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Abstract

In this paper we consider the structure, in particular the singularities, of solutions of
singular Cauchy problem for the following operator L with holomorphic coefficients in the
neighbourhood of the origin of C* under some conditions

L=D} - (x+b>)D —a(t,x)D, — c(t,x)D, — d(1,x).

We construct its solution by so-called asymptotic expansion method and study its
structure by the monodromy theory of the hypergeometric function.

1. Introduction and Results

We consider non-characteristic Cauchy problem with singular Cauchy data for
a linear partial differential equation with holomorphic coefficients in the complex
domain.

This problem has been investigated by Y. Hamada, J. Leray. C. Wagschal
[H.L.W.1], G. Nakamura [H.N.1|, D. Shiltz, J. Vaillant [S.V.W.1], T. Kobayashi
[Ko.1], J. Perrson [P.l1], E. Leichtnam [L.l1] and many authors for various
cases. We can find detail in the bibliography of the book by B. Sternin & V.
Shatalov [S.S.1]. This problem for the most general operator is difficult. In this
paper we treat a limited class of operators that are related to the radially
symmetric operator and Gauss’s hypergeometric functions, whose monodromy
theory will clarify the ramification around the characteristic surfaces and the
singularities, the structure of the solution of our problem.

We consider singular Cauchy problem for the following operator L in the
neighbourhood  of the origin of €’ with the coordinate (r,x).

L=D?— (x+b*)D? —a(t,x)D, — ¢(t,x)D, — d(t, x)
where a(t,x). ¢(1,x) and d(1, x) are holomorphic functions in 2. We impose the
next condition (c¢) on the coeflicient ¢(t, x)
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Condition (c): ¢(0,x) = ¢ where ¢ is a constant.
So we can rewrite ¢(¢,x) = ¢+ t¢(t, x) and
L=P.—1tc(t,x)Dy —a(t,x)D, — d(t,x)

where P, = D? — (x + bt?)D? — ¢D, and b and ¢ are complex numbers.
Now we study the following Cauchy problem

u(0,x) = wi(x)f,(x)
u(0,x) = wa(x) f,(x)

where w;(x) and w,(x) are holomorphic functions in QN {r =0} and

Lu(z,x) =0 with the initial data {

fi(x) = X Which are so-called wave forms.

I'o+1)

This operator P. was studied by V. Guillemin and D. Schaeffer in
[G.S.1]. When b =0, one can find it in [U.2, 3].

As for the singular Cauchy problem, we are interested in where the singu-
larities of the solutions appear and what kinds of singularities the solutions have.
The former problem is concerned with the homogeneous part of the highest order
of L. In case of this operator, its characteristic surfaces determined by Py are
composed of two curves K* where

Kt ={(tx);&¢=0};  &=x-}(1+D)>
K™ ={(t,x);n=0};  n=x—4(1-D)r
D =1+ 16b: Re(D) > 0

K% are the characteristic surfaces issuing from the origin and their union we
denote by K. When b =7}, D=+1+16b=0, that is, { =#. We do not treat
this case b = T—(: in this paper. The latter problem is concerned not only with the
principal part, but also with the adequate lower order term, that is, b and ¢ in
particular in this operator.

We introduce the auxiliary functions Uf(¢,x) and V(r.x) as the solution of
the following Cauchy problem respectively

PU; =0 with the initial data U, (0,x) = f,(x) and D,U,(0.x) =0
PV, =0 with the initial data V;(0.x) =0 and D,V;(0,x) = f,(x).

We remark that the next explicit representations of U,(r,x) and V,(1,x) are
able to be verified.

ooy & 1 1 a+c—11
U"(t"\)_F(oc+l)F( oz,4(l+D)+ D ,-)
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Singular Cauchy problem 3

We suppose some condition on complex parameters o, b, c. We put Q)4 =
{ge Q:q =1} where Q is the set of all rational numbers.

Condition (b): D =+1+16b¢ Qi and D #0 (b # 7).
We denote the set of all integers by Z.

;. 1 1 3
Condition (a, b, c.): ot+‘—‘ + B(a—z-l-c) ¢ Z and
3 1 1
O(+Z '5(0(—2+(>¢Z

Theorem. Under Condition (b), (¢) and (x, b, c.), in the sufficiently small
neighbourhood o of the origin of C2, this Cauchy problem has a unique holo-
morphic solution on the universal covering space R over @ —K. More precisely
speaking, the solution is expressed by

© r .- —k
u(t,x) = S0F ST k(LX) USTER (1,%) + g1 x) D UST K (1.0)
vk (LX) VK (6, %) + he i (1,X) D VK (%)}
where Uy i, grk, Vr.k and h, x are holomorphic functions on w.

Remark. When Cauchy data has pole on the origin in the initial surface, we
also obtain a unique holomorphic solution on R by the derivation of u(t,x) with
respect to a and restriction of « on the integer. In this case, Condition (o, b, c.) is
reduced to the following Condition (b, c),

Condition (b.c): c¢D(Z+ )+ (Z+1).

Corollary. Under Condition (b) and Condition (b, c.), in the sufficiently small
neighbourhood w of the origin of C?, this Cauchy problem L u(t,x) = 0 with initial
data u(0,x) = w(x)k_/(x) and u,(0,x) = wa(x)k_s(x) has a unique holomorphic

solution on the universal covering space R over v —K. More precisely speaking the
solution is expressed by

u(t,x) =37 S Ak (X)X X) A dig i (1) U (1, %)
+ gr k(. X) DX (0,3) + G, (1. X) D USTFH (2, )
+ vk (1) Y (00x) + 0,4 (1, )V (1, %)
+ i (£, X)D, YN8, x) 4 i (0,X) DV (2, %))

where Uy i, Gr. i, Vr.k- ek and Ty g, G, i, Vr.k hr k. are holomorphic functions on w and |
is the highest degree of the poles of the initial data and

X (t,x) =D U (1.x), Y (t.x) =D,V (t.x), kyu(t.x) = D,f,(1.x).

We note X/ (r,x) and Y[(t, x) satisfy the Cauchy problem P.Xf(t.x) =0 with
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the initial data X[(0,x) =ky(x) and DX (0,x) =0 and P Y/ (t,x) =0 with
the initial data Y, (0,x) =0 and D,Y/(0,x) = k,(x) respectively, and k,(x)=
oo+ 11(=1)*""x* for a = —1,-2,....

Note that without Condition (b) and (a, b, ¢) we can treat this problem. In
this case so-called degenerate case we need something else. Here we only propose
one example in Appendix.

For the proof of this theorem, we construct the formal solution of this Cauchy
problem in the above expansion form and then confirm the convergence of the
formal solution. This theorem shows that the singularities of the solution are
reduced to the singularities of the auxiliary functions which are to be studied in
Appendix in detail. To construct the formal solution, first we are to prepare some
calculations and properties of the operator and auxiliary functions with which we
start in the next section.

2. Auxiliary Functions

To prove our theorem, we need the simple relations among these auxiliary
functions Uf(#,x) and V[(¢,x) and their derivatives, which we describe now and
their precise properties about singularities and ramifications are to be found in
Appendix.

Proposition 1. Let r.k be integers non-negative.

(1) Difo(x) = fuor(x), xfolx) = (24 1) £ (x), Diks(x) = ko1 (¥).

(2) P.(D, UK =2btUS K —kD, UL Y, P(D Vi F)=2btV K2 —kD, VL

(3) P(D.U;) = DIUS, P(D.V;) = DiV;.

(4) P.(tU) =2D,U;, PtV ) =2D, V.

(5) P(xUY) = —cUS = 2(x + b*)D, Uy, P (xVE) = —cV{—2(x+b?)D VY.

(6) P.(tD,US) =2D2US +2b* DU, P.(tD V) = 2DV + 2b’ D2V,

(7) P(xDU) = —ctD US — (x+2b12)D2US, P(xD.V{) = —ctD VS — (x +2b1) DIV

We can easily obtain this proposition from the definitions of these auxiliary
functions. So we omit their proofs. Adding two relations (5) and (6), we have
the next proposition.

Proposition 2.
() (tD;+2xD)US = 20Uy
(2) (tD,+2xD) Vi = a+ 1)V
(3) DUS=US, DVe=VH

(1) says that US(t, x) is the partially weighted homogeneous function of degree

24, that is, Uf(r.x) satisfies the identity W (A1, ix) = AZW(t,x). (2) says that

VE(t,x) is the partially weighted homogeneous function of degree 2« + 1, that is,

V(1. x) satisfies the identity W (A%t 4x) = 22 W (1. x). This fact suggests us that

we may seek the explicit representations of the auxiliary functions as the form
& 1&*

U;(l,,\‘):r( U(z) and V;’(l,.\‘):mV(:), and then actually we

o+ 1)
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reach the hyper-geometric equations of U(z) and respectively V(z). (3) is the
most important relations.

For the proof of (1), it is enough to verify that W (t,x) = (1D, + 2xD,)US(t. x)
satisfies the Cauchy problem P.W =0 with the initial conditions W(0,x) =
20f,(x) and D,W(0,x) =0. For the proof of (2), it is enough to verify that
W(t,x) = (tD, + 2xD,) V{(t, x) satisfies the Cauchy problems P.W =0 with the
initial conditions W(0,x) =0 and D,W(0,x) = (20 + 1) f,(x). For the proof of
(3), it is enough to verify that D, US(r,x) and D,V/(t, x) satisfy respectively
the Cauchy problem [Dy(P.(U}))] = Pes1(DyUS) =0 with the initial conditions
D.UL0,x)=f,_;(x) and D,(D,U;(0,x)) =0, and the Cauchy problem
[Dx(Pc(VE))] = Pey1 (D VE) =0 with the initial conditions D,V (0,x) =0 and
Dy(DyV{(0.%)) = fo ().

Proposition 3. .
(1) xU =aUf - DU

2
. 1 N
(2) xvi = <ac +5) Ve — ED, Ve
. . -1 . 1 .2
(3) xDUS = — g PUSHE - %—w;_ﬂ' + (a - E) D.U; -5 DU
. byovir 142@4c—1) . 2
() XDV = =20V~ —(“4—‘—) (Vi 4 aD Vi + g DU

For the proof of (1) and (2), we rewrite (1) and (2) in Proposition 2 using (3)
in Proposition 2. By differentiating (1) and (2) with respect ¢ and using these
relations, we obtain (3) and (4).

3. Construction of the solution

In this section we construct the solution of this Cauchy problem, that is, we
determine all holomorphic coefficients u, k(. x), g, «(t.X), v, £ (t,x) and h, , (1, x).

To verify that the series represents its solution, we substitute the series in
Lu =0 and using the previous propositions we have

Lu=Y"" SN (b4 +2b0)gri1 ki1 — (M + Kt 441

+(atr+ce—k—1)Ag g+ (L —=2a+r—1D)D)u, JUSHH!

a+r—1

t
+ {~(§A +M+k+ l>gr+l.k+l + AUyt k41

1 Ny
+ (L — 2(0(+r_§)D.\'>¢r,k:| DlU:;;l/‘

+ [(B2P A+ 2b0) Ry g1 — (M + K)Veit ks

1 1 ‘
+ (a +r+c—k— 5)/1/1,.;( + (L — 2(0( +r— 5) D.\-> "r‘k] V;:rl‘jll
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t
+ [— (EA +M+k+ 1>hr+l,k+l + AVl ks

a+r

+ (L —2(a+ r)Dx)h,,k] D, V<K

where A4 = 2D, +tD, —a(t,x) and M = 2bt>D, + té(t,x). On the other hand,
from the initial data in the similar way we have

u(0.5) =37 ST [k (0.) + oy 4(0,X)] fygy (%) = w1 (%) ()

Dwu(0,x) = Zzo Z,:=0[Vr,k(07 x) + Dy (0, x)
+ (a4 r+c = k)grx(0,x) + Dih_1 1 (0,%)] frr—1 (%)
= (0 (%),

Setting the coefficients of U %Y, D, UK, ViKY, DVK and f,,, | equal

to zero, we obtain the recursion formulae for u, k., gr k., Vr.k, Hr k:

t
(El) Aupqy k-1 — (EA +M+ (k+ l))gr+|'k+|

= —(L— 2<a+r—%)D_\.>g,.'k

— (M + Kttt k41 + (B2 A + 2b1)gr i1 ki1
=—(L—2(ax+r—DDupx —(0+r+c—k—1)Ag,x
I
(E2)  Avyyihsr — (EA + M+ (k+ 1))11,“,“1
. =—(L—=2(a+r)Dy)h

— (M + k)Wt kg1 + (B2 A + 2041 gy

= —(L—2<a+r—%>D,\.)vnk — <a+r+c—k—%>Ahr'k

where 4 = 2D, 4+ tDy —a(t,x) and M = 2b?D, + 1é(t, x).
(D) D urk(0.%) + by 4(0,X)] = wi(x) (for r = 1),
Z,;O[“r.k(oax) + -1 x(0,x)] =0 (otherwise).
(I.D.v) Z;:O[v,.yk(o,x) + Dy (0, x)
+ (o +r+c—k)gri(0,x) + Dh_1 (0, x)] = wa(x) (forr=1),

Z;:O[\',.‘k(o,.\‘) + Dy (0, x)

(o 1+ ¢ — K)gri(0.%) + Dy 4(0,x)] = 0 (otherwise).
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We remark that these first order systems for Uril k+1> 9r+1.k+1 and for vy gy,
hey1 k41 are composed of the first order systems of the same form

(bt? A + 2bt)g — (M + k)u = F(1.x) (F)

—(%A + M+ (k+ l))g+/1u =G(rx)  (G)

where F(1,x) and G(t,x) are holomorphic functions in a neighbourhood of the
origin of C? and in particular when k =0, F(.x) = 0.

We note that this first order system (F) and (G) of the case k = 0 is slightly
different from this system of the case k > 0. By adding (F) to 2br x (G), we get

(bt?A 4 2bt)g — (M + k)u = F(1,x) (F)
(2btA —M — k)u — 2bt(M + k)g = F(1.x) + 2b1G(1. x)
that is
1(2btD +bt* D —bta(t. x)+2b)g— (1(2bt D+ (1. x))+k)u= F(t, x)
(1(4bD,—2ba(t, x) — (1. X)) —k)u—t(4b*t> D+ 2b1é(1, x)+2bk ) g = F (1, x)+2btG(t, x)

At first we study this first order recurrence system for kA = 0. In particular
when k =0, we can rewrite above system in the following form

(2tD, + *D, — ta(t,x) + 2)g — (2th + %)u =0

(41), — 2a(t, x) — C—(’?}i)> u— (4b’D, 4 2té(1.x))g = 2G(t.x)
with the initial data u«(0.x) given.

This is Fuchian system of first order, that we can solve in the routine way,
using the method of indetermined coefficients due to Fuchs. There exist unique
holomorphic solutions u(t,x) and g(t.x) of this Fuchsian Cauchy problem.

Secondly we study this first order recurrence system for k > 0. When k > 0,
we note that for the solvability of this first order system of u(z,x) and g(z, x), the
following condition is necessary:

—ku(0,x) = F(0.x).
We shall use the next notation
RI(1.3) = [RF)(1.) = & (/(1.5) ~ /(0.).

Now we apply this necessary condition to (E.1) and (E.2) and then we can
rewrite this necessary condition in the following form: for k > 0
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(LD.1) = ki) x41(0,x)
=(—(L-2(x+r—1DDuyy—(a+r+c—k—1)Ag, 1),
(ILD.2)  —kvry1 x41(0, x)
=(—(L—-2(x+r— %)D‘\,vryk —(a+r+c—k— %)Ahr,k)h:o-

So Ui k+1(0,x) and vyyy k4+1(0,x) are determined by u, x, g, and v, x, hy i
respectively. then (E.l1) and (E.2) become

1 k 1
(’A +2)C]— (EM-FZR)U—ZRF(I,X)

A — (%A + M+ (k+1))g = Glr.)

where F(r,x) and G(t,x) are holomorphic functions in a neighbourhood of the
origin of C? and A4 =2D, +tD, —a(t,x) and M = ((2btD, + ¢).

We can solve this first order system under the Condition (b), that is, Poincare
condition for this system. In fact we set u= 3" u;(x)¢' and g =37, g;(x)¢/
and other functions into the similar Taylor expansion form, and then we substitute
these series into the corresponding place in this system respectively. After the
calculation setting the coeflicients of # equal to zero, we obtain recursion formulae
to determinate the coefficients u;(x) and g;(x) inductively. These recursion for-

mulae are first order linear system for wu;(x) and g;(x) whose determinant is

kik+1+j
b —b(j,k) where b(j,k)zH. If b#b(j,k), we can determine all
J+
coefficients u;(x) and ¢;(x) inductively. This condition b # b(j. k), is equal to
S
I +16b # 1+ 16b(). k) :(2’?“—’;;2) By the definition D — vT65+ 1, this is
J+

o 2k S
equal to the condition D # | +}'+—l for all non-negative integers j. k. can

2k
+1
be any non-negative rational number and so Poincare condition b # b(j, k) is equal
Condition (b). Namely under Condition (b) there exist unique holomorphic
solutions u(t,x) and ¢(z,x) in the neighbourhood of the origin of C2.

By these facts holomorphic coefficients u, x(7,x).gr k(2. x), v x(2,x) and
h, 4 (1, x) can be determined inductively.

In fact first step: g (0, x) is determined from the relation of (I.D.u) and
initial data w;(x) and with this wuy ¢(0,x) as the initial data we can solve the
Cauchy problem of the first order Fuchsian system (E.1) for upo(z.x) and
go.o(t,x). and then we can determine v (0, x) from the relation of (I.D.v) and
initial data wy(x). wuo.0(t,X). go.0(t,x) and using this vy (0, x) as the initial data
we can solve the Cauchy problem of the first order Fuchsian system (E.2) for
vo.o(f,x) and hyo(t.x). Thus we can determine the holomorphic coefficients
{ll(),()(l.x).\(]0‘0(1‘,.\‘),V0~0(f,.\‘)./1().()(’.X)}.
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Second step: first we suppose all holomorphic coefficients u, k. g, .V, and
he k(0 <r<R,0<k<K) are determined, and then we can solve the Cauchy
problems of the first order Fuchsian systems (E.1) and (E.2) for wgyi «(t. x).
gritk(t.x) (1 <k <K+ 1) and vgy 4 (8, x). hre1 k(2. x) (1 <k < K+ 1) with the
corresponding initial data (I.D.1) and (1.D.2) respectively, and so we can restrict
these holomorphic coefficients on the initial surface {r =0} and then we can
determine wugy 9(0,x) from the relation (1.D.u) and using this ugy;.0(0.x) as the
initial data we can solve the first order Fuchsian Cauchy problem of (E.1) for
ugs1.0(t,x) and ggryi0(f,x). We can restrict ugyy (2, x) and grep,0(t.x) on the
initial surface { = 0}, and using this ug4;.0(0,x) and ggr41,0(0, x) we can determine
vr+1,0(0,x), which we use as the initial data for the first order Fuchsian Cauchy
problem of (E.1) for vg4.0(7, x) and we can solve it. Finally due to mathematical
induction we can determine all holomorphic coeflicients u, (., x). gy« (¢, X), v 1 (1. X)
and 5, 4(1,x) 0<r<R+1,0<k < K+1). We shall prove these holomorphic
coefficients u, (¢, x), g, (7, x), v, k(f,x) and h,,(t,x) have a common existence
domain and suitable estimates in that domain, which lead the convergence of the
expansion of the series of the formal solution in the next section.

4. Convergence of the formal series

For the method of the majoration, we introduce families of the scale functions
#,(t,x) as follows

J
p1.x) = (V2R=x)—pry”' =" (p1)

$,(t,x) = Di(t,x)
= Z;:o(j +1)(+3) -+ 20— 1)(2(R — x))U+2=D/=2 )/
for |x|[<R. p>1. |pt]*<|2(R — x)|

We put R[f(t,x)] = t7'(f(t.x) — f(0,x). The following propositions can be
easily verified. See [U.1].

Proposition ¢. {¢,(7.x)} have following properties.

(1) D, > ptd,,

(2) D}g,» P’y

(3) Drz¢a > /)2t2¢a+2

(4) (tDi+ )¢,y » Dig,. R[Dig,), D74,
(5) 8p(tDl + 1)¢a+2 > Dr3¢1* R[D7¢m]

(6) 26,.1(0.%) > D24,(0.%)

(7)  4D?}$,.,(0,x) >» D¢, (0. x)

1
(R = x)(R" = 1)

|
(R~ R)(R" - R)

D¢, « D¥¢, x>1, R<1,R" R >R
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The majoration method applied to the proof of the convergence of the formal
solution is based on the next proposition

Proposition (M.R.) Under Condition (b) for the Cauchy problem

1 k 1

t
Au — (EA +M+ (k+ l))g = G(t,x) with the initial data u(0, x) = up(x),

where A = 2D, + tD, — a(t.x), M = 2bt>D, + té(t,x) and a(t, x), é(t, x), F(t.x) and
G(t,x) are holomorphic functions in a neighbourhood of the origin of C?. there exist
unique holomorphic solutions u(t,x) and g(t,x) in the neighbourhood of the origin.
Moreover assuming a(t,x) < a(t,x), &(t,x) « &(t,x), F(t,x) < F(t,x), G(t,x) <

G(t,x) and uy(x) < @ig(x), we can verify that u(t,x) < u(t,x) and g(t,x) < §(t,x) if
u(t,x) and §(t,x) satisfy

(2tD, + 2)g(t, x) » (¢tDy +a(t, x))g(t, x) + (ZtD,\. + g(fb’lx) + %) u(t, x) + |117_| RF(1,x)

2Dii(1, x) » (1D + alt.x))it,x) + (é/l + M+ (K +1))g(1,%) + Gl %)
#(0, x) >» fp(x)

where A = 2D, + tDy + a(t,x) and M = 2|b|* D, + tf'(t, Xx).

Applying these propositions to the recurrence formulae (E.1) and (E.2) with
(L.D.u) and (1.D.v), we have the following proposition says that these holomorphic
coefficients u, x(t, x), grk (¢, x), v, k(t,x) and h, x(f,x) have a common existence
domain and suitable estimates in that domain.

Proposition (Es.) There exist positive constants U.G,V ,H K, L,R and p
independent of o.r k such that

l KKZ-I-I‘

ur,k(’wx) <« U(k — l)'(r— k + l)' Lk D1¢a+r+k+l([vx)
1 Ka+r+l
g",k(”x) < Gk'(i’ . k)' Lk ¢a+r+k+2(t~x)
1 Kt
vr.k(t*x) < V(k _ 1)|(' — k ¥ l)' Lk Dl¢a+r+k+2(z*x)
1 Kot+r'+l
Iy e (1.x) < Hk!(r—k)! I Dugranss(l X).

From this proposition, we know holomorphic coefficients u, x(z,x), g, x (2. X).
v, k(1. x) and h, x (1, x) have a common existence domain that is a neighbourhood of
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the origin and the following estimates in that domain of the base space

luar | < C(k — 1)!(r1_k+ i gf(r+k+ 1)
lgrkl < cﬁ gf(r+k+ 1)
vl = €= l)!(rl—k+ 0! gr(”k”)
A k| < Cﬁ gl‘(r-i-k-u)

where C, K, L are positive constants independent of r, k.
On the other hand in Appendix we have the estimates on any compact set K
in the universal covering space @; over w; = {(t,x) : 0 # |£] < 4,0 # |n| < 4}
(Ui S5 )N O PV APl

x+r—1 oa+r—1

(r — k)!

A"
r!

|V RN I(P)) < Cla, e )T TS

where T, T», C(a,c, K ) are positive constants and the common factor independent
of r k.

According these estimates, choosing A > 0 sufficiently small, we can prove
the convergence df the formal solution on the universal covering space @;
over w; = {(t,x) : 0 # || < 4,0 # |n| < A} which we can employ as w-K in our
theorem. We note that uniqueness of the solution is due to the Cauchy-
Kobalevskaya theorem. Thus we can prove our theorem.

Appendix

In this appendix we study the ramification, the singularities and the estimates
of the auxiliary functions Uf(t,x) and V (¢, x). We treat these auxiliary functions
in the more general form but in this paper we use only the results of the case
n=1.

To be precise, we put

P.=D? — (xt"' + br*)D> — "' D,

where b and ¢ are complex parameters and » is a natural number.
We first introduce U (¢,x) and V/(f,x) as the solutions of the following
Cauchy problems respectively:

PUL(1.x)] = (D? = (x"" + br") D2 — e"' D) UL (1.)
with the initial data U (0,x) = f,(x)
D,U;(0.x) =0,
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P VE(t,x)] = (D} = (xt"" + b")D2 — ct" ' D) VE(2, x)
with the initial data V' [(0,x) = f,(x)
DV (0.x) = f,(x)

And we introduce &(z,x) and #(t,x) as two solutions of the following Cauchy
problem for the characteristic equation of the operator P, respectively.

0> — (xt" '+ bt = —1" g with the initial data ¢(0, x) = x.

We can solve this problem explicitly:

— __1_ n+1
E(t,x)=x 2(n+1)2(]+D)t

v 1 _ n+1
n(t,x) = x —2(n e (1 - D)t

where D = /1 +4(n+ 1)*b Re(D) > 0.

To seek Uf(t,x), we put US(t. x) =ﬁf(z) where z=1-" and we

substitute the right hand side in P.[US] =0. Then we have

" n n 1 c+oa—1 ,
Z(l=2)f" + [n+1— <1—O(+§(n—+l—)<l+5) +—D_>Z:|f

n 1 c+a—1 . o
— (—a) (m (1 +B> +T>f =0 with the initial data f(0) = 1.

This is the hypergeometric equation and so we have

n 1 c+a—1 n
f(z)_F<_a’2(n+l)(l+B>+ D ’n+l'z>'

In the similar way we can seek VS (t,x).

c(rx) = &
We put V(1 x) “Tar 1)f(.)
and substitute the right hand side in P.[V¢] =0. Then we have

i} N g n+2 n+2 1 ct+a—1\ 1|,
z(1-2)f +[n+l (1 a+2(n+l)<l+D + D z|f

n+2 1 c+o—1 . o
— (—a) (m (] +5) +T)f =0 with the initial data f(0) = 1.

So we have

n+2 1 c+a—1 n+2
f(h)_F(_a’2(n+l) <1 +B> +T’n+l'h>'




Singular Cauchy problem 13

We know explicit representations of US(t,x) and V(¢ x) as follows
. & n 1 c+a—1 'n
Ui(t,x)y=——"——F|l-o0——(1+= ]| +—— . —— 2
) = e\ e U)o

1$&* n+2 1 c+a—1n+2
Vet x) = ——— —a, 1 +— _— .
2 (%) F(a+l)F( °‘2(n+1)< +D)+ D ntl )

Because US(f.x) and Vf(t.x) have hypergeometric functions as important
factors respectively, the study of the ramification and singularities and multi-
valuedness of these functions are reduced to those of hypergeometric functions.
The next lemma about the analytic continuation that is the monodromy theory of
the hypergeometric functions, plays a fundamental role in the study of the
behaviour of these functions U (¢,x) and V(t.x) around the branching surfaces.

Lemma A.l1 (see [Ki.l]). Let S be the Riemann sphere. Put D=S—
{0.1,0}. Set F=F(A,B.C:z) and F=z'""F(4A—C+1.B—C+1,2-C;z)
which constitute a fundamental system of solutions for the hyper-geometric ordinary

2
differential equation |z(1 — :)% +{C—-(4+ B+ l):}% — AB|u(z) =0. Now
the monodromy representation p of the hyper-geometric ordinary differential equation
with respect to the fundamental system {F F } is defined in the following way:

Denote by Iy (), l respectively) a loop which encircles the point 0 (1, oo
respectively) once in the positive sense. We denote by the same letter Iy (I}, I
respectively) a homotopy class containing ly (I, 1y respectively). Let n = n(D) be
the fundamental group of D. Then we can define a homomorphism p of the group n
onto the group G = GL(2,C) which is called the monodromy representation of the
hyper-geometric differential equation with respect to the fundamental system {F.F},
where G is the subgroup of GL(2.C), generated by go and g,

1 0
/)([0) =90 = 0 €—2m’C

p(ls) = g = (gog1)™"
(1 o .
plhy=g1=D"'C 0 o2(C-BA) (&)

R e~ 2miA _ o=2miC p=2mi(C=B) (p-2miA _ |
where C =

e—Zm'B -1 1 — e—Zm’(C—B)
I'(B)I(C - B) 0
. I (C)
D=
0 F(A = C+ DI =A) icrapon

r2-oao)
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- 1 | — o=2i(C~B) | — ¢~ 2miB
¢ == i(C—B) (| _ ,-2mid\ ,-2mid _ ,—2miC
€T\ e 2mCm (1 = g2mit) go2mid

Iél _ e—-2niA(1 _ e—Zni(')(] _ e—Zni(C—B—A)).
Namely if {F F } is continued analytically along Iy (I|, 1y respectively), then

F . F F F sively
7 ) 90es 10 go| g )\ i\ | 9= f | respectively ).

We apply this lemma to the study of US(¢,x) and V[ (7, x).

n 1
In the c f UStx), F is Fla:&n) =F[—o,— —
n the case of US(r.x) is F(x;&,n) F( a2(n+l)(1+D)+

Eig———l,nil;z) and so F s F(a;é,n):z'/("“)F(nil—a,$+
2(n+1) D D ‘n+l17)
In the case of VS (t,x), F is F(u&n)= F(-a,i (1 +l) +
x ' 2(n+1) D
#,%;z) and so F is F(x¢&n) = z"/(”*')F(n:_]l - a,n—% +

2 1 —1
2(nn—:_ 0 (l +B> +C+L, #:z). To explain the ramification, the multi-

valuedness and the singularities of Uf(f,x) and V[(z,x) in terms of the mono-
dromy theory of the hyper-geometric functions, we introduce the new functions

~ _ é“
Uat:X) = 705

- e n1) 1 1 n 1 c+a—1 n+2
US(t,x)= LAY O — 14— -
x(6X) I'(a+1) n+1 a’n+l+2(n+l) *5)TD "n+1’

=, & -1 -1 n+2 1\ c+a—1 n
Vet x) =M p (o I )+ ).
=0 il Cnrl 2ae) D) T D gt

Let w,={(&n);E#0.n#0,&#n,|E| <rpl <r}. Let P be any point
belonging to w, and keep P fixed. We consider any loop / starting and ter-
minating at P in the domain w,. In particular we denote /(P) the terminating
point in order to distinguish the terminating point from the starting point P. We
denote by the same letter / the homotopy class containing / too. Let n = n(w,, P)
be the fundamental group of w, with the base point P. Denote by /. € n (/; € 7,
lo € @ respectively) a loop which encircles £ = 0 (7 = 0, & = # respectively) once in
the positive sense, where by ‘“positive sense” we mean that the loop which
is transformed by the mapping z =1 ~F encircles the corresponding point in the

F and V¢(t,x):

positive sense in z-plane. We note that this mapping z =1 — " transforms E=0,

¢
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n=0,&=ntoz=00,1,0 respectively and /, /;, /. to the corresponding loops in
the lemma A.l. Using lemma A.l we have

F(o; lh(P)) B F(o; P) F(o; 11 (P)) B F(o: P)
FoshoP) ) P\ E@ry ) \Fanwey) ™ "\ Fap

Fale(P))  (F(xP)
FesloP) )~ T\ Eep) )

Generally we have (;EZjEﬁ;;) = p(I) Ifgzg)
Therefore we have (qigj()g;;;) = ¢Io( q{gﬁ;)
o \10 o

We introduce the monodromy representation p* with respect the pair
{U£, U} as a homomorphism p* of the group = onto the group G* = GL(2, C),
where G* is the sub-group of GL(2.C) generated by go, g1 and g’ = e*g.:

p (o) =go. p(h)=g1. p*(l)=9gL.

(({J’(/(P))> _ *(,)< {/;(P))
asueey ) P\ oge)
By the way we need only the behaviour of US(/(P )). For the study of

U;s (I(P)) we have to study p*(/) namely go, g1, g2, C and D. Seeing that both
go and D are diagonal matrices, they are commutative each other and so gy =
D7 'goD. On the other hand ¢; and g, are also in the form D7 'GD that is

=D'E/\D and ¢ = D'E,D. Therefore p*(/)=D"'p*(I)D holds where
p*(l) is a homomorphism 7 onto G* = GL(2.C), the subgroup of GL(2.C)
generated by go. E; and E. )#(1), the principal part of p*(/), is to be
investigated precisely. E, = E, gy! and gy is a simple diagonal matrix and so
the study of p* (/) is reduced to the study of E, and E,".

Cii C:lz) and then we have C~! 1 ( 2 _;Clz). Put
-Gy Oy

Put C = < N
Gy Cn |C|

G=C"l<1 g)C where G = E; or E7', and then

Then generally we have

0
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G__l_<éllézz—l(é]zézl (1 —K)Clzézz )
(k= 1)CnCy  kCCpn— C1Cy

o] <|é| HI=0CaCa (1=m)Caln )
|C] ~(1=K)CnCa €= (1 =Kk)C11Cn
eZni(C—B—A) ...... G = El
where x = Pmi( C—B—A A Al
A e ni(C—=B-A) ... ... G = EI . ] . :
So G can have the singularities on |C| = e72"4(] — ¢72%C)(] — ¢~ 2m(C=8-4)) =

. 2
" and in the case of V), C= nt
n+1 n+1

e2MC 2 0. Therefore we can find the singularities on 1 — e~ 27(C=8-4) —

0. In the case of Uy, C=

so that 1 —

| _ om2mi(C=B=4) _ )

. 1 5 ;
Put G = — (ql' q12> and then from the above every component Gj has
|CI\ G Gn

the factor (1 — ). Therefore the singularity on 1— e 2%(C-8-4) — 0 of G is
removal. So E; and E," are entire functions of « and c.

We have expressed U and V on the universal covering space @, of the base
space w, with U and V on the base space w,, which we are to investigate. For
this purpose to these functions we apply the connection formulae of the hyper
geometric functions which are described bellow by the help of Kummer's
transformations.

(CE)(1)  F(4,B.C:z)

_I(C)r(C—4-B)
“T(C—A)T(C-B)

F(A,BLA+B—C+1;1-z)

I'(A+B-C)(C)

e 0T

Xx F(C—A,C—B.C—A—B+1;1-2) in[l—z|=‘%‘<l

(CF)(2)  F(4,B,C;z)

_TB-ATO)  arl e pa !
_F(C—A)F(B)(l z) F(A,C B, A B+l'l—z)
F(A-BI(QC) | »
Ir'(C—-B)I'(A) -
xF(B,C—A,B—A+l,l_> in 11":‘§(<1
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(C.F.)(3) D CFA-C+1.B-C+1,2-C:z)

_ Ir(4+B-CO)r2-o) (1 - z)C-A-B
I(A-C+1)I(B-C+1)

x F(C—A,C—B.C—-B—-A4+1:1—-2)

r(C—A4-BrQ2-c)
r(1—A)r(-B)

F(A.B.A+B—C+1:1-2)

in|l—z|:‘g‘<l

(C.F.)(4) ' FA-C+1.B-C+1,2-C:z)

r(B— Ar2-0)

_ 1 -z -4 _rmi(C-1)
Fi-AfB-crn 9 ¢

1
xF(A.C—B,A—B—i—l;] z)

Ir'(4-B)IrQ-a)
TO-BIrA-c+1)

_ ) Bemilc-1)

xF(B,C—A,B—A+];IIZ) in

1
-z

[ <
n
Using these formulae we can list up the representations of Uy, US, V¢ and V{ in

\E
g

<1 and E < 1 respectively.

We put n* =m and o* = a4+ n*, n*™ =1—-n* and o** = o + n*

* —1 * —1
Fi(a*,¢,D,n% () = F(n* —a*,nt +9%,—a* +%———+ l;C),

* —1 * —1
F(a* ¢,D,n*;{) =F<n* +o*.n" +L a*+g+c—+ l;C),

D ’ D
f4e-1
ren)r a*+u_
y(a*,¢e,D,n"; () = b !
1 L] ] L) - * _ 3
I'(n* +cx*)1"(n*+a—+—c—l> Flat+1)
D
rn\r _a*+w
yo(a,e, Don": ) = D 1
2 1+ &y ) ) - * — B
,wf_aﬁrcf+1j%_l>rw+l)

We can show the following list of the representations of US, US, V¢ and V¢
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<1 and

¢

singularities and ramifications of US, US, V¢ and V¢ on the whole base space

in <1 respectively, by which we can know the behaviours,

(F.B.) (US, US, VE, VE on the whole base space)

Us(t.x) = 31 (" ¢, Do) Fy ( —D,n*;g)

+ yz(a*‘ ¢ _D7nv«)’7—n"—(oc‘+r—l)/DF2 <a*,c, D,n*;§> én’+(a'+c—l)/Déa
' n
in é‘ <1
n

=y (", c,—=D,n*)E*F, (a*,c, D,n*;%)

+ a0, Dy n* ) HE DD (a*, ¢,—D,n*; g>ﬂ""(“'+”")/bf7“

in

¢

Q‘<1

Ug(1,x) = yy (@ ¢, D,n™)e™ " =) yo ( —D,n*;f)

+ Vz(d*. c, —D, n**)eni(n‘—n“)’7—n‘—(a'+c—l)/D

><Fz(a*,c,D,n*;%)é"”’(“'”"”/oé“ in g‘ <1

=y (a*, ¢, —D,n*"*)E*F (a*,c.Dw*:%)

+ (ot e, Do) NI R, (a ¢,—D,n"; %)'7”"(“'“"’/”'7“

in

U
2 <1
é‘

Vi(t.x) =y (o« ¢, D,n*"*)m*F) (a**, ¢, —D, n**:%)

+ (@ e, =D )y NP R <oc**. ¢, D, n*; §> grrEm e /D g
' n

in

<
n
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=y (™, c. =D, n"*)tE*F (a” .c.D.n*; g)

+ }’2(06**~ c, D, n**)té—n""f'(wd»(—l)/DFZ (d“. c,—D, n. g)r]"“—(iu-!-c—l)/Dr]:l

n
-l <1
¢

in

Vit x) = pi(@ e, Don")e™ " i Fy (0‘**‘ ¢, —D.n™; §>
+ 9, (a* ¢, =D n* )™ ) gy = (k= 1)/D

x > (O‘**,c, D,n**:g)é'l“Jr(a”JrC—')/Dfa in

<
n

=y, («*, ¢, =D, n" )t&*F, (oz”,c, D.n‘*:%)

+ 9, (a** ¢, D, n )T HE DD gy (a‘*, ¢,—D,n"; g) p e/ Dy

T <1

¢

in

Thus we have seen the behaviours of US, US, V¢ and V¢ on the whole base
space. For the proof the convergence of the formal solution, we need the
estimates of these functions on the universal covering space, which are reduced to
the estimates of these functions on the base space. Besides by (F.B.) those are
reduced to the estimates of the hypergeometric functions F)(a*, ¢, £D,n*;{),
F(a*,c. £D,n*: (), Fi(«*",c. +D,n**:{) and Fy(a**,c, £D.n™*;{). Using fol-
lowing lemmata, we estimate these hypergeometric functions.

Lemma (E.H.) If A, B, C and C — B— A are positive, we have the next
estimate
_IrCO)r(C-B-A)

Lemma (M.H.) (1) if A, B, C are complex numbers such that 6 = C — B— A
is real and nonnegative, and Re A and Re B are positive, we have the next
majoration relations for an adequate positive constant ¢

F(A,B.C:{) « F(|A4|,.|B|,.|4], + |B|, +0:() in || < 1.

where |z|, = |Rez| + ¢/Imz|.
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(2) if A, B, C are complex numbers such that 6 = C — B — A is real and

nonnegative, we have the next majoration relation for positive constants T and ¢

F(A4,B,C;() « T™'F(|Al,. B, |4, + |Bl,+:() in || <1

where ff = int(max(0, —Re A, —Re B, —Re(4 + B +9))).

First applying this lemma (M.H.) to Fi(a*,¢, £D,n*;(), Fa(a*, ¢, + D,n*;{),

Fy(a**, ¢, + D,n™;{) and F(oa™,c, +D,n**;{) we have following majoration
estimates in the unit disk |{| < 1. We denote a suitable positive constant by C in
bellow;

* -1 .
Fi(a*, ¢, + D,n*; ()« CT/“—LF<|n"' — o, |n* £ % Lt =,
£
L attce—1 .
+ (n 5 1 —2n*;1) where

. * -1
B+ = 1nt<max< — Re(n* —a*), —Re(n* + L)’

D
o +c—1
—Re| -0 + ——+1 ,
(- = 5=41)))

By(at e, £D,n% () < CTﬂiF(bz* + o], |n % )
e
|n* +o*|, + |n" £ i +l; IE_H — " 1) where
B+ =int(max< Re(n™* + o), —Re(n** + Ot**+c— 1>’
Re(a*’* x +c )))
Fi(e™, ¢, £D,n™; () « CTﬁiF(W* — ™|, |n" £ % ;

a*+c—1

+ 1 —2n™; 1) where

&

) Kokt -1
B+ =int (max( — Re(n™ —a™),—Re (n"”“ + ¥ rez’l +DC ),

ot +c—1
— -t 1
Re( AR D + )))»
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*k _ 1
(e ¢, + Don:0) CT”iF(W* el
&

a4 |

D F + 1 - 2n*"; 1> where

Ia**_'_n**lg_'_ n** i

pf+ = int(max( — Re(n™™ + o), —Re(n** + %),

ot +ce—1
- A L. .
Re(a £ +1>))

Secondly we apply lemma (E.H.) to these hypergeometric functions appearing
in the right hand sides above majoration relations. then we have next estimates of

these functions in the unit disk [{] < I;

Fi(a*,¢, + D,n*:{)

“he— |
1"<|n*—oc*|5+ n* + oc_—i—_Dc___ +1 —2n*)F(l —2n*)
< CTH* 2 where
- o +c—1 . ;
r n*i—D—— +1-=2n" ) I'(|n* —a*|,+1—2n")
&

f+ = int(max< — Re(n* - oc*),-—Re(n* + %ﬂ)

L, O Fce—1
D))

Fy(a*, ¢, £ D.n*;{)

* 1
F<|n*+a‘|€+ n*i%— +1—2n*>F(l—2n*)
< CTF* pET— £ where
F(n*iT +1—2n*)1"(|n*+oc*|e+l—2n*)
€

/}i-:int(max( Re(n™ +a'"). Re(n +1 +C_l>.

Re(a** oz“+c—l )))

Fi (2™, ¢, £+ D,n"";()

F<|oc"* —n™*|, +|n

a4+ c—1
+7
- D

+1- 2n**>F(|ot** —n|, + 1 —2n)

+1- 2n**>F(l —2n*")

&

where

< CTF? — l
ot 4 —

* %k

1 n + —

&
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D
a”* +c—1
Rel o™ + ———M— + 1

F(a™, ¢, + D,n™;{)

*k _ 1
F<|a** +n*|, + |n* + % +1- 2n**>F(1 — 2n*)
<CT'* pe : where
F( n* + T‘ +1- 2n**)F(|a** +n|, 4+ 1 —2n*)

. * ok — 1
p+ = mt(max( — Re(n™ + o), —Re (n** + cx_+c—>7

D
o4+ c—1
—Reloa™ + ——— +1 )

We remark that in the above estimate of F(a* ¢, +D.n*;{),
F(a* e, £D,n*;0), Fi(a*™ ¢, +D,n**;{) F(a™,c, +D,n™";{) in the unit disk
|¢] <1 of the base space and p,(a*,¢,D,n*;{), yy(a*,¢c,D,n*;{) etc., we find I

. .. I'(A))I'(A4,) .
fact th lar f ————=suchas 4|+ 4, =B, +B,. U th
actors in the similar form (BT (Ba) such as 4, + 4, 1+ B, ~ sing these
estimates we obtain the following estimates of U kH'(rx), U (1),

Vekil(r,x) and VK (1, x) on the base space w; = {(¢,x) : 0 # |¢] < 4,0 # || <

A}
There exists positive constants C(a,¢) and Ty, T, independent of r, k such that

r—k

N - A
U —k U -k —k —k+1 C T, Tk :
I ;+r~+ll(t7 x)l’ | atc+r—+lI (t’ X)|, | Va:—%rj—l1 (t’ x)l’ | Vac+r——+| (t*x)| < (O(, C) lr 2 7l n w;.

Let K be any compact set in the universal covering space @, over w,. Let /

be any loop in @,. If/encircles ¢ =0 or # =0 f times in the positive or negative

. 7 0
sense, we must estimate gf. q :D"C“'(O Q2R(CB )

)C‘f), so we must
estimate ¢27A(C-B-4) where

1 -
C—B—A:oc*+r—I—B(oz*+c+(r—k)—l) for US4 and U7k

atr—1 atr—1>

o4r—1 oatr—1

that s exp((Re(%))ﬁ(r—k)). Because exp((Re(gg—i))/)’(r—k)) <

C(K)(r — k)! where C is a constant independent of r — k, we have the following

estimates of USK(¢,x), UK Nt x), VK (t.x) and VK (1, x) on any

compact set K in the universal covering space @; over w;.

1 -
C—B-A=a"4+r—-1 —B(a**+c+(r—k)—l) for V<K and 7 k]
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Proposition (E.U.) There exist positive constants Ty, Ty, C(a,c¢,K) inde-
pendent of r.k such that

Ui PO WP VSR P,

at+r— oa+r—

oa+r—1

- - , r—k)! r
[V I(P)] < Cla, e, K) T T?f((_;!—)l

on any compact set K in the universal covering space w; over w;.

Example. We consider the next simple Cauchy problem

(Pe—dt" Mu(t.x) =0
with the initial data u(0,x) = f,(x) and 1,(0,x)=0

where d is a constant.
This Cauchy problem has the explicit representation of the solution;

u(t,x) = ;%;(—l)k(;) ULk x).

To prove this fact it is enough to use the formula P.(USf) = —kt" U5
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