
J. M ath . Kyoto U niv . (JMKYAZ)
32-4 (1992) 749-761

Equations of evolution on the Heisenberg group I
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Takashi 0- KAJI

I .  Introduction

Theory of nilpotent Lie groups and its irreducible unitary representations become
a  powerful tools in the study o f linear partial differential operators. (Folland, Helifer-
N ourrigat, Rockland, Rothschild, Rothschild-Stein, e tc .)  The m ajor concern of these
w orks is  to  study  the hypoellipticity or local solvability o f  linear partial differential
operator. W e believe that the sam e sp ir it  i s  effec tive  in  investigating the Cauchy
problem for the equations of evolution.

For the fundamental solution of operators on the Heisenberg group, there are also
m any  w orks. B. Gaveau studied th e  heat equation and A. L. Nachman investigated
the wave equation. Contrary to these works, we are concerned with th e  well-posed-
ness for the Cauchy problem fo r  th e  operators o f  h igher order on the Heisenberg
g ro u p . We hope that this becomes a model case for more general differential operators
w ith multiple characteristics.

In this paper, we shall limit ourselves to treating the parabolic case . L e t u s con-
sider the operators of higher order on the Heisenberg group H .

P= ar+ ,

w here  A , a r e  th e  homogeneous right invariant differential operators of order p j  on
H .  ( p  N)

Roughly speaking, our main result is formulated as fo llow s. If for any non-trivial
irreducible unitary representation 7.1. of H", r (P )  satisfies "parabolic" conditions, then
the Cauchy problem

Pu=  f

1 supp t u c [0, 00)

is well-posed : i . e .  f o r  a n y  positive num ber T  a n d  any f EC7((—T , T)x H4) with
support contained in  [0, T )x H n , there is a solution u(x , t) C ((— T, T)> Hn) of (1.1)
and this solution is unique in the Sobolev space subordinated to H .

2 .  Statement o f results

We recall some notion on the Lie group. (c. f. Rockland [R]) Let G  be a  simply-
connected nilpotent Lie group, w ith Lie algebra g  and (complexified) universal envelop-
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ing  algebra cU (g ). Since G  is simply-connected, th e  exponential map exp : g—+G i s  a
diffeom orphism . W e identify g  w ith  th e  right-invariant real vector fields on G  by
associating to X E g  the vector fields, still denote X , defined by

(X 0 (x )= —
d  

ço(exp tX • x) t=0 , yoe C00(G)
dt

This identification extends uniquely to an isomorphism between th e  algebra cli(g) and
th e  algebra of all right-invariant differential operators o n  G  (with complex coeffici-
en ts). If X 1 , ••• X N  form an  ordered basis for g ,  then every right-invariant differ-
ential operator on G  can be expressed uniquely in  the  form

P =  E  aa X71 ••• , a  EC
l a ign t

by the Birkhoff-Poincaré-Witt theorem. If P  is a  differential operator o n  G , then by
P t we denote th e  formal transpose of g  with respect to Haar measure which is the
image under ex p  o f  L ebegue measure o n  fl, a n d  b y  P *  th e  formal ad jo in t o f P.
Especially, if  X E g ,  then X t=  —X.

If it  is  a  unitary representation of G  on the H ilbert space H , then ve H  is called
a  C- -vec to r for it i f  t h e  map x ,--rc(x)v from G  to H  is  C- . T h e  C - -vectors form a
vector subspace of H , which we denote by H . .  T h e  representation it determines a
Lie algebra representation it o f  g  as linear maps :  H.—>Hos defined by

r (X )v =  —

d  

r(exptX)vI t =0 , X E g, vE .
dt

This extends uniquely to a  representation of the algebra Q1(Q) as linear maps :
If it is irreducible, then there is a  unitary-equivalence taking H  to L 2(R )  for some n
(possibly 0) and taking H . to S ( R ) ,  the Schwartz space . If it is a  unitary representa-
tion o f G  on H , then it determines a  representation of the algebra LAG) a s  bounded
operators on H  by

7r(f)v=07r(y )v•f(y )dy, , vE T1

and if  i t  is irreducible,  i t ( f )  is  a compact operator for fE L '(G ) .
Let r—>3r  b e  a  homomorphism from R ,  the m ultiplicative group of positive real

numbers, into A u t  , th e  group of automorphism of g  of the form 3+ =exp (log r)A ),
where A : g---->g i s  a  sem isim ple linear transformation w ith  positive  eigenvalues,
7'1, •••, TN . We then call I3,-} a  group of dilations for G  and we say that PE c ii(g ) is
homogeneous of degree k  if  3 ,(P )= r k P for every r. Taking an ordered basis XI, •••,
X N  for g  of eigenvectors of A ,  we see that 3,-(X i ) = rr iX i . We denote by cUk (g )  the
set of all homogeneous right invariant operator Pe cti(g) of degree k.

Recall that the 2n+ 1-dimensional Heisenberg algebra, h n ,  is the L ie algebra with
generators X „  Y 1 , z=1, ••• , n , Z  satisfying the commutation relations

[X i , r i 1=3.1,,Z , [X i , Z]=--[Y i , Z ]= 0.

The Heisenberg group H n is  the unique simply-connected Lie group having h„ are  its
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Lie a lg eb ra . T he group H " has a  group of dilations 0,4 defined by

6 ,(X )= rX i, ar(Z)=7-22. .

We shall use exponential coordinates

(x ', x", x o ) ER'n+' 1— * exp (x 1X-I-x"Y—x o Z ).

Hereafter, as a  se t w e identify the group H n  with its corresponding L ie  algebra hn .
Then Hn =Rn@RneR and w e le t (x ', x ", x 0 )  denote the components o f a  vector x  in
H .  T h e n , th e  bracket operation is given by

Cx, =(0, 0, <x", y'/>)

and the formula for multiplication is
1  „

x • y = X + Y + - 2- Lx, •

The group convolution takes the  form

(u*v)(x) A i n u(xy - ')v (y )dy, ,

w here d y  i s  the  standard  Lebesgue measure. Considered as right-invariant vector
fields on Hn, the element of the  basis {X, Y, Z }  are given by

Z  aa  ay a  ,  x ;
ax,

x
J
---

ax/, 2 axe.' ax if l-  2 ax ,' (.' •=1, •••, n).

There are two classes of irreducible unitary representations, a s  follows from the
Stone-von Neuman theorem :

(1) A  family o f 1-dimensional representations which map Z  to O . They are para-
metrized by (e, 72)ER 2 n, and are given by

;Tie. x", x 0 ) =e i (x'e+x" 0 , (e, 77)e R 2 n
i.e.

2r(E .,1 ) (X i )-=-■/-1$ 1 , r(e ,o (Y i) 7C(i. o(Z )= 0

(2) A  family parametrized by 2ER\ {0} acting on P (R n ) which map Z  to a  non-
zero  scalar. T hey are given by

x ", x o v i ( 1) = e i2<x".8)-x 0,<x , ,x")/2) v (s + x , ) for vE P(Rn) .
i.e .

ar i (X i ) = 72(Y)= —12s i , 77 ,Z(Z ) =  —12 .as i

Now, we consider the operators of evolution on Hn

P =ar-i- E A1a11' , A j e v p i (Iin),

where p  is  a positive in teger. F o r CEC, e Rn , le t  u s  introduce t h e  following two
generalized symbols o f  P  according to two families of irreducible representations on
Hn
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p.(c, e)=(icr+ 7T(V,e”)(A.1)(iC)m—)
1

and

sP(C, A)= ( i)m +  7 2 ( A ) ) ( 1 ) '  M R ')  S(R") •

We introduce th e  "parabolic" conditions on these generalized symbols :
(P-1) F or every root Cj  o f  N ( , C)=0, there is a positive constant 3 such that

cj>=a<e>P fo r  e* 0
and

(P-2) fo r any C and A with Im C50, 121=1, the operator .gJ and sP* S(Rn)-->,_S(Rn)

are injective.
W e n o te  that condition  (P -1) also can be written a s  follows :  fo r any C and E  with
Im C 1E1 * 0 ,  th e  operator of multiplication by p m ((,C — > C ,  is  injective.

L et us denote by H ( . ) (H n ) the  space o f  functions such that f o r  any multi-index
/ = ( i „  •-• , i N )G —n+1, ••• , n1 N

X iu = X ( i i )  • • • X ( ,: ,, ) uE 1, 2 (Hn) ,

where X ( i ) = X i  i f  i> 0 , = Y _ i ,  i f  i< 0  a n d  = Z  i f  i = 0 .  Then we have

Theorem 1. Suppose that (P-1) and (P-2) h o ld . Then f o r any T > 0  and any Posi-
tive integer the Cauchy problem

(2.2)
f  P u =  f  in (0, T )x  H n

1 alul t =0 =g i  on  Hn ,

has a unique solution u(x , t)eC m + 1 - 2 ([0 , T ]; H ( . ) (1179) i f  f  E C 1([0, T ]; 1 -1( 0) (H n)) and
g i E l l o o (H n), _7=0, ••• , m -1.

T h is  theorem will be proved by using th e  analysis in  [ M ]  a n d  [ H N ] .  B u t  th e
nature of the C auchy problem requires u s  to modify th e  a rg u m e n ts . We shall intro-
duce the  notion of the  pseudo-differential operator with a  parameter in section 3.

3 .  Spaces o f  symbols and pseudo-differential operators with a  parameter

We recall th e  some function spaces, introduced in  [M ]. F o r  a  non-negative integer
k, B k  will denote the  c lossure  of ,s(I/n ) in  the  norm Ilf maxID.f!.i  i s
th e  space o f d is tr ib u tio n  u E S '( H n )  such that there exists a positive integer k  for
which q u G B ; for every polynomial q(x) on H n . If (uj)7 is a sequence in  ._91 and
then we say that u j  te n d s  to u  on 2 l  if  a n d  only if  o n e  can find k  so that qu j , qu
B ; fo r all j  and  qu,—>qu weakly in  13; when q  is a polynomial.

T hen , the  following basic properties were proved. (Lemma 2.2, 2.3 in [M])
( 1 )  I f  u1 e,9/— >uE.512, then

v* u i  a n d  v uj*v
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are continuous maps on S (H ) for j  fixed, and

v*u, ----> v*u, u i *v ---> u*v in S (H )

w hen  j-400 and ve-S(Hn).
(2) Let u E .3 2 .  Then, one can find a sequence (u,)7 in S(Hn) tending  to  u in  .51.
(3) Let u and (u1)7 be as a b o v e . Let 2ER and fE S (R " ) .  T hen, 2-c2(ui ) f  is con-

tinuous in  S (H n ). T h e  lim it is  independen t of the choice of the sequence (ui )7 and
defines a  continuous linear map 7r2(u) on S (R ).

(4) If u and v are  in  a t ,  then  u*veat and

7c,l(u*v)=7r2(u)7r2(2)).

(5) If u e a t  and 72(u)=0 for every A R, th e n  u=0.
L e t  u s  d en o te  th e  d u a l variable o f t by and le t  11611= I E' I 4-1$" I -1-1, 1111=11$11+

1211/2 , 2=C2.+1 and  - -=(e, 2 ). W hen k and 1 are non-negative integers, we set

e k . ( )= 1(1+1 ADM+ I AI + 21P)) 
k  - m i n ( k .  1 )

and
F={CEC ; Im C50} .

We introduce some symbol classes :

Definition 3.1. pE R  and k is  a  non-negative integer, then the  class Sip k  consists
of the functions a(C, 2) such that

1) a(Co , E, 2)E C - (Hn) for any fixed C o ;
2) for any  multi-index a of dimension  2 n + 1 , th e re  e x is ts  a positive constant C

such that

D7a(C, E, 2)1 Ce k, C)(1+1Cf"P+1211"-FileilY-

for CE T , eER n , 2eR, w here  Ilal1=-Ha'l + a"1 +2a2.1-1.
W e se t Sip -= (1 2 > o St̀r . and S7: k =UpS 1P k  . Then

k k '  CST"' . k+k , S ip  k

for any p and k .

Many of statem ents about (2)-pseudo-differential operator without parameter C (c. f.
A . Melin [M]) can also be proved for the case w ith  a  p aram ete r C . F irs t, the theory
of asymptotic summation carries over to symbols depending on  a  param eter. W e say
th a t ET,' a ,  is  a  formal symbol if  a JESII: k { k 5 } i s  an unbounded increasing sequence
of non-negative integers and the following inequalities hold : for some positive constant
C and any multi-index a,

Dga Â) I 5 C e k , ) (1 - IC I " P + 21 1 / 2 +11$11)PH '"C

for any eEHn, C E T . Then

Lemma 1 .  Assume th at E i7 aj  i s  a f orm al sym bol. T h e n  one can f ind aEStpko
such that
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N -1
a— E a j EStf-: k N ,0 N =1 , 2, ••• .

Moreover, a is uniquely determined modulo S t r  and we write a- - ' a,.

The proof of this lemma is almost verbatim repetitions of the arguments in [M].
We only state the important change in the proof. The role of 1+11x11 is now played
by 1+1 CI"P±a-11  a n d  the cut-off function in Lemma 3.4 in  [M ] O i(e )=0 (s iV 12112 )  is
replaced by

SVC, E, 2)=0(siC/ IA I 2, sie11 , 11 1 /2 , sir/ I Al 1 /2 ) .

Here 0  is in  C- (R 2 4 4 - 1 )  for any fixed C e r  such that

0 , 1 when I C I l i n + $' I + e" I 2
and

0=-0 when I C 11 / P + I e / I ±1$" I 51 .

Then, we may choose the sequence {e } such that the sum a = E ° 0 1 a ;  converges in
C " and satisfies the desired propertes.

Let us denote

2)=---fine1 <' x' ) - 1 ( 6 '' s" ) - - l x2n+1) 11(X)dX

and

Op 2 (a)f(x ')=(22r) - n5ez<x — Y'.i)''a(C, 2( f +
2

 Y / ) ,  77')f (y ')dy 'd27'.

The following lemma is also valid for symbols with a  parameter C.

Lemma 2 .  Assume that a c S f p k .  Then u = g 'a  2s in  .511 for any fixed CEP and
we have

7.4- 2(9* - ia)=- 0132a(•, A)
2eR .

For a and b .S7-:k , we set
a # b = g ( g - 2 a* g - 1 b)

which is defined as an element in S '( H " )  with a  parameter C. This is the symbol of
operator product i. e.

Op2 (a #b) -+- , 0p2(a) Op(b)

if  a# b E S P/ 4k , which follows from the next fact. (c .f . Proposition 3.6 in  [M])

Proposition 1. Assume that aE S tp k  and b .ST..:•k' . Then a # b E S ' ' ' '  and

{ (i2a(D e , D ,)/2) k  a(C, E, ,z)b(c, 72, 2)/k !I

where a  is the bilinear form <x ", y '>— <x ', y "> on H .
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4. Param etrices for parabolic operators

Let P be the operator satisfying the all assumptions in Theorem  1 and

û(C, e)= .çe'c'gu (e, t)d t .

Then, from  the property (4) for 7r,i a n d  Lemma 2 , it follow s that

7r2(P)-=z2(13 5)=OPAP(C, •, A)),

w here, the symbol p = P 3  is  a  quasi-homogeneous polynomial in C and o f  degree m.
H ere w e have used th e  fa c t th a t for j=1, ••• , m, A ,  is  a  r ig h t  invariant operator on
Hn

The hypothesis (P-1) a n d  th e  quasi-homogeneity o f  p  m e a n  th a t p(C,e, 2)-'-0 if
CEP and 2=0, which implies

Lemma 3 .  O ne can find Positive constants C and Ca  such  that if C ET, A1 and

11112 --.C121, then

I p(( , e, 2)1--c -1 {1C1+( 1 +1$1+ 12 1'")Pim
and

13g(1/p)15c.{1C1',P+(1+le1+121"2)}Pm - ta'

f o r any multi-index a.

P ro o f .  For some c > 0 , i f  le  >c12 i/ 2 ,  then  a ll roo ts C.„ j=1, ••• , m  o f the  equa-
tion  p(c, e, 2)=0 satisfy  the  inequalities:

Im Ci(e, (3(1-F I el +12I'") P 3 > 0  .
Since

(Re C—Re C; )2 >E (Re C)2 _ 1 6  (Re C ; )2f o r  a n y  1> s >0 .

if  w e take  e  is sufficiently sm all, we have

(1+ IC I ' + e + 21" 2 )P  , 5'>0 .

From  this, the assertions follows immeadiately.

Proposition 2 .  Suppose that P  satisfies (P-1). Then one can find qE,37 1"n" such
that

, q#p— leS (r .

P ro o f .  It follows from  Lem m a 3 th a t one can find a  function 0(C, e) i n  C- (R")
for each CEP such  tha t for some positive number R and r,

0(C, e)=1 f o r  ICI" P +1$1>R

0(C, e)=0 for ICI" P + 1$1<r

and the following inequality holds with a positive constant C
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p(C, t- ) I C(1+ I C I +

if  T*(C, )=.0(C/2" 2 , e/21 /2 ) * O .  S et g(C, )/p(c, Then g E S -T P7n.° an d  pg-1
= T - 1 E S 'r .  By Proposition 1 we see that p # g =1 — h , where h is in  ST.'. Then
from Lemma 1 it follows that fo r  some q , in  ST.',

E0

where h°./-=h#h ••• # h  ( j  times). Therefore, the first assertion is satisfied if  we take
q =g# q 0 . The second assertion with another q 'E S -r Pn " is proved by the  similar way.
Since a standard argum ent tells us that q— q'EST. - ,  the  proof is complete.

By the quasi-homogeneity, we see that

g) (C, 2)= 21 1' m / 2 2(C/121 P ", ± 1)=12 I P "'"1•Pi(C/ I 21 P ") •

F or sE R , cE r and u>0, le t u s  denote by 118 (R n )  t h e  space of d istributions uE
Si(R 7')  fo r which A 8 u E L 2 (1?3 ) , where A 3 means that

A su=11-F I C  I 
2ip+( 1D x  1 2+  x  12/1 2)} 3/2 u

and we write IlA s uIlL2cRn)=-- dullit.c,.. T hen, since 0 1)1(9) is bounded from 1-43.c.i(R n )  to
lis+p,,,c.i(Rn) and  fo r rEST. - , Opi (r) is bounded o n  1-kc, 0(R "), Proposition 2 implies

Proposition 3. Suppose that (P-1) is satisfied. T h e n  fo r  s E R , there is a constant
C  such that

fo r any ues(R "), rEr.

By Proposition 2, we have

Lemma 4. Let s E R .  I f  u E ll s ,r (R ") and .T i (r)u =0 , r E r .  Then, uES (R n).

We need th e  continuity proprety of the  estimates.

Lemma 5. Suppose that fo r  2'0 E 1 ' the inequality

(4.1) 1111118+7,,,,r,,I -C112±(To)ulls,r0,1

holds with some positive constant C. if uE,S . (R n ) .  Then, there are a neighborhood U

of ro and a Positive constant C ' such that

11u118+pm.r.i5_-C'112±(T)ulls, 7,1
holds fo r  any rE U n r .

Proof. Since (D1+1 X1 2 )  is self-adjoint, A ' is equivalent to (1+ I C "+(D.1+ I x
and we can write

ac.±(r)—g)±(r)= E
f i n i t e .  I n  i s m - 1

where T „=T a i ••• T , ,„ T i =x _ i  i f  j<0, =D x 1  if  1>0 and C „(7 — r)=0 (1 7  — 7' D . From
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these observations, the assertion follows.

Theorem 2. Suppose that (P-1) and (P-2) are satisfied. T hen, for s e R , there are
constants C and C ' such that

Ilulls+2,..c,121-5C1!2(C, 2)ullt,c,121
and

2)uil3,c,121

f o r any  ue,S(Rn), Cel" and  1,1} >.1.

P ro o f . From  Proposition 3, it follows that there is a positive constant C such that

u 8,p 7., r. I C112 ±(Y)Ulls, r,

if  any  uE S (R ") and  171 is sufficiently large in F .  A s for bounded r, w e have

Lemma 6. For any  r e T ,  there is a positive constant C r  such that

1111118+mp,1,1-5Crlig'.(r)ull3. T .1  •

Proof  o f  Lemma 6. T he  hypothesis (P-2) and the estim ate in Proposition 3 tell us
t h a t  th e  inequality (4 .1) h o ld s  fo r  a n y  roE r . In  fact, if for some rEr, (4.1) does
not holds, then for any N  there is  U N E S (R ) such that

uNlls+pm,1. NII -c-P±(r)uN111,T. 1 and 1111N111+1)311,r,,--=-1 .

Since  th e  im bedding l i si s  com pact if s > s ' (cf. Proposition 25.4 in  [S]),
there  is a  subsequence uN j  such  that

g'i,(T)uN i  — >0  in  118 , 1 , 1 a n d  uN iu  in  113, 1 ,1.

H ence Proposition 3  implies t h a t  UN ,  tends t o  u  i n  Hs+pm,r,i, w h ich  show s that
Iltillsi-pm,r,1=1 and T,.(r)u-=.0. This is  a contradiction to  (P-2) by Lemma 4.

Therefore, by Lem m a 5 and 6 we obtain the assertion for 0 .  T he same argument
for 9)* completes the proof of Theorem 2.

Theorem 3. Suppose that (P-1) is satisfied. T h e n  f or se l? , there are Positive con-
stants R, C  and C ' such that

D48+pm,C, 121 Cdg) (C7 /014 113,C. IA I

and
11 s+p  m .C ,lA I W)*(C2 2)U118,C, IA I

f or any  ue<S(R 4 ), CE r > R I  and A  .<1.

P ro o f . T h e  sam e consideration a s  in  th e  proof of Proposition 3 shows th a t the
inequality

11084-pm,r,ial<C{10((, 2)08121+11081211

for any  u E ,S (B "), rE T  holds i f  IA I _-< 1 .  Only change is to replace the cut-off function
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W(C, by 0(C, in the argument in the proof of Proposition 2.

4 .  Proof o f theorem 1

W e introduce the  'Sob° lev' n o rm  a tta c h e d  to  the H eisenberg group a s  follows:
for positive integer N,

II ull(N)= E 11X 1 u1IL2(lin) ,
i i

w h e r e  1/1=p i i + ••• + 14=1 i f  i# 0  a n d  ft, =2  i f  i= 0 .  L et denote the Laplace
transform of P  w ith  respect to  the tim e variable t  b y  Q .  W e  r e c a l l  the Plancherel
theorem on the Heisenberg group :

.ç f(x)z, d xH . . r tr (7r2 (f)r i(f)*)I 21" dR%(0)

for f E .U n IA H n ), w here  d i  i s  Lebesgue measure on R .  Then from  this, it follow s
that Theorem  2 and 3 im ply  that for some positive constants C and C',

IC111111(0)+ I /111(N,,,)5C11Qcull(N)

fo r  u - 11( c.,) (H n ) .  L e t P R =Tn{Im C< — R } . S in c e  f ro m  th e  above inequalities, if
CEr„, Q c i s  th e  continuous, o n e  t o  one and onto operator from  H (0 0 ) t o  R ,  t h e r e
exists the inverse operator Q V  o f  Qc, w hich  depends holomorphically o n  th e  dual
variable o f  t  in  the interior of a n d  f o r  a n y  positive in teger N  there are  an  posi-
tive  in teger L  and positive constant C such that

11(kl ulIcN)5_CIIWI(L)

for an y  u(x) 1/0 0 (1-17 ) and any  CErR • H e r e ,  w e  have used the  following lemma :

Lemma 7 .  L e t X  an d  Y  be B anach spaces. Suppose that A  is a bounded linear
operator f rom  X  to  Y  w ith the b o u n d ed  in v erse  A '. T h en  if  th e  linear bounded
operator B  f rom  X  to Y  satisfies

II A- -  B d<M A r'

then B  has also bounded inverse B - ',  which satisfies

•

Let w EC - (R , li ( c.,) (Hn)) such that

alw t=0-= g; , j=0, , m -1
and for f o =Pw — f,

au 01 t=o=o k=0, ••• , 1.

Put v =u— w . Then, to  solve (2.2), it suffices to consider the Cauchy problem
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Pv=

(4.2) aiv I t-o =0

j=0, ••• , m-1 ,

w here 1 0 = X ( t ) f 0 ( t )  i f a n d  = 0  i f  t < 0 .  Here, X i s  a  real-valued function in C°(R )
such that

X(t)=0 i f  t>2T /3  a n d  = 1  if  t<T /3.

Let us denote the Laplace transform  of 70 b y

g(( , x )= .ÇR e - "cg(t, x)dt

Since yo i s  in  C1 ((—T, T), 110.,(H4 ) )  w ith  support contained in  [0 , 2T /3], th e  solution
u  of the Cauchy problem (4.2) is given by

1 
it(t, x )= x)dC,

LIL L

w hich is in  C7" 1 - 2 ([— T, T], H ( .0) (H1)) if  R  is chosen large enough. (c f. [C ] o r  [Fal)
T his finished th e  proof.

5. Remarks

In  th is section, w e shall discuss on the condition (P-2) o f  Theorem  1. T h is  con-
dition is not necessary for the C auchy problem fo r  P  to be well-posed, bu t w e  have

Theorem 4 .  Suppose that the Cauchy problem (2.2) is uniquely solvable in the space
C"([0, T), li ( . ) (H " ) ) .  Then fo r  any 7' in the interior of

fuES(Rn);.2) ± (r)u=0} = {0} .

P ro o f .  W e m ay only consider th e  `+ '  c a se . S u p p o se  th a t  f o r  som e Co EInt (r),
there  is a  function v # 0  satisfying g)',t(Co) v = 0 .  We define a  smooth function u  b y  the
following w a y . F o r  OE C(Hn),

•), Ø>=(r 2 (0)v, v )H e itc02 1 3 1 2 ,

which satisfies th e  equation Pu =0  because if X  is  a right invariant vector field o n  H n ,

(riftg3)v= ir 2(X)7 A (0)v .

It is  easily  seen  tha t th is so lu tion  v io la te  th e  inequality :  f o r  a n y  positive in teger N
there  is  a  constant C such that

m-i
maxo rllu(t, •)I1L2_C E E  o i t iv u (0 ,  • )1  •

j=o <I>=N

T his is  a contradiction to  th e  well-posedness of the C auchy problem (2.2).

To clarify  th e  meaning of the condition (P-2), we give some examples.

Example 1  (m=1, n=1).
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p=a,—a(XN-Y7)-kcZ ,

w here a is  a  rea l positive number c is  a  complex c o n s ta n t . T h e n  th e  necessary and
sufficient condition for the Cauchy problem (2.2) to be well-posed is

lTm cl a .

Example 2 (m=1, n=1).

P= {a,— a(X14- VT)} {9,—b(XN-11)} c Z 2 ,

w here  a and  b are positive constants and c is a complex c o n s ta n t . T hen  the  necessary
and sufficient condition for the Cauchy problem (2.2) to be well-posed is

1m c -5_(a b)(ab —Re c)" 2 .

These a re  proved by the  sim ilar argum ent in  [ 0 ] .  In fact, as for the latter case,
it is  seen  tha t w hen  Im C <0,

(4+ 04+ b)— c=0
is equivalent to

12 Tm C —(a +b)1 2 {(Im C— a)(Im C—b)—Re c1 —(1m c) 2 = 0 .

In  these examples, the condition (P-2) is equivalent to
(The case Example 1)

cl <a
and
(The case Example 2)

1m cl <(a +b)(ab —Re c)' 1 2

respectively.
F inally , w e mention som e re la ted  w orks. On the Euclidean space, I. G. Petrowsky

[P ] considered th e  p-parabolic operators w ith variable coefficients (c. f. [Mz]) and for
the operator o f  Example 1, a  rela ted  result w as g iven by K. Igari (Example 2 o f  [I]).
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