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Lipschitz stability in the lateral Cauchy
problem for elasticity system

By

Jin Cheng, Victor Isakov, Masahiro Yamamoto and Qi Zhou

Abstract

We consider the isotropic elasticity system:

ρ∂2
t u − µ(∆u + ∇(∇T u)) −∇(λ∇T u)

−
3X

j=1

∇µ · (∇uj + ∂ju)ej = 0 in Ω × (0, T )

for the displacement vector u = (u1, u2, u3) depending on x ∈ Ω and
t ∈ (0, T ) where Ω is a bounded domain in R

3 with the C2-boundary,
and we assume the density ρ ∈ C2(Ω× [0, T ]) and the Lamé parameters
µ, λ ∈ C3(Ω × [0, T ]). We will give Lipschitz stability estimates for
solutions u to the above elasticity system with the lateral boundary
data

u = g on ∂Ω × (0, T ), ∂νu = h on Γ × (0, T )

where Γ is some part of ∂Ω. Our proof is based on (1) a Carleman
estimate with boundary data, (2) cut-off technique, and (3) principal
diagonalization of the Lamé system.

1. Introduction and basic results

In this paper we are interested in Lipschitz stability estimates in the lateral
Cauchy problem for the classical elasticity system

ρ∂2
t u − µ(∆u + ∇(∇Tu)) −∇(λ∇Tu)

−
3∑
j=1

∇µ · (∇uj + ∂ju)ej = 0 in Ω × (0, T )
(1.1)

for the displacement vector u = (u1, u2, u3) depending on x = (x1, x2, x3) ∈ Ω
and t ∈ (0, T ). Here Ω is a bounded domain in R3 with the C2-boundary,

Q ≡ Ω × (0, T ), ν is the outward unit normal vector to ∂Ω, and e1 =

1
0
0

,
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e2 =

0
1
0

, e3 =

0
0
1

. We will assume that the density ρ ∈ C2(Q) and the

Lamé parameters µ, λ ∈ C3(Q), µ > 0 and 3λ + 2µ > 0, ρ > 0 on Q. We will
give stability estimates for solutions u to (1.1) with the lateral boundary data

(1.2) u = g on ∂Ω × (0, T ), ∂νu = h on Γ × (0, T ),

where Γ is some part of ∂Ω.
We will use the following notation: ∂j = ∂/∂xj , ∂t = ∂/∂t, ∇ = (∂1, . . . ,

∂n), ∇x,t = (∂1, . . . , ∂n, ∂t), �a = a∂2
t − ∆, Σ = ∂Ω × (0, T ). We set

‖u‖2(Ω) =
(∫

Ω

u2dx

)1/2

.

Hs(Ω), s ∈ N denotes the L2-based Sobolev space with the norm

‖u‖2
(s)(Ω) =

∑
|α|≤s

‖Dαu‖2
2(Ω) .

When we consider the space Hs(Rn), this norm can be equivalently defined by
means of

‖u‖2
(s)(R

n) = (2π)−n
∫

(1 + |ξ|2)s|û(ξ)|2dξ,
where û is the Fourier transform of u. This definition extends to s ∈ R. We
will drop the symbol Ω in norms and integrals when Ω = Rn. The norms
‖ · ‖2(Γ × (0, T )), ‖ · ‖(1)(Γ × (0, T )), etc. are defined similarly.

Our main results are the following theorems.

Theorem 1.1. Assume that the functions ϕ, ϕ1 are strongly pseudo-
convex correspondingly in Q\ (x0, T/2) and in Q\ (x1, T/2), with respect to the
differential operators ρ∂2

t −µ∆, ρ∂2
t − (2µ+λ)∆, x0, x1 are different points of

Ω, ϕ1(x1, T/2) < ϕ1(x0, T/2),

(1.3) ϕ < 0, ϕ1 < 0 on Ω × {0, T}
and

(1.4) 0 < ϕ, 0 < ϕ1 on Ω × {T/2}.
Assume that Γ ⊂ ∂Ω satisfies

{x ∈ ∂Ω; (∇ϕ(x, t) · ν(x)) < 0,

(∇ϕ1(x, t) · ν(x)) < 0 for all t ∈ [0, T ]} ⊃ ∂Ω \ Γ.
(1.5)

Then there is a constant C depending only on Ω, ϕ, ϕ1, ρ, µ, λ, Γ such that

‖∂tu(·, t)‖2(Ω) + ‖u(·, t)‖(1)(Ω) + ‖∂t∇Tu(·, t)‖2(Ω) + ‖∇Tu(·, t)‖(1)(Ω)
≤ C{‖h‖2(Γ × (0, T )) + ‖g‖(1)(Σ)

+ ‖∇Tu‖(1)(Σ) + ‖∂ν∇Tu‖2(Γ × (0, T ))}

(1.6)



�

�

�

�

�

�

�

�

Lateral Cauchy problem for the elasticity 477

when 0 < t < T .
If x0 �∈ Ω, then we can take ϕ1 ≡ ϕ and in Section 4, we consider only

such a case.

In the case of x0 ∈ Ω, a usual choice of ϕ (e.g., see (4.3)) does not satisfy
the pseudo-convexity. Therefore we need two weight functions ϕ and ϕ1 in
Theorem 1.1. We will recall the definition of a strongly pseudo-convex function
in Section 2.

We can give more explicit results in two important particular cases:
(1) Ω ⊂ B(0;R) ≡ {x; |x| < R} and Γ = ∂Ω,
(2) Ω ⊂ {−h < x3 < 0, x2

1 + x2
2 < r2} and Γ is open in ∂Ω.

Theorem 1.2. Assume that the functions a = ρ/µ and a = ρ/(λ+ 2µ)
satisfy the conditions

θ2a

(
a+

1
2

(
t− T

2

)
∂ta+ a−1/2

∣∣∣∣(t− T

2

)
∇a
∣∣∣∣) < a+

1
2
x · ∇a− β

2
∂na

θ2a ≤ 1 on Q.

(1.7)

If in case (1) R < θT/2 and in case (2) Γ contains {0 ≤ x · ν − βνn} ∩ ∂Ω,
r2 + h2 + 2hβ < θ2T 2/4, then bound (1.6) holds.

We expect that the terms with ∇Tu are not needed in (1.6) and can be
eliminated by more sophisticated methods.

Next in place of ∂νu = h in (1.2), we take the surface traction for a stability
estimate. In this paper, for brevity, we further assume that g = 0. That is, in
place of (1.2), we consider

(1.2)′ u = 0 on ∂Ω × (0, T ), σ(u)ν = h on Γ × (0, T ).

Here the stress tensor σ(u), a 3 × 3 matrix, is given by

σ(u) = λ(∇Tu)(e1, e2, e3)
+ µ(∇u1 + ∂1u, ∇u2 + ∂2u,∇u3 + ∂3u).

Theorem 1.3. Assume that the functions ϕ,ϕ1 are strongly pseudo-
convex with respect to the differential operators ρ∂2

t − µ∆, ρ∂2
t − (2µ + λ)∆

correspondingly on Q \ (x0, T/2), and on Q \ (x1, T/2), x0, x1 are two different
points of Ω, ϕ1(x1, T/2) < ϕ1(x0, T/2), and satisfy (1.3), (1.4), and (1.5).
Then there is a constant C depending only on Ω, ϕ, ϕ1, ρ, µ, λ, Γ such that

‖∂tu(·, t)‖2(Ω) + ‖u(·, t)‖(1)(Ω) + ‖∂t∇Tu(·, t)‖2(Ω)

+ ‖∇Tu(·, t)‖(1)(Ω)
≤ C {‖h‖2(Γ × (0, T )) + ‖∇h‖2(Γ × (0, T ))}

(1.8)

if u ∈ C2(Q)3 satisfies (1.1) and (1.2)′, and ∇Tu ∈ C2(Q)3.
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Theorem 1.4. Assume that the functions a = ρ/µ and a = ρ/(λ+ 2µ)
satisfy conditions (1.7). If in case (1) R < θT/2 and Γ = ∂Ω, and in case (2)
Γ contains {0 ≤ x · ν − βνn} ∩ ∂Ω, r2 + h2 + 2hβ < θ2T 2/4, then bound (1.8)
holds.

Sharp uniqueness in the continuation for the static elasticity system with
any first order perturbations (and smooth coefficients) was obtained by Dehman
and Robbiano [6]. Using much more elementary techniques, Ang, Ikehata,
Trong and Yamamoto ([2]) reduced a static system with zero order pertur-
bations to a principally diagonal one and obtained sharp uniqueness of the
continuation results under reduced smoothness assumptions. The dynamical
system with constant coefficients has been considered by Bukhgeim and Kar-
dakov [4] by using spherical means and by Alabau and Komornik [1] who trans-
ferred to this system the original approach of multipliers used by Lop Fat Ho
[22] for the wave equation to obtain sharp stability estimates in energy norms
(cf. Grasselli and Yamamoto [8]). The time dependent classical elasticity with
variable coefficients and arbitrary first order perturbations was considered by
Isakov [13] by pseudo-convexity methods. See also Isakov [14]. In the forthcom-
ing paper (Eller, Isakov, Nakamura and Tataru [7]), sharp uniqueness results
for the lateral Cauchy problem for system (1.1) and some conditional Hölder
type stability estimates are proved on the basis of Tataru [25]. The results
of these papers are obtained by combining known results for scalar hyperbolic
equations of second order and principal diagonalization of the elasticity system
and they imply approximate boundary controllability of this system. For the
stabilization for the elasticity system, we can refer to Horn [11]. Yamamoto
[28] applied principal diagonalization to some inverse source problems for the
Maxwell system. Recently, Lebeau and Zuazua [21] obtained quite complete
interior controllability results for a thermoelasticity system where Lipschitz sta-
bility is not possible. About general approaches to such estimates for scalar
hyperbolic equations of second order, we refer to papers of Bardos, Lebeau and
Rauch [3], Burq [5] (methods of geometrical optics) and Tataru [26] (methods
of Carleman estimates).

2. Lipschitz stability for principally diagonal hyperbolic systems

In this section, we do not assume that the spatial dimension is 3. In other
words, Ω is a bounded domain in an n-dimensional space.

We are considering the following system of partial differential equations

(2.1) P (j)uj + bj(x, t;∇x,tu,u) = 0, j = 1, . . . ,m in Q = Ω × (0, T ),

where the principal part P (j) is a real second order t-hyperbolic operator with
C1-smooth coefficients, bj are linear functions of ∇u with L∞(Q)-coefficients
and u with Ln+1(Q)-coefficient, and u = (u1, . . . , um). We will impose the
following Dirichlet lateral boundary condition

(2.2) u = g on Σ.
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To formulate results we need a (weight) function ϕ ∈ C2(Q). This function is
called strongly pseudo-convex on Q with respect to the operator P with the
principal symbol p(x, t; ζ), ζ ∈ Cn+1 if ∇ϕ is not zero on Q and if for any
(x, t) ∈ Q, the equality

p(x, t; ζ) = 0, ζ = ξ + iτ∇ϕ, τ �= 0

or
p(x, t; ξ) = 0, ∇ξp(x, t; ξ) · ∇x,tϕ(x, t) = 0, ξ �= 0

implies that

n+1∑
j,k=1

∂j∂kϕ∂p/∂ζj∂p/∂ζk + τ−1
(∂kp∂p/∂ζk) > 0

(cf. Hörmander [9], [10]). Here α denotes the complex conjugate and 
 is the
imaginary part.

Let Γ− = {x ∈ ∂Ω : (∇ϕ(x, t) · ν(x)) < 0 for all t ∈ (0, T )}, Γ+ = ∂Ω \ Γ−
and Γ be a neighbourhood of Γ+ in ∂Ω.

Theorem 2.1. Assume that ϕ,ϕ1 are strongly pseudo-convex corre-
spondingly on Q \ (x0, T/2) and on Q \ (x1, T/2) with respect to P (j), j =
1, . . . ,m, and satisfy conditions (1.3), (1.4), and (1.5), x0, x1 are two differ-
ent points of Ω, ϕ1(x1, T/2) < ϕ1(x0, T/2). Let u satisfy (2.1) and (2.2) with
g = 0. Then there is a constant C depending only on Ω, ϕ, ϕ1, P (j), bj, Γ
such that

‖∂tu(·, t)‖2(Ω) + ‖u(·, t)‖(1)(Ω) ≤ C‖∂νu‖2(Γ × (0, T ))

for all t ∈ (0, T ).

Proof. By conditions (1.3) and (1.4), there is ε1 > 0 such that

(2.3) ϕ < −ε1, ϕ1 < −ε1 on Ω × ((0, ε1) ∪ (T − ε1, T ))

and

(2.4) ε1 < ϕ, ε1 < ϕ1 on Ω × (T/2 − ε1, T/2 + ε1).

Henceforth we set B(x0, T/2; δ) = {(x, t) ∈ Rn+1; |x− x0|2 + |t− T/2|2 <
δ2}. To apply Tataru’s Carleman estimates ([27, Theorem 1]), we make use
of cut-off functions 0 ≤ χ, χ1, χ2 ≤ 1. Let χ ∈ C∞(R), χ = 0 on (0, ε1/2) ∪
(T − ε1/2, T ), χ = 1 on (ε1, T − ε1). Let χ1 ∈ C∞(Rn), χ1 = 1 near ∂Ω \ Γ
and χ1 = 0 near Γ+. Let B1 be the ball B(x0, T/2; δ) ⊂ Q with B1 not
containing the point (x1, T/2). Let χ2 ∈ C∞(Rn+1), χ2 = 1 on Q \B1, χ2 = 0
on B0 ≡ B(x0, T/2; δ/2). In addition using the conditions of Theorem 2.1, we
can choose δ so small that ϕ1(x1, T/2) < ϕ1(x, t) for (x, t) ∈ B1.
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We have

(2.5)
u = u0 + u1 + u2 + u3, where

u0 = (1 − χ)χ2u, u1 = χχ1χ2u,

u2 = χ(1 − χ1)χ2u, u3 = (1 − χ2)u.

We set ui = (ui;1, . . . , ui;m), i = 0, 1, 2.
Observe that suppu1 ⊂ K1 where K1 is a compact subset of Ω× [ε1/2, T −

ε1/2] \B0 with K1 ∩ ∂Q contained in Γ2 × [0, T ] ⊂ Γ− × [0, T ] which does not
intersect Γ+. Since Γ2 ⊂ Γ− and does not intersect Γ+, the Dirichlet boundary
operator on Γ2 satisfies the strong Lopatinskii condition in the direction ∇x,tϕ
([27, Proposition 5.1]). Henceforth let |α| ≤ 1. By Theorem 1 in [27], there
exists a constant C > 0 such that

(2.6) τ3−2|α|‖eτϕ∂αu1;j‖2
2(Q) ≤ C‖eτϕP (j)u1;j‖2

2(Q), 1 ≤ j ≤ m

for large τ .
Similarly, suppu2 ⊂ K2 where K2 is a compact subset of Ω × [ε1/2, T −

ε1/2] \ B0 with K2 ∩ ∂Q contained in Γ × [0, T ]. The Cauchy boundary ope-
rators always satisfy the strong Lopatinskii condition (cf. [27]) in the direction
∇x,tϕ. By Theorem 1 in [27], we have

(2.7) τ3−2|α|‖eτϕ∂αu2;j‖2
2(Q)

≤ C{‖eτϕP (j)u2;j‖2
2(Q) + τ‖eτϕ∂νu2;j‖2

2(Γ × (0, T ))}, 1 ≤ j ≤ m,

for large τ > 0.
Here and henceforth C > 0 denotes a generic constant which is independent

of τ . From (2.5) and Leibniz’ formula

P (j)u1;j = χχ1χ2P (j)uj +A1;j(uj) ≡ A1(u; j), 1 ≤ j ≤ m,

due to equations (2.1). Here A1;j , A(·; j) are linear partial differential operators
of first order whose coefficients of the first-order terms are in L∞(Q) and the
coefficients of the zeroth-order terms are in Ln+1(Q) (depending on χ, χ1 and
χ2). A similar formula holds for u2;j , 1 ≤ j ≤ m.

Using these formulae, adding inequalities (2.6), (2.7) and summing over
j = 1, . . . ,m and |α| ≤ 1, we arrive at

m∑
j=1

∑
|α|≤1

τ3−2|α|{‖eτϕ∂αu1;j‖2
2(Q) + ‖eτϕ∂αu2;j‖2

2(Q)

+ ‖eτϕ∂αu0;j‖2
2(Q) + ‖eτϕ∂αu3;j‖2

2(Q)}

≤ C

(
m∑
j=1

∑
|α|=1

‖eτϕ∂αuj‖2
2(Q) +

m∑
j=1

‖qjeτϕuj‖2
2(Q)

+ τ‖eτϕ∂νuj‖2
2(Γ × (0, T ))

+ τ3−2|α|‖eτϕ∂αu0;j‖2
2(Q) + ‖eτϕ∂αu3;j‖2

2(Q)

)
.

(2.8)
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Here qjuj is the zeroth-order term from b1, . . . , bm. Let n ≥ 3. Since Q ∈ Rn+1

and qj ∈ Ln+1(Q) for 1 = 1, . . . ,m, by Hölder’s inequality and the Sobolev
embedding we obtain

‖eτϕqjuj‖2
2(Q) ≤ ‖qj‖2

Ln+1(Q)‖eτϕuj‖2
L2(n+1)/(n−1)(Q) ≤ C‖eτϕuj‖2

H1(Q)

≤ C

τ2‖eτϕuj‖2
2(Q) +

∑
|α|≤1

‖eτϕ∂αuj‖2
2(Q)

 .

Hence by taking τ large, we can eliminate the term ‖eτϕqjuj‖2
2(Q) in the right

hand of (2.8), so that equality (2.5), the triangle inequality (in the left side of
(2.8)), and (2.8) yield

m∑
j=1

∑
|α|≤1

τ3−2|α|‖eτϕ∂αuj‖2
2(Q)

≤ C

 m∑
j=1

∑
|α|≤1

{‖eτϕ∂αuj‖2
2(Q) + τ‖eτϕ∂νuj‖2

2(Γ × (0, T ))

+ τ3−2|α|‖eτϕ∂αuj‖2
2(Q(1) ∪B1)}

 ,

(2.9)

where Q(1) = Ω × ((0, ε1) ∪ (T − ε1, T )). Choosing τ large, we can eliminate
the first terms ‖eτϕ∂αuj‖2

2(Q) in the right side of (2.9).
Next we will eliminate the terms

τ3−2|α|‖eτϕ∂αuj‖2
2(Ω × ((0, ε1) ∪ (T − ε1, T ))).

Due to condition (2.4), the left side in (2.9) is greater than

e2τε1
m∑
j=1

∑
|α|≤1

‖∂αuj‖2
2(Ω × (T/2 − ε1, T/2 + ε1)).

Writing the last sum as∫ T/2+ε1

T/2−ε1
E(t)dt, E(t) =

m∑
j=1

∑
|α|≤1

‖∂αuj(·, t)‖2
2(Ω)

and observing that by elementary properties, the integral with respect to t is
not less than 2ε1E(θ) for some θ ∈ (T/2 − ε1, T/2 + ε1), we conclude that the
left side in (2.9) is not less than 2ε1e2τε1E(θ).

Since system (2.1) is t-hyperbolic, the known energy estimates (e.g., John
[15]) imply that E(t) ≤ CE(θ), E(t) ≤ CE(0), 0 ≤ t ≤ T . Using the above
bounds from (2.3) and (2.9), we conclude that

e2τε1E(0) ≤ C(τ‖eτϕ∂νu‖2
2(Γ × (0, T )) + τ3e−2τε1E(0)

+
m∑
j=1

∑
|α|=1

τ‖eτϕ∂αuj‖2
2(B1) + τ3‖eτϕu‖2

2(B1)).
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Again choosing τ large we can eliminate the term in the right side containing
E(0). After that we fix τ and, using that E(t) ≤ CE(0), we will have

(2.10) E(t) ≤ C(‖∂νu‖2
2(Γ × (0, T )) + ‖u‖2

(1)(B1)).

The last step of the proof is to eliminate the norm over B1. To do it we
will use the Hölder type conditional stability estimate in the Cauchy problem
from [7].

Let Qε = Q∩{(x, t);ϕ1(x, t)−ϕ1(x1, T/2)− δ0 > ε}. Due to the choice of
B1 we have B1 ⊂ Qε for some small positive ε, δ0 and (x1, T/2) is not in Q0.
We will fix such ε, δ0. By Theorem 3.3 in [7] we have

‖u‖(1)(B1) ≤ ‖u‖(1)(Qε)

≤ C{‖∂νu‖2(Γ × (0, T )) + ‖∂νu‖θ2(Γ × (0, T ))‖u‖1−θ
(1) (Q0)},

where θ ∈ (0, 1) depends on ε. Using the Hölder inequality, for any δ1 > 0,
we can choose C(δ1) > 0 such that aθb1−θ ≤ δ1b + C(δ1)a and combining the
above inequality with (2.10) without the norm over Q(1) and with the obvious
bound ‖u‖2

(1)(Ω) ≤ CE(0) we finally obtain

‖u‖(1)(Ω) ≤ C(δ1)‖∂νu‖2(Γ × (0, T )) + Cδ1‖u‖(1)(Q).

Choosing δ1 < 1/C we eliminate the last term and complete the proof of
Theorem 2.1.

In this proof we have used general Carleman estimates of Tataru ([27]) and
the device of Klibanov and Malinsky ([16]) and of Tataru ([26]) for deriving
Lipschitz stability from such estimates. A new ingredient is the introduction
of the cut-off function χ1. See also Lasiecka and Triggiani [19].

Now by using the sharp bounds of Lasiecka, Lions and Triggiani ([18]) in
hyperbolic problems under minimal regularity assumptions on their coefficients,
we will remove the condition g = 0 of Theorem 2.1. In the case of smooth
coefficients, such estimates are due to Sakamoto ([24]).

Lemma 2.1. Assume that equations (2.1) do not contain the terms with
∂t∂kuj.

Then there is a constant C depending only on Ω, T , P (j), bj, j = 1, . . . ,m
such that any solution u to (2.1) and (2.2) with the initial conditions u = u0

and ∂tu = u1 on Ω × {0} satisfies the bound

(2.11) ‖u(·, t)‖(1)(Ω) + ‖∂tu(·, t)‖2(Ω) + ‖∂νu‖2(Σ)
≤ C(‖u0‖(1)(Ω) + ‖u1‖2(Ω) + ‖g‖(1)(Σ)),

when 0 < t < T .

Proof. Let us consider the scalar hyperbolic problem

(2.12)


∂2
t v +Av = F in Q
v = v0, ∂tv = v1 on Ω × {0}
v = G on Σ, where v0 = G on ∂Ω × {0},

 ,
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where A = −Σ∂j(ajk∂k) with ajk ∈ C1(Q) strictly uniformly positive on Q.
Let T < T0. Let G∗ be an extension of G onto Ω × (0, T0) with ‖G∗‖(1)(∂Ω ×
(0, T0)) ≤ CT ‖G‖(1)(Σ). The existence of G∗ is guaranteed by extension theo-
rems for Sobolev spaces. Let us extend F onto Ω×(T, T0) as zero. By Theorem
4.1 in [18] for solutions v∗ to extended problem (2.12), we have

‖v∗(·, t)‖(1)(Ω) + ‖∂tv∗(·, t)‖2(Ω) + ‖∂νv∗‖2(Σ)

≤ C0

(∫ T

0

‖F (·, s)‖2(Ω)ds+ ‖v0‖(1)(Ω) + ‖v1‖2(Ω) + ‖G∗‖(1)(∂Ω × (0, T0))

)
where C0 depends only on Ω, T0, the constant of ellipticity of A and on
‖al,k‖(1)(Q). Hence

(2.13) ‖v(·, t)‖(1)(Ω) + ‖∂tv(·, t)‖2(Ω) + ‖∂νv‖2(Σ)

≤ C0

(∫ T

0

‖F (·, s)‖2(Ω)ds+ ‖v0‖(1)(Ω) + ‖v1‖2(Ω) + CT ‖G‖(1)(Σ)

)
.

We will apply bound (2.13) to any of equations (2.1) written in form (2.12)
where A is the divergent form of the principal elliptic part of P (j) and F is the
sum of bj and of the remainders from the transformation of P (j) into the diver-
gent form. Observe that ‖F (·, s)‖2(Ω) ≤ C(‖u(·, s)‖(1)(Ω) + ‖∂tu(·, s)‖2(Ω))
where C depends only on the C1(Q)-norms of the principal coefficients of P (j)
and on the L∞(Q)-norms of other coefficients. Summing these bounds over
j = 1, . . . ,m and applying the triangle inequality, we will have

‖u(·, t)‖(1)(Ω) + ‖∂tu(·, t)‖2(Ω) + ‖∂νu‖2(Σ)

≤ C0

(∫ T

0

(‖u(·, s)‖(1)(Ω) + ‖∂tu(·, s)‖2(Ω))ds

+ ‖u0‖(1)(Ω) + ‖u1‖2(Ω) + CT ‖g‖(1)(Σ)

)
for all t ∈ (0, T ). When T < 1/C0 by taking supremum of the both parts of
the obtained bound for u and using elementary properties of the integral, one
eliminates the integral term. Since smallness of T needed for that is determined
only by the coefficients of system (2.1) and since the energy at t = T is bounded
by the initial energy and the Dirichlet boundary data, we can repeat this step
and in a finite number of steps to exhaust the whole initial interval (0, T ).
Observe that T0 is used to guarantee that the constant C0 in (2.13) does not
depend on T . The proof is complete.

This lemma permits us to eliminate the condition g = 0 of Theorem 2.1.

Corollary 2.1. Assume that the operators P (j) do not contain terms
with ∂t∂kuj. Let functions ϕ,ϕ1 be strongly pseudo-convex and satisfy con-
ditions (1.3), (1.4), and (1.5) as well as other conditions of Theorem 2.1 on
ϕ,ϕ1.
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Then there is a constant C depending only on Ω, T , ϕ, P (j), bj, Γ such
that any solution to problem (2.1) and (2.2) satisfies the bound

(2.14) ‖∂tu(·, t)‖2(Ω) + ‖u(·, t)‖(1)(Ω) + ‖∂νu‖2(Σ)
≤ C(‖g‖(1)(Σ) + ‖∂νu‖2(Γ × (0, T ))).

Proof. To derive this result from Theorem 2.1 and Lemma 2.1, we in-
troduce a function u∗

0 ∈ H1(Ω) coinciding with u on ∂Ω × {0} and such that
‖u∗

0‖(1)(Ω) is bounded by C‖g‖(1)(Σ). Solving the initial value problem for
hyperbolic system (2.1) with the initial data (u∗(·, 0), ∂tu∗(·, 0)) = (u∗

0,0) and
the lateral Dirichlet data g on Σ, we obtain a function u∗. By Lemma 2.1

(2.15) ‖u∗(·, t)‖(1)(Ω) + ‖∂νu∗(·, t)‖2(Ω) + ‖∂νu∗‖2(Σ)
≤ C‖g‖(1)(Σ), 0 < t < T.

Subtracting u∗ from u, we obtain for their difference equations (2.1) and the
zero lateral Dirichlet data on Σ. Applying to this difference Theorem 2.1 and
combining its bound with (2.15) by the triangle inequality, we complete the
proof.

Now we discuss cases (1) and (2) in the n-dimensional case:
(1) Ω ⊂ B(0, R) and Γ ⊂ ∂Ω,
(2) Ω ⊂ {−h < xn < 0, x2

1 + · · · + x2
n−1 < r2},

which are already introduced before Theorem 1.2 (the three dimensional case).

Corollary 2.2. Assume that the coefficients a = a(j), j = 1, . . . ,m of
the principal parts P (j) = �a(j) of system (2.1) satisfy conditions (1.7).

If in case (1) R < θT/2 and Γ = ∂Ω and in case (2) Γ contains {0 ≤
x · ν − βνn} ∩ ∂Ω, r2 + h2 + 2hβ < θ2T 2/4, then bound (2.14) holds.

Proof. We will apply Corollary 2.1 with

ϕ = eσψ − 1

and
ψ(x, t) = x2

1 + · · · + x2
n−1 + (xn − β)2 − θ2(t− T/2)2 − s.

It is known that under conditions (1.7) with respect to the principal coefficients
the function ϕ = exp(σψ) for large σ is strongly pseudo-convex in Q\{(β, T/2)}
with respect to the wave operators �a(j) ([14, Section 3.4]).

In case (1) we let β = 0 and will make use also of the funcion ϕ1 = eλψ1 ,
ψ1(x, t) = ψ(x1, . . . , xn−1, xn − β0, t) with small β0. Then condition (1.3) is
satisfied with any s > R2 − θ2T 2/4 and condition (1.4) is satisfied with any
s < 0. Since R < θT/2 we can satisfy the both conditions (choosing for example
s = (1/2)(R2 − θ2T 2/4)).

In case (2) we let s = β2 − δ, δ > 0. Then the function ϕ is strongly
pseudo-convex on the whole Q and the function ϕ1 is not needed. But to
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comply formally with Theorem 2.1 we can choose as x0, x1 any points of Ω
such that ϕ(x1, T/2) < ϕ(x0, T/2) and let ϕ1 = ϕ. Condition (1.3) follows
from the inequality x2

1 + · · · + x2
n−1 + (xn − β)2 − θ2T 2/4 − β2 + δ < 0 for all

x ∈ Ω which is a corollary of the inequality r2 + h2 + 2hβ < θ2T 2/4 when δ is
small. Condition (1.4) is satisfied because 0 < δ = β2 − (β2 − δ) ≤ ψ(x, T/2).

So in the both cases Corollary 2.2 follows from Corollary 2.1.

It is not difficult to see that conditions (1.7) and r2 + h2 + 2hβ < θ2T 2/4
are compatible and mean that T is large (and θ is small, but it suffices to let
θ = T−3/4 to satisfy the both conditions). Condition (1.7) can be satisfied
when 0 < aj + (1/2)x · ∇aj − (β/2)∂naj on Q.

3. Proofs of estimates for the elasticity system

To prove Theorems 1.1 and 1.2, we will extend system (1.1) for three
unknown functions u1, u2, u3 to a new one for four unknown functions by intro-
ducing v = ∇Tu. We refer to Eller, Isakov, Nakamura and Tataru [7], Ikehata,
Nakamura and Yamamoto [12].

Lemma 3.1. Let v = ∇Tu. If u solves (1.1), then

(3.1)

{
ρ∂2
t v − (λ+ 2µ)∆v +A1;1(v,u) = 0

ρ∂2
t u − µ∆u +A1;2(v,u) = 0 in Q,

}
,

where A1;1 and A1;2 are (matrix ) linear partial differential operators with mea-
surable and bounded coefficients in Q.

This lemma and the results of Section 2 imply Theorems 1.1 and 1.2 for
Cauchy problem (1.1) and (1.2).

Next we have to prove Theorems 1.3 and 1.4. We recall that we take

(3.2) g = 0.

For simplicity we set

Lu = µ(∆u + ∇(∇Tu)) −∇(λ∇Tu)

−
3∑
j=1

∇µ · (∇uj + ∂ju)ej
(3.3)

and aT denotes the transpose of a vector a under consideration.
For the proof of Theorems 1.3 and 1.4, it is sufficient to prove

Lemma 3.2. On ∂Ω, we represent ∇u and ∂ν(∇Tu) by linear functions
of σ(u)ν and ∇(σ(u)ν) with bounded coefficients.

Proof. The proof is modification of an argument in [12] where σ(u)ν = 0
is assumed. Here we give the proof for completeness.
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First Step. We set

(3.4) ∇u =
(
∂ui
∂xj

)
1≤i,j≤3

=

(∇u1)T

(∇u2)T

(∇u3)T

 .

Then, under assumption (3.2), we have

(3.5) ∇u = {(∇u)ν}νT on ∂Ω × (0, T )

and

(3.6) ∇Tu = (∇u)ν · ν on ∂Ω × (0, T ).

In fact, setting u = (u1, u2, u3)T and ν = (ν1, ν2, ν3)T , we see that condition
(3.2) implies

∇ui =


∂ui

∂x1
∂ui

∂x2
∂ui

∂x3

 = (∇ui · ν)ν =
(
∂ui
∂ν

)
ν, 1 ≤ i ≤ 3.

Therefore we have

(3.7) ∇u =

(∇u1)T

(∇u2)T

(∇u3)T

 =

(∇u1 · ν)νT
(∇u2 · ν)νT
(∇u3 · ν)νT

 .

By definition (3.4), this means (3.5). Moreover by ννT = 1, we have

(∇u)ν =

(∇u1 · ν)νT
(∇u2 · ν)νT
(∇u3 · ν)νT

 ν =

(∇u1 · ν)
(∇u2 · ν)
(∇u3 · ν)

 ,

and so

(∇u)ν · ν = (∇u1 · ν)ν1 + (∇u2 · ν)ν2 + (∇u3 · ν)ν3 = Trace∇u = ∇Tu

by (3.7). Thus we see (3.5) and (3.6).

Second Step. In this step, we will prove that

(3.8) ∇u = S(σ(u)ν) on ∂Ω × (0, T )

for some 3 × 3 matrix S ∈ C(∂Ω × [0, T ])3×3.

Proof of (3.8). We define a 3 × 3 matrix B = B(x, t) by

(3.9) B(x, t)a = λ(x, t)(a · ν(x))ν(x) + 2µ(x, t){Sym(aν(x)T )}ν(x)
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for a ∈ R3. Here and henceforth, for square matrices A = (aij)1≤i,j≤3 and
B = (bij)1≤i,j≤3, we set SymA = (1/2)(A + AT ) and A · B =

∑3
i,j=1 aijbij ,

|A|2 =
∑3
i,j=1 a

2
ij . Then

(3.10) B = B(x, t) is invertible for all (x, t) ∈ ∂Ω × (0, T ).

In fact, since Cν · a = C · (aνT ) and (1/2)(C +CT ) ·C = |(1/2)(C +CT )|2 for
an n× n matrix C, we have

(Sym (aνT ))ν · a = (Sym(aνT )) · (aνT ) = |Sym (aνT )|2.

Hence

(Ba · a) = λ|a · ν|2 + 2µ|Sym (aνT )|2
= λ|TraceA|2 + 2µ|A|2.(3.11)

Here we set
A = Sym (aνT )

and

(3.12) C = A− TraceA
3

I3,

where I3 is the 3 × 3 identity matrix. Then TraceC = 0, so that

(3.13) C · I3 = 0

by the identity C · I3 = TraceC. Therefore (3.11) through (3.13) imply

Ba · a = λ|TraceA|2 + 2µ
∣∣∣∣TraceA

3
I3 + C

∣∣∣∣2
= λ|TraceA|2 + 2µ

(∣∣∣∣TraceA
3

I3

∣∣∣∣2 + |C|2 + 2
TraceA

3
I3 · C

)

=
3λ+ 2µ

3
|TraceA|2 + 2µ|C|2 ≥ δ0

3
|TraceA|2 + δ0|C|2,

where δ0 > 0 is a constant. By (3.12), we have A = C + (TraceA/3)I3, so that
δ0|A|2 = (δ0/3)|TraceA|2 + δ0|C|2 by (3.13). Therefore

Ba · a ≥ δ0|Sym (aνT )|2.

Moreover we have

|Sym (aνT )|2 =
1
4
(|aνT |2 + 2(aνT ) · (νaT ) + |νaT |2)

=
1
4
(|a|2 + 2|a · ν|2 + |a|2) ≥ 1

2
|a|2,
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so that

(3.14) Ba · a ≥ δ0
2
|a|2 on ∂Ω × (0, T ).

Moreover direct calculations verify that Ba · b = Bb · a for every a,b ∈ R3,
which means that B is a symmetric matrix. Therefore (3.14) implies (3.10).

On the other hand, by (3.5) and (3.6) we have

B((∇u)ν) = λ{(∇u)ν · ν}ν + 2µ{Sym (((∇u)ν)νT )}ν
= λ(∇Tu)ν + 2µ{Sym (∇u)}ν = σ(u)ν on ∂Ω × (0, T ).

In view of (3.5) and (3.10), the proof of (3.8) is complete.

Third Step. Since u ∈ C2(Q)n, we see from (3.2) and (3.8) that Lu =
µ(∆u+∇(∇Tu))−∇(λ∇Tu)+F1(S(σ(u)ν)) on ∂Ω× (0, T ). Here and hence-
forth Fi denote linear maps with continuous coefficients. Therefore we obtain

(3.15) µ∆u + (λ+ µ)∇(∇Tu) = F2(σ(u)ν) on ∂Ω × (0, T ).

Since ∂Ω is of C2-class, for any x0 = (x0
1, x

0
2, x

0
3) ∈ ∂Ω, we can take neighbour-

hoods V in R
3 of x0 and U in R

2 of (x0
1, x

0
2), a function χ = χ(x1, x2) ∈ C2(U)

such that

(3.16) (x1, x2, x3) ∈ V ∩ ∂Ω if and only if x3 = χ(x1, x2).

We introduce a new coordinate η = η(x) = (η1, η2, η3) by

(3.17) η1 = x1, η2 = x2, η3 = x3 − χ(x1, x2)

for (x1, x2) ∈ U . We define a set W of (η1, η2, η3) by W = η(V ∩ ∂Ω) ⊂
{(η1, η2, 0); η1, η2 ∈ R}. Henceforth we locally regard u = u(x1, x2, x3) as a
function in (η1, η2, η3) ∈ η(V). Then boundary conditions (3.2) and (3.8) imply

u = 0,
∂u
∂ηj

= F3(σ(u)ν),

∂2u
∂ηi∂ηj

= F4(σ(u)ν,∇(σ(u)ν)), i = 1, 2, j = 1, 2, 3, in W .

(3.18)

Then noting that ∂3χ = −1,

∂u
∂xi

=
∂u
∂ηi

− ∂iχ
∂u
∂η3

, i = 1, 2,
∂u
∂x3

=
∂u
∂η3

,

we see

∂2u
∂xi∂xj

=
∂2u
∂ηi∂ηj

− ∂jχ
∂2u
∂ηi∂η3

− (∂j∂iχ)
∂u
∂η3

− ∂iχ
∂2u

∂ηj∂η3
+ (∂iχ)(∂jχ)

∂2u
∂η2

3

, 1 ≤ i, j ≤ 2,

∂2u
∂x2

3

=
∂2u
∂η2

3

,
∂2u

∂xi∂x3
=

∂2u
∂ηi∂η3

− ∂iχ
∂2u
∂η2

3

, i = 1, 2.
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Therefore (3.18) implies

(3.19)
∂2u

∂xi∂xj
= ∂iχ∂jχ

∂2u
∂η2

3

+ F5(σ(u)ν,∇(σ(u)ν)), 1 ≤ i, j ≤ 3

in W . We substitute (3.19) into (3.15), and we obtain

µ|∇χ|2 ∂
2ui
∂η2

3

+ (λ+ µ)
(
∂iχ∂1χ

∂2u1

∂η2
3

+ ∂iχ∂2χ
∂2u2

∂η2
3

+ ∂iχ∂3χ
∂2u3

∂η2
3

)
= F6(σ(u)ν,∇(σ(u)ν)), 1 ≤ i ≤ 3

in W . We can rewrite the above equalities as

(3.20)

D(η, t)
(
∂2u1

∂η2
3

,
∂2u2

∂η2
3

,
∂2u3

∂η2
3

)T
= F7(σ(u)ν,∇(σ(u)ν)) in W × (0, T ),

where we define a 3 × 3 matrix D = D(η, t) by

D = D(η, t) = (λ+ µ)(∇χ)(∇χ)T + µ|∇χ|2I3.
For any a ∈ R3, we have

Da · a = (λ+ µ)((∇χ)(∇χ)Ta · a) + µ|∇χ|2(a · a)

= (λ+ µ)(a · ∇χ)2 + µ|∇χ|2|a|2.(3.21)

We see from µ > 0 and 3λ+ 2µ > 0 on Q that

(3.22) λ(x, t) + 2µ(x, t) > δ0, (x, t) ∈ ∂Ω × (0, T ),

where δ0 > 0 is a constant.
Since µ ∈ C(Q), by (3.22) we can choose a sufficiently small ε > 0 such

that

(3.23) λ(x, t) + (2 − ε)µ(x, t) > 0, µ(x, t) ≥ δ0
2
, (x, t) ∈ ∂Ω × (0, T ).

Applying Schwarz’s inequality in (3.21), by (3.23), we obtain

Da · a = (λ+ µ)(a · ∇χ)2 + (µ− µε)|∇χ|2|a|2 + µε|∇χ|2|a|2
= (λ+ (2 − ε)µ)(a · ∇χ)2

+ µ(1 − ε)(|∇χ|2|a|2 − (∇χ · a)2) + µε|∇χ|2|a|2

≥ µε|∇χ|2|a|2 ≥ δ0ε

2
|∇χ|2|a|2 ≥ δ0ε

2
|a|2.

(3.24)

At the last inequality, we use |∇χ|2 = 1 + (∂1χ)2 + (∂2χ)2 ≥ 1. By the defini-
tion, D(η, t) is symmetric, inequality (3.24) implies that D = D(η, t) is inverti-
ble in W × (0, T ). Therefore (3.20) yields

∂2u
∂η2

3

= F8(σ(u)ν,∇(σ(u)ν)) in W × (0, T ).
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We combine (3.19) to obtain

∂2u
∂xi∂xj

(x, t) = F9(σ(u)ν,∇(σ(u)ν)), x ∈ V ∩ ∂Ω, 0 < t < T, ≤ i, j ≤ 3.

Therefore, since x0 ∈ V is an arbitrary point of ∂Ω and ∂Ω is compact,

∂ν(∇Tu) = F9(σ(u)ν,∇(σ(u)ν)) on ∂Ω × (0, T ),

where F9 is a linear map whose coefficients are bounded on ∂Ω × (0, T ). Thus
in view of Theorem 1.1, the proof of Theorem 1.3 is complete.

4. Lipschitz stability for a principally diagonal hyperbolic system
on the basis of a directly derived Carleman estimate

Theorems 1.1 through 1.4 are proved on the basis of Carleman estimates
with boundary data by Tataru [27], where Carleman estimates are shown in
a general setting. On the other hand, we can establish a similar Carleman
estimate more directly for an operator �a ≡ a∂2

t − ∆. This direct derivation
is shown in Lavrent’ev, Romanov and Shishat·skĭı [20] for the operator � (i.e.
a ≡ 1). In this section, we modify the argument in [20] for �a. This direct way
is less transparent than [27], while it admits less regular boundary ∂Ω. On the
other hand, the direct way gives a worse condition for T than in Sections 1 and
2, although in the case of constant a, the results in this section coincide with
the results by Tataru’s Carleman estimates and by the multiplier method.

In this section, we treat general spatial dimensions again except for Theo-
rem 4.3. First for the statement of the Carleman estimate directly derived, we
take x0 ∈ Rn with x0 �∈ Ω and let us assume

(4.1) a(x) > 0, 2 +
(∇a(x) · (x− x0))

a(x)
> 0, x ∈ Ω.

We take β > 0 such that

(4.2)



β <
4

T |∇a(x)| ,

β <
4a(x) + 2(∇a(x) · (x− x0))
T |∇a(x)|(1 + a(x)) + 4a(x)2

,

β <
1

a(x)
on Q.


.

Remark 4.1. In the case of a = constant, condition (4.2) is reduced to
β < (1/a).

Moreover we set

(4.3) ϕ(x, t) = |x− x0|2 − β

(
t− T

2

)2
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and

(4.4) Q(δ) = {(x, t) : x ∈ Ω, ϕ(x, t) ≥ δ2}

with δ > 0,

(4.5) Γ+ = {x ∈ ∂Ω : ((x− x0) · ν(x)) > 0}, Γ− = ∂Ω \ Γ+.

Now we can state a Carleman estimate.

Theorem 4.1. For δ > 0, there exists a constant C = C(δ) > 0 such
that

(4.6)
∫
Q(δ)

|�au|2e2τϕdxdt+
∫

(Γ+×(0,T ))∩∂Q(δ)

τe2τϕ|∂νu|2dσ

≥ Cτ

∫
Q(δ)

(|∇u|2 + |∂tu|2)e2τϕdxdt+ Cτ3

∫
Q(δ)

u2e2τϕdxdt

for large τ > 0 provided that

(4.7)

{
u ∈ H1

0 (Q(δ)) ∩H2(Q(δ)), ∇u = 0 on ∂Q(δ) \ (∂Ω × (0, T ))
∂tu = 0 on ∂Q(δ).

}
.

We consider

(4.8) aj(x)∂2
t uj − ∆uj + bj(x, t;∇x,tu,u) = 0, in Q, 1 ≤ j ≤ m

and

(4.9) u = g on Γ.

Here u = (u1, . . . , um) and aj , 1 ≤ j ≤ m satisfy (4.1), bj are linear functions
of ∇u and u whose coefficients are in L∞(Q) if the order of differentiation is 1
and the coefficient of the zeroth order term is in Ln+1(Q).

On the basis of Theorem 4.1, we can prove

Theorem 4.2. Let Ω be a bounded domain in Rn whose boundary ∂Ω
is of piecewise C1. We assume

(4.10) T > 2 max
x∈Ω

|x− x0|√
β

.

Here β > 0 satisfies (4.2) for all a1, . . . , am. Then there exists a constant C > 0
depending on Ω, T , x0, aj, bj, 1 ≤ j ≤ m, such that any solution u to (4.8)
and (4.9) satisfies the bound

‖u(·, t)‖(1)(Ω) + ‖∂tu(·, t)‖2(Ω)
≤ C(‖g‖(1)(Σ) + ‖∂νu‖2(Γ+ × (0, T ))), 0 ≤ t ≤ T.



�

�

�

�

�

�

�

�

492 Jin Cheng, Victor Isakov, Masahiro Yamamoto and Qi Zhou

Remark 4.2. We set

γ(a)(x, t) = min
{

4
T |∇a(x)| ,

4a(x) + 2(∇a(x) · (x− x0))
T |∇a|(1 + a) + 4a2

,
1
a

}
.

Then (4.2) is rewritten as

(4.2)′ β < min
(x,t)∈Q

γ(a)(x, t).

In terms of γ(a), we can rewrite (4.10) by

T > 2 max
(x,t)∈Q,1≤j≤m

|x− x0|√
γ(aj)(x, t)

.

In the case where aj , 1 ≤ j ≤ m are constants, then condition (4.10) for
T > 0 follows from

(4.10)′ T > 2 max
x∈Ω,1≤j≤m

√
aj |x− x0|,

which is same as required by the multiplier method (e.g. Isakov [14], Komornik
[17], Lop Fat Ho [22], Powell [23]). Therefore our result can generalize observ-
ability with constant coefficients by the multiplier method. We notice that the
multiplier method can not treat bj with terms of derivatives of the first order.

By the same argument as in Section 3, Theorem 4.2 yields

Theorem 4.3. Let Ω ⊂ R3 be a bounded domain and let its boundary
∂Ω be of piecewise C2. We set

(4.11) a1(x) =
ρ(x)
µ(x)

, a2(x) =
ρ(x)

2µ(x) + λ(x)
, x ∈ Ω.

In (1.1) we assume that ρ, λ, µ ∈ C3(Q) are independent of t, and g = 0 in
(1.2). For x0 �∈ Ω, we assume that a1 and a2 satisfy (4.1),

(4.12) T > 2 max
x∈Ω

|x− x0|√
β

,

where β > 0 satisfies (4.2) for a1 and a2. Then there exists a constant C > 0
depending on Ω, T , x0, ρ, µ, λ, such that any solution u to (1.1) and (1.2)′

satisfies the bound

‖u(·, t)‖(1)(Ω) + ‖∂tu(·, t)‖2(Ω)

+ ‖(∇Tu)(·, t)‖(1)(Ω) + ‖∂t∇Tu(·, t)‖2(Ω)
≤ C{‖h‖2(Γ+ × (0, T )) + ‖∇h‖2(Γ+ × (0, T ))}, 0 ≤ t ≤ T.

(4.13)

A similar bound holds for solutions to (1.1) and (1.2).
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The rest part of this section is devoted to the proofs of Theorems 4.1 and
4.2.

Derivation of Theorem 4.2 from Theorem 4.1. The deduction is
similar to the proof of Theorem 2.1. By x0 �∈ Ω, we note that we can take
ϕ1 = ϕ. In terms of Lemma 2.1, we may assume that g = 0. We set t0 = T/2
in (4.3), that is,

(4.14) ϕ(x, t) = |x− x0|2 − β

(
t− T

2

)2

,

where β > 0 is chosen later. For the proof, it is sufficient to verify that ϕ
defined by (4.14) satisfies (1.3) and (1.4) with β > 0 satisfying (4.2). In fact,
condition (1.4) is straightforward from x0 �∈ Ω and (1.3) follows directly from
(4.10).

Proof of Theorem 4.1. We will extend the proof in [20] (pp. 123–128)
where a(x) ≡ 1 is considered. For convenience, we denote:

x = (x1, . . . , xn), xn+1 = t, A1 = · · · = An = 1, An+1 = −a,
w(x, t) = eτϕ(x,t)

(4.15)

and will make use of the function

(4.16) ψ(x, t) = 4 − 2β|∇a(x)|
∣∣∣∣t− T

2

∣∣∣∣− 2n− 2βa(x) − ε.

Letting

(4.17) v = wu,

we obtain

w2(�au)2 =


n+1∑
j=1

Aj{∂2
j v − 2τ∂jϕ∂jv + (τ2(∂jϕ)2 − τ∂2

jϕ)v}


2

≥ −2(�av)τψv − 4

n+1∑
j=1

Aj∂
2
j v

n+1∑
j=1

Ajτ∂jϕ∂jv


+

2τψ
n+1∑
j=1

Aj(τ2(∂jϕ)2 − τ∂2
jϕ)v2 − τ2ψ2v2


− 4

n+1∑
j=1

Ajτ∂jϕ∂jv

n+1∑
k=1

Ak(τ2(∂kϕ)2 − τ∂2
kϕ)v


≡ S1 + S2 + S3 + S4,

(4.18)
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where we have used an elementary inequality:

(B − C +D)2 = (B +D − τψv)2 + C2 + 2Bτψv

− 2BC + 2τψvD − τ2ψ2v2 − 2CD

≥ 2Bτψv − 2BC + 2τψvD − τ2ψ2v2 − 2CD

with the obvious choice of B, C, D and S1, S2, S3, S4.
Henceforth the sums are over j, k = 1, . . . , n+ 1, unless specified.
Multiplying the terms in S2, we yield

S2 = −4τ
∑

AjAk∂kϕ∂
2
j v∂kv

= −4τ
∑

∂j(AjAk∂kϕ∂jv∂kv) + 2τ
∑

∂k(AjAk∂kϕ(∂jv)2)

− 2τ
∑

∂k(AjAk∂kϕ)(∂jv)2 + 4τ
∑

∂j(AjAk∂kϕ)∂jv∂kv,

where we have used 2∂jv(∂k∂jv) = ∂k((∂jv)2).
Substituting v = wu, observing that ∂jv = w(∂ju + τ (∂jϕ)u) and generi-

cally denoting by R0 the terms containing the factor u, and by R, R1, R2, R3,
. . . . the terms bounded by Cw2(|∇u|2 + τ2u2) (where a constant C > 0 is
independent of τ ), we have

S2 = 2τ
∑

∂j(w2(AjAk∂jϕ(∂ku)2 − 2AjAk∂kϕ∂ju∂ku+R0))

− 2τw2
∑

∂k(AjAk∂kϕ)(∂ju)2 − 2τ2w2
∑

∂k(AjAk∂kϕ)∂jϕ∂j(u2)

− 2τ3w2
∑

∂k(AjAk∂kϕ)(∂jϕ)2u2

+ 4τw2
∑

∂j(AjAk∂kϕ)∂ju∂ku

+ 2τ2w2
∑

∂j(AjAk∂kϕ)(∂jϕ∂k(u2) + ∂kϕ∂j(u2))

+ 4τ3w2
∑

∂j(AjAk∂kϕ)∂jϕ(∂kϕ)u2.

We note

τ2w2
∑

∂k(AjAk∂kϕ)∂jϕ∂j(u2)

=
∑

∂j(τ2w2∂k(AjAk∂kϕ)(∂jϕ)u2) − τ2∂j(w2)∂k(AjAk∂kϕ)(∂jϕ)u2

− τ2w2∂j∂k(AjAk∂kϕ)(∂2
jϕ)u2

= −2τ3w2(∂jϕ)2∂k(AjAk∂kϕ)u2 +
∑

∂kR1 +R2

=
∑

∂kR0 − 2τ3w2
∑

(∂jϕ)2∂k(AjAk∂kϕ)u2 +R.

Moreover using similar relations for the terms with ∂k(u2), ∂j(u2) and collecting
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the terms with the factors τw2 and τ3w2, we have

S2 = 2τ
∑

∂j(w2(AjAk∂jϕ(∂ku)2 − 2AjAk∂kϕ∂ju∂ku) +R0)

+ 2τw2
∑

{2∂j(AjAk∂kϕ)∂ju∂ku− ∂k(AjAk∂kϕ)(∂ju)2}
+ 2τ3w2

∑
{∂k(AjAk∂kϕ)(∂jϕ)2

− 2∂j(AjAk∂kϕ)∂jϕ∂kϕ}u2 +R+
∑

∂jR3.

(4.19)

Similarly

S3 = 2τψw2
∑

Aj(τ2(∂jϕ)2 − τ∂2
jϕ)u2 − τ2w2ϕ2u2

= 2τ3w2ψ
∑

Aj(∂jϕ)2u2 +R4

(4.20)

and

S4 = −2τ
∑

AjAk∂jϕ(τ2(∂kϕ)2 − τ∂2
kϕ)∂j(v2)

= 2τ3w2
∑

∂j(AjAk∂jϕ(∂kϕ)2)u2 +
∑

∂jR5 +R6.
(4.21)

Noting ∂jv = (∂ju+ τ (∂jϕ)u)w, we see

−2τ
∑

Ajψ(∂jv)2 = −2τw2
∑

Ajψ(∂ju+ τ (∂jϕ)u)2

and

− 4τ2w2Ajψ(∂ju)(∂jϕ)u = −2τ2w2(Ajψ)(∂j(u2))(∂jϕ)

= −2τ2∂j(w2(Ajψ∂jϕ)u2) + 2τ2∂j(w2)Ajψ(∂jϕ)u2 + 2τ2w2∂j(Ajψ∂jϕ)u2,

we have

S1 = −2(�av)τψv

= 2τ
∑

∂j(Ajψ(∂jv)v) − τ
∑

∂j(Ajψ)∂j(v2) − 2τ
∑

Ajψ(∂jv)2

=
∑

∂jR0 + R− 2τw2
∑

Ajψ(∂ju)2 + 2τ3w2
∑

Ajψ(∂jϕ)2u2.

(4.22)

By (4.19) through (4.22), we have

w2(�au)2 ≥ 2τ
∑

∂j(w2(AjAk(∂jϕ(∂ku)2 − 2∂kϕ∂ju∂ku)) +R0)

+ 2τw2
∑

{2∂j(AjAk∂kϕ)∂ju∂ku

− ∂k(AjAk∂kϕ)(∂ju)2 − Ajψ(∂ju)2}
+ 2τ3w2

∑
{2Ajψ(∂jϕ)2 + ∂k(AjAk∂kϕ)(∂jϕ)2

− 2∂j(AjAk∂kϕ)∂jϕ∂kϕ+ ∂j(AjAk∂jϕ(∂kϕ)2)}u2

+R+
∑

∂jR0.

(4.23)



�

�

�

�

�

�

�

�

496 Jin Cheng, Victor Isakov, Masahiro Yamamoto and Qi Zhou

Now we consider the integral of w2(�au)2 over Q(δ). First we estimate the
integral of the divergence terms in the right side of (4.23). Since R0 contains u
as factor, the divergence theorem yields

∫
Q(δ)

∂jR0dxdt = 0

by u|∂Q(δ) = 0. Moreover, since u = 0 on ∂Q(δ), as the surface integrals, we
have only

2τ
∫
∂Q(δ)∩(Γ×(0,T ))

∑
w2AjAk{∂jϕ(∂ku)2 − 2∂kϕ∂ju∂ku}νjdσ.

When k = n+1, the integral is zero because ∂n+1u = 0 on Γ× (0, T ) and when
j = n + 1, it is zero because νn+1 = 0 there. Due to the condition u = 0 on
Γ × (0, T ), we have

∂ju = νj∂νu.

Hence the integral over ∂Q(δ) ∩ (Γ × (0, T )) is

2τ
∫
∂Q(δ)∩(Γ×(0,T ))

w2
∑

((∂jϕ)ν2
k − 2(∂kϕ)νjνk)(∂νu)2νjdσ

= −2τ
∫
∂Q(δ)∩(Γ×(0,T ))

w2
n∑

(∂jϕ)νj(∂νu)2dσ,

because
∑n

ν2
j = 1. According to our definition of ϕ, we have

n∑
∂jϕ · νj =

n∑
2(x− x0)j · νj ≤ 0

on Γ−. Summing up, we obtain

[the surface integrals from the right side of (4.23)]

≥ −2τC
∫
∂Q(δ)∩(Γ+×(0,T ))

w2(∂νu)2dσ

with some constant C > 0. Henceforth, generically by C, we denote a positive
constant independent of τ .

We break the factor of 2τw2 in (4.23) into the sums over j, k = 1, . . . , n;
j = 1, . . . , n, k = n+ 1; k = 1, . . . , n, j = n+ 1; j = k = n+ 1 to conclude that
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this factor is

n∑
{2∂2

jϕ(∂ju)2 − ∂2
kϕ(∂ju)2 − ψ(∂ju)2}

+
n∑
{2(∂j(−a)∂n+1ϕ)∂ju∂n+1u− ∂n+1((−a)∂n+1ϕ)(∂ju)2}

+
n∑
{2∂n+1(−a∂kϕ)∂n+1u∂ku+ ∂k(a∂kϕ)(∂n+1u)2} + aψ(∂n+1u)2

+ ∂n+1(a2∂n+1ϕ)(∂n+1u)2

= (4 − 2n− ψ)|∇xu|2 +
n∑{

4β
(
t− T

2

)
∂ja∂ju∂tu− 2βa(∂ju)2

}
+
∑

2(∂ja(x− x0)j + na)(∂tu)2 + aψ(∂tu)2 − 2βa2(∂tu2)

where we have used definition (4.14) of ϕ, the equality ∂n+1 = ∂t and time
independence of a. By using the Schwarz inequality for the scalar product
∇xa · ∇xu and then the inequality 2|∇xu||∂tu| ≤ |∇xu|2 + |∂tu|2, we conclude
that the last sum is not less than

{
4 − 2n− ψ − 2β|∇xa|

∣∣∣∣t− T

2

∣∣∣∣− 2βa
}
|∇xu|2

+
{
−2β

∣∣∣∣t− T

2

∣∣∣∣ |∇xa| + 2(∇xa · (x− x0) + na) + aψ − 2βa2

}
(∂tu)2

≥ c|∇xu|2

+
{
−2β|∇a|

∣∣∣∣t− T

2

∣∣∣∣ (1 + a) + 2∇a · (x− x0) + (4 − ε)a− 4βa2

}
(∂tu)2

due to choice (4.16) of ψ. Summing up, we can claim that for some small ε, in
view of (4.1), the factor of τw2 in (4.23) is not less than

c|∇xu|2 + c|∂tu|2,

with some constant c > 0, provided that

β <
2(∇a · (x− x0)) + 4a
T |∇a|(1 + a) + 4a2

on Q.

Similarly the coefficient of τ3w2 in (4.23) is
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[the coefficient of 2τ3w2u2]

=
∑

{2Ajψ(∂jϕ)2 + ∂k(AkAj∂kϕ)(∂jϕ)2

− 2∂j(AjAk∂kϕ)∂jϕ∂kϕ+ ∂j(AjAk∂jϕ(∂kϕ)2)}

= 8

{
(ψ + 2n+ 2aβ)|x− x0|2 − (aψβ2 + 2naβ2 + 2a2β3)

∣∣∣∣t− T

2

∣∣∣∣2
}

= 8

{(
4 − ε− 2β|∇a|

∣∣∣∣t− T

2

∣∣∣∣) |x− x0|2

−
(
β2(4 − ε)a− 2aβ3|∇a|

∣∣∣∣t− T

2

∣∣∣∣) ∣∣∣∣t− T

2

∣∣∣∣2
}

> 8

{
2β
∣∣∣∣t− T

2

∣∣∣∣2(aβ2|∇a|
∣∣∣∣t− T

2

∣∣∣∣
−
(
|∇a|

∣∣∣∣t− T

2

∣∣∣∣+ a

(
2 − ε

2

))
β +

(
2 − ε

2

))
+
(

4 − ε− 2β|∇a|
∣∣∣∣t− T

2

∣∣∣∣) δ2
}
.

Here we have used ϕ(t, x) > δ2 in Q(δ). The first and the third conditions in
(4.2) imply that

aβ2|∇a|
∣∣∣∣t− T

2

∣∣∣∣− (|∇a| ∣∣∣∣t− T

2

∣∣∣∣+ 2a
)
β + 2 > 0 on Q.

Then for sufficiently small ε > 0, we obtain

aβ2|∇a|
∣∣∣∣t− T

2

∣∣∣∣− (|∇a| ∣∣∣∣t− T

2

∣∣∣∣+ a

(
2 − ε

2

))
β

+
(

2 − ε

2

)
≥ 0 on Q.

Therefore, under the first condition in (4.2),

[the coefficient of 2τ3w2u2] ≥ 8
(

4 − ε− 2β|∇a|
∣∣∣∣t− T

2

∣∣∣∣) δ2
≥ 8(4 − ε− Tβ|∇a|)δ2.

Hence we choose a sufficiently small ε > 0, so that we can complete the proof
of Theorem 4.1.
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