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Range characterization of Radon
transforms on Sn and P R
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Tomoyuki KAKEHI

O. Introduction

It is one of the most important problems in integral geometry to characterize
the  ranges o f R adon  transform s. F. J o h n  [9 ]  g a v e  th e  first answ er to  this
p ro b le m . H is  r e s u lt  is  th a t  th e  r a n g e  o f  th e  X -ray  transform  o n  R3 i s
characterized by a  second order ultrahyperbolic differential operator. Gelfand,
Graev, and  G indik in  [1] extended John 's result; they characterized the ranges
of d-plane Radon transforms on R" and C" by a system of second order differential
operators on an affine Grassmann manifold. Farthermore, Gonzalez [4] gave a
simple characterization o f  i t  b y  a n  invariant differential operator o n  an affine
Grassmann m anifo ld . G rinberg  [5 ] characterized the range of the projective
k-plane Radon transform on the n-dim ensional rea l projective space P"R and
the n-dimensional complex projective space PnC b y  a  system of second order
differential operators, and in [10], we gave another type of range characterization
for the Radon transform on a complex projective space; we characterized the range
b y  a  sing le  differential operator which is a  fourth  order invariant differential
operator on  a  complex Grassmann manifold and which is ultrahyperbolic type of
differential operator.

In  this paper, we examine mainly the range of the Radon transform R  = R I

on the n-dimensional sphere S" for 1 < / < n — 2, which we define by integrating a
function f  on S" over a n  oriented /-dimensional totally geodesic sphere  t h a t
is, we define R  as follows

1
R f  —

Vol (S')
f  (x )ch(x ),

where dt,(x) is the canonical measure on S". T h is  R a d o n  transform R  maps
smooth functions on S" to smooth functions on the compact oriented
real Grassmann manifold, tha t is, R :( S " ) C x '(Gri+1,„+i)-

The main result of this paper is the following:

Theorem. T here ex ists a  f iu rth  order invariant dif ferential operator P  on
Gr,,s u c hsuch that the range Im R  o f  R  is identical w ith its k ernel Ker P ,  i. e.,
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Im R = Ker P.

Taking account of John's result and the results in [10] or [11], it is expected
th a t the  above P  can be represented a s  a n  ultrahyperbolic type of differential
operator and, in fact, we will construct explicitly the above range-characterizing
operator P  as an ultrahyperbolic type of o p e ra to r . The main tools are the same
as those in  [10]; w.e use the inversion formula and the method of radial part.

The author would like to thank Professor C. Tsukamoto for suggesting this
problem and for many helpful discussions.

1. The range-characterizing operator P

L et M  b e  the  se t o f a ll /-dimensional oriented totally geodesic spheres of
S " .  T h e  oriented Grassmann m anifold M  is a  c o m p a c t  symmetric space
SO(n + 1)/SO(1 + 1) x SO(n — 1) o f  rank m in  I + 1, n — /1. W e  assum e that
r:=  rank M  > 2, th a t is , 1 < 1 < n — 2.

F o r  a  L ie  g roup  G  a n d  its closed subgroup H . we identify th e  subspace
C '(G , H ) of C ( G )  defined by C"(G, H) =  [fe C "(G ); f (g h )=  f(g ) V g  G  and
h e  H I, w ith  C '(G / H ).  W e  d e f in e  a n  a c t io n  L 0 o f  G  on C ( G )  by
(L ,f)(x ) =  f (0 ' x ) for x e G, and f  e  C "(G ). Similarly we define an  ac tion  R,
o f  G  on C ( G )  b y  (R „ f ) (x )  f ( x g ) .  A  differential operator D  is ca lled
left-G-invariant if L,D -= DL, for all g e G .  Similarly, D is called right-H-invariant
if R,D = DR,  for all he H . These notations are the same as those of the previous
paper [10].

L e t  G, K ,  K ' b e  t h e  g ro u p s  SO(n + 1), SO(1 + 1) x SO(n —1), SO(n),
respectively. Then w e have M = G/K, Sn = G/K', a n d  we identify C"(G. K)
with C ( M ) ,  C "(G , K ') w ith  C '(S " )  respectively . W e define  m etrics on
G, K, K', M, and S", by the metrics induced from the Killing form metric o n  G,
respectively. Let g and 1 denote the Lie algebras of G and K, respectively.

= e m n +  i(R); X  +  tx  =  0 , } ,

0
t = 

X  
x 2 )e g ;  X i EM, + ,(R), X 2 EM„_,(R)}.

0

Let g = t 0 m be the Cartan decomposition, where in is the set of all the matrices
of the form

X1+2,1 -Xn + 1,1

X
-X/+2,1 X1+2,/+1

Xn+1,1 ..• + 1 ,1 +  I

X1+2,1+1 Xn+1,/+1

0 ••• 0
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We define differential operators L i i ,o (/ + 2 <  i < n + 1, 1 < a <f i < I + 1)
o n  G  by

(  0 2 02 )
—      f(gexp  X )1 , = 0 , . f e C ( G ) .

 iŒâXjfl exiflaxi,x

Using this, we define a  differential operator P  o n  G  by
L 34,12 i f  n = 3, I = 1,

(1.2)P = E (L,J,o)2 otherwise.
I + 2 < i<  j< n + 1

1 ,5 a< fl5 .1 + 1

Then P  is right-K -invariant. Thus P  is well-defined a s  a  differential operator
o n  M .  Its proof is the  same as  that of Lemma 1.1 in  [10 ], and is reduced to
the fact that the polynomial F(X ) on  in is Ad-K-invariant. Here

 

X31 X42 X32X41 i f  n = 3, I = 1,

F(X ) =
1+ 2 < i < j , I + 1

1 < ,< 1.1.(1+ 1

—  X X i )
2

otherwise.

We identify the principal symbol of P  with F(X ).
B y definition, P  is left-G-invariant. Therefore, P  is w ell-defined a s  an

invariant differential operator o n  M .  T he m ain  theorem o f  th is  p ap e r is  the
following:

Theorem 1.1. The range o f  R  is identical w ith the k ernel o f  P , th at is,

Ker P = Im R.

Remark 1.2. The differential operator L 11 (1.1) is ultrahyperbolic and
of the form similar to the  range-characterizing operator in  [9 ]  o r  similar to the
operator L  defined i n  [ 1 0 ] .  Moreover th e  operator P  defined by (1.2) is
almost of the same form as the  range-characterizing operator P  in  [ 1 0 ] .  From
this point of view, we can say that the range of the Radon transform R  o n  S"
can be also characterized by an ultrahyperbolic type of differential operator.

Since we gave the proof for the case I = 1  in  [1 1 ], we consider the  other
case in this paper.

2. Proof that Im R  Ker P

W e first prove that Im  R OE Ker P. It is  p roved  in  th e  sam e w ay as the
complex case (see [10]).

B y  the  iden tifica tion  C " ( G , K ) = C ( M )  a n d  C' (G , K ')= (S"), we
consider the Radon transform R  to be a map from C"(G, K ) to  C "(G , K ') . Then
R  is given by
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1(2.1) (R f)(g) —  f(gk)dk, f e C"(G, K').
Vol (K) IkeK

From  this section, we use the representation of the form (2.1).
We define a  bilinear form < • . • > on Cn+ 1  x C" + '  by  <u, y> = E n

i
+ u  i v  for

u = (u 1 ,...,u„ + 1 ), y  = (y 1 , U n+ 1), a n d  a  sm o o th  fu n c tio n  ham E Cc  ̀(G )  by
ham(g) = <a, ge i r  ,  w here  a e C " ' , e 1 =  (1, 0,...,0) a n d  m  i s  a  non-negative
integer. It is easily checked that h" e C"(G, K'), that is, hT E CNS"). Moreover,
the following lemma holds.

L em m a 2.1 . Let I;„ denote the subspace o f C"(Sn) generated by  the set
{ham ; <a, a> = 0 } . Then JÇ , i s  the eigenspace o f  d e „, the L aplacian o f  S",
corresponding to the m-th eigenyalue and V„, is irreducible under the action of G.

F or the  proof, see [12].
We notice that we always consider the Laplacian on a compact manifold to be

a  non-negative operator.
W e w ill use  the  following proposition to calculate the  eigenvalue o f  P  in

Section 6.

Proposition 2.2. Im R  Ker P.

P ro o f . By Lemma 2.1 and by the same argument as in that of Proposition
2.2 in  [10], we have only to prove that

Vol (K )(0x ,ex o O x , f l ax i ,z )
k e K

= 0,

where I  denotes a n  identity matrix.
The above result follows from the equation:

1,13,4 ,(R(hT))(1)
8 2 02

10(exp x)k)dlcl x =o

(  0 2 02 )

 {<a, (exp X )ke i r l l
\\ ax Ox O x i i j ex ;OE

= m(m — 1)(a1k 1 ai kf l 1  —  a,k"a i k„,) <a, ke i r -  2  =  0,

where k E K and k J  denotes the (i, j) entry of k. Therefore the assertion is verified.

3. The inversion formula

We construct a  continuous linear map S: CNM)--+ C (S ") such that SR = Id
on CL,„(S"), using the Helgason's inversion formula. Here Id denotes the identity
map and Cf,,„(S") denotes the space of all even functions in C ( S ) .  (The Radon
transform R  maps odd functions on  S" to  0.)

In this section, we denote by M , the oriented Grassmann manifold SO(n + 1)/
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SO(1+ 1) x SO(n — 1), by K , the closed subgroup 50(1 + 1) x SO(n — 1) of G, and
by R , the Radon transform R: C . "(S")— Cœ (M ,) respectively. We define a  dual
Radon transform C'(M,)— > C"(S") by

(k ,f ) (g )= 1 f  ( g k )  d k , .f e C"(G, K,).
Vol (K„_,)

If k  is even, we define a polynomial Ok (x) by

o k ( x )  =  ( x  ( k  — 1)(n —  k))( (k — 3)(n — k +  2)) ( 1(n — 2))
x + x +

2n 2n 2 n  )

Theorem 3.1 (Helgason R d , C h . 1, Theorem 4.5). If  1  is even, w e have the
inversion form ula for R ,

= Id on C,,„(S "),

where c„,, is a  constant depending on n and 1.

Proposition 3.2. There exists an inversion map S  = S ,: C"(M ,)— CNS") such
that S ,R , = Id on C„„(S")

P ro o f . If l  is even, Proposition 3.2 follows immediately from Theorem 3.1,
and  we may therefore prove this proposition in the case / is odd. W e define
M + 1 : C"(M ,)--+ C"(M ,,,) by

(C i f ) ( 9 )
1

f(gk)dk, f  E C"(G, K ,)
Volv ± 1 )  f

Then it is easily checked that R 1 R ,=R 1 + ,. Since I is odd, 1 + 1 is even and
by Theorem 3.1 there exists an inversion m ap S,_„ such that S, ± 1 R ,,,—  Id  on
Ce" e „(Sn). Therefore, if we p u t S I = we get S,R, = Id  on

4. Representation of (G, K)

In  this section, we describe the root, the weight, and the Weyl group of the
symmetric pair (G, K).

Let a c m be the set of a ll matrices of the form

0 ••• 0 — r,

0 —  tr

H (t)= H (t,,...,t,.) = t, 0 0 • • • 0

r, 0 0 • • • 0

0 0 0
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where we put r = rank M (= rank G/K ) in Section 1 and t = (t 1 ,...,t,.)e . Then,
a  is a maximal abelian subalgebra of ni. We identify a  with Rr by the mapping
H (t)H t.

Let ( • , • ) denote an invariant inner product on  g  defined by

(X, Y) =  —(n — 1)tr(X Y)X .  Y eg,

which is a  minus-signed Killing form on g.
F or oc E a , let

ga,: = e gc : [H , X ] = —1(x, H ) X  for all E

An element c i q  is called  a  root of (g, a) if q 0  {0}. W e put mOE c l i m c g , and
call it a  multiplicity of oc.

W e p u t 11; = H (0 ,...,1 ,...,0 ) (1  < i < r) a n d  we fix a  lexicographical order
<  o n  a  such  tha t H 1 >  ••• H r > 0. Then the positive ro o t oc of (g, ci) a n d  its
multiplicity m OE a r e  given by the table:

a m,

1
 ( H i  ± H k ) ( 1 <  k r) 1
2(n — 1)

1

2(n — 1) 
H. (1 r) n + 1 —  2r.

The simple roots cci  (1  < j r), are given by the table:

(n + 1 > 2r):

(n + 1 = 2r):

1
= 

2(n —
(H H• + 1 ) ( 1  < — 1),

1)

1
—  H r .

2(n — 1) r

1
OC• = 

2 (n  —  
(H.— H. + 1 ) ( 1 j r — 2),

1)

1
cxr- 1 —  (H,._,

2(n — 1)

1
=  (Hr _ i — H r ).1 r

2(n — 1)

Let M ;  (1 j  <  r) be the fundamental weights of G /K  corresponding to the
simple roots oci , (1 < j<  r). Then, M ;  (1  < j  <  r)  are  given by the table:

1(n + I > 2r + 1): M  = E H k (I < .j . r - 1 ) ,
n — I  k .1
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M r =  E  Hk.
2(n — 1) k=1

(n  + 1  = 2r, or 2r + 1):  E Hk.
n 1 1=1

I f  n  + 1  > 2 r, the Weyl g roup  W (G, K ) o f (G , K ) i s  the set of all maps
s: a —> a such that

(4.1)s : ( t  , ri = 1, 0 E S r .

And if n + 1 = 2r, W (G, K ) is the set of all maps s in (4.1) such that r ,  e 2  •••E,. =  I.

Let Z (G , K ) be the weight lattice generated by 1 H ., ( 1  < j<  r). The
2(n 1)

highest weight of a spherical reprsentation of (G, K ) is of the form m, M 1 + • • • +
mr M „ where m,,...,m r are non-negative integers. W e denote by V(m,  m,)
the eigenspace of L aplac ian  . 4 „  on  M  =  G I K  w h ic h  i s  a n  irreducible
representation space with the highest weight mi M 1 +  •••+

In the same manner, we can define a fundamental weight M i of (S 0(n + 1),
SO (n)), (that is, th is is the case 1 = 0,) and we have

1
M i =  H,

2(n — 1) -

Then mMi is  the highest weight of the m-th eigenspace V„ of Laplacian As „,
which we defined in Section 2. It is easily checked that 2 M i corresponds to
M , by an adjoint action. Therefore, we get the following Lemma by Proposition
3.2.

Lemma 4.1. T he Radon transform  R  isom orphically  m aps the  subspace Vi m

of  C ( S )  to  the subspace V(m, 0,...,0) o f  C ( M ) .

5. Radial part of P

W e will calculate the eigenvalue of P  on V(m i ,...,m r )  to prove Theorem
1.1. There are tw o w ays to  calculate it. O n e  i s  a  representation theoretical
approach, and the other is the method of radial part. W e use the latter.

We define a density function Q on a by

12(0=1 n 2 sin (a, H(t))"
a;positke root

Then Q (t) is given by

(5.1) f l( t)=

where
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Ir(2,)+ 1 - 3 )
2C  11,r 2

(5.2) a = f l  s
in fi+i- 2r t i

= 1

= 11 (cos 2 ti  — cos 2 t k )
1 < j < k < r

We choose a connected component .4 + of Weyl chambers such that a > 0, w > 0
on .c 1 .  F o r  example, we choose

{
rt

s e  =  ( t i , ..., t r ) e Rr ; 0 <t i < ••• <  tr < -
2

(n + 1 > 2r),

s i + = tr)ERr; 0  <  t j ± tk < 1 < j <  k < r} (n +  1 = 2r).

To each invariant differential operator D on G IK , there corresponds a unique
differential operator o n  .4 +  w h ic h  is  invariant under the action of the W eyl
group W (G , K ). This operator is called a radial part of D, and we denote it by
rad (D).

The following lemma is well-known.

L em m a 5.1.

r a2 Q trad (z1,,,,) —   E  +  a\
 ,

n — 1 j Q a t

where Q, . a  differentiation o f  Q  by  ti .

F or the  proof, see [12] ch. 10, Cor. 1.

A s in  [10 ], le t u s  consider the  following four conditions (A), (B ), (C ). and
(D) o n  a  differential operator Q  that is regular in  a ll Weyl chambers.

a4
(A) Q = , ,  +  lower order terms.

1<j<k<r at aq:
(B) Q  is formally self-adjoint with respect to  the density Q  di.
(C) Q  is  W(G, K)-invariant.
(D) [Q, rad (.61, ) ]  :=  Q rad (Am ) — rad (.(1,1 )Q = 0.

Then it is easily checked that th e  differential operator rad(P) satisfies the
above four conditions (A), (B ), (C ), and (D), by the same argument as in [10].

We calculate the radial part of P.
By the conditions (A ) and (B ), we get

3the  third order terms of rad (P) = aE 
j#k Q aqatk

Thus, we can put
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rad (P)  = E ± E Q
k  

 0 3a4
t

j<k  a q  ad j # k  Q  aq at,
r 32

a q i<k

32 r a+ E A i — , +  E B ik +  E c, ,
j = i  - ' at i at k ; i - a t i

where the coefficients A p  B ik ,  and  Ci  a r e  Coe functions on W eyl chambers.
B y condition (D ), th e  third order term s of [rad (P), rad (A M )] =  0 , and  we

get the equations

a
—  A .= — E ((ac,)„  +  a ac (a„)( i ),ahi

a
(5.5)   {2B

'
, — 3(a i ), — 2a j ak }  = —  ai(aA k

—  2 (A.dtk ,
at• 

a( 5 . 6 )

atk 
12Bi

k

 — 3(ai ) , — 2 cliak} = — ak1a0t, - 2 (Ak)t,,

where we pu t ai  =  0 ,1 0 .
We take

(5.7)A . = — (n + 1 —  2r) E cot t i
tt * j cos 2 ta — cos 2 ti

+ 2
cos 2 tees i n 2  2  t aE 

, * ;  cos 2 ta — cos 2 ti ( c o s  2  t„ — cos 2 ti )2

sin2 2t+ E 
cr* i  cos 2 t a — cos 2 ti

2{ i  +  
sin2 2tŒ— 

x<13 (cos 2 t a — cos 2 t i )(cos 2 tf l — cos 2 ti )
a,, j

(5.8) B .k a• +  a j ak .J 2  J .  k

Then, after a tedius but straight forward computation, we find that the functions
(5.7) and (5.8) satisfy the equations (5.4), (5.5), and (5.6).

W e get by the condition (B),

1 1 v,(5.9) Ci = (A i S2),,  +   E {(Bi k r2),„ +    L , 1 2 , tok2S2 j<k 252 j# k

We define a  fourth order differential operator Q , by the right hand side of
the equation (5.3), where the coefficients A p  B ik ,  and C i  are  given by the functions
(5.7), (5.8), and (5.9) respectively. Then, a differential operator Q 2  :=  rad (P) — Q,
is  a second order differential operator and  satisfies the conditions  (B), (C), and
(D ) .  Thus, we will prove that the  operator Q 2  can be written a s  c  rad (Am ) for

(5.3)

(5.4)

sin 2 t
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a  suitable constant c.
We define a  subgroup Wo  o f  W (G. K) by the set of all maps s  in (4.1) such

that ei  £2* • • Er =  1. Then, if n + 1 > 2r, W c , is strictly contained in  W (G, K), and
if n + 1 = 2r, W , is identical w ith W (G , K ). W e can prove the  above fact by
the following lemma.

L e m m a  5 .2 . W e assum e that (n, r) 0 (3, 2). If   a second order differential
operator Q satisf ies the conditions (B ) and (D), and if  Q  is  W 0 -invariant, then
Q = c rad (Am ) for som e constant c.

P ro o f . W e put

r a2 a2 0
Q := E A i + E Bik E cj

i <k at i at k J =1 at;

By the condition (D), the third order terms of [Q, rad  ( A M ) ]  vanish. Thus w e have

= 0, (1 <j < r);

Ak ,t i  + Bik 4 k  =  0, +  B.; t . ;  = 0, < k);

Bii,„ +  Bjk,„ B i k , t i  =  0 , (1 < j  <  <  k r).

B y  th e  equations (5.10-12) a n d  th e  assum ption  that Q  is W c invariant and
(n, r) 0 (3, 2), the coefficients Ai  a n d  Bik are polynomials of the form

(5.13) Ai  — 6 1 E t12 + (52 ,
k #j

(5.14) B ik  —  —  26ititk ,

where 6 1 a n d  62 are some constants.
Using the condition (B), we have

1 1 1
(5.15) C; = — (A ; f2),, +  E ( B ik o k   (Bkig2),k•

2Q <1 2 .1

If  6 1 = 0 , then  the coefficient Bi k  = 0, and the coefficient C . = 6 2 (2 IS 2  by
(5.15). T herefore  w e obta in  Q = — (n — 1)6 2 r a d (4 ,) , and the lemma holds.

Now, we suppose th a t 61 0  0. In particular, w e m ay suppose that 6 11
a n d  62 = O. B y  th e  co n d itio n  (D ), t h e  f ir s t  o rd e r  te rm s  o f  [Q, rad (A
vanish. Then

(5.16) Qa, — (n — 1)rad(z1 m )C i ,

where a, = 0 1/(2.
W e ex tend  th e  bo th  sides of (5.16) t o  C  as m erom orphic functions of

t 1 =  1  + 1 v i .
By the formula (5.1-2), we have
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cos t 1—  2 sin 2 t
(5.17) a, =(n  + 1 — 2r)  +

sin t 1j = 2  COS 2t, —  cos2t ;

L et v, —> oo, then  a 1 . 1 , —> 0, 0 (rapidly decreasing), a n d  a 1 = 0 (1 ). The
same fact holds for a;  ( j = 2,...,r). Thus Qa, —> 0 (rapidly decreasing). Therefore
w e get rad (A M ) C !  —* 0 (rapidly decreasing) by (5.16). However, when v, tends
t o  + co, we have

1 " a2 a
— (n — 1)rad(Am )C, = E   + a , ,

a t k

 ) (B , a  + 1 ) + 0(1)
2  k = 2 aq j

+ 0(1).
k -- 2

(In the above computation, we have used (5.13), (5.14) and the fact that a;  = 0(1)
and the derivatives of ai  —> 0 as 1, 1 —> 0.) Therefore, we have rad(A,)C, —> oc , for
suitable and  p i . I t  is  a contradiction.

Remark 5.4. If n = 3 and r = 2, there exists a  differential operator Q  such
th a t  Q  satisfies th e  c o n d itio n s  in  L em m a 5.3 a n d  linearly independent of
rad (Am ). I n d e e d , if we define a  differential operator Q  by

020 , Q
Q —  (5.18) + 2  ±  I I  

at 1 at 22 0  O t i2 S 2  0 t 2

th e n  Q  satisfies the  cond itions (B), (C), a n d  (D). M oreover Q  is linearly
independent of rad(A m ). Therefore, it is easily checked that this operator Q  is
the radial part of P = L 3 4 , 1 2 .

By the above argument, we get a  following proposition.

Proposition 5.5. If  (n, 0  (3 ,2 ) , th e  differential operator r a d  (P) c an  b e
expressed of  the form

rad (P) = Q1 +  c(n — 1) rad (Am),

f o r some constant c.

6. Proof of Theorem 1.1

We calculate the eigenvalue of P  o n  V (m ,,...,m r )  to prove Theorem  1.1.
Let be  the eigenvalue of P  o n  V(m i ,..., m,.) a n d  (/) .... m o  the

zonal spherical function which belongs to V (m ,,...,m ,.). W e denote by uo n i ..........

the restriction of to  the W eyl chamber d + . Since th e  procedure is
almost the same as  tha t in  [10], we om it the proofs of the following lemmas.

Lemma 6.1 ([12], THEOREM 8.1). The 'Unction has a  Fourier series
expansion on s e -  o f  the form
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• • •• tr)

exp 1(1, t + • • • + t r H r ),
z<m i m,+•••+m r m,.
A EZ(G,K ),f inite sum

where O.

Let f ,  and f 2 b e  Fourier series of the form

= E exp —  1(2, t 1 H 2 + ••• + tr H r )
A  ,A eZ(G,K)

f 2  = E ,,exp,./— 1(2, t 1 H 1 + ••• + t r H r )
,I. A2,AEZ(G,K)

We denote f 1 f 2  when A , =  2 ( >  0) and 4  =  2(0 0).

Lemma 6.2.

—  1 (n + 1 — 2j),52,

A i .Q2—  (n  —  j)( —  1).Q 2 ,

B i 1 ‘22—  (n  +1  —  2  j)(n  + 1  —  2 k)2 2 ,

Ci S23
— 1 (n — j)( j — 1)(n + 1 — 2 j)S2 3 ,

where the functions A i , B i k , and Ci  are given by (5.5), (5.6), and (5.7) respectively.

Now we can calculate the  eigenvalue o f P  o n  each irreducible eigenspace,
by the following theorem.

T heorem  6 .3 . Unless n  = 3  and r = 2, the eigenvalue a(m i ,...,m r )  o f  P  on
V(m i ,...,m r )  is given by  the formulae

a(m i ,..., mr ) = + n + 1 —  2 j)(l k + n + 1 —  2k)
1 - j<1 ,<,.

+ E  (I— 1)(n — j)l i (li  + n + 1 —  2j),
j= 2

where li  is giv en as follows.

(n + 1 > 2r + 1): = 2(m i  + • • • + m r-i) +

(n  + 1  = 2r, or 2r + 1): = 2(m i  + • • • + 1110-

P ro o f . By definition, we have

(6.1) — a(mi, • • • , M r) ( I) (m , ,  m r ) •

W e restrict both sides of (6.1) to  the Weyl chamber s e  ,  and then we have

rad (P)u (m ,.... m r) =  a(m i , • • • Mr) U(tni, ,  m , ) •
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By Proposition 5.3, Lemma 6.1 and  Lemma 6.2, it follows that

S23 rad (P)u tm ,

= Q 3+  c ( n  -  1 ) ra d ( A  A41 u(m,,...,mr)

{ E + n + 1 - 2j)(1, + n + 1 - 2k )
1 . . j< k 5 _ r

+ E ( j  -  1)(n - J ) / ( l ;  +  n + 1 - 21)}  S2 3 ti(„,, ....
j=2

+ c E + n  + 1  -
=

Thus, we have

=  E + n  + 1  - 2 j)(1 , + n  + 1  - 2k)

+ E ( j - 1)(n - j)1 ; (1  + n  + 1  - 2 j)
j=2

+ c E + n + 1 - 2j).
f=1

Here, by Proposition 2.1 and Lemma 4.1, we have a(2m, 0,...,0) = O. Therefore,
we get c = 0, which completes the proof.

Remark 6.4. F or the  case  (n, r) = (3, 2), the eigenvalue of P  can be also
computed in  the  same way as  above using (5.18). F o r detail, see [11].

The following corollary is easily verified.

Corollary 6.5. is contained in  Ker P  if  and only  if  m2 = • • • =
m,. = 0.

Proof  of  T heorem  1.1. O u r proof o f Theorem  1.1 is alm ost th e  same as
tha t of Theorem 1.2 in [10].

L e t V:= (j),;°,= , V (m, 0 ,...,0 )  a n d  r / : =  a s : = 0  V2m . Then w e have R: r/-+ V
and S: V -  -1-7. Moreover we have SR = Id on  -12 and RS = Id on V by Proposition
3.2 and Lemma 4.1.

By Corollary 6.5, V is dense in Ker P  in  C '- to p o lo g y . Since S : C (M )->
CL..(S") is continuous, we have R S  = Id on Ker P .  This proves Theorem 1.1.

Remark 6 .6 .  The differential operator P is of least degree in all the invariant
differential operators o n  Gri , i ± ,  that characterize the range of R .  It follows
from the fact that the principal symbol F(X ) of P, which we defined in Section
1, is  of least degree in  a ll the Ad-K-invariant polynomials o n  n t except for the
principal symbol o f the  Laplacian.

m r)
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7. Radon transforms o n  13 12

T h e  se t  o f  a ll projective /-dimensional planes o f  F R  is  a  real Grassmann
manifold G r , , , . , ,  and  a  com pact symmetric space 0(n + 1)10(1 + 1) x  0(n —  /)
o f  r a n k  min ft / + 1, n —  11. W e  d e f in e  a  R a d o n  transform 4: C'(P"R) —>
C"(Gr, + ,,„+ , )  a s  follows.

1
f 01) —  f (x )dv ,(x )

Vol (P IR )1 ,„

where dv ,(x ) is  th e  canonical measure o n  /7(
Since we can identify C,,„(S") with C(P"R), we have

R .f(d -= fri) = 4 .f( 11) for .f e C '(P"R) a n d  7E Gr1+1,+1,

w here + ri a n d  — r/ denote orientations of pi.
We defined the  invarian t differential operator P  o n  Gr, + ,.„+ ,  in  Section 2,

b u t  we can easily check th a t P  is also well-defined a s  a n  in v a ria n t differential
operator on  Gr i + ,,„+ ,. Therefore we obtain the following theorem from Theorem
1.1.

Theorem  7.1 . The range of  the Radon transform  ,1  on FR  is identical w ith
Ker P.
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