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On the number of p-subgroups of a finite group
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Introduction

Let G be a finite group. For each positive integer n, put

G(n) = {x ∈ G |xn = 1}
and m(G; n) = |G(n)|/(n, |G|). Frobenius proved:

Theorem 1 (Frobenius [Fr1, Section 2.II]). m(G; n) is always an inte-
ger.

For various generalizations of this result, see Frobenius [Fr2], Hall [Ha2]
and Yoshida [Yo]. For recent results in this direction, see Asai-Takegahara
[AT].

Let p be a prime. For each integer e, let Se(G) be the set of subgroups of
G of order pe and put se(G) = |Se(G)|. Let P be a Sylow p-subgroup of G of
order pn. Based on Theorem l, Frobenius proved:

Theorem 2 (Frobenius [Fr1, Section 4.I]). se(G) ≡ 1 mod p for 0 ≤
e ≤ n.

Related to the above theorems, the following results are known.

Theorem 3 (Kulakoff [Ku, Satz 1], Hall [Ha2, Theorem 4.6]). If p is
odd and P is not cyclic, then se(G) ≡ 1 + p mod p2 for 1 ≤ e ≤ n − 1.

Theorem 4 (Mi11er [Mi]). If p is odd and P is not cyclic, the number
of cyclic subgroups of G of order pe is divisible by p for 2 ≤ e ≤ n.

Theorem 5 (Kulakoff [Ku, Satz 2], Hall [Ha2, Theorem 1 (iii)]). If p is
odd and P is not cyclic, then m(G; pe) is a multiple of p for 1 ≤ e ≤ n − 1.

In the present paper, we improve Theorems 3 through 5 by using Theorems
1 and 2. We formulate and prove the counterparts of Theorems 3 through 5 for
the case of p = 2. We do not exclude the case of odd primes, and Theorems 3
through 5 will be proved simultaneously.

To state our results, it is convenient to introduce the following definition.
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162 Masafumi Murai

Definition. A p-group P is called exceptional, if P is cyclic (p �= 2); if P
is cyclic, quaternion, dihedral, or semi-dihedral (quasidihedral) (p = 2). (Here
“dihedral group” means a non-abelian one (of order ≥ 8). Also, “quaternion
group” means generalized quaternion of order ≥ 8.)

For a family X of p-groups, a group G and an integer e, let

Se(G,X ) = {H |H ≤ G, |H| = pe, H ∈ X},
and put se(G,X ) = |Se(G,X )|.

Let C, Q , D and SD be the set of cyclic p-groups, the set of quaternion
2-groups, the set of dihedral 2-groups and the set of semi-dihedral 2-groups,
respectively. The statements (i) and (ii) of the following theorem extend The-
orems 4 and 5, and determine all Gegenbeispiele mentioned on p. 471 of Hall
[Ha2].

Theorem A. Let G be a group with a Sylow p-subgroup P of order pn.
(i) For 1 ≤ e ≤ n − 1, m(G; pe) is prime to p if and only if P is cyclic or

P is non-cyclic exceptional and e ≤ n − 2. (p ≥ 2)
(ii) For 2 ≤ e ≤ n, se(G, C) is prime to p if and only if P is cyclic or P is

non-cyclic exceptional and e ≤ n − 1. (p ≥ 2)
(iii) For 4 ≤ e ≤ n, se(G,SD) is odd if and only if P is semi-dihedral and

e = n. (p = 2)
(iv) For 3 ≤ e ≤ n, se(G,Q) �≡ se(G,D) mod 2 if and only if P is

quaternion or dihedral, and e = n. (p = 2)

As a consequence we obtain the following.

Corollary B. Let G be a group with a Sylow p-subgroup P of order pn.
Let per be a divisor of |G|, where 1 ≤ e ≤ n − 1 and r is prime to p. Then if
m(G; per) is prime to p, P is exceptional.

Corollary B plays an important role in a reduction to the case of simple
groups of the Frobenius conjecture stating that if m(G; n) = 1 for a divisor
n of |G|, then G(n) is a (normal) subgroup of G, cf. [Mu]. The Frobenius
conjecture has been shown to be true by Iiyori-Yamaki [IY] on the basis of the
classification theorem of finite simple groups. In their proof Corollary B also is
useful, cf. Lemma 1 of [IY].

By Theorem 2, whenever pe divides |G|, (se(G)−1)/p is an integer. On the
other hand, m(G; pe) also is an integer by Theorem 1. For these two integers,
we show that there holds the following congruence.

Theorem C. Let G be a group with a Sylow p-subgroup P of order pn

(n ≥ 2). For any e with 1 ≤ e ≤ n − 1, we have

se(G) − 1
p

+ m(G; pe) ≡ 1 mod p.

Theorems A and C yield the following.
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Theorem D. Let G be a group with a Sylow p-subgroup P of order pn

(n ≥ 2).
(i) If P is non-exceptional,

se(G) ≡ 1 + p mod p2, for any e with 1 ≤ e ≤ n − 1.

(ii) If P is exceptional,

se(G) ≡ 1 mod p2, for any e with 1 ≤ e ≤ n − 2,

and

sn−1(G) ≡ 1 or 1 + p mod p2 according as P is cyclic or not.

Theorem D strengthens Theorem 2 and extends Theorem 3. In the proofs
of Theorems A and C, Hall’s enumeration principle [Ha1, Theorem 1.4] ([Hu,
III 8.6]) plays an important role.

The author expresses his thanks to the referee for valuable suggestions.

1. Proofs of Theorem A and Corollary B

The following is well known.

Lemma 1.1. Let G be a group with a Sylow p-subgroup P . Let X be a
set of p-groups and e an integer.

(i) se(G,X ) ≡ se(P,X ) mod p.
(ii) se(P,X ) ≡ #{H |H ∈ Se(P,X ), H � P} mod p.
In particular, if se(P,X ) is prime to p, then there exists a normal subgroup

H of P with H ∈ X and |H| = pe.

Proof. Let a be the right hand side of (ii). Considering the conjuga-
tion action of P on Se(G,X ), we get se(G,X ) ≡ a mod p. Similarly we get
se(P,X ) ≡ a mod p. So (i) and (ii) follow.

The following is Lemma 1 of [Mu]. For the convenience of the reader, we
recall it here.

Proposition 1.2. Let G be a group with a Sylow p-subgroup P of order
pn. Let per be a divisor of |G|, where 0 ≤ e ≤ n− 1 and r is prime to p. Then

(i) m(G; per) ≡ m(P ; pe)m(G; r) mod p.
(ii) m(G; pe) ≡ m(P ; pe) ≡ se+1(G, C) ≡ se+1(P, C) mod p.

Proof. If G has no element of order pe+1, then G(per) = G(pnr). So we
have

m(G; per) = |G(pnr)|/per = m(G; pnr)pn−e ≡ 0 mod p.

Similarly m(G; pe) ≡ 0 mod p and m(P ; pe) ≡ 0 mod p. So the result
holds in this case. Assume that G has an element of order pe+1. After Frobenius
[Fr1], we count the number of elements in G(pe+1r) − G(per). For an element
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x ∈ G, x belongs to G(pe+1r) − G(per) if and only if the p-part of x generates
a cyclic subgroup, C, of order pe+1 and p′-part of x belongs to CG(C)(r). This
shows

|G(pe+1r)| − |G(per)| =
∑

C

(pe+1 − pe)|CG(C)(r)|,

where C runs through Se+1(G, C). Then we get

m(G; per)r ≡
∑

C

|CG(C)(r)| mod p.(1)

For each C ∈ Se+1(G, C), let C act on G(r) by conjugation. Then we have

|G(r)| ≡ |CG(C)(r)| mod p.(2)

From (1) and (2), we get

m(G; per)r ≡ |G(r)|se+1(G, C) mod p

≡ m(G; r)se+1(G, C)r mod p.

Since r is prime to p, we get

m(G; per) ≡ m(G; r)se+1(G, C) mod p.(3)

Letting r = 1, we get m(G; pe) ≡ se+1(G, C) mod p. Letting G = P we get
m(P ; pe) ≡ se+1(P, C) mod p. Since, by Lemma 1.1, se+1(G, C) ≡ se+1(P, C)
mod p, (ii) follows. (i) follows from (ii) and (3). This completes the proof.

Remark. The congruence m(G; pe) ≡ se+1(G, C) mod p is implicit in
Kulakoff [Ku] (for the case where G is a p-group). It shows that Theorems 4
and 5 are equivalent.

Lemma 1.3 (Hall’s enumeration principle [Ha1, Theorem 1.4]). Let P
be a p-group. Let H be the set of subgroups H of P with H ≥ Φ(P ). For H ∈ H
put pdH = |P/H|. Let S be a set of proper subgroups of P . For H ∈ H, let
n(H) be the number of members of S which are contained in H. Then we have

∑

H∈H
(−1)dH p

dH (dH−1)
2 n(H) = 0.

We prepare several lemmas, mainly on 2-groups. Let

M(pn) = 〈a, b | bp = apn−1
= 1, b−1ab = a1+pn−2〉,

where n ≥ 3 if p is odd and n ≥ 4 if p = 2.

Lemma 1.4. A p-group P of order pn has a cyclic maximal subgroup
if and only if P is isomorphic to one of the following groups :
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An exceptional group of order pn, an abelian group of type (pn−1, p), or
M(pn).

Further, for these groups and 2 ≤ e ≤ n, the following holds.

se(P, C) = 1 if P is cyclic and 2 ≤ e ≤ n,
= p if P is abelian of type (pn−1, p) or isomorphic to M(pn)

and 2 ≤ e ≤ n − 1,
= 1 + 2n−2 if P is quaternion and e = 2,
= 1 if P is quaternion and 3 ≤ e ≤ n − 1,
= 1 if P is dihedral and 2 ≤ e ≤ n − 1,
= 1 + 2n−3 if P is semi-dihedral and e = 2,
= 1 if P is semi-dihedral and 3 ≤ e ≤ n − 1,
= 0 if P is not cyclic and e = n.

Proof. The first assertion is well known, cf. [Su, Theorem 4.4.l] for exam-
ple. Using the formula

se(P, C) =
|P (pe)| − |P (pe−1)|

pe − pe−1
,

we can obtain se(P, C) by direct computation.

We obtain the following

Corollary 1.5. Assume that a p-group P has a cyclic maximal sub-
group. Put |P | = pn.

(i) Let 2 ≤ e ≤ n. Then se(P, C) is prime to p if and only if one of the
following holds: P is cyclic and 2 ≤ e ≤ n (p ≥ 2); P is quaternion, dihedral,
or semi-dihedral, and 2 ≤ e ≤ n − 1 (p = 2).

(ii) Let p = 2 and n ≥ 4. Then P has at least two cyclic maximal sub-
groups if and only if P is either abelian of type (2n−1, 2) or isomorphic to
M(2n), each of which has exactly two such subgroups.

Lemma 1.6. Let P be a 2-group of order 2n, n ≤ 4. If se(P, C) is odd
for some e with 2 ≤ e ≤ n, then P is exceptional.

Proof. For n ≤ 3, the only non-trivial case to be checked is the case where
P is abelian of type (4, 2) and e = 2. In this case, by Lemma 1.4, s2(P, C) = 2,
which contradicts our assumption. So we may assume n = 4. If P has a cyclic
subgroup of order 8, then the result follows by Corollary 1.5. So we assume P
has no element of order 8 and obtain a contradiction. Thus e = 2. Let I be
the set of involutions in P . By Proposition 1.2, m(P ; 2) is odd. Thus

|I| ≡ 1 mod 4.(1)
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Further, by Lemma 1.1, P has a normal cyclic subgroup C, of order 4. Now
P/CP (C) is identified with a subgroup of Aut(C), a group of order 2, so either
(a) P = CP (C) or (b) |CP (C)| = 8.

Case (a). If P/C is cyclic, then P is abelian of type (4, 4). Then |I| = 3,
which contradicts (1). Thus P/C is elementary abelian. Let x ∈ P − C. We
show |xC ∩ I| = 2. Let C = 〈c〉. Since x2 ∈ C and P has no element of order 8,
x2 = 1 or c2. In the latter case (xc−1)2 = 1. So we may assume x2 = 1. Then
xC ∩ I = {x, xc2}. This implies |I| = 1 + 2 × 3 = 7, which contradicts (1).

Case (b). Clearly CP (C) is a non-cyclic abelian group, so CP (C) is of type
(4, 2). Hence CP (C) has exactly 3 involutions. Let

P = x1C ∪ x2C ∪ x3C ∪ x4C

be the coset decomposition, where x1, x2 ∈ CP (C). We claim that for i > 2,
|xiC ∩ I| ≡ 0 mod 4. We may assume xiC ∩ I �= ∅. So we may assume xi ∈ I.
Then 〈xi, C〉 is dihedral of order 8, so xiC ⊆ I. Thus the claim follows. Hence
|I| ≡ 3 mod 4, which contradicts (1). This completes the proof.

The essential part of the proof of Theorem A is contained in the following.

Lemma 1.7. Let P be a 2-group of order 2n (n ≥ 5) with an exceptional
maximal subgroup. Then either of the following holds.

(i) P has a cyclic maximal subgroup.
(ii) P has exactly two normal cyclic subgroups of order 2n−2, and sn−1(P,

SD) = 0, 2, or 4.

Proof. We assume that (i) is false and prove that (ii) is true. Let M1 be an
exceptional maximal subgroup of P . Since n − 1 ≥ 4, M1 has a unique cyclic
maximal subgroup, say C. So C is a normal subgroup of P . Put i = 1 + 2n−3.
Let

φ : P → Aut(C) = (Z/2n−2Z)×

be the map defined by the conjugation action of P on C, where Z is the integers
and (Z/2n−2Z)× is the unit group of Z/2n−2Z.

We claim that P/C is elementary abelian. Assume that P/C is cyclic and
put P = 〈C, a〉 for some a ∈ P . Put α = φ(a). Then, since M1 = 〈C, a2〉 is
non-cyclic exceptional, α2 = φ(a2) = −1 or −i, where bar denotes the residue
class modulo 2n−2. Since α has order 4, we get α2 = i, a contradiction. Thus
the claim follows.

Let {M1, M2, M3} be the set of maximal subgroups of P which contain
C (with M1 as above). Let M1 = 〈C, a〉, M2 = 〈C, b〉 and M3 = 〈C, c〉. Put
H = {±1,±i} and K = {1, i}. We see Im φ ⊆ H. Here H = K ∪ K(−1)
is the coset decomposition of H with respect to K. Since φ(a) ∈ K(−1) and
φ(b)φ(c) = φ(a), we may assume φ(b) ∈ K(−1) and φ(c) ∈ K. Then M2 is
exceptional and M3 is non-exceptional. By Corollary 1.5, M3 has exactly two
cyclic maximal subgroups, one of which is C. Since C is normal in P , if D is



�

�

�

�

�

�

�

�

On the number of p-subgroups of a finite group 167

the other cyclic maximal subgroup, then D also is normal in P . Let E be a
normal cyclic subgroup of P of order 2n−2 with E �= C. Then, since P/C is
not cyclic, CE is a maximal subgroup of P . Since C is a unique cyclic maximal
subgroup of M1, CE �= M1. Likewise, CE �= M2. So CE = M3, and E = D.
Thus C and D are the only normal cyclic subgroups of P of order 2n−2 .

To compute sn−1(P,SD), we distinguish two cases:

(a) CD is abelian of type (2n−2, 2), (b)CD 
 M(2n−1).

(Note that CD = M3.) Since φ(b)φ(c) = φ(a), we get the following:
(∗) In Case (a), both of M1 and M2 are semi-dihedral or neither of them

are so, and in Case (b), exactly one of M1 and M2 is semi-dihedral.
Let C = 〈x〉. We claim that P/〈x2〉 is elementary abelian. Since M1 is not

cyclic, we have that a2 ∈ 〈x2〉. We may assume c2 = 1. Write a−1c−1ac = xk

for an integer k. Then a−1c−1a = xkc ∈ M3 has order 2, which implies that
k is even. Since P/〈x2〉 is generated by the images of a, c and x, the claim
follows.

Since 〈x2〉 = C ∩ D, P/D is elementary abelian of order 4. Let {CD,
M4, M5} be the set of maximal subgroups of P which contain D. Here M4

is exceptional. Indeed, if this is not the case, then, by Corollary 1.5, M4 has
exactly two cyclic maximal subgroups, one of which is D. Since D is normal
in P , the other cyclic maximal subgroup is also normal in P , a contradiction.
So, in the above we can replace (M1, C) with (M4, D), and we see that (∗) is
true with {M4, M5} in place of {M1, M2}. Since D �≤ M1 and D �≤ M2, we
get {M1, M2} ∩ {M4, M5} = ∅. Since any semi-dihedral maximal subgroup of
P contains a normal cyclic subgroup of P of order 2n−2, namely C or D, it
follows that sn−1(P,SD) equals 0, 2, or 4 in Case (a) and 2 in Case (b). Thus
(ii) holds and the proof is complete.

Now we can prove Theorem A.

Proof of Theorem A. By Proposition 1.2, m(G; pe) ≡ se+1(G, C) mod p,
so (i) and (ii) are equivalent to each other, and it suffices to prove (ii) through
(iv).

Since, for any set X of p-groups, se(G,X ) ≡ se(P,X ) mod p, we may
assume G = P .

(ii) “if” part: This follows from Corollary 1.5.
“only if” part: It suffices to show the following:

(1) If se(P, C) is prime to p for some e with 2 ≤ e ≤ n, then P is exceptional.

Assume (1) is false and choose a counter-example (P, e) so that n is as
small as possible and then e as large as possible.

If P has a cyclic maximal subgroup, then the conclusion of (1) is true by
Corollary 1.5. So P has no cyclic maximal subgroup. Hence e ≤ n − 2.

Let M be the set of maximal subgroups of P . By Lemma 1.3 (with S =
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Se(P, C)), we have

0 �≡ se(P, C) ≡
∑

M∈M
se(M, C) mod p.(2)

Thus there exists a maximal subgroup, say M1, of P such that se(M1, C) �≡
0 mod p. By our choice of n, M1 is exceptional. Since M1 is not cyclic, p = 2.

We claim e = n − 2. Assume e ≤ n − 3. By Lemma 1.3, we have

se+1(P, C) ≡
∑

M∈M
se+1(M, C) mod 2.(3)

If se+1(P, C) is odd, then P is exceptional by our choice of e. Thus
se+1(P, C) is even. Now we show se+1(M, C) ≡ se(M, C) mod 2 for all M ∈ M.
It suffices to show se+1(M, C) is odd if and only if se(M, C) is odd. Assume
se(M, C) is odd. Then M is exceptional. So, since e + 1 ≤ n− 2, se+1(M, C) is
odd by Lemma 1.4. The converse is proved similarly. The above yields that the
right hand sides of (2) and (3) are congruent modulo 2. This is a contradiction,
since we already see se+1(P, C) is even. So the claim is proved.

By Lemma 1.6, (1) is true when n ≤ 4. So n ≥ 5. Since sn−2(P, C) is odd,
if a is the number of normal cyclic subgroups of P of order 2n−2, a is also odd
by Lemma 1.1. But a = 2 by Lemma 1.7, a contradiction. This completes the
proof of (ii).

(iii) “if” part: This is trivial, since G = P .
“only if” part: We must prove the following:

(4) If se(P,SD) is odd for some e with 4 ≤ e ≤ n, then e = n and P is
semi-dihedral.

Let P be a minimal counter-example. If P has a cyclic maximal subgroup,
the structure of P is determined by Lemma 1.4, and it is easy to see that (4) is
true for P . Thus P has no cyclic maximal subgroup. Clearly e ≤ n−1. Let M
be the set of all maximal subgroups of P . By Lemma 1.3 (with S = Se(P,SD)),
we have

se(P,SD) ≡
∑

M∈M
se(M,SD) mod 2.

By the minimality of P , for any M ∈ M, se(M,SD) is odd if and only if M is
semi-dihedral and e = n − 1. Thus the assumption yields that e = n − 1 ≥ 4
and that sn−1(P,SD) is odd. In particular, P has a semi-dihedral maximal
subgroup. So we can apply Lemma 1.7 to get a contradiction. This completes
the proof of (iii).

(iv) “if” part: This is trivial, since G = P .
“only if” part: We must prove the following:

If se(P,Q) �≡ se(P,D) mod 2 for some e with 3 ≤ e ≤ n, then P is
quaternion or dihedral, and e = n.
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Put
I = {(Q, R) |Q ≤ R, Q ∈ Se−1(P, C), R ∈ Se(P )}.

(Note that Se−1(P, C) is not empty, since se(P,Q) �≡ se(P,D) mod 2.) We
count |I| in two ways. First, for a given R ∈ Se(P ), the number of cyclic
maximal subgroups of R is odd if and only if R is exceptional by Lemma 1.4.
Next, for a given Q ∈ Se−1(P, C), the number of subgroups of P containing Q
as a maximal subgroup equals s1(NP (Q)/Q) and hence it is odd by Theorem
2. Thus

se(P, E) ≡ se−1(P, C) mod 2,(5)

where E is the set of exceptional 2-groups. On the other hand,

se(P, E) = se(P, C) + se(P,Q) + se(P,D) + se(P,SD).(6)

If P is non-exceptional, se(P, C), se−1(P, C) and se(P,SD) are all even by (ii)
and (iii). So (5) and (6) yield that se(P,Q) ≡ se(P,D) mod 2, a contradiction.
Hence P is exceptional.

Assume that P is semi-dihedral. If e < n, se−1(P, C) and se(P, C) are odd
by (ii) and se(P,SD) = 0, so we get a contradiction in the same way as above.
If e = n, se(P,Q) = se(P,D) = 0, a contradiction.

If P is cyclic, se(P,Q) = se(P,D) = 0, a contradiction.
If P is quaternion, se(P,D) = 0. However, if e < n, then se(P,Q) is even

by Lemma 1.4 and Theorem 2, a contradiction. Hence e = n.
If P is dihedral, se(P,Q) = 0. However, if e < n, then se(P,D) is even by

Lemma 1.4 and Theorem 2, a contradiction. Hence e = n.
Thus the proof is complete.

Now we prove Corollary B.

Proof of Corollary B. By Proposition 1.2, m(G; per) ≡ m(P ; pe)m(G; r)
mod p. So m(P ; pe) is prime to p. Thus the result follows from Theorem A.

Remark. Theorem 6.2 (Thompson) of Lam [La] (see also [Is, Theorem
4.9 (Alperin-Feit-Thompson)]) says that if the number of solutions of the equa-
tion x2 = 1 in a 2-group P is not divisible by 4, then P is exceptional. This
theorem is a special case of Corollary B, since the assumption is equivalent to
the fact that m(G; 2) is odd. We note that the proof in [La] (or [Is]) needs
character theory (especially the Frobenius-Schur theorem), while our proof is
purely group-theoretical.

Some well-known elementary facts on p-groups involving exceptional p-
groups follow immediately from Theorem A.

Corollary 1.8. Let P be a p-group.
(i) ([Hu, III 8.2], [Su, 4.4.4]) If P has a unique subgroup of order p, then

P is cyclic or p = 2 and P is quaternion.
(ii) ([Go, Theorem 5.4.10 (i)], [Hu, III 7.6], [Su, 4.4.3]) If every normal

abelian subgroup of P is cyclic, then P is cyclic or p = 2 and P is quaternion,
dihedral of order ≥ 16 or semi-dihedral.
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Proof . We may assume |P | ≥ p2.
(i) By assumption m(P ; p) = 1. Thus P is exceptional by Theorem A, and

the result follows.
(ii) Let a be the number of normal subgroups of P of order p2. By Lemma

1.1, a ≡ s2(P ) mod p. By assumption and Lemma 1.1, a ≡ s2(P, C) mod p.
Thus s2(P, C) ≡ s2(P ) ≡ 1 mod p by Theorem 2. So P is exceptional by
Theorem A, and the result follows.

2. Proofs of Theorems C and D

First we prove Theorem D.

Proof of Theorem D (under Theorem C). If P is cyclic, the result follows
from Theorem C and Proposition 1.2. If P is not cyclic, the result follows from
Theorems A and C.

Remark. Hall [Ha2, Lemma 4.61] proved that if G has a cyclic Sylow p-
subgroup of order pn, then se(G) ≡ 1 mod pn−e+1 for 1 ≤ e ≤ n. When G has
a non-cyclic exceptional Sylow 2-subgroup, we can obtain similar congruences
which are better than Theorem D (ii). Indeed, se(G) ≡ se(G, C) ≡ 1 mod 2n−e

for 3 ≤ e ≤ n − 1 for example.

We begin with a special case of Theorem C.

Lemma 2.1. Let P be a p-group of order pn (n ≥ 2). For any e with
1 ≤ e ≤ n − 1, we have

se(P ) − 1
p

+ m(P ; pe) ≡ 1 mod p.

Proof. The congruence is rewritten as

se(P ) + m(P ; pe)p ≡ 1 + p mod p2.(1)

We argue by induction on n. If P is cyclic, then (1) is true. So we assume P is
not cyclic. If n = 2, then P is elementary abelian of order p2, so s1(P ) = p + 1
and m(P ; p) = p. Thus (1) is true in this case. Assume n ≥ 3. Since P
is not cyclic, a standard argument yields sn−1(P ) ≡ 1 + p mod p2. Since
m(P ; pn−1) = p, (1) is true if e = n − 1. Assume e ≤ n − 2. Since P is not
cyclic, |P/Φ(P )| ≥ p2. Let M be the set of maximal subgroups of P . Let M′

be the set of subgroups Q of P such that Φ(P ) ≤ Q and that |P/Q| = p2.
Then, by Lemma 1.3 (with S = Se(P ))

se(P ) ≡
∑

M∈M
se(M) − p

∑

Q∈M′
se(Q) mod p2.

Since, by Theorem 2, se(Q) ≡ 1 mod p for Q ∈ M′ and |M′| ≡ 1 mod p, we
get

se(P ) ≡
∑

M∈M
se(M) − p mod p2.



�

�

�

�

�

�

�

�

On the number of p-subgroups of a finite group 171

By Lemma 1.3
se+1(P, C) ≡

∑

M∈M
se+1(M, C) mod p.

So by Proposition 1.2,

m(P ; pe) ≡
∑

M∈M
m(M ; pe) mod p.

Thus

se(P ) + m(P ; pe)p ≡
∑

M∈M
{se(M) + m(M ; pe)p} − p mod p2

≡ (1 + p)|M| − p mod p2(by induction)
≡ (1 + p)2 − p mod p2(since |M| ≡ 1 + p mod p2)
≡ 1 + p mod p2.

Thus the lemma is proved.

We need the following

Lemma 2.2. Let G be a group with a Sylow p-subgroup P of order pn

(n ≥ 2).
(i) If P is non-exceptional, s1(G) ≡ 1 + p mod p2.
(ii) If P is exceptional, s1(G) ≡ 1 mod p2.

Proof. We have

s1(G)(p − 1) + 1 = |G(p)| = m(G; p)p.

Thus the result follows from Theorem A. (Note that, by Proposition 1.2,
m(G; p) ≡ 1 mod p if P is cyclic.)

In the following we write Ce(G) instead of Se(G, C) and put ce(G) =
|Ce(G)|.

Proof of Theorem C. By Proposition 1.2 and Lemma 2.1, it suffices to show
the following:

se(G) ≡ se(P ) mod p2 for any e with 1 ≤ e ≤ n − 1.(1)

By Lemma 2.2,

s1(G) ≡ s1(P ) mod p2.(2)

So (1) is true when n = 2. Assume n ≥ 3. We shall show

se+1(G) − se+1(P ) ≡ se(G) − se(P ) mod p2 for 1 ≤ e ≤ n − 2.(3)

Then (1) follows from (2) and (3).
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Let 1 ≤ e ≤ n − 2. Let Xe(G) be the set of all subgroups Q of G of order
pe such that NG(Q)/Q has an exceptional Sylow p-subgroup. Let Ye(G) be
the set of all subgroups Q of G of order pe such that NG(Q)/Q has a Sylow
p-subgroup of order p. So Ye(G) ⊆ Xe(G) ⊆ Se(G). Put xe(G) = |Xe(G)| and
ye(G) = |Ye(G)|. Let

I = {(Q, R) |Q ≤ R, Q ∈ Se(G), R ∈ Se+1(G)}.
We count |I| in two ways. For a given R ∈ Se+1(G), the number of Q ∈ Se(G)
with Q ≤ R equals se(R), which equals 1 if R is cyclic. On the other hand,
for a given Q ∈ Se(G), the set of R ∈ Se+1(G) with Q ≤ R is identified with
S1(NG(Q)/Q). Thus we get

ce+1(G) +
∑

R

se(R) =
∑

Q

s1(NG(Q)/Q),(4)

where R and Q run over Se+1(G)−Ce+1(G) and Se(G), respectively. We have
se(R) ≡ 1 + p mod p2 for R ∈ Se+1(G) − Ce+1(G). On the other hand, by
Lemma 2.2,

s1(NG(Q)/Q) ≡ 1 + p mod p2, if Q ∈ Se(G) − Xe(G),
≡ 1 mod p2, if Q ∈ Xe(G) − Ye(G).

Let {Qi} be a set of representatives of G-conjugacy classes in Ye(G). Then
∑

Q∈Ye(G)

s1(NG(Q)/Q) =
∑

i

s1(NG(Qi)/Qi)|G : NG(Qi)|

≡
∑

i

|G : NG(Qi)| mod p2

≡ ye(G) mod p2.

Here we have used the fact that s1(NG(Qi)/Qi) ≡ 1 mod p(Sylow’s theorem)
and the fact that |G : NG(Qi)| ≡ 0 mod p since e ≤ n − 2. Thus (4) yields

ce+1(G) + (1 + p){se+1(G) − ce+1(G)}
≡ (1 + p){se(G) − xe(G)} + {xe(G) − ye(G)} + ye(G) mod p2.

Hence

(1 + p)se+1(G) − ce+1(G)p ≡ (1 + p)se(G) − xe(G)p mod p2.(5)

Applying (5) to the case where G = P , we get

(1 + p)se+1(P ) − ce+1(P )p ≡ (1 + p)se(P ) − xe(P )p mod p2,(6)

where xe(P ) is defined in a manner similar to xe(G). Now ce+1(G) ≡ ce+1(P )
mod p by Proposition 1.2. Further, xe(G) ≡ xe(P ) mod p. Indeed, consider-
ing the conjugation action of P on Xe(G), we get

xe(G) ≡ #{Q |Q � P, |Q| = pe, P/Q is exceptional } mod p.(7)
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We can obtain a similar formula for xe(P ) in a similar way. Thus xe(G) ≡ xe(P )
mod p. So, by (5) and (6), we get

se+1(G) − se+1(P ) ≡ se(G) − se(P ) mod p2.

Thus (3) is proved and the proof is complete.

Remark. Theorem C shows that Theorems 3 and 5 are equivalent.

We obtain another congruence for m(G; pe).

Corollary 2.3. Let G be a group with a Sylow p-subgroup P of order
pn. For any e with 1 ≤ e ≤ n − 3, we have

m(G; pe) ≡ #{Q |Q � P, |Q| = pe, P/Q is exceptional } mod p.

Proof. By Proposition 1.2,

m(G; pe) ≡ m(P ; pe) ≡ ce+1(P ) mod p.

By (6) in the proof of Theorem C, we have

(1 + p)se+1(P ) − ce+1(P )p ≡ (1 + p)se(P ) − xe(P )p mod p2.

By Theorem D, se+1(P ) ≡ se(P ) mod p2. Thus it follows that m(G; pe) ≡
xe(P ) mod p. Hence the assertion follows from (7) in the proof of Theorem C
(with G = P ). This completes the proof.

We give a new proof to a well-known theorem of Taussky. See [Hu, III
11.9], [Go, Theorem 5.4.5] for other proofs.

Proposition 2.4 (Taussky [Ta]). Let P be a non-abelian 2-group with
|P : P ′| = 4, where P ′ is the commutator subgroup of P . Then P is quaternion,
dihedral, or semi-dihedral.

Proof. Put |P | = 2n. The result is clear when n = 3. Assume n ≥ 4. Let
X be the set of normal subgroups of P of order 2n−3. For any Q ∈ X, P/Q
is either quaternion or dihedral of order 8, since |P : P ′| = 4. Thus P/Q is
exceptional. Hence m(G; 2n−3) ≡ |X| mod 2 by Corollary 2.3. On the other
hand, |X| is odd by Theorem 2 and Lemma 1.1. Hence m(G; 2n−3) is odd, and
P is exceptional by Theorem A. Since P is not cyclic, the result follows.

Meiji-machi 2-27
Izumi Toki-shi
Gifu 509-5146, Japan
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