokunaga [8], $\beta_1^* \underline{\mathcal{A}}(S/\Sigma) \sim 3L$ for a suitable $L \in \operatorname{Pic}(D(S/\Sigma))$, and \hat{S} is embedded in the total space of L. Since $\deg \beta_1 = 2$. $\underline{\mathcal{A}}(S/\Sigma) \sim 3\tilde{L}$ for a suitable $\tilde{L} \in \operatorname{Pic}(\Sigma)$. (Cf. Catanese [2] Lemma 4) Therefore, $L - \beta_1^* \tilde{L} \in \operatorname{Pic}(D(S/\Sigma))$. But since both $D(S/\Sigma)$ and Σ are abelian surfaces and β_1 is étale, $\operatorname{Pic}(\Sigma) \to \operatorname{Pic}(D(S/\Sigma))$ is surjective (see Mumford [7], p. 81). Therefore, $L = \beta_1^* (\tilde{L} + \tau)$ for a unique $\tau \in \operatorname{Pic}(\Sigma)$. Consider a diagram

$$\begin{array}{c} X \times_{\Sigma} D(S/\Sigma) \xrightarrow{\widetilde{f}} D(S/\Sigma) \\ \downarrow g & \downarrow \beta_1 \\ X \xrightarrow{f} & \Sigma \end{array}$$

where X is a smooth cyclic triple convering branched at $\Delta(S/\Sigma)$ and it is embedded in the total space of the line bundle $\widetilde{L}+\tau$. Note that \widetilde{f} is the same as β_2 . Therefore, $X\times_{\Sigma}D(S/\Sigma)\cong \widehat{S}$. But this is contradiction, since $C(\widehat{S})$ is a Galois extension of $C(\Sigma)$ with Galois group \mathfrak{S}_3 . From the above argument ii-a) follows.

Case ii-b). Assume that $\Delta(S/\Sigma)$ is a connected divisor. Then we obtain the same result as in the case ii-a). In the following, we assume that $\Delta(S/\Sigma)$ is a disconnected divisor. Then by Lemma 3.5, $\Delta(S/\Sigma)=s_0+D$ where D is an effective divisor which is linearly equivalent to as_{∞} for some $a \in \mathbb{Z}$. Possible cases are as follows:

Case (1) β_1 is branched at s_0+D , and β_2 is branched at Sing $(D(S/\Sigma))$. In this case, Sing (D) is consists of (2, 3)-cusps.

Case (2) β_j is branched at $s_0 + D$ and β_2 is étale.

Case (3) β_1 is branched at D, and β_2 is branched at $\beta_1^*(s_0) \cup \text{Sing}(D(S/\Sigma))$, (Sing $(D(S/\Sigma))$) may be empty.)

Remrk. The case that β_1 is branched at s_0 is impossible, since the class of s_0 in Pic (Σ) is not divisible by 2.

- Case (1) Since the class of s_0+D in Pic (Σ) is divisible by 2, the integer n of F_n is even. This case is ii-b-(α).
- Case (2) $\beta_2^*(\beta_1^{-1}(D))$ is a smooth irreducible divisor. By Lemma 3.4, this case does not occur.
- Case (3) We can show that the integer n of F_n is divisible by 3. Moreover if D is non-singular, $\beta_2^*(\beta_1^{-1}(D))$ is a smooth irreducible divisor. Therefore, by Lemma 3.4, D must be singular. This case is ii-b- (β) .

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
KOCHI UNIVERSITY

References

- [1] F. Catanese, On the moduli spaces of surfaces of general type, J. Diff. Geom., 19 (1984), 483-515.
- [2] F. Catanese, Connected components of moduli spaces, J. Diff. Geom., 24 (1986), 395-399.
- [3] T. Fujita, Triple covers by smooth manifold, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35 (1988), 169-175.
- [4] S. Iitaka, Algebraic Geometry, Graduate Text in Math. 76, Springer-Verlag, 1982.
- [5] R. Lazarsfeld, A Barth-type theorem for branched coverings of projective space, Math. ann., 249 (1980), 153-162.
- [6] R. Miranda, Triple covers in algebraic geometry, Amer. J. of Math., 107 (1985), 1123-1158.
- [7] D. Mumford, Abelian Varieties, Oxford.
- [8] H. Tokunaga, On a cyclic covering of projective manifold, J. of Math. Kyoto Univ., 30 (1990), 109-121.
- [9] O. Zariski, On the purity of the branch locus of algebraic functions, Proc. Nat. Acad. Sci. U.S.A., 44 (1958), 791-796.