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On Mordell-Weil lattices of higher
genus fibrations on rational surfaces

By
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§ O. Introduction

(0 .1 )  Let f : X — C  be a relatively minimal fibration of curves of genus g
1 over a smooth projective curve C defined over an algebraically closed field
k  of characteristic zero, and let K  be the rational function field of C .  We
assume that there exists a section 0  of f .  For such a fibration, we can define
the Mordell-Weil group to be the group of the K-rational points of the
Jacobian J r  of the generic fiber F /K  of f .  Under the suitable condition, the
Mordell-Weil group MK) is a finitely generated abelian group, so we define
the Mordell-Weil rank r  to be the rank of its free part. In this note we first
prove the following theorem which gives an upper bound of the Mordell-Weil
rank r  for fibrations of genus g  on rational surfaces X .

Theorem A (cf. Theorem 2.8). L et X  be a smooth rational surface with
a relatively minimal fibration f : X — P ' o f  curves of  genus g > 1 .  Then we
have

r = rank  Jr(K )<4g+ 4.

M oreover we hav e the equality  r= 4 g+ 4  i f  a n d  o n ly  i f  f : X - 4 3 '  i s  a
h erelliptic fibration with K3c/p, =4g-4 such that all f ibers of  f  are irreducible.
Here K x/p=K x0f*(K p'.) denotes the relative canonical bundle of f .

( 0 .2 )  If f: X — >13 1  i s  a relatively minimal rational elliptic surface with a
section, it can be obtained as the minimal resolution of its Weierstrass model,
and it is easy to see that all fibers of f  are irreducible if and only if its
Weierstrass model is smooth. Moreover we can easily construct a smooth
Weierstrass fibration f: X — >.13 '  such that X  is  a rational surface. The
Mordell-Weil rank of such a fibration is maximal (=8) because we always
have l ex i i ,=0  from the theory of elliptic surfaces due to Kodaira [Kod].

When g  2, we can also give a series of examples of rational surfaces X
with fibrations of curves of genus g  whose Mordell-Weil rank is maximal,
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i.e., r= 4 g + 4 . Hence we see that the upper bound 4g+4 is best possible.
Let r : fe—>P1 be the Hirzebruch surface of degree e with 0 - e < g . Then

we can find a very ample complete linear system whose general members are
smooth hyperelliptic curves of genus g . (For detail, see § 3). We take a linear
Lefschetz pencil of the linear system and obtain a  fibration f :  X - 4 3 '  by
blowing up the base points of the pencil. We can show that such a fibration
has the maximal Mordell-Weil rank 4g+4 (cf. Proposition 3.7).

Conversely, we can show the following theorem.

Theorem B  ( C f  Theorem 4.1). L e t X  be a  rational surface w ith a
fibration f :  X - -4 1 '  of  genus ,q 2. A ssume that the Mordell- W eil rank is
maximal, i.e., r= 4 g + 4 . Then X  is obtained as above, that is, f :  X - -q 3 '  is
obtained as  a blow ing up o f  a  linear pencil o f  hyperelliptic curves on the
Hirzebruch surface E e with 0  e < g .

(0 .3 )  In [Sh 1], [Sh 2], Shioda introduced the theory of Mordell-Weil lattices
for the fibrations of elliptic curves and also curves of genus In the case
of rational elliptic surfaces, Mordell-Weil lattices with maximal rank (=8)
are isometric to the unique even unimodular positive definite lattice of rank 8,
E g . The lattice Es plays a very important role as a frame lattice in his theory
of Mordell-Weil lattices of the rational elliptic fibration. Even in the higher
genus case, we can determine the structures of Mordell-Weil lattices with
maximal rank (=4g+4) as a corollary to Theorem B.

Theorem C (C f Proposition 3 .1 0 ). L et X  be a  rational surface w ith a
fibration f :  X - 4 3 '  of  genus A ssume that the Mordell- W eil rank  is
maximal, i.e ., r=4g+ 4. T hen the  Mordell-Weil lattice  is unique up to
isometries. In f ac t it is  a torsion free positive-definite unimodular lattice LT,
whose intersection diagram  (i.e., Dynkin diagram ) is giv en in  f igure 1  in
Proposition 3.10.

We note that LT is nothing but Es, hence L ( g 2 )  is a natural generaliza-
tion of Eg.

Here are  ideas which we use in the proofs of the above theorems.
Theorem A is a consequence of Xiao's inequality [Xiao] and Konno's result
[Kon] which gives the affirmative answer to Conjecture 1 in [X iao]. To prove
Theorem B, we use Theorem A and a refinement of Tan's lemma in [Tan]
which shows that a rational surface with hyperelliptic fibrations of genus g
with maximal Mordell-Weil rank is a double covering of P 1 x /3 '  whose
branch locus is a  smooth divisor with bidegree (2g + 2, 2). After some bir-
ational transformation, we see that such fibrations a re  obtained by the
blowing up of base points of hyperelliptic pencils on Le. Theorem C follows
from Theorem B  and an explicit calculation of intersection pairings of
divisors on surfaces.

We are grateful to Professor Konno and Professor Tan for sending us
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their interesting preprints. We also would like to thank Professor Shioda for
helpful and kind comments. Finally, we would like to thank the referee for
useful comments and pointing out mistakes in Theorem 4.1 and Proposition 4.
2 in the first version of this paper.

§ 1. Mordell-W eil lattices

We review basic notations and results on Mordell-Weil lattice according
to Shioda [Shi], [Sh2]. Let k be an algebraically closed field and K= k(C ) the
rational function field of a smooth projective curve C defined over k. Let 12/
K  be a smooth curve of genus g >0 defined over K  with a K-rational point 0
E T (K ), and let J r/ K  denote the Jacobian variety of 17 K .  We define the
Mordell-Weil group of 12/K  to be the group of K-rational points J r (K ) .  Then
the Mordell-Weil group is a finitely generated abelian group if the following
condition (*) is satisfied (cf. [L]) :

(*) The K/k-trace of J r  is trivial.

Shioda's main idea in [Shi] and [Sh2] is to view this Mordell-Weil group
J r (K )  (modulo torsion) as a Euclidean lattice with respect to a natural pairing
defined in terms of intersection theory on an associated surface.

Let

f :  X — * C

be the relatively minimal fibration of curves associated with given r / K .  By
this, we mean that X  is  a smooth projective surface, f  is  a projective
morphism with generic fiber r/ K  and there are no exceptional curves of the
first kind in any fiber. A K-rational point PE  12(K) defines a rational section
of f ,  hence defines a regular algebraic section of f .  Therefore there is a
natural correspondence between the set of K-rational points r (K )  and the set
of sections of f, and for PE  12(K) we write (P) the section regarded as a curve
in X .

Let NS(X) be the Néron-Severi group of X . Then NS(X)/ torsion admits
the intersection pairing and Hodge index theorem implies that its signature is
(1, p -1) where p=rank NS(X) is the Picard number of X .

Let T denote the subgroup of NS(X) generated by ( 0) and all irreducible
components of fibers of f .  The sublattice T is called the triv ial lattice. Then
we have the following fundamental result due to Shioda.

Theorem1.1 (C f . [Shl][Sh21). U nder th e  assumption ( * ) ,  th e re  is  a
natural isomorphism of  groups

(1.2) Jr(K )= N S(X )/ T.

In the following, we also assume that : (**) NS(X) is torsion-free. This
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condition is satisfied when X  is a rational surface. Let U  denote a rank 2
unimodular lattice spanned by (0 )  and F  the class of fiber, and let X =IvE
C(k )lf - i (v ) is reducible}. Moreover for each veE , we define Tv to be a
negative-definite sublattice spanned by the irreducible components of f '( v )
which do not intersect the zero section (0 ) .  Then we have the decomposition
of the trivial lattice T  as follows.

(1.3) T = U GED vEE Tv.

Let us set r =rank Jr(K ), which we call the Mordell-Weil rank of O K . Then,
from (1.2) and (1.3), we have the following formula :

(1.4) r= p — 2 — E (mv -1),
ve£

where mv denotes the number of irreducible components of f - 1 (v ). In particu-
lar, if all fibers of f  are irreducible, them we have

(1.5) r =p-2.

Let L = T icN S (X ) be the orthogonal complement o f  T  in  NS(X).
Shioda [SM.], [Sh2] called L  the essen tia l sublattice, and it is easy to see that
L  is a negative definite lattice of rank r .  We define the dual lattice L * of L
by

L *=Ix EL ® (11(x , y)EZ  for all yEL},

where (x , y ) denotes the intersection pairing on NS(X).
The following lemma and theorem are due to Shioda, and we refer it to

[Sh2].

Lemma 1.6. U n d er  the conditions (* )  an d  (** ), t h e r e  i s  a unique
homomorphism

(1.7)q 5 :  J r (K)— N S (X )  Q

w hich  sp lits the isom orphism  (1.2), i.e. f o r an y P E J A K ) w e have

çb(P)--- D p  mod TO Q, q5(P)± T

w here Dp is a horizonta l d ivisor on S  correspond in g to  P.[I-(K )=Pic°(11(K )
under (1.2) ; for instance, w e have D p=(P) f or P E T ( K ) c h ( K ) .  The kernel
of  th is homomorphism i s  the torsion Part J r(K) t o r  off  f r  (K )  and w e have

Im(çb) C L* .

Theorem 1 .8 .  D efin e the sym m etr ic  b ilin ea r  fo rm  on the M ordell- Weil
group  Jr(K ) by

<P, Q> = —  (0(P), 45(Q)) (P, Q.Ï1-.(K )).
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Then it induces the structure of  a positive-definite lattice on Jr(K)/Jr(K)tor.

The lattice (Jr(K)/Jr(K)tor, <, >) is called the Mordell-W eil lattice of 17
K , or of the fibration f : X ---,C . The narrow Mordell- W eil lattice Jr(K) ° is a
sublattice of the Mordell-Weil lattice ,Tr(K) such that J r (K )

°
 "=-' L/ T  N S (X ) /

T. We can also define it as a group of sections of the identity component of
the Néron model over C of Jr/ K . It is easy to see that if all fibers of f  are
irreducible, the narrow M ordell-W eil lattice coincides with the whole
Mordell-Weil lattice, i.e. II-WY "-= J r(K ).

Theorem 1.9. The narrow Mordell- W eil lattice Jr(K)° is isometric to the
opposite lattice 1, -  o f  L .  Here the opposite lattice of  L  is a lattice obtained by
putting the minus sign on the Pairing on L.

Theorem 1 .1 0 .  A ssume that the Néron-Severi lattice N S (X ) o f  X  is
unimodular and torsion-free, (e.g. X  is a rational surface). Then we have the
following commutative diagram whose morphisms are natural isomet ries.

Jr(K ) /Jr(K ) to r = (L
- )*

U U
Jr(K )

° =  L - .

Theorem 1.12. Under the assumptions in  Theorem 1.10, assume more-
over that all f ibers o f  f  are  irreducible. Then the Mordell- W eil lattice Jr(K)
is a torsion free lattice isometric to the unimodular lattice Jr(K)° = 1, -  where L
is the orthogonal complement of  the triv ial lattice T  generated by  the zero
section (0) and the class of  a general f iber F.

§ 2. Bounds of Mordell-Weil rank

In this section, we will give an upper bound of Mordell-Weil rank for
fibration of curves of genus g on rational surfaces. From § 2 to the last, we
assume that the base field k  is an algebraically closed field of characteristic
zero. The important results we need in this section are Xiao's inequality and
Konno's result. Let f : X — C  be a relatively minimal fibration of genus g
1 over a non-singular projective curve C .  Denote Z1(f)=deg f*cox i c  where
coxic is the relative canonical sheaf of f . Assume that f  is not locally trivial.
Then 4(f ) > 0. Note that the converse is also true. (See for evample [BPV,
III, Theorem 18.2].)

Let Kx/c-- -- K x 0 f * ( K )  be the relative canonical bundle. We define the
slope .1(f) as the following ratio :

(2.1) / 1 ( f ) =  K i  lc/ ZI(f).

By an easy calculation and the relative Riemann-Roch theorem, we have
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(2.2) = — 8(g( C)— 1)(g-1),

(2.3) 4(f )= x(0  x )— (g (C )-1 )(g -1 ).

Now the following theorem follows from X iao's inequality [X iao] and
Konno's result [Kon].

Theorem 2 .4 .  Let f :  X—>C be as above and assume that f  is not locally
triv ial and g > 1 .  Then we have

(2.5) /1(f)>4(g-1)/ g.

Moreover suppose that A (f)= 4 (g -1 )/  g . T h e n  f : X — C  is  a hyperelliptic
fibration, i.e., the general fibers of  f  are hyperelliptic curves.

P ro o f  When g>2, the first assertion is nothing but Theorem 2 in [Xiao].
The second assertion follows from Proposition 2.6 in [Kola which gives the
affirmative answer to Conjecture 1 in [X iao]. In the case of g= 1 , since f  is
relatively minimal, we always have l a c  = 0, which implies (2.5).

From now on we assume that X  is  a rational surface. For such a
relatively minimal fibration f : X — C  of genus g , C must be the projective
line P ' because q (X )= 0 . Moreover it is easy to see the following lemma.

Lemma 2 .6 .  Let f :  X—>P 1 be a relatively minimal fibration of  genus g
such that X  is a rational surface. Then the condition (* ) is satisfied, that

is, K I k-trace o f  J r  is trivial.

P ro o f  If the K /k-trace is not trivial, then the Mordell-Weil group is not
finitely generated. On the other hand, since the base is a curve P ', we have the
isomorphism

Pic x/i4P 1 ) = Pic (X)/Pic (1/ 1),

where Picx/p , is  the relative Picard functor for f .  By using theory of the
Néron model of J r  and its relation to the relative Picard functor, we see that
the Mordell-Weil group Jr(K )  is isomorphic to a subquotient of Picx/A P 1).
(We refer these to [9.5, BLIZ].) Since X  is  a rational surface, Pic (X )  is
isomorphic to NS (X ) which is a finitely generated abelian group. Therefore
we see that Jr(K )  is finitely generated.

For a fibration f :  X - 0 P 1 of genus g>1 such that X  is a rational surface,
we can easily see that

(2.7) zi(f)= x(0 x)— (0 —  1)(g —1)=1+ (g —1)= g.
Therefore we have ZI(f)=g >0, which shows that f  is not locally trivial.

Theorem 2 .8 .  L et X  be a rational surface with a fibration f :  X - 4 3 1  o f
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curves of  genus which is relatively m inim al. L et Jr(K ) be the Mordell-
W eil group o f  this fibration and r =rank Jr(K) its Mordell- W eil rank. Then
we have

(2.9) r  4 g + 4

M oreover we h av e  r=4 g +4  i f  an d  o n ly  i f  f : X - 4 3 '  i s  a hyperelliptic
fibration w ith K I 1p=4g —4 such that all f ibers o f  f  are  irreducible.

P ro o f  Since X  is a rational surface, the Picard number p(X ) is equal to
b2(X)— dim H 2 (X , C ) . Since b1(X)=0, Noether's formula and (2.2) imply that

P(X) = 12x(0 x) —  (M op —  8(g —1))— 2,

—8g +2— K 2X  •

On the other hand, since f  is not locally trivial we can apply the slope
inequality (2.5), which implies that ICX / P. 4 g -4 because Z 1(f )=g. Hence we
have p (X )4 g + 6. This and the formula (1.4) imply that r  p(X)— 2 4g+ 4.
Moreover the equality r =4g +4 holds if and only if K 2x y p, = 4g-4 and fibers of
f  are irreducible. Therefore we have the rest of the assertions from Theorem
2.4.

§ 3. Examples of fibrations with the maximal Mordell-Weil rank

In this section we shall construct examples of rational surfaces with
fibration of genus whose Mordell-Weil ranks are maximal.

Let 71" : E e = P (0 0  0 (e))— > P I be the Hirzebruch surface of degree e with
The Picard group Pic(Xe) or NS(Xe) is generated by the classes of

a tautological section C . and a fiber Fo of 7r. The intersection pairings on
NS(Xe) are given as follows :

C = e, (C.• Fo)=1, (F0) 2 =0.

The minimal section Co of f e  is equal to C.— eFo in NS(Xe), hence C = - e .
First we have the following easy lemma.

Lemma 3 .1 .  S et a= g+1—  e> 0. Then the linear system  12 C.+ aFol is
very am ple . Hence a general m em ber D of  12C.+ aFol is  a  non-singular
irreducible hyperelliptic curve of  genus g.

P ro o f  Since a=g+1— e>0, the first part follows from [Cor. 2.18, V,
[H]], and it implies that the existence of a nonsingular irreducible member D.
Since a natural projection D— 4-1 '  is a 2-1 map, D  is  a hyperelliptic curve.
Noting that

(3.2) KL-= — 2C.+ (e —2)F0,
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we have

g(D )=(Ks+D)•D/2+1=(g-1)Fo•D/2+1=g.

Moreover from the very ampleness of the linear system 12C.+ aF o l, we can
find its generic smooth irreducible members Do and A which give a Lefschetz
pencil on Xe. By this we mean that the linear pencil {Dt } i . p

, given by Do and
A  satisfies the following conditions :

Most of members D, are smooth and every members in the pencil
is irreducible and has at most one node as its singularity.

For the existence of Lefschetz pencil, see [SGA 7 II, Exposé XVII].
Next note that Do•A=(2C.+ aF0) 2 =4e+4a=4g+4 and we can assume

that Do and A intersects each other transversely. Therefore we have 4g+4
distinct points h • • • ,  P 4 8 + 4  which are the base points of the pencil. (We may
also assume that they do not lie on the minimal section Co and any two of
them are not on the same fiber of 7r.)

Under these assumptions, let q : X—*Xe be the blowing up of the points pi,
• • - ,  p 4 9 + 4 ,  then we obtain the fibration f :  X—>1:1 '  of curves of genus g.
Summarizing the above results, we have the following proposition.

Proposition 3.4. The fibration f :  X — ›P ' obtained as above is a hyperel-
liptic fibration of  genus g which is not locally triv ial. Moreover all fibers are
irreducible and every singular f iber has at most one node as its singularity.

Let F  denote the class of a fiber of f ,  and E 1=0*(P ,) the exceptional
curve dominating the point p i. For simplicity, we also denote the total
transforms of C , CO3 Fo by the blowing up 0 by the same letters.

Then the Néron-Severi group NS(X) is isomorphic to the free module

(3.5) NS(X)-= Z  • C.GZ •F00(01 9=I4 Z • Ez).

Moreover in the Néron-Severi group NS(X), we have the relation :
48+4

(3.6) F=2C.+aFo—  E  Ei.

Let K = k(P') be the rational function field of PI and let F / K  denote the
generic fiber of f : X -->P 1 . Since all fibers of f  are irreducible (Theorem 3.4),
the narrow Mordell-Weil group J r ( K )

° coincides with the whole Mordell-Weil
group J r ( K )  (Theorem 1.12).

Proposition 3 .7  Fo r a fibration f :  X - 4 ) 1 o f  genus g in Proposition
3.4, we have

10 o p =  4g - 4.

(3.3)



On Mordell- W eil lattices o f  higher genus fibrations 867

Hence f : X - 4 3 ' is a fibration of  curves of genus g whose Mordell- Weil rank
is maximal, i.e., equal to 4g+4.

Proof. Since from  (3.2) we have
48+4 48+4

Kx= 95*(KEe)+ E Ei= — 2C .+ (e-2 )Fo+ E E1,

we obtain
49+4

Kx/p=Kx+2F=2C0-E(2a+e-2)F0— E E .

Therefore we have

Mcy p, =4e +4(2a + e —2)—(4g+4)=4g-4.

Since all fibers of f  are irreducible (Proposition 3.4), the rest of the assertions
follow from this and Theorem 2.8. Q.E.D.

Definition 3 .8 .  A fibration f :  X—*P 1 of genus g constructed from the
blowing up of Xe with O e < g  as above is called a fibration of type (g  e).

Now we shall determine the structure of the Mordell-Weil lattice (L410,
<,>) of a fibration f :  X - 4 3 1  of type (g, e ) .  Since (F , Ei)=1, the rational
curves {Ei} become sections of f ,  and we take E1 as the zero section ( 0).
Then by definition and Proposition 3.4, the trivial sublattice T = T g ,ecN S (X )
is generated by the class of E1 and the fiber F  of f .  From Theorem 1.1, 1.12
and Proposition 3.4, we obtain isomorphisms of groups :

(3.9) Jr(K )°= Jr(K )= N S(X )/  T.

Moreover from 1.12 and 3.4, the Mordell-Weil lattice (Jr(K),<,>) is isomorphic
to w h e r e  L g ,e is the orthogonal complement of the trivial lattice T g ,e as
in §1 . The following proposition determines the structure of the lattice

Proposition 3 .1 0 .  For and O Se<g, the lattice L ie is a positive-
definite unimodular lattice o f  rank  4g + 4 whose Dynkin diagram is given as
follows.

2 3 4 4g+3

Figure 1.
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Here the numbers in the circles denote the self  intersections of elements,
and a line between two circles shows that the paring o f  two elements is equal
to -1.

M oreover 1,,e is an even (resp. odd) lattice if  g  is odd (resp. even).

P ro o f  We take an integer m  as

2m+1=g+e+1 if g +e +1  is odd,
2m=g+e+1 if g +e +1  is even.

Since T g ,e is generated by two elements :
49+4

F=2C.+(g+1—  e)Fo—  E E1, El,

it is easy to see that the following elements form basis of .L f,e  in each case.
CASE g+e+1=2m +1:

ku =  C o o  — M F 0  E 2 , H 2 =  E 2  E 3 ,  H 3  =  E 3  E 4 ,
• • • , H49+3— E4 9 +3 — E 4 9 + 4 , H 4 9 + 4  F O  E2 — E3.

CASE g+e+1.----2m:

H1=
 C o o  M F O ,  H 2 =  F O  E 2  E 3 ,  H 3  =  E 3  E 4 ,

H4 9 -1-3— E 4 g + 3  E 4 g + 4 ,  H 4 9 + 4  E 2  E 3 .

(The numbers of elements correspond to those in figure 1.)
Then taking the minus sign on the pairing on into account, we can

easily check that the intersection matrix is given by the Dynkin diagram in
figure 1 and all other statements follow from this.

Definition 3 .1 1 .  From  Proposition 3.10, we see that the structure of the
lattice L g ,e  depends only  on  g , so w e denote it by  L g . H e n c e  L  is  the
positive-definite unimodular lattice o f  rank 4g + 4 whose Dynkin diagram is
given by figure 1.

Remark 3 .1 2 .  Professor Shioda pointed out to us that the fibrations f :
X—>P1 i n  this section can be obtained as  special cases of  his examples in
[Theorem 3, Sh3].

§ 4. Uniqueness of the maximal Mordell-Weil lattice

In this section, we prove the following theorem.

Theorem 4 . 1 .  L et X  be a rational surface with a fibration f : X — >P 1 o f
curves of genus g 2 which is relatively m inim al. A ssum e that the Mordell-
W eil rank r of  f  is maximal, i.e., r =4g+ 4. T hen  f : X -0P 1 is a fibration of
type (g, e) described in § 3, that is, it is obtained as a blowing up of  a pencil
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of  hyperelliptic curves on the Hirzebruch surface Xe w ith  O  e  g . In  particu-
lar, i f  X  is rational and  f  is relatively  minimal, the Mordell- Weil lattice
arising from a fibration of  curves genus 2 with maximal Mordell-Weil rank
is always isometric to L  defined in Definition 3.11.

We first recall the following proposition.

Proposition 4 .2 .  L et X  be as  in  Theorem 4.1. T hen X  is  a double
covering o f  P i x P i  branched along a  smooth curve B  of  ty pe (2g+2, 2).
Moreover the fibration f :  X -4 P ' is induced by  the second projection P2.

P ro o f  From Theorem 2.8, we infer that f :  X—>P 1 is a rational hyperel-
litic fibration of genus g with the minimal slope /1(f)=4 —4/g (or equivalently
K 2x/ p =4g —4 and all of fibers f  are irreducible. Then we recall the following
fact.

If f :  X - 4 3 ' is a hyperellitic fibration of genus g with the minimal slope
A(f)=4 - 4/g, there exists a  Hirzebruch surface le  and a double covering r:
Y—Xe, such that Y has only rational double points as its singularities, and X
is the minimal resolution of Y. Moreover the fibration f  is induced by the
ruling of I e —>

For these facts, we refer to the proof of [Theorem 2.1, Ho] or [Proposition
2.12, P t W e rem ark  th at the slope inequality (2.5) is equivalent to the
inequality in [Theorem 2.1, Ho] and [Proposition 2.12, P] and the equality
holds for the canonical resolution 17  of Y if and only if all of singularities of
the standardized branch locus B  of r :  Y—+Ee in  [Theorem 2.1, Ho] have
multiplicities equal to 2 or 3. The later fact implies that Y has only rational
double points as its singularities and 1-7-  is the minimal resolution of Y. Since
the original X  can be obtained by contracting (-1)-curves on Y contained in
fibers, if .1(f)=4 —4/g we see that 17 =X .

Next we recall the argument of the proof of [Lemma 3.2, Tan]. Let r :
Y—>fe be a double covering whose branch locus B is linearly equivalent to (2g
+2)C0+2mFo where Co, Fo are given as in § 3. Since Y has only rational
double points as its singularities, we have (K yii, )2 =(Kx/p) 2 and  x(0 y)=
x(0 x)=1, we must have

(K  y / p.) 2  = (K y ) 2  +8 (g  —1)=(K p ,)2 =- 4g —4, or (Ky) 2 = — 4(g —1).

Since KL.= — 2 Co — (e+2)Fo and

(4.2.1)K = r* (K E +(1 /2 )B )= r* ((g  — 1 )C 0 +(m —  e -2 )F0 ) ,

we have

(K y ) 2 =2(— (g —1)2 e +2(g —1)(m— e —2))=— 2(g —1)((g +1)e —2m+4)

—4(g--1).
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Since g >1, from this we have (g +1)e=2(m —1). On the other hand, from
(4.2.1), we have m< e +2 because Y is a rational surface. These imply that
e =0 and m=1, or equivalently Y is a double covering of Z = P 1 x Pl whose
branch locus B  is of type (2g+2, 2). It remains to show that B  is smooth
which also implies that X =  Y . I f  B  is not smooth, there is a rational curve
arising from the resolution of singularities which lies on a fiber of f .  This
contradicts to the fact that all fibers of f  are irreducible.

Remark 4 .3 .  In the f irst version of this paper, we stated that Proposition
4.2 is true even if g =1 . As the referee pointed out to us, Proposition 4.2 is not
true in the case of g = 1 .  We have two more cases for (e, m ), that is, (1, 2), (2,
3 ) . (These cases really  occur.) The case (e, m)=(2, 3) whose branch locus is
Co+ B' where B' el3C.1 corresponds to the Weierstrass f ibration of a rational
elliptic stoface. Note that all rational elliptic fibrations with fixed sections are
the minimal resolutions of the Weierstrass f ibrations. Moreover if all fibers of
an elliptic surface are irreducible, it is isomorphic to a Weierstrass fibration.

N ow  w e prove Theorem  4.1. Let f : X — >P 1 be a fibration in Theorem
4.1. Then from Proposition 4.2, we obtain a double covering r: X - )

p l  p l

whose branch locus B  .1 3 ' x  Pl is a smooth curves of type (2g+2,2). Restrict-
ing the first projection p i  of 11 1  x  P' to B , we have the double covering 1) •,103

B-013 1 .  It is easy to see that the genus of B  is 29+1, hence there are 49+4
distinct branched points of p uB . Let çO : X -*  P' be a fibration induced from p i.
Then this is a conic bundle with 49+4 reducible conics over the branch points
of A li , Let EïlnI4 be irreducible components of these reducible conics
such that 0 ( E t ) =0 ( E ) .  It is easy to see that each curve E is a (-1)-rational
curve, hence for each 1 i<4g+4, we can contract one of V s  and obtain a
smooth ruled surface 7r: S - 4 3 1 .

Since all fibers of 7z- are P ',  7r : S - >11 1  is isomorphic to a Hirzebruch
surface 7r: Xe—+Pl o f degree e  for some e. Hence we have a birational
m orphism  : X—).Ee by contracting one of V s  for all i .  Let FOEX denote a
smooth general fiber of f , and set F '= 0 (F)C I e .  Since Vs are sections of f ,
w e may assume that F ' is smooth and birational to  F .  Using the same
notation as in § 3, we set

Fl=aCco+ RFo.

It is easy to see that (F', F0)=2, hence we have a=2 . By the same calculation
as in Lemma 3.1, we have

g=g(F)=g(F')=((e+ R -2 )F o , 2C. - PRF0)/2+1= e  +  —1,

or 13=g+1— e.

(Cf. Lemma 3.1.) Now setting a=R =g+l— e, we proved that F' belongs to
the linear system I2C.+ aFol and ç : X -0E , is the blowing up of base points
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of a linear pencil in this linear system. It remains to show that a= g +1— e is
positive. Otherwise, (F', C O = a is non-positive where Co is the minimal
section. If a< 0, then Co is in the base locus of the pencil, which contradicts
to the fact the base locus of the pencil is zero dimensional. If a =0, let Co' be
the proper transform of Co by O. It is easy to see that (F, C )  0 and Cô= (CO'
= — e= — g — 1. Hence Co' is an irreducible component of a fiber of f , and since
all fibers of f  are irreducible we have (Co")2 = 0 *  — g — 1. This is a contradic-
tion.
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