Range characterization of Radon transforms on \mathbf{S}^{n} and $\mathbf{P}^{n} \mathbf{R}$

By

Tomoyuki Kakehi

0. Introduction

It is one of the most important problems in integral geometry to characterize the ranges of Radon transforms. F. John [9] gave the first answer to this problem. His result is that the range of the X-ray transform on \mathbf{R}^{3} is characterized by a second order ultrahyperbolic differential operator. Gelfand, Graev, and Gindikin [1] extended John's result; they characterized the ranges of d-plane Radon transforms on \mathbf{R}^{n} and \mathbf{C}^{n} by a system of second order differential operators on an affine Grassmann manifold. Farthermore, Gonzalez [4] gave a simple characterization of it by an invariant differential operator on an affine Grassmann manifold. Grinberg [5] characterized the range of the projective k-plane Radon transform on the n-dimensional real projective space $\mathbf{P}^{n} \mathbf{R}$ and the n-dimensional complex projective space $\mathbf{P}^{n} \mathbf{C}$ by a system of second order differential operators, and in [10], we gave another type of range characterization for the Radon transform on a complex projective space; we characterized the range by a single differential operator which is a fourth order invariant differential operator on a complex Grassmann manifold and which is ultrahyperbolic type of differential operator.

In this paper, we examine mainly the range of the Radon transform $R=R_{l}$ on the n-dimensional sphere \mathbf{S}^{n} for $1 \leq l \leq n-2$, which we define by integrating a function f on \mathbf{S}^{n} over an oriented l-dimensional totally geodesic sphere ξ, that is, we define R as follows

$$
R f(\xi)=\frac{1}{\operatorname{Vol}\left(\mathbf{S}^{\prime}\right)} \int_{x \in \xi} f(x) d v_{\xi}(x)
$$

where $d v_{\xi}(x)$ is the canonical measure on $\xi \subset \mathbf{S}^{n}$. This Radon transform R maps smooth functions on \mathbf{S}^{n} to smooth functions on $\widetilde{G r}_{l+1 . n+1}$, the compact oriented real Grassmann manifold, that is, $R: C^{\infty}\left(\mathbf{S}^{\prime \prime}\right) \rightarrow C^{\infty}\left(\widetilde{G r_{l+1, n+1}}\right)$.

The main result of this paper is the following:
Theorem. There exists a fourth order invariant differential operator P on $\widetilde{G r_{l+1, n+1}}$ such that the range $\operatorname{Im} R$ of R is identical with its kernel $\operatorname{Ker} P$, i.e.,

[^0]$\operatorname{Im} R=\operatorname{Ker} P$.
Taking account of John's result and the results in [10] or [11], it is expected that the above P can be represented as an ultrahyperbolic type of differential operator and, in fact, we will construct explicitly the above range-characterizing operator P as an ultrahyperbolic type of operator. The main tools are the same as those in [10]; we use the inversion formula and the method of radial part.

The author would like to thank Professor C. Tsukamoto for suggesting this problem and for many helpful discussions.

1. The range-characterizing operator P

Let M be the set of all l-dimensional oriented totally geodesic spheres of \mathbf{S}^{n}. The oriented Grassmann manifold M is a compact symmetric space $S O(n+1) / S O(l+1) \times S O(n-l)$ of rank $\min \{l+1, n-l\}$. We assume that $r:=\operatorname{rank} M \geq 2$, that is, $1 \leq l \leq n-2$.

For a Lie group G and its closed subgroup H, we identify the subspace $C^{\infty}(G, H)$ of $C^{\infty}(G)$ defined by $C^{\infty}(G, H)=\left\{f \in C^{\infty}(G) ; f(g h)=f(g) \forall g \in G\right.$ and $h \in H\}$, with $C^{\infty}(G / H)$. We define an action L_{g} of G on $C^{\infty}(G)$ by $\left(L_{g} f\right)(x)=f\left(g^{-1} x\right)$ for $x \in G$, and $f \in C^{\infty}(G)$. Similarly we define an action R_{g} of G on $C^{\infty}(G)$ by $\left(R_{g} f\right)(x)=f(x g)$. A differential operator D is called left- G-invariant if $L_{g} D=D L_{g}$ for all $g \in G$. Similarly, D is called right- H-invariant if $R_{h} D=D R_{h}$ for all $h \in H$. These notations are the same as those of the previous paper [10].

Let G, K, K^{\prime} be the groups $S O(n+1), \quad S O(l+1) \times S O(n-l), \quad S O(n)$, respectively. Then we have $M=G / K, \mathbf{S}^{n}=G / K^{\prime}$, and we identify $C^{\infty}(G, K)$ with $C^{\infty}(M), C^{\infty}\left(G, K^{\prime}\right)$ with $C^{\infty}\left(\mathbf{S}^{\prime \prime}\right)$ respectively. We define metrics on G, K, K^{\prime}, M, and \mathbf{S}^{n}, by the metrics induced from the Killing form metric on G, respectively. Let \mathfrak{g} and \mathfrak{f} denote the Lie algebras of G and K, respectively.

$$
\begin{gathered}
\mathfrak{g}=\left\{X \in M_{n+1}(\mathbf{R}) ; X+{ }^{\mathfrak{t}} X=0,\right\}, \\
\mathfrak{f}=\left\{\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right) \in \mathfrak{g} ; X_{1} \in M_{l+1}(\mathbf{R}), X_{2} \in M_{n-l}(\mathbf{R})\right\} .
\end{gathered}
$$

Let $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{m}$ be the Cartan decomposition, where m is the set of all the matrices of the form

$$
X=\left(\begin{array}{cccccc}
0 & \cdots & 0 & -x_{l+2,1} & \cdots & -x_{n+1,1} \\
\vdots & & \vdots & \vdots & & \vdots \\
0 & \cdots & 0 & -x_{l+2, l+1} & \cdots & -x_{n+1, l+1} \\
x_{l+2,1} & \cdots & x_{l+2, l+1} & 0 & \cdots & 0 \\
\vdots & & \vdots & \vdots & & \vdots \\
x_{n+1,1} & \cdots & x_{n+1, l+1} & 0 & \cdots & 0
\end{array}\right) .
$$

We define differential operators $L_{i j, \alpha \beta}(l+2 \leq i<j \leq n+1,1 \leq \alpha<\beta \leq l+1)$ on G by

$$
\begin{equation*}
L_{i j, \alpha \beta}=\left.\left(\frac{\partial^{2}}{\partial x_{i \alpha} \partial x_{j \beta}}-\frac{\partial^{2}}{\partial x_{i \beta} \partial x_{j \alpha}}\right) f(g \exp X)\right|_{X=0}, \quad f \in C^{\infty}(G) . \tag{1.1}
\end{equation*}
$$

Using this, we define a differential operator P on G by

$$
P= \begin{cases}L_{34.12} & \text { if } n=3, l=1, \tag{1.2}\\ \sum_{\substack{1+2 \leq i<j \leq n+1 \\ 1 \leq \alpha<\beta \leq l+1}}\left(L_{i j, \alpha \beta}\right)^{2} & \text { otherwise. }\end{cases}
$$

Then P is right- K-invariant. Thus P is well-defined as a differential operator on M. Its proof is the same as that of Lemma 1.1 in [10], and is reduced to the fact that the polynomial $F(X)$ on m is Ad-K-invariant. Here

$$
F(X)= \begin{cases}x_{31} x_{42}-x_{32} x_{41} & \text { if } n=3, l=1, \\ \sum_{\substack{l+2 \leq i<j \leq n+1 \\ 1 \leq x<\beta \leq l+1}}\left(x_{i \alpha} x_{j \beta}-x_{i \beta} x_{j \alpha}\right)^{2} & \text { otherwise } .\end{cases}
$$

We identify the principal symbol of P with $F(X)$.
By definition, P is left- G-invariant. Therefore, P is well-defined as an invariant differential operator on M. The main theorem of this paper is the following:

Theorem 1.1. The range of R is identical with the kernel of P, that is,

$$
\text { Ker } P=\operatorname{Im} R \text {. }
$$

Remark 1.2. The differential operator $L_{i j, \alpha \beta}$ in (1.1) is ultrahyperbolic and of the form similar to the range-characterizing operator in [9] or similar to the operator $L_{i j, \alpha \beta}$ defined in [10]. Moreover the operator P defined by (1.2) is almost of the same form as the range-characterizing operator P in [10]. From this point of view, we can say that the range of the Radon transform R on \mathbf{S}^{n} can be also characterized by an ultrahyperbolic type of differential operator.

Since we gave the proof for the case $l=1$ in [11], we consider the other case in this paper.

2. Proof that $\operatorname{Im} R \subset \operatorname{Ker} P$

We first prove that $\operatorname{Im} R \subset \operatorname{Ker} P$. It is proved in the same way as the complex case (see [10]).

By the identification $C^{\infty}(G, K)=C^{\infty}(M)$ and $C^{\infty}\left(G, K^{\prime}\right)=C^{\infty}\left(\mathbf{S}^{n}\right)$, we consider the Radon transform R to be a map from $C^{\infty}(G, K)$ to $C^{\infty}\left(G, K^{\prime}\right)$. Then R is given by

$$
\begin{equation*}
(R f)(g)=\frac{1}{\operatorname{Vol}(K)} \int_{k \in K} f(g k) d k, \quad f \in C^{\infty}\left(G, K^{\prime}\right) \tag{2.1}
\end{equation*}
$$

From this section, we use the representation of the form (2.1).
We define a bilinear form $\langle\cdot, \cdot\rangle$ on $\mathbf{C}^{n+1} \times \mathbf{C}^{n+1}$ by $\langle u, v\rangle=\sum_{j=1}^{n+1} u_{j} v_{j}$ for $u=\left(u_{1}, \ldots, u_{n+1}\right), \quad v=\left(v_{1}, \ldots, v_{n+1}\right)$, and a smooth function $h_{a}^{m} \in C^{\infty}(G)$ by $h_{a}^{m}(g)=\left\langle a, g \mathbf{e}_{1}\right\rangle^{m}$, where $a \in \mathbf{C}^{n+1}, \mathbf{e}_{1}=(1,0, \ldots, 0)$ and m is a non-negative integer. It is easily checked that $h_{a}^{m} \in C^{\infty}\left(G, K^{\prime}\right)$, that is, $h_{a}^{m} \in C^{\infty}\left(\mathbf{S}^{n}\right)$. Moreover, the following lemma holds.

Lemma 2.1. Let V_{m} denote the subspace of $C^{\infty}\left(\mathbf{S}^{n}\right)$ generated by the set $\left\{h_{a}^{m} ;\langle a, a\rangle=0\right\}$. Then V_{m} is the eigenspace of $\Delta_{\mathbf{S}^{n}}$, the Laplacian of \mathbf{S}^{n}, corresponding to the m-th eigenvalue and V_{m} is irreducible under the action of G.

For the proof, see [12].
We notice that we always consider the Laplacian on a compact manifold to be a non-negative operator.

We will use the following proposition to calculate the eigenvalue of P in Section 6.

Proposition 2.2. $\operatorname{Im} R \subset \operatorname{Ker} P$.
Proof. By Lemma 2.1 and by the same argument as in that of Proposition 2.2 in [10], we have only to prove that

$$
\begin{aligned}
& L_{i j, \alpha \beta}\left(R\left(h_{a}^{m}\right)\right)(I) \\
& \quad=\left.\frac{1}{\operatorname{Vol}(K)}\left(\frac{\partial^{2}}{\partial x_{i \alpha} \partial x_{j \beta}}-\frac{\partial^{2}}{\partial x_{i \beta} \partial x_{j \alpha}}\right) \int_{k \in K} h_{a}^{m}((\exp X) k) d k\right|_{X=0} \\
& \quad=0,
\end{aligned}
$$

where I denotes an identity matrix.
The above result follows from the equation:

$$
\begin{aligned}
& \left.\left(\frac{\partial^{2}}{\partial x_{i \alpha} \partial x_{j \beta}}-\frac{\partial^{2}}{\partial x_{i \beta} \partial x_{j \alpha}}\right)\left\{\left\langle a,(\exp X) k \mathbf{e}_{1}\right\rangle^{m}\right\}\right|_{X=0} \\
& \quad=m(m-1)\left(a_{i} k_{\alpha 1} a_{j} k_{\beta 1}-a_{i} k_{\beta 1} a_{j} k_{\alpha 1}\right)\left\langle a, k \mathbf{e}_{1}\right\rangle^{m-2}=0,
\end{aligned}
$$

where $k \in K$ and $k_{i j}$ denotes the (i, j) entry of k. Therefore the assertion is verified.

3. The inversion formula

We construct a continuous linear map $S: C^{\infty}(M) \rightarrow C^{\infty}\left(\mathbf{S}^{n}\right)$ such that $S R=I d$ on $C_{\text {even }}^{\infty}\left(\mathbf{S}^{n}\right)$, using the Helgason's inversion formula. Here $I d$ denotes the identity map and $C_{\text {eren }}^{\infty}\left(\mathbf{S}^{n}\right)$ denotes the space of all even functions in $C^{\infty}\left(\mathbf{S}^{n}\right)$. (The Radon transform R maps odd functions on \mathbf{S}^{n} to 0 .)

In this section, we denote by M_{l} the oriented Grassmann manifold $S O(n+1) /$
$S O(l+1) \times S O(n-l)$, by K_{l} the closed subgroup $S O(l+1) \times S O(n-l)$ of G, and by R_{l} the Radon transform $R: C^{\infty}\left(\mathbf{S}^{n}\right) \rightarrow C^{\infty}\left(M_{l}\right)$ respectively. We define a dual Radon transform $\widetilde{R}_{l}: C^{\infty}\left(M_{l}\right) \rightarrow C^{\infty}\left(\mathbf{S}^{n}\right)$ by

$$
\left(\tilde{R}_{l} f\right)(g)=\frac{1}{\operatorname{Vol}\left(K_{n-1}\right)} \int_{k \in K_{n-1}} f(g k) d k, \quad f \in C^{\infty}\left(G, K_{l}\right) .
$$

If k is even, we define a polynomial $\Phi_{k}(x)$ by

$$
\Phi_{k}(x)=\left(x+\frac{(k-1)(n-k)}{2 n}\right)\left(x+\frac{(k-3)(n-k+2)}{2 n}\right) \cdots\left(x+\frac{1(n-2)}{2 n}\right)
$$

Theorem 3.1 (Helgason [6], Ch. 1, Theorem 4.5). If 1 is even, we have the inversion formula for R_{l}

$$
c_{n, l} \Phi_{l}\left(U_{\mathbf{s}^{n}}\right) \tilde{R}_{l} R_{l}=I d \quad \text { on } \quad C_{\text {even }}^{\infty}\left(\mathbf{S}^{n}\right),
$$

where $c_{n, l}$ is a constant depending on n and l.
Proposition 3.2. There exists an inversion map $S=S_{l}: C^{\infty}\left(M_{l}\right) \rightarrow C^{\infty}\left(\mathbf{S}^{n}\right)$ such that $S_{l} R_{l}=I d$ on $C_{\text {even }}^{\infty}\left(\mathbf{S}^{n}\right)$

Proof. If l is even, Proposition 3.2 follows immediately from Theorem 3.1, and we may therefore prove this proposition in the case l is odd. We define $R_{l+1}^{l}: C^{\infty}\left(M_{l}\right) \rightarrow C^{\infty}\left(M_{l+1}\right)$ by

$$
\left(R_{l+1}^{l} f\right)(g)=\frac{1}{\operatorname{Vol}\left(K_{l+1}\right)} \int_{k \in K_{l+1}} f(g k) d k, \quad f \in C^{\infty}\left(G, K_{l}\right)
$$

Then it is easily checked that $R_{l+1}^{l} R_{l}=R_{l+1}$. Since l is odd, $l+1$ is even and by Theorem 3.1 there exists an inversion map S_{l+1} such that $S_{l+1} R_{l+1}=I d$ on $C_{\text {even }}^{\infty}\left(\mathbf{S}^{n}\right)$. Therefore, if we put $S_{l}=S_{l+1} R_{l+1}^{l}$, we get $S_{l} R_{l}=I d$ on $C_{\text {even }}^{\infty}\left(\mathbf{S}^{\prime \prime}\right)$.

4. Representation of (G, K)

In this section, we describe the root, the weight, and the Weyl group of the symmetric pair (G, K).

Let $\mathfrak{a} \subset \mathfrak{m}$ be the set of all matrices of the form

$$
H(t)=H\left(t_{1}, \ldots, t_{r}\right)=\left(\begin{array}{cccccccc}
0 & \cdots & 0 & -t_{1} & & & & \\
\vdots & & \vdots & & \ddots & & & \\
0 & \cdots & 0 & & & -t_{r} & & \\
t_{1} & & & 0 & \cdots & 0 & \cdots & 0 \\
& \ddots & & \vdots & & \vdots & & \vdots \\
& & t_{r} & 0 & \cdots & 0 & \cdots & 0 \\
& & & \vdots & & \vdots & & \vdots \\
& & & 0 & \cdots & 0 & \cdots & 0
\end{array}\right),
$$

where we put $r=\operatorname{rank} M(=\operatorname{rank} G / K)$ in Section 1 and $t=\left(t_{1}, \ldots, t_{r}\right) \in \mathbf{R}^{r}$. Then, \mathfrak{a} is a maximal abelian subalgebra of m. We identify \mathfrak{a} with \mathbf{R}^{r} by the mapping $H(t) \mapsto t$.

Let (\cdot, \cdot) denote an invariant inner product on \mathfrak{g} defined by

$$
(X, Y)=-(n-1) \operatorname{tr}(X Y) \quad X, Y \in \mathfrak{g}
$$

which is a minus-signed Killing form on \mathfrak{g}.
For $\alpha \in \mathfrak{a}$, let

$$
\mathfrak{g}_{\alpha}:=\left\{X \in \mathfrak{g}^{\mathbf{c}}:[H, X]=\sqrt{-1}(\alpha, H) X \quad \text { for all } H \in \mathfrak{a}\right\}
$$

An element $\alpha \in \mathfrak{g}$ is called a root of $(\mathfrak{g}, \mathfrak{a})$ if $\mathfrak{g}_{\alpha} \neq\{0\}$. We put $m_{\alpha}=\operatorname{dim}_{\mathbf{C}} \mathfrak{g}_{\alpha}$ and call it a multiplicity of α.

We put $H_{i}=H(0, \ldots, \stackrel{i}{1}, \ldots, 0)(1 \leq i \leq r)$ and we fix a lexicographical order $<$ on a such that $H_{1}>\cdots H_{r}>0$. Then the positive root α of $(\mathfrak{g}, \mathfrak{a})$ and its multiplicity m_{α} are given by the table:

\[

\]

The simple roots $\alpha_{j}(1 \leq j \leq r)$, are given by the table:

$$
\begin{aligned}
(n+1>2 r): \quad \alpha_{j} & =\frac{1}{2(n-1)}\left(H_{j}-H_{j+1}\right) \quad(1 \leq j \leq r-1), \\
\alpha_{r} & =\frac{1}{2(n-1)} H_{r} . \\
(n+1=2 r): \quad \alpha_{j} & =\frac{1}{2(n-1)}\left(H_{j}-H_{j+1}\right) \quad(1 \leq j \leq r-2), \\
\alpha_{r-1} & =\frac{1}{2(n-1)}\left(H_{r-1}+H_{r}\right) \\
\alpha_{r} & =\frac{1}{2(n-1)}\left(H_{r-1}-H_{r}\right) .
\end{aligned}
$$

Let $M_{j}(1 \leq j \leq r)$ be the fundamental weights of G / K corresponding to the simple roots $\alpha_{j},(1 \leq j \leq r)$. Then, $M_{j}(1 \leq j \leq r)$ are given by the table:

$$
(n+1>2 r+1): \quad M_{j}=\frac{1}{n-1} \sum_{k=1}^{j} H_{k} \quad(1 \leq j \leq r-1)
$$

$$
\begin{aligned}
& M_{r}=\frac{1}{2(n-1)} \sum_{k=1}^{r} H_{k} . \\
& (n+1=2 r, \text { or } 2 r+1): \quad M_{j}=\frac{1}{n-1} \sum_{k=1}^{j} H_{k} .
\end{aligned}
$$

If $n+1>2 r$, the Weyl group $W(G, K)$ of (G, K) is the set of all maps $s: \mathfrak{a} \rightarrow \mathfrak{a}$ such that

$$
\begin{equation*}
s:\left(t_{1}, \ldots, t_{r}\right) \longmapsto\left(\varepsilon_{1} t_{\sigma(1)}, \ldots, \varepsilon_{r} t_{\sigma(r)}\right) \quad \varepsilon_{j}= \pm 1, \sigma \in \Theta_{r} . \tag{4.1}
\end{equation*}
$$

And if $n+1=2 r, W(G, K)$ is the set of all maps s in (4.1) such that $\varepsilon_{1} \cdot \varepsilon_{2} \cdots \varepsilon_{r}=1$.
Let $Z(G, K)$ be the weight lattice generated by $\frac{1}{2(n-1)} H_{j},(1 \leq j \leq r)$. The highest weight of a spherical reprsentation of (G, K) is of the form $m_{1} M_{1}+\cdots+$ $m_{r} M_{r}$, where m_{1}, \ldots, m_{r} are non-negative integers. We denote by $V\left(m_{1}, \ldots, m_{r}\right)$ the eigenspace of Laplacian Δ_{M} on $M=G / K$ which is an irreducible representation space with the highest weight $m_{1} M_{1}+\cdots+m_{r} M_{r}$.

In the same manner, we can define a fundamental weight M_{1}^{\prime} of $(S O(n+1)$, $S O(n)$), (that is, this is the case $l=0$, and we have

$$
M_{1}^{\prime}=\frac{1}{2(n-1)} H_{1}
$$

Then $m M_{1}^{\prime}$ is the highest weight of the m-th eigenspace V_{m} of Laplacian $\Delta_{\mathbf{s}^{n}}$, which we defined in Section 2. It is easily checked that $2 M_{1}^{\prime}$ corresponds to M_{1} by an adjoint action. Therefore, we get the following Lemma by Proposition 3.2.

Lemma 4.1. The Radon transform R isomorphically maps the subspace $V_{2 m}$ of $C^{\infty}\left(\mathbf{S}^{n}\right)$ to the subspace $V(m, 0, \ldots, 0)$ of $C^{\infty}(M)$.

5. Radial part of P

We will calculate the eigenvalue of P on $V\left(m_{1}, \ldots, m_{r}\right)$ to prove Theorem 1.1. There are two ways to calculate it. One is a representation theoretical approach, and the other is the method of radial part. We use the latter.

We define a density function Ω on a by

$$
\Omega(t)=\left|\prod_{\alpha ; \text { positive root }} 2 \sin (\alpha, H(t))^{m_{\alpha}}\right|
$$

Then $\Omega(t)$ is given by

$$
\begin{equation*}
\Omega(t)=c_{n, r}|\sigma \omega|, \tag{5.1}
\end{equation*}
$$

where

$$
\begin{aligned}
c_{n, r} & =2^{\frac{1}{2} r(2 n+1-3 r)} \\
\sigma & =\prod_{j=1}^{r} \sin ^{n+1-2 r} t_{j} \\
\omega & =\prod_{1 \leq j<k \leq r}\left(\cos 2 t_{j}-\cos 2 t_{k}\right)
\end{aligned}
$$

We choose a connected component \mathscr{A}^{+}of Weyl chambers such that $\sigma>0, \omega>0$ on \mathscr{A}^{+}. For example, we choose

$$
\begin{aligned}
& \mathscr{A}^{+}=\left\{\left(t_{1}, \ldots, t_{r}\right) \in \mathbf{R}^{r} ; 0<t_{1}<\cdots<t_{r}<\frac{\pi}{2}\right\} \quad(n+1>2 r), \\
& \mathscr{A}^{+}=\left\{\left(t_{1}, \ldots, t_{r}\right) \in \mathbf{R}^{r} ; 0<t_{j} \pm t_{k}<\pi, \quad 1 \leq j<k \leq r\right\} \quad(n+1=2 r) .
\end{aligned}
$$

To each invariant differential operator D on G / K, there corresponds a unique differential operator on \mathscr{A}^{+}which is invariant under the action of the Weyl group $W(G, K)$. This operator is called a radial part of D, and we denote it by $\operatorname{rad}(D)$.

The following lemma is well-known.

Lemma 5.1.

$$
\operatorname{rad}\left(\Delta_{M}\right)=-\frac{1}{n-1} \sum_{j=1}^{r}\left(\frac{\partial^{2}}{\partial t_{j}^{2}}+\frac{\Omega_{t_{j}}}{\Omega} \frac{\partial}{\partial t_{j}}\right)
$$

where $\Omega_{t_{j}}$ means a differentiation of Ω by t_{j}.
For the proof, see [12] ch. 10, Cor. 1.
As in [10], let us consider the following four conditions $(A),(B),(C)$, and (D) on a differential operator Q that is regular in all Weyl chambers.
(A) $Q=\sum_{1 \leq j<k \leq r} \frac{\partial^{4}}{\partial t_{j}^{2} \partial t_{k}^{2}}+$ lower order terms.
(B) Q is formally self-adjoint with respect to the density $\Omega d t$.
(C) Q is $W(G, K)$-invariant.
(D) $\left[Q, \operatorname{rad}\left(\Delta_{M}\right)\right]:=Q \operatorname{rad}\left(\Delta_{M}\right)-\operatorname{rad}\left(\Delta_{M}\right) Q=0$.

Then it is easily checked that the differential operator $\operatorname{rad}(P)$ satisfies the above four conditions $(A),(B),(C)$, and (D), by the same argument as in [10].

We calculate the radial part of P.
By the conditions (A) and (B), we get

$$
\text { the third order terms of } \operatorname{rad}(P)=\sum_{j \neq k} \frac{\Omega_{t_{k}}}{\Omega} \frac{\partial^{3}}{\partial t_{j}^{2} \partial t_{k}} .
$$

Thus, we can put

$$
\begin{align*}
\operatorname{rad}(P)= & \sum_{j<k} \frac{\partial^{4}}{\partial t_{j}^{2}} \partial t_{k}^{2}
\end{aligned} \sum_{j \neq k} \frac{\Omega_{t_{k}}}{\Omega} \frac{\partial^{3}}{\partial t_{j}^{2} \partial t_{k}}, \quad \begin{aligned}
& j=1 \tag{5.3}\\
& \\
& +\sum_{j}^{r} \frac{\partial^{2}}{\partial t_{j}^{2}}+\sum_{j<k} B_{j k} \frac{\partial^{2}}{\partial t_{j} \partial t_{k}}+\sum_{j=1}^{r} C_{j} \frac{\partial}{\partial t_{j}}
\end{align*}
$$

where the coefficients $A_{j}, B_{j k}$, and C_{j} are C^{∞} functions on Weyl chambers.
By condition (D), the third order terms of $\left[\operatorname{rad}(P), \operatorname{rad}\left(\Delta_{M}\right)\right]=0$, and we get the equations

$$
\begin{align*}
\frac{\partial}{\partial t_{j}} A_{j} & =\frac{1}{2} \sum_{\alpha \neq j}\left(\left(a_{\alpha}\right)_{t_{\alpha} t_{\alpha}}+a_{\alpha}\left(a_{\alpha}\right)_{t_{j}}\right), \tag{5.4}\\
\frac{\partial}{\partial t_{j}}\left\{2 B_{j k}-3\left(a_{j}\right)_{t_{k}}-2 a_{j} a_{k}\right\} & =-a_{j}\left(a_{j}\right)_{t_{k}}-2\left(A_{j}\right)_{t_{k}}, \\
\frac{\partial}{\partial t_{k}}\left\{2 B_{j_{k}}-3\left(a_{j}\right)_{t_{k}}-2 a_{j} a_{k}\right\} & =-a_{k}\left(a_{k}\right)_{t_{j}}-2\left(A_{k}\right)_{t_{j}},
\end{align*}
$$

where we put $a_{j}=\Omega_{t_{j}} / \Omega$.
We take

$$
\begin{align*}
A_{j}= & -(n+1-2 r) \sum_{\alpha \neq j} \cot t_{j} \frac{\sin 2 t_{\alpha}}{\cos 2 t_{\alpha}-\cos 2 t_{j}} \tag{5.7}\\
& +2 \sum_{\alpha \neq j}\left(\frac{\cos 2 t_{\alpha}}{\cos 2 t_{\alpha}-\cos 2 t_{j}}-\frac{\sin ^{2} 2 t_{\alpha}}{\left(\cos 2 t_{\alpha}-\cos 2 t_{j}\right)^{2}}\right) \\
& +\sum_{\alpha \neq j} \frac{\sin ^{2} 2 t_{\alpha}}{\cos 2 t_{\alpha}-\cos 2 t_{j}} \\
& -2 \sum_{\substack{\alpha<\beta \\
\alpha, \beta \neq j}}\left\{1+\frac{\sin ^{2} 2 t_{\alpha}}{\left(\cos 2 t_{\alpha}-\cos 2 t_{j}\right)\left(\cos 2 t_{\beta}-\cos 2 t_{j}\right)}\right\} \\
B_{j k}= & \frac{3}{2} a_{j, t_{k}}+a_{j} a_{k} . \tag{5.8}
\end{align*}
$$

Then, after a tedius but straight forward computation, we find that the functions (5.7) and (5.8) satisfy the equations (5.4), (5.5), and (5.6).

We get by the condition (B),

$$
\begin{equation*}
C_{j}=\frac{1}{\Omega}\left(A_{j} \Omega\right)_{t_{j}}+\frac{1}{2 \Omega} \sum_{j<k}\left\{\left(B_{j k} \Omega\right)_{t_{k}}+\left(B_{j k} \Omega\right)_{t_{j}}\right\}-\frac{1}{2 \Omega} \sum_{j \neq k} \Omega_{t_{j t_{k} t_{k}}} \tag{5.9}
\end{equation*}
$$

We define a fourth order differential operator Q_{1} by the right hand side of the equation (5.3), where the coefficients $A_{j}, B_{j k}$, and C_{j} are given by the functions (5.7), (5.8), and (5.9) respectively. Then, a differential operator $Q_{2}:=\operatorname{rad}(P)-Q_{1}$ is a second order differential operator and satisfies the conditions $(B),(C)$, and (D). Thus, we will prove that the operator Q_{2} can be written as $c \operatorname{rad}\left(\Delta_{M}\right)$ for
a suitable constant c.
We define a subgroup W_{0} of $W(G, K)$ by the set of all maps s in (4.1) such that $\varepsilon_{1} \cdot \varepsilon_{2} \cdots \varepsilon_{r}=1$. Then, if $n+1>2 r, W_{0}$ is strictly contained in $W(G, K)$, and if $n+1=2 r, W_{0}$ is identical with $W(G, K)$. We can prove the above fact by the following lemma.

Lemma 5.2. We assume that $(n, r) \neq(3,2)$. If a second order differential operator Q satisfies the conditions (B) and (D), and if Q is W_{0}-invariant, then $Q=c \operatorname{rad}\left(\Delta_{M}\right)$ for some constant c.

Proof. We put

$$
Q:=\sum_{j=1}^{r} A_{j} \frac{\partial^{2}}{\partial t_{j}^{2}}+\sum_{j<k} B_{j k} \frac{\partial^{2}}{\partial t_{j} \partial t_{k}}+\sum_{j=1}^{r} C_{j} \frac{\partial}{\partial t_{j}}
$$

By the condition (D), the third order terms of $\left[Q, \operatorname{rad}\left(\Delta_{M}\right)\right]$ vanish. Thus we have

$$
\begin{array}{ll}
A_{j, t_{j}}=0, & (1 \leq j \leq r) \\
A_{k, t_{j}}+B_{j k, t_{k}}=0, A_{j, t_{k}}+B_{j k, t_{j}}=0, & (j<k) \\
B_{i j, t_{k}}+B_{j k, t_{i}}+B_{i k, t_{j}}=0, & (1 \leq i<j<k \leq r)
\end{array}
$$

By the equations (5.10-12) and the assumption that Q is W_{0}-invariant and $(n, r) \neq(3,2)$, the coefficients A_{j} and $B_{j k}$ are polynomials of the form

$$
\begin{align*}
& A_{j}=\delta_{1} \sum_{k \neq j} t_{k}^{2}+\delta_{2} \tag{5.13}\\
& B_{j k}=-2 \delta_{1} t_{j} t_{k} \tag{5.14}
\end{align*}
$$

where δ_{1} and δ_{2} are some constants.
Using the condition (B), we have

$$
\begin{equation*}
C_{j}=\frac{1}{\Omega}\left(A_{j} \Omega\right)_{t_{j}}+\frac{1}{2 \Omega} \sum_{j<k}\left(B_{j k} \Omega\right)_{t_{k}}+\frac{1}{2 \Omega} \sum_{k<j}\left(B_{k j} \Omega\right)_{t_{k}} \tag{5.15}
\end{equation*}
$$

If $\delta_{1}=0$, then the coefficient $B_{j k}=0$, and the coefficient $C_{j}=\delta_{2} \Omega_{t_{j}} / \Omega$ by (5.15). Therefore we obtain $Q=-(n-1) \delta_{2} \operatorname{rad}\left(\Delta_{M}\right)$, and the lemma holds.

Now, we suppose that $\delta_{1} \neq 0$. In particular, we may suppose that $\delta_{1}=1$ and $\delta_{2}=0$. By the condition (D), the first order terms of $\left[Q, \operatorname{rad}\left(\Delta_{M}\right)\right]$ vanish. Then

$$
\begin{equation*}
Q a_{1}=-(n-1) \operatorname{rad}\left(\Delta_{M}\right) C_{1}, \tag{5.16}
\end{equation*}
$$

where $a_{1}=\Omega_{t_{1}} / \Omega$.
We extend the both sides of (5.16) to \mathbf{C} as meromorphic functions of $t_{1}=\mu_{1}+\sqrt{-1} v_{1}$.

By the formula (5.1-2), we have

$$
\begin{equation*}
a_{1}=(n+1-2 r) \frac{\cos t_{1}}{\sin t_{1}}+\sum_{j=2}^{r} \frac{-2 \sin 2 t_{1}}{\cos 2 t_{1}-\cos 2 t_{j}} . \tag{5.17}
\end{equation*}
$$

Let $v_{1} \rightarrow \infty$, then $a_{1, t_{j}} \rightarrow 0, a_{1, t_{j} t_{k}} \rightarrow 0$ (rapidly decreasing), and $a_{1}=O(1)$. The same fact holds for $a_{j}(j=2, \ldots, r)$. Thus $Q a_{1} \rightarrow 0$ (rapidly decreasing). Therefore we get $\operatorname{rad}\left(\Delta_{M}\right) C_{1} \rightarrow 0$ (rapidly decreasing) by (5.16). However, when v_{1} tends to $+\infty$, we have

$$
\begin{aligned}
-(n-1) \operatorname{rad}\left(\Delta_{M}\right) C_{1} & =\frac{1}{2} \sum_{j, k=2}^{r}\left(\frac{\partial^{2}}{\partial t_{k}^{2}}+a_{k} \frac{\partial}{\partial t_{k}}\right)\left(B_{1 j} a_{j}+B_{1 j, t_{j}}\right)+O(1) \\
& =-t_{1} \sum_{k=2}^{r} a_{k}^{2}+O(1)
\end{aligned}
$$

(In the above computation, we have used (5.13), (5.14) and the fact that $a_{j}=O(1)$ and the derivatives of $a_{j} \rightarrow 0$ as $v_{1} \rightarrow 0$.) Therefore, we have $\operatorname{rad}\left(\Delta_{M}\right) C_{1} \rightarrow \infty$, for suitable t_{2}, \ldots, t_{r}, and μ_{1}. It is a contradiction.

Remark 5.4. If $n=3$ and $r=2$, there exists a differential operator Q such that Q satisfies the conditions in Lemma 5.3 and linearly independent of $\operatorname{rad}\left(\Delta_{M}\right)$. Indeed, if we define a differential operator Q by

$$
\begin{equation*}
Q=\frac{\partial^{2}}{\partial t_{1} \partial t_{2}}+\frac{\Omega_{t_{2}}}{2 \Omega} \frac{\partial}{\partial t_{1}}+\frac{\Omega_{t_{1}}}{2 \Omega} \frac{\partial}{\partial t_{2}} \tag{5.18}
\end{equation*}
$$

then Q satisfies the conditions $(B),(C)$, and (D). Moreover Q is linearly independent of $\operatorname{rad}\left(\Delta_{M}\right)$. Therefore, it is easily checked that this operator Q is the radial part of $P=L_{34,12}$.

By the above argument, we get a following proposition.
Proposition 5.5. If $(n, r) \neq(3,2)$, the differential operator $\operatorname{rad}(P)$ can be expressed of the form

$$
\operatorname{rad}(P)=Q_{1}+c(n-1) \operatorname{rad}\left(\Delta_{M}\right)
$$

for some constant c.

6. Proof of Theorem 1.1

We calculate the eigenvalue of P on $V\left(m_{1}, \ldots, m_{r}\right)$ to prove Theorem 1.1.
Let $a\left(m_{1}, \ldots, m_{r}\right)$ be the eigenvalue of P on $V\left(m_{1}, \ldots, m_{r}\right)$ and $\phi_{\left(m_{1}, \ldots, m_{r}\right)}$ the zonal spherical function which belongs to $V\left(m_{1}, \ldots, m_{r}\right)$. We denote by $u_{\left(m_{1}, \ldots, m_{r}\right)}$ the restriction of $\phi_{\left(m_{1}, \ldots, m_{r}\right)}$ to the Weyl chamber \mathscr{A}^{+}. Since the procedure is almost the same as that in [10], we omit the proofs of the following lemmas.

Lemma 6.1 ([12], Theorem 8.1). The function $u_{\left(m_{1}, \ldots, m_{r}\right)}$ has a Fourier series expansion on \mathscr{A}^{+}of the form

$$
\begin{aligned}
& u_{\left(m_{1}, \ldots, m_{r}\right)}\left(t_{1}, \ldots, t_{r}\right) \\
& \quad=\sum_{\substack{\lambda \leq m_{1} M_{1}+\ldots+m_{r} M_{r} \\
\lambda \in Z(G, K), \text { finite sum }}} \eta_{\lambda} \exp \sqrt{-1}\left(\lambda, t_{1} H_{1}+\cdots+t_{r} H_{r}\right),
\end{aligned}
$$

where $\eta_{m_{1} M_{1}+\cdots+m_{r} M_{r}}>0$.
Let f_{1} and f_{2} be Fourier series of the form

$$
\begin{aligned}
& f_{1}=\sum_{\lambda \leq \Lambda_{1}, \lambda \in Z(G, K)} \zeta_{\lambda} \exp \sqrt{-1}\left(\lambda, t_{1} H_{1}+\cdots+t_{r} H_{r}\right) \\
& f_{2}=\sum_{\lambda \leq \Lambda_{2}, \lambda \in \mathcal{Z}(G, K)} \tilde{\zeta}_{\lambda} \exp \sqrt{-1}\left(\lambda, t_{1} H_{1}+\cdots+t_{r} H_{r}\right)
\end{aligned}
$$

We denote $f_{1} \sim f_{2}$ when $\Lambda_{1}=\Lambda_{2}(>0)$ and $\zeta_{\Lambda_{1}}=\tilde{\zeta}_{\Lambda_{2}}(\neq 0)$.
Lemma 6.2.

$$
\begin{aligned}
\Omega_{t_{j}} & \sim \sqrt{-1}(n+1-2 j) \Omega, \\
A_{j} \Omega^{2} & \sim-(n-j)(j-1) \Omega^{2}, \\
B_{j k} \Omega^{2} & \sim-(n+1-2 j)(n+1-2 k) \Omega^{2}, \\
C_{j} \Omega^{3} & \sim-\sqrt{-1}(n-j)(j-1)(n+1-2 j) \Omega^{3},
\end{aligned}
$$

where the functions $A_{j}, B_{j k}$, and C_{j} are given by (5.5), (5.6), and (5.7) respectively.
Now we can calculate the eigenvalue of P on each irreducible eigenspace, by the following theorem.

Theorem 6.3. Unless $n=3$ and $r=2$, the eigenvalue $a\left(m_{1}, \ldots, m_{r}\right)$ of P on $V\left(m_{1}, \ldots, m_{r}\right)$ is given by the formulae

$$
\begin{aligned}
a\left(m_{1}, \ldots, m_{r}\right)= & \sum_{1 \leq j<k \leq r} l_{j} l_{k}\left(l_{j}+n+1-2 j\right)\left(l_{k}+n+1-2 k\right) \\
& +\sum_{j=2}^{r}(j-1)(n-j) l_{j}\left(l_{j}+n+1-2 j\right),
\end{aligned}
$$

where l_{j} is given as follows.

$$
\begin{aligned}
& (n+1>2 r+1): l_{j}=2\left(m_{j}+\cdots+m_{r-1}\right)+m_{r} \\
& (n+1=2 r \text {, or } 2 r+1): l_{j}=2\left(m_{j}+\cdots+m_{r}\right) \text {. }
\end{aligned}
$$

Proof. By definition, we have

$$
\begin{equation*}
P \phi_{\left(m_{1}, \ldots, m_{r}\right)}=a\left(m_{1}, \ldots, m_{r}\right) \phi_{\left(m_{1}, \ldots, m_{r}\right)} . \tag{6.1}
\end{equation*}
$$

We restrict both sides of (6.1) to the Weyl chamber \mathscr{A}^{+}, and then we have

$$
\operatorname{rad}(P) u_{\left(m_{1}, \ldots, m_{r}\right)}=a\left(m_{1}, \ldots, m_{r}\right) u_{\left(m_{1}, \ldots, m_{r}\right)} .
$$

By Proposition 5.3, Lemma 6.1 and Lemma 6.2, it follows that

$$
\begin{aligned}
& \Omega^{3} \operatorname{rad}(P) u_{\left(m_{1}, \ldots, m_{r}\right)} \\
& \quad=\Omega^{3}\left\{Q_{1}+c(n-1) \operatorname{rad}\left(\Delta_{M}\right)\right\} u_{\left(m_{1}, \ldots, m_{r}\right)} \\
& \sim\left\{\sum_{1 \leq j<k \leq r} l_{j} l_{k}\left(l_{j}+n+1-2 j\right)\left(l_{k}+n+1-2 k\right)\right. \\
& \left.\quad+\sum_{j=2}^{r}(j-1)(n-j) l_{j}\left(l_{j}+n+1-2 j\right)\right\} \Omega^{3} u_{\left(m_{1}, \ldots, m_{r}\right)} \\
& \quad+c \sum_{j=1}^{r} l_{j}\left(l_{j}+n+1-2 j\right) \Omega^{3} u_{\left(m_{1}, \ldots, m_{r}\right)} .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
a\left(m_{1}, \ldots, m_{r}\right)= & \sum_{1 \leq j<k \leq r} l_{j} l_{k}\left(l_{j}+n+1-2 j\right)\left(l_{k}+n+1-2 k\right) \\
& +\sum_{j=2}^{r}(j-1)(n-j) l_{j}\left(l_{j}+n+1-2 j\right) \\
& +c \sum_{j=1}^{r} l_{j}\left(l_{j}+n+1-2 j\right)
\end{aligned}
$$

Here, by Proposition 2.1 and Lemma 4.1, we have $a(2 m, 0, \ldots, 0)=0$. Therefore, we get $c=0$, which completes the proof.

Remark 6.4. For the case $(n, r)=(3,2)$, the eigenvalue of P can be also computed in the same way as above using (5.18). For detail, see [11].

The following corollary is easily verified.
Corollary 6.5. $\quad V\left(m_{1}, \ldots, m_{r}\right)$ is contained in Ker P if and only if $m_{2}=\cdots=$ $m_{r}=0$.

Proof of Theorem 1.1. Our proof of Theorem 1.1 is almost the same as that of Theorem 1.2 in [10].

Let $V:=\oplus_{m=0}^{\infty} V(m, 0, \ldots, 0)$ and $\tilde{V}:=\oplus_{\tilde{N}=0}^{\infty} V_{2 m}$. Then we have $R: \tilde{V} \rightarrow V$ and $S: V \rightarrow \tilde{V}$. Moreover we have $S R=I d$ on \tilde{V} and $R S=I d$ on V by Proposition 3.2 and Lemma 4.1.

By Corollary 6.5, V is dense in Ker P in C^{∞}-topology. Since $S: C^{\infty}(M) \rightarrow$ $C_{\text {even }}^{\infty}\left(\mathbf{S}^{n}\right)$ is continuous, we have $R S=I d$ on Ker P. This proves Theorem 1.1.

Remark 6.6. The differential operator P is of least degree in all the invariant differential operators on $\widetilde{G r_{l+1, n+1}}$ that characterize the range of R. It follows from the fact that the principal symbol $F(X)$ of P, which we defined in Section 1 , is of least degree in all the Ad- K-invariant polynomials on m except for the principal symbol of the Laplacian.

7. Radon transforms on $\mathbf{P}^{\boldsymbol{n}} \mathbf{R}$

The set of all projective l-dimensional planes of $\mathbf{P}^{n} \mathbf{R}$ is a real Grassmann manifold $G r_{l+1, n+1}$ and a compact symmetric space $O(n+1) / O(l+1) \times O(n-l)$ of rank $\min \{l+1, n-l\}$. We define a Radon transform $: \mathscr{R}: C^{\infty}\left(\mathbf{P}^{\prime \prime} \mathbf{R}\right) \rightarrow$ $C^{\infty}\left(G r_{l+1, n+1}\right)$ as follows.

$$
\Re f(\eta)=\frac{1}{\operatorname{Vol}\left(\mathbf{P}^{\prime} \mathbf{R}\right)} \int_{x \in \eta} f(x) d v_{\eta}(x) .
$$

where $d v_{\eta}(x)$ is the canonical measure on $\eta\left(\subset \mathbf{P}^{n} \mathbf{R}\right)$.
Since we can identify $C_{\text {even }}^{\infty}\left(\mathbf{S}^{n}\right)$ with $C^{\infty}\left(\mathbf{P}^{n} \mathbf{R}\right)$, we have

$$
R f(+\eta)=R f(-\eta)=贝 f(\eta) \quad \text { for } f \in C^{\infty}\left(\mathbf{P}^{\prime \prime} \mathbf{R}\right) \text { and } \eta \in G r_{l+1, n+1}
$$

where $+\eta$ and $-\eta$ denote orientations of η.
We defined the invariant differential operator P on $G r_{l+1, n+1}$ in Section 2, but we can easily check that P is also well-defined as an invariant differential operator on $G r_{l+1, n+1}$. Therefore we obtain the following theorem from Theorem 1.1.

Theorem 7.1. The range of the Radon transform on on $\mathbf{P}^{n} \mathbf{R}$ is identical with Ker P.

Institute of Mathematics University of Tsukuba

References

[1] I. M. Gelfand, S. G. Gindikin, and M. I. Graev, Integral geometry in affine and projective space, J. Soviet Math., 18 (1982), 39-167.
[2] I. M. Gelfand, and M. I. Graev, Complexes of straight lines in the space C", Funct. Anal. Appl., 2 (1968), 39-52.
[3] I. I. M. Gelfand, M. I. Graev, and R. Rosu, The probrem of integral geometry and intertwining operator for a pair of real Grassmann manifolds, J. Operator Theory, 12 (1984), 339-383.
[4] F. Gonzalez, Invariant differential operator and the range of the radon D-plane transform, Math. Ann., 287 (1990), 627-635.
[5] E. L. Grinberg, On images of Radon transforms, Duke Math. J., 52 (1985), 935-972.
[6] V. Guillemin, and S. Sternberg, Some problems in integral geometry and some related problems in micro-local analysis, Amer. J. Math., 101 (1979), 915-955.
[7] S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984.
[8] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
[9] F. John, The ultrahyperbolic differential equation with four independent variables, Duke. Math. J., 4 (1938), 300-322.
[10] T. Kakehi, Range characterization of Radon transforms on complex projective spaces. J. Math. Kyoto Univ., 32-2 (1992) 387-399
[11] T. Kakehi, and C. Tsukamoto, Characterization of images of Radon transforms. (to appear)
[12] M. Takeuchi, Gendai No Kyukansu, (in Japanese), Iwanami shoten, Tokyo, 1974.

[^0]: Communicated by Prof. N. Iwasaki, March 30, 1991

