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Range characterization of Radon
transforms on S" and P"R

By

Tomoyuki KAKEHI

0. Introduction

It is one of the most important problems in integral geometry to characterize
the ranges of Radon transforms. F.John [9] gave the first answer to this
problem. His result is that the range of the X-ray transform on R?® is
characterized by a second order ultrahyperbolic differential operator. Gelfand,
Graev, and Gindikin [1] extended John’s result: they characterized the ranges
of d-plane Radon transforms on R" and C" by a system of second order differential
operators on an affine Grassmann manifold. Farthermore, Gonzalez [4] gave a
simple characterization of it by an invariant differential operator on an affine
Grassmann manifold. Grinberg [5] characterized the range of the projective
k-plane Radon transform on the n-dimensional real projective space P"R and
the n-dimensional complex projective space P"C by a system of second order
differential operators, and in [10], we gave another type of range characterization
for the Radon transform on a complex projective space; we characterized the range
by a single differential operator which is a fourth order invariant differential
operator on a complex Grassmann manifold and which is ultrahyperbolic type of
differential operator.

In this paper, we examine mainly the range of the Radon transform R = R,
on the n-dimensional sphere S" for 1 <1< n — 2, which we define by integrating a
function f on S" over an oriented [-dimensional totally geodesic sphere &, that
is, we define R as follows

1 .
Rf(¢) = m J g'f(X) dU:(X)~

where dv,(x) is the canonical measure on { = §". This Radon transform R maps

. . N~ .
smooth functions on S" to smooth functions on Gr,,, ,,,, the compact oriented
real Grassmann manifold, that is, R: C*(8") —» C*(Gr; | ,+1)-

The main result of this paper is the following:

Theorem. There exists a fourth order invariant differential operator P on
~
Griyy 41 Such that the range Im R of R is identical with its kernel Ker P, i.e.,
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Im R = Ker P.

Taking account of John’s result and the results in [10] or [11], it is expected
that the above P can be represented as an ultrahyperbolic type of differential
operator and, in fact, we will construct explicitly the above range-characterizing
operator P as an ultrahyperbolic type of operator. The main tools are the same
as those in [10]; we use the inversion formula and the method of radial part.

The author would like to thank Professor C. Tsukamoto for suggesting this
problem and for many helpful discussions.

1. The range-characterizing operator P

Let M be the set of all [-dimensional oriented totally geodesic spheres of
S". The oriented Grassmann manifold M is a compact symmetric space
SO(n + 1)/SO(l + 1) x SO(n — 1) of rankmin{l+ 1, n—1}. We assume that
r:=rank M > 2, that is, 1 <[ <n-2.

For a Lie group G and its closed subgroup H. we identify the subspace
C*(G, H) of C*(G) defined by C*(G, H) = {feC*(G): f(gh) = f(g) YgeG and
heH}, with C*(G/H). We define an action L, of G on C*®(G) by
(L,f)(x)=f(g~'x) for xeG. and feC*(G). Similarly we define an action R,
of G on C¥(G) by (R,f)(x)=f(xg). A differential operator D is called
left-G-invariant if L,D = DL, for all ye G. Similarly, D is called right-H-invariant
if R,D = DR, for all he H. These notations are the same as those of the previous
paper [10].

Let G, K, K’ be the groups SO(n+ 1), SO(I+1)x SOn—1), SO(n),
respectively. Then we have M = G/K, §"= G/K’, and we identify C*(G, K)
with C®(M), C*(G, K') with C>*(S") respectively. We define metrics on
G, K, K', M, and S", by the metrics induced from the Killing form metric on G,
respectively. Let g and f denote the Lie algebras of G and K, respectively.

g={XeM, ;(R); X +'X =0},

X, 0
f= 0 X, eq; X, eM,,(R), X,eM, _,(R),.

Let g = @ m be the Cartan decomposition, where m is the set of all the matrices
of the form

0 0 — Xj+2,1 — Xp+1,1

% 0 0 —Xiy2,041 0 T Xyt ra+1
Xiv2,0 0 Xi+20+1 0 0
Xp+1.1 Xk 41 0 O
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We define differential operators L;; ,(/ + 2 <i<j<n+ 1. 1 <a<f<Il+1)
on G by

02 o2
1.1 L..,= — expX)ly=o. C*(G).
(L.1) ij,ap <5xm6xm axMaxh)ng xp X)lx=o fe (G)

Using this, we define a differential operator P on G by
Ly > if n=3,1=1,

(1.2) P = Y (Lij.p)*  otherwise.

1+2<i<j<n+1

l<a<fs<l+1
Then P is right-K-invariant. Thus P is well-defined as a differential operator
on M. Its proof is the same as that of Lemma 1.1 in [10], and is reduced to
the fact that the polynomial F(X) on m is Ad-K-invariant. Here

X31X45 — X32X4, if n=3,1=1,

F(X)= y (XiaXjp — XipX;)*  otherwise.
1+2<i<j<n+1
l<a<p<i+1

We identify the principal symbol of P with F(X).

By definition, P is left-G-invariant. Therefore, P is well-defined as an
invariant differential operator on M. The main theorem of this paper is the
following:

Theorem 1.1. The range of R is identical with the kernel of P, that is,
Ker P = ImR.

Remark 1.2. The differential operator L;;,, in (1.1) is ultrahyperbolic and
of the form similar to the range-characterizing operator in [9] or similar to the
operator L;;,, defined in [10]. Moreover the operator P defined by (1.2) is
almost of the same form as the range-characterizing operator P in [10]. From
this point of view, we can say that the range of the Radon transform R on S"
can be also characterized by an ultrahyperbolic type of differential operator.

Since we gave the proof for the case /=1 in [11], we consider the other
case in this paper.

2. Proof that Im R = Ker P

We first prove that Im R < Ker P. It is proved in the same way as the
complex case (see [10]).

By the identification C*(G, K)=C*(M) and C*(G, K')=C*(S"), we
consider the Radon transform R to be a map from C*(G, K) to C*(G, K'). Then
R is given by
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21 (Rf)(g) =

Vol (K) ker(gk)dk, feC*(G, K.
From this section, we use the representation of the form (2.1).

We define a bilinear form ¢{-.- > on C"*! x C"*! by <(u, v) = Z;’:: u;v; for
u=Uy,...;Uyyy), 0=(y....,0,4,), and a smooth function h]JeC>(G) by
h™(g) = <a, ge,»™, where aeC"*! e =(1,0,...,0) and m is a non-negative
integer. It is easily checked that h)'e C*(G. K'), that is, h'e C*(S"). Moreover,
the following lemma holds.

Lemma 2.1. Let V¥, denote the subspace of C*®(S") generated by the set
{h7; {a,ay =0}. Then V, is the eigenspace of As., the Laplacian of S",
corresponding to the m-th eigenvalue and 'V, is irreducible under the action of G.

For the proof, see [12].

We notice that we always consider the Laplacian on a compact manifold to be
a non-negative operator.

We will use the following proposition to calculate the eigenvalue of P in
Section 6.

Proposition 2.2, Im R < Ker P.

Proof. By Lemma 2.1 and by the same argument as in that of Proposition
2.2 in [10], we have only to prove that

Lijop(RM) (1)
1 0? o’
_ < _ )I hy((exp X)k)dk|x -
Vol (K) \ 0x,, Oxj,, ax,'gaxja keK

:07

where I denotes an identity matrix.
The above result follows from the equation:

0? 02
( >{<a, (exp X)ke1>’"}|x=0

0x;,0X 5 a 0x;50x 4
=m(m — 1)(aiky ajkyy — a;kgyazk,,)<a, ke, >" 2 =0,

where ke K and k;; denotes the (i, j) entry of k. Therefore the assertion is verified.

3. The inversion formula

We construct a continuous linear map S: C*(M)— C>®(S") such that SR = Id
on Cg.,(S"), using the Helgason’s inversion formula. Here Id denotes the identity
map and CZ2,,(S") denotes the space of all even functions in C®(S"). (The Radon
transform R maps odd functions on S" to 0.)

In this section, we denote by M, the oriented Grassmann manifold SO(n + 1)/
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SO(I+ 1) x SO(n — I), by K, the closed subgroup SO(I + 1) x SO(n — I) of G, and
by R, the Radon transform R: C®(S") » C®(M)) respectively. We define a dual
Radon transform ﬁ,: C®(M)) - C>(S") by

1

(Rif)g) = m keK, -1

flgkydk, — feC*(G, K)).

If k is even, we define a polynomial &,(x) by

(pk(x):(H(k— 1)(n—k)><x+(k-3)(n—k+2)>m<x+ l(n_2)>
2n 2n 2n

Theorem 3.1 (Helgason [6], Ch. 1, Theorem 4.5). If | is even, we have the
inversion formula for R,

cat@(As )RR, =1d  on CZ, (S,
where ¢, is a constant depending on n and |.

Proposition 3.2. There exists an inversion map S = S;: C*(M,) » C®(S") such
that SR, = Id on CZ,,(S"

Proof. 1If I is even, Proposition 3.2 follows immediately from Theorem 3.1,
and we may therefore prove this proposition in the case |/ is odd. We define
Ri,\: C*(M)—C®(M,,,) by

1

1 —
(Ri+1f)(9) = Vol (K, )

J flgkydk,  feC*(G, K)

keKi+1

Then it is easily checked that R/, R, = R,,,. Since | is odd, [ + 1 is even and
by Theorem 3.1 there exists an inversion map S,,, such that S,, R,,, =1Id on
CZ2,.(S"). Therefore, if we put S, =S,,,Rl,,, we get S;R, = Id on CZ,,(S").

“even

4. Representation of (G, K)

In this section, we describe the root, the weight, and the Weyl group of the
symmetric pair (G, K).
Let a @ m be the set of all matrices of the form

0 - 0 —t
H(t)= H(ty,....t)= | 1t . 0 0 0
t, 0 0 0 ’
o 0 0
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where we put r = rank M (= rank G/K) in Section 1 and t = (t,,..., t,)eR". Then,
a is a maximal abelian subalgebra of m. We identify a with R" by the mapping
H(t)—t.
Let (-,-) denote an invariant inner product on g defined by
(X, Y)=—(n—1)tr(XY) X. Yeq,

which is a minus-signed Killing form on g.
For aea, let

g,={Xeg [H,X]=/—1(x, HX for all Hea}

An element xeg is called a root of (g, a) if g, # {0}. We put m, = dim¢g, and
call it a multiplicity of a.

We put H; = H(OH..,T,...,O) (I <i<r)and we fix a lexicographical order

< on a such that H, > .--H,>0. Then the positive root a of (g, a) and its
multiplicity m, are given by the table:

o m

———(H; £ H I<j<k<r 1
2(’1_1)( Jj k) ( Sj< S’)

1
— H; 1<j<r n+1—2r
2(n — 1) -

The simple roots a; (1 <j <r). are given by the table:

(n+1>2r): aj:z(n—l)(Hj—HjH) (I<j<r—-1),

_ b

" 2n—1) "

1 ;
(n+1=2r): ocjzz(—n—_-—l—)(Hj—HjH) (1<j<r-—2),
r—1 2(”_1)( 1—1+Hr)
= _ H).
" 2(n—1)( ! /)

Let M; (1 <j <r) be the fundamental weights of G/K corresponding to the
simple roots a;, (1 <j<r). Then, M; (1 <j<r) are given by the table:

1 Jj
Y H, (1<j<r—1),

m+1>2r+1): M;=
n— 1,2
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1 .
= _ Y H,.
2(”1 - ])kgl ,

1 J
(n+1=2r 0r2r+1): M;= IZHk.
n—1r=1

If n+1>2r, the Weyl group W(G, K) of (G, K) is the set of all maps
s: a—a such that

4.1 St(tyseen ) (61t o1)e e Elyy) &= E 1, 0€C,.
And if n + 1 = 2r, W(G, K) is the set of all maps s in (4.1) such that &, - ¢,---¢, = 1.
. . 1
Let Z(G, K) be the weight lattice generated by 5(——1) H; (1 <j<r). The
n—

highest weight of a spherical reprsentation of (G, K) is of the form m M +--- +
m,M,, where m,,...,m, are non-negative integers. We denote by V(m,.....m,)
the eigenspace of Laplacian 4,, on M = G/K which is an irreducible
representation space with the highest weight m, M +--- + m.M,.

In the same manner, we can define a fundamental weight M| of (SO(n + 1).
SO(n)), (that is, this is the case [ =0,) and we have

b
2(n — 1)

’

1= Hl

Then mM; is the highest weight of the m-th eigenspace ¥, of Laplacian 4.,
which we defined in Section 2. It is easily checked that 2M| corresponds to
M, by an adjoint action. Therefore. we get the following Lemma by Proposition
3.2.

Lemma 4.1. The Radon transform R isomorphically maps the subspace V,,
of C=(S") to the subspace V(m,0,....0) of C*(M).

5. Radial part of P

We will calculate the eigenvalue of P on V(m,,...,m,) to prove Theorem
1.1. There are two ways to calculate it. One is a representation theoretical
approach, and the other is the method of radial part. We use the latter.

We define a density function 2 on a by

Qn=1 [] 2sin(a, H(t))"|

a; positive root
Then Q(t) is given by
(5.1) Q) =c,,lowl,

where
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1
_ -z-r(2n+1—3r)
Cn.r - 2
r
(52) g = n Sll’l"+1—2rfj
i=1
o= J] (cos2t;—cos2t,)

1<j<k<r

We choose a connected component .o/ * of Weyl chambers such that ¢ >0, w >0
on «/*. For example, we choose

ot

{(tl,...,t,)eR’: 0<t, <<t < g} (n+1>2r),

o ={{t,....t)eR;0<t; 2, <m 1<j<k<r} (n+1=2r).

To each invariant differential operator D on G/K, there corresponds a unique
differential operator on /% which is invariant under the action of the Weyl
group W(G, K). This operator is called a radial part of D, and we denote it by
rad (D).

The following lemma is well-known.

Lemma 5.1.

r 2
rad (dy) = — Z(a—+9~3),

n—1;i=
where Q, means a differentiation of Q by t;.
For the proof, see [12] ch. 10, Cor. 1.

As in [10], let us consider the following four conditions (A4), (B), (C), and
(D) on a differential operator Q that is regular in all Weyl chambers.

4

0
(A = ———- + lower order terms.
) Q 15,2;(5,5[!2@{,3

(B) Q is formally self-adjoint with respect to the density Q dt.

(C) Q is W(G, K)-invariant.

(D) [Q, rad(4y)]:= Qrad(d,) — rad (4,)Q = 0.

Then it is easily checked that the differential operator rad(P) satisfies the
above four conditions (A), (B), (C). and (D), by the same argument as in [10].

We calculate the radial part of P.
By the conditions (4) and (B), we get

Q, &
j*k Q 6tf6tk'

the third order terms of rad(P) =

Thus, we can put
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¢ Q 0?
dP) =Y oot Y
o ( ) jgk 6t?6t,f j*k Q 6t?6t,¢
(5.3)
02

Y B+ Y

J
j=1 61 j<k a ak ji=1

Mw

where the coefficients A;, Bj,, and C; are C* functions on Weyl chambers.
By condition (D), the third order terms of [rad(P), rad(4,,)] =0, and we
get the equations

0

(54) —Aj=12 ) (@), + a4(a,),),
ot 20,;, o

0
(5.5) a—t {2Bjk - 3((11)"( - 2ajak} = - aj(aj),k - 2(Aj)fk’

0
(5.6) a {ZB — 3(ay), — 2ajak} == ak(ak)t,- - 2(Ak)zja

k
where we put a; = Q, /Q.

We take
sin 2t
5.7 Ai=—m+1-2r) cott;—— %
6.7 ! ( )a;,- ' cos 2t, — cos 2t;
12y < cos 2t, 3 sin? 21, >
azj\cos2t, —cos2t; (cos2t, — cos2t))?
sin? 2t,
a7 COS 2t, — CcOs 2t;
)y {] N sin? 2t }
) (cos2t, — cos 2t;)(cos 2t; — cos 2t)) '
3

(58) Bjk = Ea}-,,k + ajak.

Then, after a tedius but straight forward computation, we find that the functions
(5.7) and (5.8) satisfy the equations (5.4), (5.5), and (5.6).
We get by the condition (B),

(59) €= A+ 5 T ABD + Bud} 50 T L
Q j<k 20 j*k
We define a fourth order differential operator Q, by the right hand side of
the equation (5.3), where the coefficients 4;, Bj, and C; are given by the functions
(5.7), (5.8), and (5.9) respectively. Then, a differential operator Q,:= rad(P) — Q,
is a second order differential operator and satisfies the conditions (B), (C), and
(D). Thus, we will prove that the operator Q, can be written as ¢ rad(4,,) for
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a suitable constant c.

We define a subgroup W, of W(G. K) by the set of all maps s in (4.1) such
that e, -&,---¢, = 1. Then, if n + 1 > 2r, W, is strictly contained in W(G, K), and
if n+1=2r W, is identical with W(G, K). We can prove the above fact by
the following lemma.

Lemma 5.2. We assume that (n,r) # (3.2). If a second order differential
operator Q satisfies the conditions (B) and (D), and if Q is Wy-invariant, then
Q = crad(4y,) for some constant c.

Proof. We put

" Bt 5 G,

j=1 ’6t j<k 6 ak j j

Mﬂ

By the condition (D), the third order terms of [Q. rad(4,,)] vanish. Thus we have
(5-10) Aj,, =0, (1<j<n:

(5_1 I) Ak.tj + Bjk,lk = 0 4 + Bjk,lj = 0, (j < k);

Jit

(5“12) Bl‘j"k + Bjk,l.' + Bik‘lj = O, (l S i <j < k S I‘).

By the equations (5.10-12) and the assumption that Q is Wj-invariant and
(n, r) # (3, 2), the coefficients 4; and B, are polynomials of the form

(5.13) A =06, Y 17 +9,,
k#j
(5.14) By = —26,1;t,

where 6, and 0, are some constants.

Using the condition (B), we have

1 |

5.15 C;=—(4,Q Bj, B
(5.15) j Q( ) 2912( k;( 182

If 6, =0, then the coeflicient Bj = 0. and the coeflicient C;=9,92, /Q by
(5.15). Therefore we obtain Q = — (n — 1)d,rad(4,,), and the lemma holds.

Now, we suppose that §; #0. In particular, we may suppose that J, =1
and J,=0. By the condition (D), the first order terms of [Q, rad(4,,)]
vanish. Then

(5.16) Qd, = — (n — 1)rad(4,,)C,.

where a, = Q,,/Q.

We extend the both sides of (5.16) to C as meromorphic functions of
tl = “1 + - 1 Vl.

By the formula (5.1-2), we have
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t . — 2sin 2t
(5.17) a=Mn+1- 21‘)09S Ly Z el .
sint;  j=2cos2t; — cos2t;

Let v, » oo, then a,,, -0, a;,, — 0 (rapidly decreasing), and a, = O(1). The
same fact holds for a; (j = 2.....r). Thus Qa, — 0 (rapidly decreasing). Therefore
we get rad(4,,)C, -0 (rapidly decreasing) by (5.16). However, when v, tends
to + oo, we have

u 0* 0
—(n — l)rad(AM)Cl = Z (7 + ak_>(Bljaj+ Blj.:,) + 0(])

otf ot

(In the above computation, we have used (5.13), (5.14) and the fact that a; = O(1)
and the derivatives of a; >0 as v, - 0.) Therefore, we have rad(d4,,)C, — o, for
suitable t,,....t,, and p,. It is a contradiction.

Remark 5.4. If n =3 and r = 2, there exists a differential operator Q such
that Q satisfies the conditions in Lemma 5.3 and linearly independent of
rad(4,,). Indeed, if we define a differential operator Q by

2 0,0 050

5.18 = oo 7o e 7
18) ¢ ot,0t, 2Q dt, 2Q 0t

then Q satisfies the conditions (B), (C), and (D). Moreover Q is linearly
independent of rad(4,). Therefore, it is easily checked that this operator Q is
the radial part of P = L;, ,,.

By the above argument, we get a following proposition.

Proposition 5.5. If (n, r) # (3, 2), the differential operator rad(P) can be
expressed of the form

rad(P) = Q, + c¢(n — 1)rad(4y,),

fOV some constant c.

6. Proof of Theorem 1.1

We calculate the eigenvalue of P on V(m,,...,m,) to prove Theorem I.1.

Let a(m,,...,m,) be the eigenvalue of P on V(m,,....m,) and ¢, . ., the
zonal spherical function which belongs to V(m,...., m,). We denote by u,,
the restriction of ¢, ., to the Weyl chamber /. Since the procedure is
almost the same as that in [10], we omit the proofs of the following lemmas.

Lemma 6.1 ([12], THEOREM 8.1). The function u,,, . . .., has a Fourier series
expansion on 4" of the form
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Uiy, ..., m,.)(tl»...,[,)

= z r]lexp\/ _1('1’ t1H1+"'+trH,,),
A<miMy+-+m-M,
AeZ(G,K),finite sum

where N, s, 4.+ mom, > 0.

Let f, and f, be Fourier series of the form

f1= Z CACXP\/_I(L t1H1+'”+trHr)

A< Ay1,ieZ(G,K)

f= > EACXp\/Tl(A, t,H + - +1t,H)

A< A2,3€2(G.K)
We denote f, ~ f, when A, = A,(>0) and {,, = {4,(# 0).
Lemma 6.2.
Q,~/—1n+1-2)Q,
A; Q% ~ —(n—j)(j — )22,
ByQ*~ —(n+1-=2j)(n+1-2kQ%,
C~ — /=1 =)(j— 1) +1-2)Q%,
where the functions A;, By, and C; are given by (5.5), (5.6), and (5.7) respectively.

Now we can calculate the eigenvalue of P on each irreducible eigenspace,
by the following theorem.

Theorem 6.3. Unless n=3 and r = 2, the eigenvalue a(m,,...,m,) of P on

V(my,...,m,) is given by the formulae

amy,...m)= Y LL(;+n+1=2))(,+n+1—=2k)

1<j<ks<r

+ i (j— 1)(n—j)lj(1j+n+ 1 —2j),
j=2

J

where 1 is given as follows.
m+1>2r+1): ;=2(mj+--+m_,)+m,
(m+1=2r 0r 2r+1): [; =2(m; + --- + m,).
Proof. By definition, we have
(6.1) P,

We restrict both sides of (6.1) to the Weyl chamber /", and then we have

rad (P)u(ml ..... my) = a(’nl"“’mr)u(ml ..... my)*
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By Proposition 5.3, Lemma 6.1 and Lemma 6.2, it follows that

Q3 rad (P) u,,

..... my)

= Q*{Q, + c(n — 1)rad (4y) } tgm,

~{ Y Lh(+n+1 =2/ +n+1=2k)

l1<j<ksr

Z (G—=Dm=NLl;+n+1-=2j)} 2%,

.....

+c Z Ll +n+ 1 —2j)Q%u,,
i=1
Thus, we have

amy,...m)=3%  LL(;+n+1—=2j)(l,+n+1—2k)

1<j<ksr

Z(]—l Yn =L +n+1—2j)
+chj(lj+n+1—2j).

i=1

Here, by Proposition 2.1 and Lemma 4.1, we have a(2m, 0,...,0) = 0. Therefore,
we get ¢ =0, which completes the proof.

Remark 6.4. For the case (n, r) = (3, 2), the eigenvalue of P can be also
computed in the same way as above using (5.18). For detail, see [11].

The following corollary is easily verified.

Corollary 6.5. V(m,,...,m,) is contained in Ker P if and only if my = ... =
m, = 0.

Proof of Theorem 1.1. Our proof of Theorem 1.1 is almost the same as
that of Theorem 1.2 in [10].

Let Vi=@®2_oV(m,0,...,0) and Vi= ®2_0%m Then we have R: VoV
and S: V> V. Moreover we have SR = Id on ¥ and RS = Id on V by Proposition
3.2 and Lemma 4.1.

By Corollary 6.5, V is dense in Ker P in C*-topology. Since S: C*(M) -
CZ,.(S" is continuous, we have RS = Id on Ker P. This proves Theorem 1.1.

Remark 6.6. The differential operator P is of least degree in all the invariant
differential operators on (’}7,“‘,,“ that characterize the range of R. It follows
from the fact that the principal symbol F(X) of P, which we defined in Section
1, is of least degree in all the Ad-K-invariant polynomials on m except for the
principal symbol of the Laplacian.
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7. Radon transforms on P"R

The set of all projective [-dimensional planes of P"R is a real Grassmann
manifold Gr,,, ,+, and a compact symmetric space O(n + 1)/O(I + 1) x O(n — [)
of rank min{/+ 1, n—1[}. We define a Radon transform #:C*(P"R)—
C*(Griyy ,+1) as follows.

) 1
.%f(?]) = m f(x)du,,(x),

xen

where dv,(x) is the canonical measure on y(< P"R).
Since we can identify CZ,,(S") with C*(P"R), we have

Rf(+nm)=Rf(=n=2f(n)  for feC*(P'R) and neGr 4y 41,

where + 1 and — » denote orientations of .

We defined the invariant differential operator P on Gr;,, ., in Section 2,
but we can easily check that P is also well-defined as an invariant differential
operator on Gr,,, ,+;. Therefore we obtain the following theorem from Theorem
1.1.

Theorem 7.1. The range of the Radon transform # on P'R is identical with
Ker P.
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