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Entropy numbers in L’-spaces
for averages of rotations
By

Michel WEBER

1. Introduction

Let (E, d) be a metric space with finite diameter D. Let us denote for
any 0<e<D, by N(E, d, €) the minimal covering number (possibly infinite) of
E by d-open balls of radius €. These numbers, called entropy numbers of
(E, d), analysing the global scattering of the space (E, d), are classical tools
of analysis. In a recent work ([2], Theorem 1.3), mainly devoted to the
study of the regularity of gaussian processes indexed by product sets,
Talagrand proved an estimation of the entropy numbers related to averages of
hilbertian contractions. More precisely, let (H, || . ||) be a Hilbert space and
U: H—H a contraction of H. Put for any x€H

n-—1

Va1 A,’{(x)=%ZUi(x) AV() =AY (), n>1). (Al

j=0
Then, there exists a universal constant K >0 such that

K

Vi€l with =1, v0<e<l, N@AY(k), |-l ¢ <
[

(A2)

That result allowed him to solve a question raised by the author in [4], but
for L?-spaces and ergodic averages only. A complete answer based on a
different method, the Stein's randomization technic, is provided in ([3],
Theorem 3.2).

That estimate is also optimal. Let T=[—m, 7] be the circle. Put,

n—1
Va1 VOET. V,(0) 2%2(3”‘9. (A3)
i=0

By the spectral lemma,

142 () =45 O F< [ V2(6) = Vi (6) s a6), (a4)
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A closer look into Talagrand's proof reveals that (A2) is deduced from the
following stronger property: to any nonnegative bounded measure v on T and
0<e<p(T) can be a finite set of numbers F associated, such that

Card (F) SK(@)Z, (A5)

Vu>1, 3ImEF |fT|V,,(0)—Vm(0)|2v(d0)SKez, (A6)

where K is a universal constant. By Hahn-Jordan decomposition theorem,
that result extend to arbitrary bounded measures on T by replacing v(T) by
[v| everywhere. 1t is also clear from (A4) that (A5), (A6) implies (A2).

[t is quite natural to inquire how Talagrand’s result can be extended for
mean averages of L’-contractions. Let T denotes at first an L’-contraction
and use the notation (Al). We may ask whether

Problem 1: there exists a universal constant X >0 such that

We may also weaken Problem 1 by only asking an (¢7?) behavior for the
covering numbers:

VrEL? with |xl, <1, VO<e<1, NATG), |-, <X
€

Problem 2: is it true that

K (x)
e’

ViEL? with |x[,=1, V0<e<l, NUTG), |-, e <

where K (x) depends on x only?

It is instructive to observe that Problem 2 can be answered affirmatively
when the spectral measure of T at x is suggiciently smooth, assuming for the
rest of the paper that T is a rotation on T. Let {®;, j € Z} be the family
characters of T and corresponding eigenvalues {aj, j€Z} of T. Let

x=Zc,-(Dj

jez
be an element of L? () and denotes
1
Q k)= (Z ch(l);|2>2 (2)
i€Z jeA,

its square function. The so-called dyadics intervals A;, (i €Z) are defined as
follows

{2171 2i-14-1, .., 2"—1} if i>0,

“Am ‘tf 1,<0,
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Then, by (A3) '
y=AR ) — ARG = ), (Vi (a) = V(@)
jez
According to the Littlewood-Paley theory (see [1], Chapter 1, p.4)
Ay, <1Q ) s <Bsll» I, (3)

where A,, By are universal constants. By Cauchy-Schwarz inequality

.ch(l)j(VN (a;) —Vu(aj) 2S<Z|Cj|2><Z|VN (o) = Vulay) |2)

jEA; j€A, j€a,
Hence,
Q (y) 2< Z ( Z |Ci‘2> (Z |VN (aj) —Vu (aj) |2>
i€Z jeA, jEA,

Assume now that x satisfies

n=Ylillek <o @

JEZ

and let v denotes the bounded measure on T defined by

y= Z(Zkflz)Z 8

i€Z jeA, jb,

We have
Q(y)ZSfTIVN(a)—VM(a)Izv(da)
Thus,
lA%G) —Ak ), SA;1<L2”|VN (@) = Vi (@) Izv(da)ﬁ.

which implies with (A5), (A6) that

NATE). ] e) sKe’Zz, (5)

for all 0<e<m, where K is an absolute constant.
If x is exactly a dyadic polynomial, says

Zciq)f.
Jhi

then by (2), Q(x) = x| so that (3) is empty and the problem of estimating
L?-norms of x (a fortiori Af(x) —A%(x)) remains entire. Things are changing
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if instead of searching to measure the L’-size of AT(x) by means of the
L’-norm of x, one searches a control in terms of the conjugate norm of the
Fourier coedfficients of x. This point of view is justified by the theorem of
Hausdorff-Young. We can indeed prove the following

Theorem 1. Let 2<p <0 and q with y+;=1; there exists a universal
constant K, such that for any rotation T on T

Vx=Zci(D,~with||(ci)||.,=1, V0<e<1, N(AT(x),||-||,,,e)s§f. 6)

i€Z

2. Proof

The proof will require to adapt to the L?-setting and to modify the tools
of Talagrand’s proof at many places.
Let {a;, j €Z} be the corresponding eigenvalues of T.

By invoking a plain argument of density, it is enough to prove (6) for all
x of the type ¥ = 2ozi<n ¢i®i;, N=1. Recall that

y=AF () —AL &)= Z i@ (Vn (o) —Vu ().

Since y is a finite linear combination of the ®@,’s, by Hausdorff-Young theorem
and by the very proof of Riesz's Theorem (see [5], Chapter IX, par. 9.1, 9.2,
9.3)

Iyl <IC(Va (@) = Vi la;) )es) oicnlle:
In other words

145 6) =R < ([ Vil = Vu(@lum@a)',  ©

where we put y;= ZOSi<Nlci|q5a,-
Talagrand’s proof involves a regularization of the measure gz, which we
write simply g in what follows. Put

vi>1, J,={6€T|2'z<|6|<27*"*'n}, a;=n(). (7)

The sequence {an, n=1} is indeed regularized as follows; set
Vi=>1, b;=22_“‘_”ak. (8)
k=1

In the next lemma, we collect a few properties of that regularization

Lemma 2.

Za,_<_1, (#1)

121
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Yoi<s, (#2)
121
VIZLOS(I[SI)ISI, (?3)
viz1, p<hingg (4)
by
(0,29, 121) is strictly increasing and unbounded. (95)

Proof. The three first properties are obvious. It is enough to observe

that
Zbl = Z ZakZ'”"” = ZakZZ‘”“” S3Zak.
k=1 I=1 k=1

=1 I=1k=1
We prove property (#4). One the one hand

o

biy1= Zakz_“‘_’_” =a:27' - +a 2 ta ta2 a2

k=1
and on the other one,

o

b1: EakZ"““” =a12"+1+ o +a,+a,+12'1+a,+22'2+a,+32_3+ e,

k=1

Since %=a12"+~-+a12‘1+a,+12‘2+a,+22‘3+a,+32‘4+---, we have

b, <bis1.

BeSidES, 2b,=a12“+2+"'+2a1+a,+1+a,+22'1+a,+32‘2+"', hence alSO,
2bi2bygy.
And (95) follows from b;,;299+D >p,200+D=1>p 2¢

Fix now 0<e<1. For any k<1, let then m (k) denotes the least integer
greater than 1 and verifying

b 20 > 2% e?, (9)

The next lemma shows that both sequences {m (), =1}, {bpw, k= 1} are
very regular

Lemma 3.
VE=1, mk) <m(k+1), (#6)

Put
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k*=the greatest integer such that m (k*) =1,

Then k* is finite and

k*SBIg—Z log % (@7)
Eq
VEZE* m (k) +1<m(k+2), (8)
Ve=1, m(k+1) <m (k) 4, (99)
where j, denotes the least integer j such that j< (j—1)q.
VE>1, z-f«gb;)"—x:—’szfv (#10)

Proof. a) By definition of m (k+1), bpiesn29m*+D > 204D b > 9aked ¢
follows that m (+1) =>m (k).
b) By definition of m (t+2) and by (P5), bmusz <2bmrrz—1. Hence,

bm(k+2)_lzq(m(k+2)—1) qu—lzqkep
which shows m (k+2) —1>m (k).

¢) By definition of m (k) this time, by 27*® >2%e?. For any j=1, bmw
<2bmur+j, we thus have

bm(k)+j2!l(m(k)+])+]—(]—l)(1 2 2q(k+l)ep,

which shows by taking j =j, that m (k) +j,2m(k + 1). Finally the last
inequality follows from the three previous.

Define f : N\{0, 1}—=R* as follows. For any n>2, let k=1 be defined
by 26<n<26+1 Pyt

fln)= me(n+ 27" —1) b (10)

I<k
Then f is strictly increasing and increases with constant jumps equal to
2 by in [2¥+1, 2¥*1] . Further f is bounded and f(n) <k*b,+6, if n>2.
Indeed

fln) < mem <k*b;+ Z bmuo+ Z b <k*b1+6.
k=1

k2k* k2k*
kcven kodd

We build the set FCN as follows: we put [1, 2¥**1] in F. Then we put

n=>2*1in F whenever for some integer ¥=>1,
fn—1) <re? re?<f(n). (10"

The theorem will be proved if we show
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Card (F) s%ﬁ (11)

Yu>2, 3InEF:|AF () —AL @ lp<K,e. (12)

where K, is a constant depending on p only (which may change at each
occurence). First we show (11). If k<k* then estimation (%7) is enough
to conclude. If E>k*, observe that if [ is minimal for the relation

2' (27 b ) =62,

then we breing a point # of [2% 2¥+1] in F. Estimate I: by (%5) 1<qm (k) —
(g—1)k. By (#5) again,

bm(k)_lzq(m(k)—l)gzqkep
thus
12qm (k) — (g—1k—q—1
The number of points of [2¥ 2¥*'] belonging to F is

Card ( [2", 2k+1] ) < 2" SSbM(k)

2! 2qm(k)—(q—1)k-q—1 Ep :

The total number of n=>2% with #=>Fk* belonging to F is thus less than

bmuo ﬁz EZ 48
8 Z o Se" bm(k)Sep blgspr

P*<k<k* K<k 121

where k* is the greatest integer such that 8*%*>1. Hence (11) is proved.
We turn to (12), which proof relies on estimates concerning the kernels V,, ()

Lemma 4. For any 0ET and n, m=1

V(B < AL (13)
[V (6) =V (0) | <K|6lln—ml. (14)

Proof. The first assertion follows from the inequality

VOET, le—1|=K]6|.
We show (14). Put

Then for any €T and n, m=>1
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1V (0) =V, (6)|= (n) —¢ (m)
lei?—1]

4
< I?’l _ml SupnAmlzf;iv]Trlt|¢ (x) |

ln—n|
< su “(x)].
K 0 nAm<IEﬂVm|¢ |

But ¢’ (x) ==1=2¢=L for any x>0 and 6ET. For any z€C with |2|<1,
| (1—2)e?—1| <K]z|?,

where K is some numerical constant. Combining now these estimates, we get
for all n, m>1 and |0| <+,

[Va(6) = Vi (0) | <KI|6lln—ml,

which proves (14) if |§|<:Z=. Observe now for any n>m and €T,

n—1

m—1
(l_i> Vel Y o
n m n

j=0 j=m

—|n —m|

=2|n—m|
n

and thus for any n, m =1 and €T

Vi (8) = Vi (O <K (161 A5 ln—m.

nVm
Put for any k21,

L= U] L= U . (15)

1<m(k) I1>mk)
In the sequel of the proof the two following estimates are used

El. Let k=>F* and n=>2% ; then
L 1Va(6) e a6) <Ky

Proof. By means of lemma 4

fhlvn(e)vm(de) Z fw'qu @),
__KL Z 2qlal

1smk)
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<]_{L Z 2alp!
S0
1<mk)

K
S;fbmmzqm(k)

Serp.

E2. For any k=1 and n, m>1
j;IVn(ﬁ) — Vo (0) 176 (d ) <Kpln—m|%mp27™®,

Proof. By means of lemma 4

L 1va®) =V @) ua@d) <sn—mle ), [ |6lu(a6)

I>m(k)

<Kpln—ml|?< Z 279,

I1>m (k)
< Kpln—m|%bmp27™.
We can now pass to the proof of (12). Consider n>2"*! and let k>k*
such that 2¥<n <2%*!  Let r=1 denotes the greatest integer. such that
fn) >re’.
Let m =1 denotes the smallest integer satisfying
f(m) =7re?.

Then m is well defined and belongs to F by definition. We will see that
L172(6) =V (B) 1w (a6) <kt (16)

This point will achieve the proof.

Let ¥ =1 be such that 2¥ <m <2¥*' Clearly, ¥ <k. We will distin-
guish three cases: (k=F), (k=F+1) and (k>F+1) as in the original proof.

First case: (k=F’)

Then, we have

e?> fn) —f(m) =27 (n—m) bmo.

By means of (E;) and the relation |x +y|? <c, (x| + |y |9 (c, is a constant
depending on g only)

J1Va(0) =V (0) @) <2epKyer+ [ |Va(6) = Vin ()22 (06).

By means of (Ez)
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SK,, (n _m) qz—qm(k)bm(k)
2
)
() —qk
20O =akp e

SKpepe-pbich SKpe?' =K pe?

<K,

and achieves the proof in that case.
Second case: (K'+1<k)
Then,

e?2f(n) —fm) = 2" —1) bmuw+ Z bmayt (2—27%m) b,

k'<I<k
Hence,
et Z bmw,
k'<I<k
and by (%#10)
5e?> Z bmay,
k' <I<k
and by (%9) and (910)
Z b; <100¢e”. 17
K <I<k

Recall that I = U <manfi, k= U ismus, Ec': Uismw/i. Put I= U puncsmmli.
Then,

S 1@ =vu@luas)=(f + [+ [)1Va(®) = Vu(®) Pua6).
Since m (k) <m (k), we have I, CI,; hence by means of estimate (E1),
L 1Va® V(@) @) <eo( [ 1V (0) @) + [ Vi) oa6) ) <Kye
(18)
Also,

[V ®=va @@t <k, ), b<ke. (19)

kK <I<k

From estimate (E2)

S 1Va(0) =V (014 a8) <Kyl =m) 2" Vs
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SK,,Z"(""'”("”bm(k) _

< Kpbao
)

SKpe? P <Kpe?<¢’ (20)

Putting together estimates (18), (19), (20) achieves the proof in that case too.
Third case: (k=F+1)
At first

(levn(e)—vmw) I"u(dﬁ))%
<(L1V2 (0 =V @10 ) +( [V (0) Vo (O) t(a0) )"

As in the first case, estimations (E1), (E2) show

J1V2 (0 = v (0)]ua0) <Ky (24— 2277 W),

_[;J Vi (0) — Var () |0 (d 0) <K (€2 +|m — 24727 ® b)),
Since f is increasing and m <2¥<n
e 2f(n) —f(m) 2f () —f(2*) = 27" —1) b
Thus &2 2" —1) by and,
(n—2K)92-am B 4y S 20k=mNy |27k — 1|2
S S

= pz—q(k—m(k))b :
m (k)

SKpett b, <¢f

Hence
L1va(0) = va(6) o) <Kzt
Similarly
e 2f(n) —f(m) 2f(2¥) —f(m).
But

flm)= Z byt 7 —1) b—ny

1<k-1
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(25 = Z bma).

I1<k-1

e 2f(2%) —f(m) =bmu-n— ¥ 'm—1) bmisy)
=bmu-p2 *m
Sl o
= 2bm(k) m.

Thus
(m _ 2k) qz—qm(k)bm(k) < zq(k—m(k))bm(k)lz—km — 1|P
SKpEMZq(k_m(k»b}n_(Z)

e’ i

<p.— & Omb
SK» 2-atk=-my

Serpq_pbfn_(Z) <
And finally,

L1V (0 =va(0)uao) <Kpet,

which achieves the proof in the last remainding case.
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