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Equations of evolution on the Heisenberg group I

By
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1. Introduction

Theory of nilpotent Lie groups and its irreducible unitary representations become
a powerful tools in the study of linear partial differential operators. (Folland, Helffer-
Nourrigat, Rockland, Rothschild, Rothschild-Stein, etc.) The major concern of these
works is to study the hypoellipticity or local solvability of linear partial differential
operator. We believe that the same spirit is effective in investigating the Cauchy
problem for the equations of evolution.

For the fundamental solution of operators on the Heisenberg group, there are also
many works. B. Gaveau studied the heat equation and A.L. Nachman investigated
the wave equation. Contrary to these works, we are concerned with the well-posed-
ness for the Cauchy problem for the operators of higher order on the Heisenberg
group. We hope that this becomes a model case for more general differential operators
with multiple characteristics.

In this paper, we shall limit ourselves to treating the parabolic case. Let us con-
sider the operators of higher order on the Heisenberg group H™.

P=07+ 33 A0,

where A; are the homogeneous right invariant differential operators of order pj on
H*. (peN)

Roughly speaking, our main result is formulated as follows. If for any non-trivial
irreducible unitary representation =z of H", =n(P) satisfies “parabolic” conditions, then
the Cauchy problem

Pu=
(L.1) { u=!

supp,.u [0, o)

is well-posed: i.e. for any positive number T and any feC(—T, T)x H*) with
support contained in [0, T)X H", there is a solution u(x, H&C>((—T, T)X H") of (1.1)
and this solution is unique in the Sobolev space subordinated to H™.

2. Statement of results

We recall some notion on the Lie group. (c.f. Rockland [R]) Let G be a simply-
connected nilpotent Lie group, with Lie algebra ¢ and (complexified) universal envelop-
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ing algebra J(g). Since G is simply-connected, the exponential map exp: ¢—G is a
diffeomorphism. We identify ¢ with the right-invariant real vector fields on G by
associating to X< g the vector fields, still denote X, defined by

XPNR)= L pexptX 1)l ims,  p=C(G)

This identification extends uniquely to an isomorphism between the algebra €U(g) and
the algebra of all right-invariant differential operators on G (with complex coeffici-
ents). If X,, -+, Xy form an ordered basis for ¢, then every right-invariant differ-
ential operator on G can be expressed uniquely in the form

P= 3 a X7 - X, a.eC

latsm

by the Birkhoff-Poincaré-Witt theorem. If P is a differential operator on G, then by
P! we denote the formal transpose of ¢ with respect to Haar measure which is the
image under exp of Lebegue measure on &, and by P* the formal adjoint of P.
Especially, if Xeg, then Xt=—X.

If =~ is a unitary representation of G on the Hilbert space H, then veH is called
a C=-vector for n if the map x—na(x)v from G to H is C*. The C>-vectors form a
vector subspace of H, which we denote by H.. The representation z determines a
Lie algebra representation = of ¢ as linear maps: H.— H. defined by

n(X)v-—-g-zn(exth)vh:o, Xeg, veH.,.

This extends uniquely to a representation of the algebra U(g) as linear maps : Hu.— H...
If z is irreducible, then there is a unitary-equivalence taking H to L*(R™) for some n
(possibly 0) and taking H. to S(R™), the Schwartz space. If x is a unitary representa-
tion of G on H, then 7© determines a representation of the algebra L!(G) as bounded
operators on H by

z(f)v=S67r(y)v'f(y)dy, veH

and if = is irreducible, z(f) is a compact operator for f& L'(G).

Let »—d, be a homomorphism from R*, the multiplicative group of positive real
numbers, into Aut g, the group of automorphism of ¢ of the form d,=exp(log r)A),
where A:6—¢ is a semisimple linear transformation with positive eigenvalues,
7., -, Tn. We then call {§,} a group of dilations for G and we say that P€J(G) is
homogeneous of degree b if d,(P)=r*P for every r. Taking an ordered basis X,, -,
Xy for ¢ of eigenvectors of A, we see that §,(X;)=r"iX;. We denote by U,(g) the
set of all homogeneous right invariant operator P U(g) of degree k.

Recall that the 2n-+1-dimensional Heisenberg algebra, h,, is the Lie algebra with
generators X;, Yy, i=1, -+, n, Z satisfying the commutation relations

[Xi’ Yj:lzat.jz ’ I:Xi’ Z]:[Yi: Z]:O .

The Heisenberg group H" is the unique simply-connected Lie group having h, are its
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Lie algebra. The group H" has a group of dilations {d,} defined by
0.(X)=rX,, 0,(Y)=rY,, 0, (2)=rZ.
We shall use exponential coordinates
(x/, x”, xg)€R™ ' — exp(x’'X+x"Y —x,Z).

Hereafter, as a set we identify the group H® with its corresponding Lie algebra h,.
Then H*=R*®R*®R and we let (x’, x”, x,) denote the components of a vector x in
H*, Then, the bracket operation is given by

[xr y]:(ov Oy <x”! y,>_<x/’ y”))

and the formula for multiplication is
1
xy=rty+5lx vl
The group convolution takes the form
(ws)(x)={, utxyHundy,

where dy is the standard Lebesgue measure. Considered as right-invariant vector
fields on H", the element of the basis {X, Y, Z} are given by

P R 9 x50

oxy a2 bxy Yf:m 2 9xy (=1, -, n).

There are two classes of irreducible unitary representations, as follows from the
Stone-von Neuman theorem :

(1) A family of l-dimensional representations which map Z to 0. They are para-
metrized by (¢, »)R®", and are given by

T (X', X7, Xe)=eH T (&, pER™

T, ﬂ)(Xi): v —1&, T, n)()”i) =\/:Im, T, q)(Z):O .

(2) A family parametrized by AR\ {0} acting on L*R") which map Z to a non-
zero scalar. They are given by

[ma(x’, x7, xv](E)y=etA="O-soriasrezn iy (s 4 x’)  for ve LAR™).

ni(Xi):‘%’ (Y )=+ —112s,, i (Z)=~—12.
Now, we consider the operators of evolution on H”"
P=ar+ é} AP, A e Up(H™),

where p is a positive integer. For {&C, £éR", let us introduce the following two
generalized symbols of P according to two families of irreducible representations on
H".
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PG E=GO™+ i;, Teer (ALY
and
@¢, =G+ i”‘, 2a(A)E0™ 1 S(R™) — S(R™).

We introduce the “parabolic” conditions on these generalized symbols:
(P-1) For every root {; of p,(L, §)=0, there is a positive constant ¢ such that

Im {;=0¢6>7 for &+0

and

(P-2) for any ¢ and A with Im{<0, |1]=1, the operator ¢ and @*: S(R")—S(R™)
are injective.
We note that condition (P-1) also can be written as follows: for any { and & with
Im <0, |&|#0, the operator of multiplication by pn(L, §), C—C, is injective.

Let us denote by H.,(H™) the space of functions such that for any multi-index
I=(@G,, -, iy)€{—n, —n+l, -, n}¥

X'u=X¢ - Xapue LX(H"),
where X=X, if >0, =Y _,, if i<0 and =Z if 7/=0. Then we have

Theorem 1. Suppose that (P-1) and (P-2) hold. Then for any T >0 and any posi-
tive integer 1=2. the Cauchy problem

{ Pu=f in (0, T)XH"

2.2)
a{ult=o=gj on H™, 0§]§m—1

has a unique solution u(x, )&C™* %[0, T1; Hw(H™) if f€CH[0, T]; Hewo(H™)) and
gi€Hw(H™), 7=0, -+, m—1.

This theorem will be proved by using the analysis in [M] and [HN]. But the
nature of the Cauchy problem requires us to modify the arguments. We shall intro-
duce the notion of the pseudo-differential operator with a parameter in section 3.

3. Spaces of symbols and pseudo-differential operators with a parameter

We recall the some function spaces, introduced in [M]. For a non-negative integer
k, B, will denote the clossure of S(H") in the norm |f| ;=145 max|Df|. M is
the space of distribution ueS’(H™) such that there exists a positive integer £ for
which gue B; for every polynomial ¢(x) on H®. If (u;)7 is a sequence in # and ueH,
then we say that u; tends to u on # if and only if one can find % so that qu,, que
By for all j and qu;—qu weakly in B; when ¢ is a polynomial.

Then, the following basic properties were proved. (Lemma 2.2, 2.3 in [M])

1) If uyeM->usM, then

v—>vxu; and v —> upv
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are continuous maps on S(H") for j fixed, and
VU5 —> VKU, UKD —> UKD in S(H™)

when j—o and veS(H™).

(2) Let ue. Then, one can find a sequence (u;)7 in S(H™) tending to u in M.

(3) Let u and (u;)T be as above. Let AR and f€S(R™). Then, m,(uy)f is con-
tinuous in S(H™). The limit is independent of the choice of the sequence (u;)7 and
defines a continuous linear map m;(u) on S(R").

(4) If u and v are in M, then uxve M and

ma(uxv)=m () (v) .

®B) If ueM and =;(uw)=0 for every AR, then u=0.
Let us denote the dual variable of ¢ by { and let [|&]=|&'|+|&”|4+1, |€l=|E&ll+
[2]'%, A=&;,+; and £=(£, ). When £ and | are non-negative integers, we set

ee @)= {A+121)/A+| 2| +|&I2+ | 2/P)} k-minck. 1>
and

I'={eC; Im{<0}.

We introduce some symbol classes :

Definition 3.1. x€R and k is a non-negative integer, then the class S#* consists
of the functions a({, & 4) such that

1) a, & AHeC=(H™) for any fixed {,;

2) for any multi-index a of dimension 2n41, there exists a positive constant C
such that

|Dga(G, & DI Ces,apes, & DA+ CIVPH[ 2112 4[IE)#-120

for {&T, 6eR", 1€R, where |al=|a’|+|a”| +2asn+:.
We set S&:>=\;3S%* and S7:*=U,S%*. Then

uo ko, ok utp' Rtk Mok , 0
Sipk.Se k' SH Stk St

for any g and k.

Many of statements about (1)-pseudo-differential operator without parameter £ (c.f.
A. Melin [M]) can also be proved for the case with a parameter {. First, the theory
of asymptotic summation carries over to symbols depending on a parameter. We say
that 335 a; is a formal symbol if a;&S#:*4, {k;}7 is an unbounded increasing sequence
of non-negative integers and the following inequalities hold : for some positive constant
C and any multi-index ,

[DgasC, & A SCerjagy iy OUHILIPA| 2|24 ]t
for any éeH"”, {I'. Then

Lemma 1. Assume that X5 a; is a formal symbol. Then one can find acS#*o
such that
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N-1

a—%‘,a,eS‘;:”N, N=1,2, ---.

Moreover, a is uniquely determined modulo S%> and we write a~27 a;.

The proof of this lemma is almost verbatim repetitions of the arguments in [M].
We only state the important change in the proof. The role of 14| x|l is now played
by 141"+ &| and the cut-off function in Lemma 3.4 in [M] ¢,&)=¢(e;£/12|'"?) is
replaced by

OAC, & D=(e L/ 1AM, €8 1A112, €87 /1A117%) .
Here ¢ is in C=(R***!) for any fixed {&I" such that

¢=1 when |L|YP+ 8|+ 67| =2
and
¢=0 when [{|YP+ 18|+ 167 <1.

Then, we may choose the sequence {¢;} such that the sum a=317 ¢;a; converges in
C= and satisfies the desired propertes.
Let us denote

gu(e’ Z)___.S”neidé”.z'ﬂ{é'.xﬂ)—lzmﬂ)u(x)dx
and
— -n iz -y > x/+y/ ’ ’ ’
Opi(a)f(x")=Q2m) Sse v a(C, Z(————z ) v)f(y )dy'dy’.
The following lemma is also valid for symbols with a parameter {.

Lemma 2. Assume that acS#%*. Then u=%"'a 1s in M for any fixed {&I" and

we have
m2(F'a)=0p,a(-, 2)
€R.

For a and beST:*, we set
a#tb=F(FaxF'b)

which is defined as an element in S/(H"*) with a parameter {. This is the symbol of
operator product i.e.
Opi(a#b)=0p;(a) Op(b)

if a#beSu*, which follows from the next fact. (c.f. Proposition 3.6 in [M])
Proposition 1. Assume that a=S%* and b&S4 *'. Then a#beS{H*" **+*' and
a#b~ % {(iaa(D¢, D)/2)*a(C, &, D&, 9, D/} |e=y,

where ¢ is the bilinear form <x”, y'>—<x’, y"> on H",
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4. Parametrices for parabolic operators

Let P be the operator satisfying the all assumptions in Theorem 1 and
2, H={e-“Fu, nat.
Then, from the property (4) for m; and Lemma 2, it follows that

m(P)=m2(P8)=0pa(p(C, -, A),

where, the symbol p=P5 is a quasi-homogeneous polynomial in { and £ of degree m.
Here we have used the fact that for j=I, ---, m, A; is a right invariant operator on
H".

The hypothesis (P-1) and the quasi-homogeneity of p mean that p({, & A)#0 if
{eTl and 1=0, which implies

Lemma 3. One can find positive constants C and C, such that if Lel', 2=1 and
I§1°=C12al, then
|p@ & DIZCHICI+A+ I +1A1VH™
and
[08(1/p)I S Co{1C1 P+ E A2 Pt

for any multi-index a.

Proof. For some ¢>0, if |&|>c|A|'/?, then all roots §;, j=1, -+, m of the equa-
tion p(, & A)=0 satisfy the inequalities:

Im ;¢ =01+ &1+ 12157,  6>0.
Since

(Re{—Rel;)*=¢(Re C)2—i(ReC,)2 for any 1>¢>0.
if we take ¢ is sufficiently small, we have

[E—=Cil =0’ (AL P4 [E1 [ A1VDP, 9'>0.
From this, the assertions follows immeadiately.
Proposition 2. Suppose that P satisfies (P-1). Then one can find g€S;P™° such

that
p#q—1€8%=,  q#p—1€Sy™.

Proof. It follows from Lemma 3 that one can find a function ¢, §) in C=(R**)
for each {1 such that for some positive number R and r,

oG H=1  for [P+ [EI>R
¢ =0  for [{IVP+[EI<r

and the tollowing inequality holds with a positive constant C
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1@, &I =ZCA+ &I +1E17)™

if U@, &)=(C/2'7, £/2%)#0. Set g, &)=V, &)/p&, &. Then geS;P™° and pg—1
=¥ —-1&S%~. By Proposition 1 we see that p#g=1—h, where i is in S}:'. Then
from Lemma 1 it follows that for some g, in S%°,

g~ 2 h*7,

[

where h#'i=h#h ---#h (5 times). Therefore, the first assertion is satisfied if we take
g=g#q,. The second assertion with another ¢’eS7?™° is proved by the similar way.
Since a standard argument tells us that ¢—¢’eS%*, the proof is complete.

By the quasi-homogeneity, we see that
P, D=121P"2PC/ 12172, £1)=[2|P" PP (L/1A17).

For s€R, {=I and x>0, let us denote by H, .(R") the space of distributions ue
S’(R™) for which A*ue L*R™), where A° means that

Au= {1+ 1P+ D |24 x| 2p)} 1 *u
and we write ||4*|z2cgny=|ut]ls.c... Then, since Op,(¢g) is bounded from H, ¢ (R") to

Hyipm.z.o(R™) and for r&S%=, Op,(r) is bounded on H; ¢ (R"), Proposition 2 implies

Proposition 3. Suppose that (P-1) is satisfied. Then for s€R, there is a constant
C such that
”u||s+pm,r.1§C{"fpi(r)u”s.r.l"'”u”s.r,1}

for any ueS(R*), rel’.
By Proposition 2, we have
Lemma 4. Let seR. If usH, (R") and ¢?.(r)u=0, yl’. Then, ucS(R").
We need the continuity proprety of the estimates.

Lemma 5. Suppose that for v,<I the inequality

4.1) ”u”Hpm.ro.1§C”§):(To)u”s,ro.1
holds with some positive constant C. if ucsS(R™). Then, there are a neighborhood U
of 7, and a positive constant C’ such that

”u||s+pm.r.1§c/”§’x(7)u”a,r.x
holds for any yeUNI.

Proof. Since (D2+]x|?) is self-adjoint, A°* is equivalent to (1+|L|*?+(Di+|x1%)°?)
and we can write
SPt(r)—ﬂk(r’)=f 2 Colr, 7T,

intite, Ja|jsm-1

where To=Ta, * Tay, Tj=x_; if j<0, =D, if j>0and Co(r—7r)=007—-7"1). From
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these observations, the assertion follows.
Theorem 2. Suppose that (P-1) and (P-2) are satisfied. Then, for sER, there are
constants C and C’ such that

llsepm.c it SCILE, Dulls.can
and
lullsspm.cor =CIIL*E, Dulls,ciai

for any ueS(R), {1’ and |2 =1.

Proof. From Proposition 3, it follows that there is a positive constant C such that

||ullupm,r,éCIIEP:(T)uIIs,r.1

if any ueS(R") and |7| is sufficiently large in I'. As for bounded 7, we have

Lemma 6. For any y<1’, there is a positwe constant C, such that

lulssmp. 7.1 = Crll Pa(Pulis.r,1 -

Proof of Lemma 6. The hypothesis (P-2) and the estimate in Proposition 3 tell us
that the inequality (4.1) holds for any 7,&/". In fact, if for some yel’, (4.1) does
not holds, then for any N there is uyeS(R") such that

”uN”s+1ﬁm,7'.lgN”-(PL(T)uN”s.)'.I and ”uN”s+pm,r,1=1 .

Since the imbedding H;,,<H; ;, is compact if s>s’ (cf. Proposition 25.4 in [S]),
there is a subsequence uy, such that

P.(Nux;—>0in M, and uy;—>u in Hypo.
Hence Proposition 3 implies that wuy, tends to u in Hsipm,y,, Which shows that

lullsspm.7.1=1 and L.(r)u=0. This is a contradiction to (P-2) by Lemma 4.

Therefore, by Lemma 5 and 6 we obtain the assertion for £. The same argument
for #* completes the proof of Theorem 2.

Theorem 3. Suppose that (P-1) is satisfied. Then for s€R, there are positive con-
stants R, C and C’ such that

”u”upm,c. n=C| 2, Z)u“s.c. 121
and )
lellsspm. g0 SCNLHE, Dulls.can

for any ueS(R*), {LeI'N{|Im | >R} and 11| <1.

Proof. The same consideration as in the proof of Proposition 3 shows that the
inequality
[wllsspm,r 20 SCHLE, Dulls,ciai+lulls,zia1}

for any ueS(R"), r<l" holds if |2| <1. Only change is to replace the cut-off function
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U, &) by ¢, &) in the argument in the proof of Proposition 2.

4. Proof of theorem 1

We introduce the ‘Sobolev’ norm attached to the Heisenberg group as follows:
for positive integer N,

lullews= 2 ”XIu”LZ(IIn)’
1II1sN

where [I|=p; + - +piy, =1 if i#0 and p,=2 if i=0. Let denote the Laplace
transform of P with respect to the time variable ¢ by Q;. We recall the Plancherel
theorem on the Heisenberg group:

[, f@1dx =, o hmHmIarde

for fe L'NL*H"), where dp is Lebesgue measure on R. Then from this, it follows
that Theorem 2 and 3 imply that for some positive constants C and C’,
|C|"l”u”(o)‘*':|u||(N+mp)§C”ch||(N)
121 1l e ompy < C 1 QF R s

for ueHey(H™). Let INg=I'N"{Im{<—R}. Since from the above inequalities, if
{el's, Q; is the continuous, one to one and onto operator from H., to H, there
exists the inverse operator Q7' of Q; which depends holomorphically on the dual
variable { of ¢ in the interior of I" and for any positive integer N there are an posi-
tive integer L and positive constant C such that

1Q7 ullcvy = Cllullcry

for any u(x)=Hy(H") and any {&['s. Here, we have used the following lemma:

Lemma 7. Let X and Y be Banach spaces. Suppose that A is a bounded linear
operator from X to Y with the bounded inverse A~'. Then if the linear bounded
operator B from X to Y satisfies

[A=BI<|AlI™,

then B has also bounded inverse B~', which satisfies

B1=A- i‘, ((A—B)A-'}* .

Let weC*(R, He,(H™")) such that

wlimo=g;, J=0,, m—1
and for f,=Pw—f,
a’ffolt=o:0, k:0, "',l.

Put v=u—w. Then, to solve (2.2), it suffices to consider the Cauchy problem
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Pv=F,
4.2) 0v|1=o=0
7=0, -, m—1,

where foz)((t)fo(t) if t=0 and =0 if t<0. Here, X is a real-valued function in C(R)
such that
2)=0 if t>2T/3 and =1 if t<T/3.

Let us denote the Laplace transform of f, by

Lg, x)=SRe'”Cg(t, x)dt .

Since f, is in C'((—=T, T), Ho.(H™) with support contained in [0, 27/3], the solution
u of the Cauchy problem (4.2) is given by

1
u(t, x)= ?;Sm -

which is in C™*'¥[—=T, T], He,(H™) if R is chosen large enough. (cf. [C] or [Fa])
This finished the proof.

e Qe L Fol&, %)dC,

5. Remarks

In this section, we shall discuss on the condition (P-2) of Theorem 1. This con-
dition is not necessary for the Cauchy problem for P to be well-posed, but we have

Theorem 4. Suppose that the Cauchy problem (2.2) is uniquely solvable in the space
C=([0, T), Hey(H™)). Then for any v in the interior of I,

{ues(R"); @.(Nu=0}=1{0} .

Proof. We may only consider the ‘+’ case. Suppose that for some {,&Int(["),
there is a function v#0 satisfying P¥{,)v=0. We define a smooth function u by the
following way. For ¢=CT(H™),

ui(t, ), e>=(mP)v, v)ge A’
which satisfies the equation Pu=0 because if X is a right invariant vector field on H*,
X p=m(X)m (P .

It is easily seen that this solution violate the inequality : for any positive integer N
there is a constant C such that

m-—1 .
maXescszllult, Hl<CXE 3 l19{X u, ).
j=0 (I>=N

This is a contradiction to the well-posedness of the Cauchy problem (2.2).
To clarify the meaning of the condition (P-2), we give some examples.

Example 1 (n=1, n=1).
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P=0,—a(X{4+Y)+cZ,

where a is a real positive number ¢ is a complex constant. Then the necessary and
sufficient condition for the Cauchy problem (2.2) to be well-posed is

[Imc¢|Za.

Example 2 (m=1, n=1).
P=1{0,—a(Xi+YD} {0, —b(X3+Y D} +cZ2,

where a and b are positive constants and ¢ is a complex constant. Then the necessary
and sufficient condition for the Cauchy problem (2.2) to be well-posed is

[Im ¢| =(a+b)ab—Rec)'%.

These are proved by the similar argument in [O]. In fact, as for the latter case,
it is seen that when Im <0,
@+ a)eE+b)—c=0
is equivalent to

{2Im—(a+b)}2{(Im{—a)Im{—b)—Re ¢} —(Im ¢)*=0.

In these examples, the condition (P-2) is equivalent to

(The case Example 1)
IIme|<a,
and
(The case Example 2)
[Im ¢| <(a+b)ab—Re ¢)'’?,

respectively.

Finally, we mention some related works. On the Euclidean space, I.G. Petrowsky
[P] considered the p-parabolic operators with variable coefficients (c.f. [Mz]) and for
the operator of Example 1, a related result was given by K. Igari (Example 2 of [I]).
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