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The 5-primary homotopy exponent of the
exceptional Lie group E8

By

Stephen D. Theriault

Abstract

We construct a new homotopy fibration at the prime 5, involving
E8 and Harper’s rank two finite mod-5 H-space. We then use this to
show that the 5-primary homotopy exponent of E8 is bounded above by
531, which is at most one power of 5 from being optimal.

1. Introduction

Let p be an odd prime. A torsion Lie group is a Lie group which has
p-torsion in its integral cohomology. Among the classical Lie groups, the only
torsion Lie groups are F4, E6, E7, and E8 at the prime 3, and E8 at the
prime 5. The homotopy exponent of a space X is the least power of p which
annihilates the p-torsion in π∗(X). We write this as exp(X) = pr. In [T1]
upper bounds were calculated for the homotopy exponents of F4 and E6 at 3
which equalled known lower bounds, thereby determining exact values for the
homotopy exponents. The purpose of this paper is to consider the case of E8

at 5.
Typically, the first step in exponent calculations is to decompose the

space into a product of indecomposable factors and consider the exponents
of each factor. In our case, Wilkerson [W] showed there is a 5-local equivalence
E8 � X ×Y , where H∗(X;Z/5Z) ∼= Z/5Z[x12]/(x5

12)⊗Λ(x3, x11, x27, x35) and
H∗(Y ;Z/5Z) ∼= Λ(x15, x23, x39, x47). This splitting of E8 cannot be improved
upon: Davis [D2] showed that X is indecomposable and Gonçalves [G] showed
that Y is indecomposable. The usual second step in exponent calculations is
to try to find suitable homotopy fibrations F

g−→ E
f−→ B in which E is the

space in question, exponent information is known both about the spaces F and
B and the maps f and g. In our case, Y turns out to be spherically resolved
and so is straightforward to deal with, but X is more subtle.

For some time it was thought that there was a further splitting, X �
K5 ×B(27, 35), where: (1) K5 is Harper’s rank two mod-5 H-space, satisfying
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570 Stephen D. Theriault

H∗(K5;Z/5Z) ∼= Z/5Z[x12]/(x5
12) ⊗ Λ(x3, x11), and (2) B(27, 35) is spheri-

cally resolved by a homotopy fibration S27 −→ B(27, 35) −→ S35, satisfying
H∗(B(27, 35);Z/5Z) ∼= Λ(x27, x35) with P1(x27) = x35. While X does not
satisfy this further splitting, it is possible that there is a homotopy fibration
B(27, 35) −→ X −→ K5. The existence of the right map is not known and we
do not prove this. Instead, we construct the left map (fairly straightforward)
and identify its homotopy fiber as ΩK5 (which is not obvious). Specifically, we
show:

Theorem 1.1. The following hold :

(a) there is a homotopy fibration ΩK5 −→ B(27, 35) −→ X,

(b) the space Y is spherically resolved, that is, there are homotopy
fibrations

Y1 −→ Y −→ S47, Y2 −→ Y1 −→ S39, and S15 −→ Y2 −→ S23.

Using the homotopy fibrations in Theorem 1.1 and information about the
homotopy exponents of spheres and of K5, we show exp(X) ≤ 531 (Proposi-
tion 6.1) and exp(Y ) ≤ 526 (Proposition 7.3). Consequently, we have:

Theorem 1.2. exp(E8) ≤ 531.

The upper bound in Theorem 1.2 is at most one power of 5 from being
optimal. Davis [D2] has shown that there are elements of order 530 in the
homotopy groups of E8. He did this by calculating the 5-primary v1-periodic
homotopy groups of E8, which represent a certain subcollection of all of the
homotopy groups of E8. It would be interesting to know if there is any element
in π∗(E8) whose order is 531, exceeding the orders of the elements represented
by v1-periodic homotopy.

An additional remark should be made. Ideally, one would like a homotopy
fibration B(27, 35) −→ X −→ K5, so in this sense Theorem 1.1 (a) is a little
unsatisfactory. On the other hand, the existence of such a fibration does not
seem to help improve the exponent bound on X. The key to calculating the
exponent bound on X is to advantageously factor (some loop of) the associated
map ΩK5 −→ B(27, 35) (see Section 6 for details). The construction we use to
prove Theorem 1.1 (a) produces such a factorization.

This paper is organized as follows. Sections 2, 3, and 4 are preliminary.
The first describes a method for calculating upper bounds on exponents for
certain fibrations, the second reviews the relevant properties of Harper’s space
Kp, and the third reviews the construction of an H-structure on B(27, 35).
Section 5 constructs the homotopy fibration of Theorem 1.1 (a). Section 6 uses
the homotopy fibration in Theorem 1.1 (a) to calculate an upper bound on
the 5-primary homotopy exponent of X. Section 7 constructs the homotopy
fibration of Theorem 1.1 (b) and calculates an upper bound on the 5-primary
homotopy exponent of Y .
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2. A method for computing upper bounds on exponents

In this section we outline a general method for calculating an upper bound
on the homotopy exponent of spaces which arise as the total space in certain
homotopy fibrations. The method is also described and applied in [T1].

If B is an H-space, the identity map can be multiplied by pr to give a map
B

pr

−→ B. Let B{pr} be the homotopy fiber of this map. By [N], the homotopy
exponent of B{pr} is pr.

Lemma 2.1. Suppose there is a homotopy fibration

F
f−→ E

g−→ B,

where E and B are H-spaces. Suppose as well there is a map B
i−→ E such

that g ◦ i � pr. Then there is a homotopy fibration

ΩF × ΩB
Ωf ·(−Ωi)−−−−−−→ ΩE −−−−−−→ B{pr}.

Consequently, exp(E) ≤ pr · max(exp(F ), exp(B)).

Proof. The homotopy g ◦ i � pr results in a homotopy pullback

B{pr} ��

��

B
pr

��

i

��

B

F
f �� E

g �� B.

Since E is an H-space we can multiply the maps f and −i. The pullback in
the diagram above then results in a homotopy fibration

B{pr} −−−−→ F × B
f ·(−i)−−−−→ E

which is analogous to a Mayer-Vietoris sequence. Continuing the homotopy
fibration sequence two steps to the left gives the fibration stated in the lemma.
The exponent bound immediately follows.

Remark 1. Lemma 2.1 is typically applied when B = S2n+1 or B =
ΩS2n+1.

We now consider an example of Lemma 2.1 which later plays a role in
our exponent calculations. Recall from [CMN] that at odd primes we have
exp(S2n+1) = pn.

Example 2.1. Let q = 2(p − 1). Let α1 ∈ πS
q−1(S

0) be a generator of
the stable stem. Following Mimura and Toda [MT], for m ≥ 1 define a space
B(2m+ 1, 2m+ q + 1) as the homotopy pullback

S2m+1 �� B(2m+ 1, 2m+ q + 1)
q ��

��

S2m+q+1

α1

��
S2m+1 �� S4m+3 w �� S2m+2,
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where w is the Whitehead product of the identity map on S2m with itself. As α1

has order p there is a characteristic map i : S2m+q+1 −→ B(2m+1, 2m+q+1)
satisfying q ◦ i � p. So by Lemma 2.1 we have exp(B(2m+ 1, 2m + q + 1)) ≤
p · exp(S2m+q+1) = pm+p.

It is sometimes possible to improve on the upper bound given by Lemma
2.1.

Corollary 2.1. With notation as in Lemma 2.1, suppose that Ωf ·(−Ωi)
has order ps. If s < max(exp(X), exp(Z)) then exp(Y ) ≤ pr+s.

3. Harper’s finite H-spaces

In [H] Harper constructs rank 2 finite H-spaces Kp, one for each odd prime
p, satisfying

H∗(Kp;Z/pZ) = Λ(x3, x2p+1) ⊗ Z/pZ[x2p+2]/(x
p
2p+2)

with P1(x3) = x2p+1 and β(x2p+1) = x2p+2. The three-connected cover Kp〈3〉
of Kp satisfies H∗(Kp〈3〉;Z/pZ) ∼= Λ(x2p2+1, x2p2+2p−1) ⊗ Z/pZ[x2p2 ], where
β(x2p2) = x2p2+1 and P1(x2p2+1) = x2p2+2p−1.

This section review some properties of Kp which we will later make use
of. Let Jp−1(S2n) be the (p − 1)st-stage of the James construction on S2n.
Let T : ΩJp−1(S2n) −→ ΩS2np−1 be the Toda map. Davis [D1], proving an
unpublished result of Harper, showed that there is a homotopy fibration

B(3, 2p+ 1) −→ Kp
π−→ Jp−1(S2p+1),

where π∗ is a monomorphism in cohomology and H∗(B(3, 2p + 1);Z/pZ) ∼=
Λ(x3, x2p+1). Taking three-connected covers, looping, and composing with the
Toda map gives a homotopy pullback

M ��

��

S2p+1 ��

��

B(3, 2p+ 1)〈3〉

ΩKp〈3〉 Ωπ ��

T

��

ΩJp−1(S2p+2) ��

T

��

B(3, 2p+ 1)〈3〉

ΩSp2+2p−1 ΩS2p2+2p−1,

where T is defined as the composite T ◦Ωπ, and the pullback defines the space
M . The following three statements were proven in [T1].

Proposition 3.1. The following hold :
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(a) There is a homotopy commutative square

ΩS2p2+2p−1
Ωt ��

p

��

ΩKp〈3〉
T

��
ΩS2p2+2p−1 ΩS2p2+2p−1

for some map t,

(b) exp(Kp) = pp2+p,

(c) exp(M) = p.

The space Kp also has the rare property that its homotopy type is deter-
mined by its cohomology.

Lemma 3.1. Suppose L is a space with the property that H∗(L;Z/pZ)
∼= H∗(Kp;Z/pZ). Then L is homotopy equivalent to Kp.

Proof. We need to briefly recall Harper’s construction ofKp [H]. LetN be
an unstable module over the mod-p Steenrod algebra and let U(N) be the free
unstable module over the mod-p Steenrod algebra generated by N . Suppose L
is a space such that H∗(L;Z/pZ) ∼= U(N). Then there is a Massey-Peterson
tower which coverges to L. Here the (horizontal) tower has the form

· · · �� P3
��

��

P2
��

��

P1
��

��

P0

��
G3 G2 G1 G0,

where the the Gi’s are products of Eilenberg-MacLane spaces, and the se-
quences Pi −→ Pi−1 −→ Gi−1 are homotopy fibrations. The sequence of
homotopy fibrations are constructed based on a projective resolution of N , and
the inverse limit of the tower is L.

In our case, let N = {x3, x2p+1, x2p+2} with P1(x3) = x2p+1 and β(x2p+1)
= x2p+2. Let Tp = U(N), so we have

Tp = Z/pZ[x2p+2]/(x
p
2p+2) ⊗ Λ(x3, x2p+1).

Note that Tp has dimension 2p2 + 2p + 2. Harper first observes there is an
epimorphism θ : H∗(K(Z, 3);Z/pZ) −→ Tp which is an isomorphism through
dimension 2p2. The tower then begins with P0 = K(Z, 3) and G0 the Eilenberg-
MacLane space which represents the cohomology class of lowest dimension in
the kernel of θ. It turns out that the (2p2+2p+2)-skeleton of P3 has cohomology
isomorphic to Tp and the Gi’s for i ≥ 3 are more than (2p2 +2p+2)-connected.
So the tower may as well cease at this point and the space Kp can be defined
as the (2p2 + 2p+ 2)-skeleton of P3.
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Now suppose L is a space with H∗(L;Z/pZ) ∼= H∗(Kp;Z/pZ). Begin
with a map L −→ K(Z, 3) which represents the three-dimensional generator
in H∗(L;Z/pZ). This gives an initial map into the tower above at level P0.
The existence of a lift through each stage of the tower is determined by a
cohomology calculation. The tower itself is determined by the unstable module
Tp, so the isomorphism H∗(L;Z/pZ) ∼= H∗(Kp;Z/pZ) ∼= Tp implies that the
initial map L −→ K(Z, 3) will iteratively lift to a map L −→ P3. Since L is
(2p2+2p+2)-dimensional, this lift factors through the (2p2+2p+2)-skeleton of
P3, which is Kp. We therefore have a map L −→ Kp which is an isomorphism
in cohomology and is therefore a homotopy equivalence.

Finally, we record the homology of ΩKp as calculated in [K].

Lemma 3.2. There is an algebra isomorphism

H∗(ΩKp) ∼= Z/pZ[d2, d2p, d2p2+2p−2]/(d
p
2).

The action of the dual Steenrod algebra satisfies P1
∗d2p = d2 and P1

∗d2p2+2p−2 =
dp
2p.

4. Cohen and Neisendorfer’s construction of finite H-spaces

In [CN] Cohen and Neisendorfer give a construction of finite p-local H-
spaces. As we will make use of this in detail for a particular example, we state
their result in full and then apply it to the case of interest.

Theorem 4.1. Fix an odd prime p. Let A be a p-local complex of l odd
dimensional cells, where l < p − 1. Then there is a homotopy fibration B −→
R′ −→ ΣA satisfying :

(a) ΩΣA � B × ΩR′,

(b) H∗(B;Z/pZ) ∼= Λ(xd1 , . . . , xdl
),

(c) the composite A
E−→ ΩΣA −→ B includes H̃∗(A;Z/pZ) into

H∗(B;Z/pZ) as the generating set of the exterior algebra.

Note that Theorem 4.1 (a) implies B is an H-space, and dualizing part (b)
gives H∗(B;Z/pZ) ∼= Λ(xd1 , . . . , xdl

). Another feature of Theorem 4.1 is that
if A is a suspension then R′ is as well, say R′ � ΣR. In this case, [T2] shows
that more can be said about the H-structure of B.

Theorem 4.2. If the space A in Theorem 4.1 is a suspension and l <
p − 2, then B is a homotopy associative, homotopy commutative H-space and
the homotopy fibration connecting map ΩΣA r−→ B can be chosen to be an
H-map.

We need to say something about the number of cells of in R′ and the di-
mensions in which they occur. A homological model for the homotopy fibration
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ΩR′ −→ ΩΣA −→ B is constructed in [CN] as follows. For a graded vector
space V , let L = L〈V 〉 be the free Lie algebra generated by V . Let UL be the
universal enveloping algebra; demanding that the elements of V are primitive
gives UL the structure of a Hopf algebra. A sub-Lie algebra of a free Lie alge-
bra is free, so [L,L] is a free sub-Lie algebra of L. Let Lab = L/[L,L]. With
V = H̃∗(A), there is a short exact sequence of Hopf algebras

0 −→ U [L,L] −→ UL −→ ULab −→ 0

and a splitting UL ∼= ULab ⊗U [L,L] which is an isomorphism of right U [L,L]-
modules and left ULab-comodules. This short exact sequence of universal en-
veloping algebras is a model for the sequence

H∗(ΩR′) −→ H∗(ΩΣA) −→ H∗(B).

In particular, the cells of R′ are in one-to-one correspondence with a Lie basis
for [L,L], where the dimension of the cell in R′ is one more than the dimension
of the corresponding Lie element.

Example 4.1. The specific case we are interested in is when p = 5
and l = 2. Let α1 ∈ πS

7 represent a generator of the stable 7-stem. Let
A = S27 ∪α1 e

35. Applying Theorem 4.1, and observing that A is a suspension,
gives a homotopy fibration

B(27, 35) −→ ΣR −→ ΣA,

where B(27, 35) is an H-space satisfying H∗(B(27, 35);Z/5Z) ∼= Λ(x27, x35).
Since α1 is detected by the Steenrod operation P1 we have P1(x27) = x35.
We have L = L〈u27, v35〉, and [CN] show that a Lie basis for the free Lie
algebra [L,L] is {[u, u], [u, v], [v, v], [u, [u, v]], [u, [v, v]]}. Thus R is a five-cell
complex whose homology has a vector space basis {x54, x62, x70, x89, x97} with
P1(x54) = x62, P1(x62) = x70, and P1(x89) = x97. Finally, Theorem 4.2
implies that the homotopy fibration connecting map r : ΩΣA −→ B(27, 35)
can be chosen to be an H-map.

5. The fibration ΩK5 −→ B(27, 35) −→ X

This is the central section of the paper. We prove the existence of the
homotopy fibration in Theorem 1.1 (a) which we will later use in Section 6 to
calculate an upper bound on the homotopy exponent of X. Throughout we use
the spaces described in Example 4.1.

The strategy of the proof is as follows. We first show there is a map
f : A −→ X which is an epimorphism in cohomology. Since X is an H-space,
we can take the pullback of Σf and the Hopf fibration X −→ X ∗X −→ ΣX
to obtain a homotopy fibration sequence ΩΣA ∂−→ X −→ W −→ ΣA. Since
ΩΣA � B(27, 35)×ΩΣR we obtain a composite ∂ : B(27, 35) −→ ΩΣA ∂−→ X
which extends f . The existence of ∂ will not be enough to allow us to identify
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its homotopy fiber as ΩK5. For that we need the much more powerful statement
that ∂ factors through ∂. The homotopy fiber F of ∂ is then a retract of ΩW .
In addition, we show there is a map K5 −→ W which is an epimorphism in
cohomology and then use this to show that the composite ΩK5 −→ ΩW −→ F
is a homotopy equivalence.

The bulk of the work is in proving the factorization of ∂, which appears
in Corollary 5.1. The factorization is a consequence of the triviality of the

composite R
λ̃−→ ΩΣA ∂−→ X, where λ̃ is the adjoint of λ. The proof of

this null homotopy involves several low-dimensional calculations. These are
partly based on the fact that R is a five-cell complex with cells in dimensions
{54, 62, 70, 89, 97}. A glance ahead will show how often these dimensions (or
those for ΣR) appear in the statements of the coming Lemmas.

We begin by setting some notation. For a space Z, let Z〈3〉 be the three-
connected cover of Z. We will denote the t-skeleton of a space Z by (Z)t (the
parantheses are added to avoid confusion with the notation for the spaceK5, for
example). Throughout, all cohomology calculations are with Z/5Z-coefficients.

We record some cohomology calculations which will be repeatedly referred
to. The calculation for B(27, 35) is trivial, those for K5 and K5〈3〉 were already
mentioned in Section 3, and those for X and X〈3〉 are derived from H∗(E8)
and the 5-local splitting E8 � X × Y .

Lemma 5.1. The following hold :

(a) H∗(B(27, 35)) ∼= Λ(x27, x35) with P1(x27) = x35,

(b) H∗(K5) ∼= Z/5Z[x12]/(x5
12) ⊗ Λ(x3, x11) with β(x11) = x12 and

P1(x3) = x11,

(c) H∗(K5〈3〉) ∼= Z/5Z[y50] ⊗ Λ(y51, y59) with β(y50) = y51 and
P1(y51) = y59,

(d) the map H∗(K5) −→ H∗(K5〈3〉) sends x27, x35 to y27, y35,

(e) H∗(X) ∼= H∗(K5) ⊗H∗(B(27, 35)),

(f) H∗(X〈3〉) ∼= H∗(K5〈3〉) ⊗H∗(B(27, 35)),

(g) the isomorphisms in parts (e) and (f) are as modules over the
Steenrod algebra.

Lemma 5.2. There is a map f : A −→ X which is an epimorphism in
cohomology. Its three-connected cover f〈3〉 : A −→ X〈3〉 is also an epimor-
phism in cohomology.

Proof. Lemma 5.1 (f) shows that the 35-skeleton of X〈3〉 is homotopy
equivalent to A. Let f be the composite

f : A �−→ (X〈3〉)35 −→ X〈3〉 −→ X.
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Then parts (d) and (e) of Lemma 5.1 imply that f is an epimorphism in coho-
mology. The three-connected cover of f is the inclusion A −→ X〈3〉.

Since X is a retract of E8, it is an H-space. The Hopf construction then
gives a homotopy fibration X −→ X ∗ X −→ ΣX. Combining this with the
map Σf from Lemma 5.2 gives a homotopy pullback

X �� W ��

��

ΣA

Σf

��
X �� X ∗X �� ΣX

which defines the space W . Let ∂ : ΩΣA −→ X be the connecting map for the
homotopy fibration along the top row of the pullback.

This paragraph is intended to motivate the series of Lemmas leading
up to Corollary 5.1. Since ΩΣA � B(27, 35) × ΩΣR we have H∗(ΩΣA) ∼=
H∗(B(27, 35)) ⊗ H∗(ΩΣR). By Lemma 5.1 (e) we have H∗(X) ∼= H∗(K5) ⊗
H∗(B(27, 35)). It should be the case that the fibration connecting map ΩΣA

∂−→ X has the property that ∂∗ factors through H∗(B(27, 35)), suggesting that
we have H∗(W ) ∼= H∗(K5)⊗H∗(ΣR). It might even be the case that there is a
homotopy equivalence W � K5 ×ΣR. Going one step further, it might be pos-
sible to choose this homotopy equivalence so the composite ΣR −→W −→ ΣA
is homotopic to λ. If this were the case we could jump immediately to Corol-
lary 5.1 and it would be relatively straightforward to prove the existence of the
homotopy fibration in Theorem 1.1 (a). However, it is not clear at this point
that such a factorization of ∂∗ exists, let alone such a homotopy decomposition
of W . In trying to prove such properties it would be advantageous if we knew
that X were homotopy associative. But the H-structure on X comes from its
retraction off the loop space E8, and this retraction may not give a multipli-
cation on X which is homotopy associative. Faced with these disadvantages,
we resort to low dimensional calculations and prove statements only through a
skeletal range. This, though, will suffice since the key dimension, that of ΣR,
is 98. We do the cohomology calculations in Lemmas 5.3 through 5.8, and then
use them in the homotopy calculations of Lemma 5.9 through Proposition 5.1.

Lemma 5.3. There is an isomorphism H∗(W ) ∼= H∗(K5 × ΣR) for
∗ ≤ 62, which is valid as modules over the Steenrod algebra.

Proof. Consider the Serre spectral sequence for the homotopy fibration
X −→W −→ ΣA which converges to H∗(W ). Recall from Lemma 5.1 (e) that
H∗(X) ∼= Z/5Z[x12]/(x5

12) ⊗ Λ(x3, x11, x27, x35). Let {y28, y36} be a vector
space basis for H∗(ΣA). We have E2(W ) ∼= H∗(X) ⊗H∗(ΣA). The definition
of W involving the map Σf from Lemma 5.2 implies that x27 and x35 transgress
to y28 and y36 respectively. It is then seen that a complete list of the elements
of the E2-term in dimensions < 63 which survive to E∞ is given by: (1) the
subalgebra Z/5Z[x12]/(x5

12) ⊗ Λ(x3, x11) of H∗(X) which appears along the
vertical axis, and (2) the two additional elements x27⊗y28 and x3x27⊗y28. Note
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that the subalgebra in (1) is isomorphic toH∗(K5). The element x27⊗y28 in (2)
forms a module over the Steenrod algebra which is isomorphic to H∗(S55) ∼=
Λ(z55). The element x3x27⊗y28 in (2) then corresponds to the product element
x3 ⊗ z55 in H∗(K5 × S55). Thus H∗(W ) ∼= H∗(K5 × S55) for ∗ ≤ 62. Finally,
observe that (ΣR)62 � S55.

Lemma 5.4. There is a map g : K5 −→W with the property that g∗ is
an epimorphism.

Proof. Recall that the two lowest dimensional cells of ΣR are in dimen-
sions 55 and 63. So (ΣR)62 = S55. We will show there is a map (W )62 −→
(ΣR)62 = S55. Suppose for now this map has been constructed. Let F be its
homotopy fiber. Then the Serre spectral sequence shows that H∗(F ) ∼= H∗(K5)
for ∗ ≤ 64. In particular, K5 is 62-dimensional so (F )62 has cohomology isomor-
phic to that ofK5. Lemma 3.1 says that the homotopy type ofK5 is determined
by its cohomology, so (F )62 � K5. The composite K5

�−→ (F )62 −→ F −→
(W )62 −→W then gives the asserted map.

It remains to show there is a map (W )62 −→ S55. A vector space basis for
H∗(W ) in dimensions 55 ≤ k ≤ 62 has one element in each of the dimensions
{55, 59, 62} and two elements in dimension 58. The 55-dimensional element
corresponds to the bottom cell of ΣR in the isomorphism of Lemma 5.3. Begin
with the pinch map onto this cell, q : (W )55 −→ S55. We wish to extend q
to a map (W )62 −→ S55. To do so we need to extend q over the 58, 59, and
62-dimensional cells in (W )62. The obstructions to doing so lie in π57(S55),
π58(S55), and π61(S55). But each of these groups is zero.

It becomes easier at this point to work with three-connected covers, simply
because X〈3〉, K5〈3〉, and W 〈3〉 are much more sparse in cohomology through
dimension 98 than X, K5, and W . The three-connected cover of the homotopy
fibrationX −→W −→ ΣA gives a homotopy fibrationX〈3〉 −→W 〈3〉 −→ ΣA.

Instead of phrasing the coming statements in terms of a product K〈3〉×ΣR
as in Lemma 5.3, we use a wedge K5〈3〉∨ΣR. We can then consider the wedge
sum of maps into W 〈3〉. Note that we do not miss out on anything because
the bottom cells of K5〈3〉 and ΣR are in dimensions 50 and 55 respectively, so
the first nontrivial cross-product in H∗(K5 ×ΣR) occurs in dimension 105. In
other words, there is a homotopy equivalence (K5〈3〉 ∨ ΣR)t � (K5〈3〉 × ΣR)t

for t ≤ 104.

Lemma 5.5. There is an isomorphism H∗(W 〈3〉) ∼= H∗(K5〈3〉 ∨ ΣR)
for ∗ ≤ 98, which is valid as modules over the Steenrod algebra.

Proof. Consider the Serre spectral sequence for the homotopy fibration
X〈3〉 −→ W 〈3〉 −→ ΣA which converges to H∗(W 〈3〉). By Lemma 5.1 (f),
H∗(X〈3〉) ∼= Z/5Z[x50] ⊗ Λ(x27, x35, x51, x59). Let {y28, y36} be a vector space
basis for H∗(ΣA). We have E2(W 〈3〉) ∼= H∗(X〈3〉) ⊗H∗(ΣA). The definition
of W involving the map Σf from Lemma 5.2 implies that x27 and x35 transgress
to y28 and y36 respectively. It is then seen that a complete list of the elements
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of the E2-term in dimensions ≤ 98 which survive to E∞ is

{x50, x51, x59, x27 ⊗ y28, x27 ⊗ y36, x35 ⊗ y36, x27x35 ⊗ y28, x27x35 ⊗ y36}.

The monomials of length 1 in this list correspond to the three cells of K5〈3〉
below dimension 98. The monomials of lengths 2 and 3 form a module over
the Steenrod algebra which is isomorphic to H∗(ΣR). This proves the asserted
isomorphism.

Lemma 5.6. The map K5〈3〉 g〈3〉−→ W 〈3〉 obtained from Lemma 5.4 by
taking three-connected covers has the property that (g〈3〉)∗ is an epimorphism
through dimension 98.

Proof. Lemma 5.1 (c) shows that K5〈3〉 has no cells in dimensions 60
through 98, so (K5〈3〉)98 � (K5〈3〉)59. It therefore suffices to prove that (g〈3〉)∗
is an epimorphism through dimension 59. Lemma 5.1 (c) also shows that a
vector space basis forH∗((K5〈3〉)59) is given by {y50, y51, y59} with β(y50) = y51
and P1(y51) = y59. The Steenrod operations then imply that it suffices to show
that (g〈3〉)∗ is an epimorphism just in dimension 50.

Consider the homotopy pullback

F

��

F

��
K5〈3〉 ��

g〈3〉
��

K5
��

g

��

K(Z, 3)

W 〈3〉 �� W �� K(Z, 3).

Lemmas 5.3 and 5.4 imply that F is 53-connected. Thus g〈3〉 is a homotopy
equivalence through dimension 53, and so in particular (g〈3〉)∗ is an epimor-
phism in dimension 50.

Lemma 5.7. Let t ∈ {55, 63, 71, 90, 98}. Suppose the restriction of λ to
the t-skeleton of ΣR lifts to some map λ′:

(ΣR)t

(λ)t

��

λ′

�����
��

��
��

W 〈3〉 �� ΣA.

Then (λ′)∗ is an epimorphism.

Proof. First, we prove the Lemma in the case when λ lifts to W 〈3〉 with-
out restriction. This corresponds to the t = 98 case since ΣR has dimension 98.
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From the existence of a lift we obtain a homotopy pullback

B(27, 35) ��

j

��

ΣR
λ ��

λ′

��

ΣA

X〈3〉 �� W 〈3〉 �� ΣA

for some map j. Continuing the homotopy fibration sequences one step to the

left we see that the connecting map ΩΣA
∂〈3〉−→ X〈3〉 factors as the composite

ΩΣA r−→ B(27, 35)
j−→ X〈3〉. Since the composite A E−→ ΩΣA

∂〈3〉−→ X〈3〉 is
homotopic to the map f appearing in Lemma 5.2, we see that j extends f .

Now consider the Serre spectral sequences for the horizontal fibrations
which converge to H∗(ΣR) and H∗(W 〈3〉). Since j extends f , j∗ is an epi-
morphism and therefore there is an epimorphism E2(W 〈3〉) = H∗(X〈3〉) ⊗
H∗(ΣA) −→ E2(ΣR) = H∗(B(27, 35)) ⊗ H∗(ΣA). The differentials in both
spectral sequences are determined by the respective transgressions of x27, x35 ∈
H∗(X〈3〉) and x̄27, x̄35 ∈ H∗(B(27, 35)) to y28, y35 ∈ H∗(ΣA). The transgres-
sions in these two spectral sequences are determined by f � ∂〈3〉 ◦ E and
r ◦ E respectively. Since ∂〈3〉 � r ◦ j, we see that the epimorphism of E2-
terms above respects the differentials in each page of the spectral sequence
and so the map E∞(W 〈3〉) −→ E∞(ΣR) is also an epimorphism. Hence

H∗(W 〈3〉) (λ′)∗−→ H∗(ΣR) is an epimorphism.
Now consider the cases when t < 98. We have a homotopy pullback

G

��

G

��
F ��

��

(ΣR)t

(λ)t ��

��

ΣA

B(27, 35) �� ΣR
λ �� ΣA.

Since the cells of ΣR are in the same dimensions as the possible values of t, the
inclusion (ΣR)t −→ ΣR is actually at least (t+ 7)-connected. The five-lemma
then implies that the map F −→ B(27, 35) is also at least (t + 7)-connected.
This extra boost of 7 in connectivity ensures that the argument above in the
unrestricted case is also valid in dimensions ≤ t when the homotopy fibration

B(27, 35) −→ ΣR λ−→ ΣA is replaced by F −→ (ΣR)t
(λ)t−→ ΣA.

Lemma 5.8. Let t ∈ {55, 63, 71, 90, 98}. If there is a lift λ′ as in
Lemma 5.7, then the wedge sum

(K5 ∨ ΣR)t
(g〈3〉⊥λ′)t−−−−−−→ (W 〈3〉)t

is a homotopy equivalence.
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Proof. By Lemma 5.6, (g〈3〉)∗ is an epimorphism through dimension 98.
By Lemma 5.7, (λ′)∗ is an epimorphism. Now observe that through dimen-
sion 98, K5 has cells in dimensions {50, 51, 59} while ΣR has cells in dimensions
{55, 63, 71, 90, 98}. As these two sets are disjoint, ((g〈3〉 ⊥ λ′)t)∗ is an epimor-
phism. The isomorphism in Lemma 5.3 then implies that ((g〈3〉 ⊥ λ′)t)∗ is an
isomorphism. Hence (g〈3〉 ⊥ λ′)t is a homotopy equivalence.

We now turn from cohomology to homotopy. We wish to geometrically
realize the homology isomorphism H∗(W 〈3〉) ∼= H∗(K5〈3〉∨ΣR) in Lemma 5.5
as a homotopy equivalence (W 〈3〉)98 � (K5〈3〉 ∨ ΣR)98. In addition, noting
that ΣR has dimension 98, we wish to choose the homotopy equivalence so the
composite ΣR −→ (W 〈3〉)98 −→ ΣA is homotopic to λ. In other words, we
want to show that the map ΣR λ−→ ΣA lifts through the map W 〈3〉 −→ ΣA.
To do so we proceed by incrementally increasing dimension. The first step is in
Lemma 5.11, and the succeeding steps in Proposition 5.1 advance in dimensional
steps corresponding to the dimensions of the cells of ΣR.

We need a couple preliminary lemmas. The first records some trivial (5-
local) homotopy groups of B(27, 35).

Lemma 5.9. πt(B(27, 35)) = 0 for t ∈ {54, 62, 70, 89, 97}.
Proof. Since there is a homotopy fibration S27 −→ B(27, 35) −→ S35, the

Lemma will follow if πt(S27) = πt(S35) = 0 for t ∈ {54, 62, 70, 89, 97}. These
homotopy groups of spheres are all in the stable range and it is well known that
the corresponding 5-stems in each case are trivial.

Lemma 5.10. Let C be a finite CW -complex with cells in dimensions
{t1, . . . , tn}. Suppose Z is a space and there is a map f : C −→ Z. If πt1(Z) =
· · · = πtn

(Z) = 0, then f is null homotopic.

Proof. To simplify notation, we assume that C has a single cell in each di-
mension tj , the general case being similar. Iteratively pinching out the bottom
cell gives a sequence of cofibrations St1 = (C)t1 −→ C −→ C/(C)t1 , S

t2 −→
C/(C)t1 −→ C/(C)t2 , . . . , Stn−1 −→ C/(C)tn−2 −→ C/(C)tn−1 = Stn . Since
πt1(Z) = 0, f extends to a map f1 : C/(C)t1 −→ Z. Since πt2(Z) = 0, f1
extends to a map f2 : C/(C)t2 −→ Z. Continuing in this way we obtain an
extension fn−1 : C/(C)tn−1 = Stn −→ Z. Since πtn

(Z) = 0, fn−1 is null
homotopic, and hence f is null homotopic.

Lemma 5.11. There is a homotopy equivalence

(W 〈3〉)59 � (K5〈3〉 ∨ ΣR)59.

Proof. By Lemma 5.6, the restriction of K5〈3〉 g〈3〉−→W 〈3〉 to 59-skeletons
is an epimorphism in cohomology. The description of H∗(W 〈3〉) in Lemma 5.5
says that (W 〈3〉)59 has only one cell in dimension 55 not accounted for by
(g〈3〉)59. This cell is attached by a cofibration S54 h−→ (W 〈3〉)54 −→ (W 〈3〉)55.



�

�

�

�

�

�

�

�

582 Stephen D. Theriault

Lemma 5.5 also tells us that (W 〈3〉)54 is homotopy equivalent to the mod-
5 Moore space P 51(5). Since π54(P 51(5)) = π54(S51) ⊕ π54(S50) = 0, the
attaching map h is trivial and so there is a homotopy equivalence (W 〈3〉)55 �
P 51(5) ∨ S55. Let s be the composite of inclusions s : S55 −→ (W 〈3〉)55 −→
W 〈3〉. Then the wedge sumK5〈3〉∨S55 g⊥s−→W 〈3〉 is a cohomology isomorphism
through dimension 59 and therefore a homotopy equivalence when restricted to
59-skeletons. Finally, observe that (ΣR)59 is homotopy equivalent to S55.

The next Lemma is key to making our incremental approach work. Special
attention should be paid to the fact that the hypotheses are in terms of the
t-skeleton of ΣR while the conclusion is in terms of the (t+ 1)-skeleton.

Lemma 5.12. Let t ∈ {54, 62, 70, 89, 97}. Suppose there is a homotopy
equivalence (W 〈3〉)t � (K5〈3〉 ∨ ΣR)t. Suppose as well that the composite
ε : (X〈3〉)t −→ (W 〈3〉)t −→ (K5〈3〉)t is a monomorphism in cohomology,
where the right map is the pinch onto the wedge summand. Then there is a lift
of (λ)t+1 to some map λ′:

(ΣR)t+1

(λ)t+1

��

λ′

�����������

W 〈3〉 �� ΣA.

Proof. Let λ̃ : R −→ ΩΣA be the adjoint of λ. The existence of the lift in

the statement of the lemma is equivalent to the composite (R)t
(λ̃)t−→ ΩΣA

∂〈3〉−→
X〈3〉 being null homotopic. We prove the equivalent statement.

Suppose for the moment there exists a homotopy fibration F −→ X〈3〉 e−→
K5〈3〉 where e∗ sends H∗(K5〈3〉) isomorphically onto the corresponding tensor
factor in H∗(X〈3〉) ∼= H∗(K5〈3〉) ⊗ H∗(B(27, 35)). Then the Serre spectral
sequence shows that H∗(F ) ∼= H∗(B(27, 35)). But by [MNT, 7.1], the homo-
topy type of B(27, 35) is determined by its cohomology, so there is a homotopy
equivalence F � B(27, 35).

Now, the map e may not exist, but by hypothesis a restricted version
ε does exist for a given value of t. Consider the homotopy fibration G −→
(X〈3〉)t

ε−→ (K5〈3〉)t. Tracing through the Serre spectral sequence calculation
above for H∗(F ), we see that there is an isomorphism H∗(G) ∼= H∗(B(27, 35))
for ∗ ≤ t. Note that this depends on the specific values of t. Hence there is a
homotopy equivalence (G)t � (B(27, 35))t.

Next, because ε factors through (W 〈3〉)t, the composite (ΩΣA)t
(∂〈3〉)t−−−−→

(X〈3〉)t
ε−−−−→ (K5〈3〉)t factors through the t-skeletons of two consecutive maps

in a homotopy fibration and so is null homotopic. Thus (∂〈3〉)t lifts to a map
(ΩΣA)t −→ G. Consider the composite

ϕ : (R)t
(λ̃)t−→ (ΩΣA)t −→ G.
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For dimensional reasons, ϕ factors through the t-skeleton of G, which we just
saw is homotopy equivalent to (B(27, 35))t (which is simply B(27, 35) if t > 59).
The cells of R occur in the same dimensions as the possible values of t, and
Lemma 5.9 states that the homotopy groups of B(27, 35) are trivial in those
same dimensions. So by Lemma 5.10, ϕ is null homotopic. Since ϕ is a lift of
(∂〈3〉 ◦ λ̃)t, we see that the latter map is null homotopic, as required.

Proposition 5.1. There is a lift of λ to some map λ′:

ΣR

λ

��

λ′

����������

W 〈3〉 �� ΣA.

Proof. As a reminder, ΣR is a five-cell complex with cells in dimensions
{55, 63, 71, 90, 98}.

Lemma 5.11 shows that there is a homotopy equivalence (W 〈3〉)59 �
(K5〈3〉 ∨ΣR)59. The cohomology description of (W 〈3〉)98 in Lemma 5.5 shows
that W 〈3〉 has no additional cells in dimensions 60 through 62. The same is
true of K5〈3〉 and ΣR. So in fact we have a homotopy equivalence (W 〈3〉)62 �
(K5〈3〉∨ΣR)62. By Lemma 5.12 this implies the restriction of λ to (ΣR)63 lifts
to W 〈3〉; call this lift λ′ : (ΣR)63 −→ W 〈3〉. Then by Lemma 5.8, the wedge
sum

(K5〈3〉 ∨ ΣR)63
(g⊥λ′)63−−−−−−→ (W 〈3〉)63

is a homotopy equivalence.
Now repeat the procedure in the first paragraph. Having dealt with the 63-

dimensional cell in ΣR, the next cell occurs in dimension 71. Arguing as above,
we have (W 〈3〉)63 � (W 〈3〉)70 and (W 〈3〉)70 � (K5〈3〉 ∨ ΣR)70. Lemma 5.12
then implies the restriction of λ to (ΣR)71 lifts to W 〈3〉, and so Lemma 5.8
gives a homotopy equivalence (W 〈3〉)71 � (K5〈3〉 ∨ΣR)71. We can continue in
this way, lifting the restriction of λ to the 90 and 98-skeletons of ΣR to W 〈3〉.
But as ΣR has dimension 98, we have in fact lifted λ (without restriction) to
W 〈3〉.

Corollary 5.1. The composite ΩΣR Ωλ−→ ΩΣA ∂−→ X is null homo-
topic.

Proof. The homotopy fibration ΩW 〈3〉 −→ ΩΣA
∂〈3〉−→ X〈3〉 together with

the lift in Proposition 5.1 shows that ∂〈3〉◦Ωλ is null homotopic. The Corollary
immediately follows.

Recall that the homotopy fibration ΩΣR Ωλ−→ ΩΣA r−→ B(27, 35) splits as
ΩΣA � B(27, 35) × ΩΣR. Let s : B(27, 35) −→ ΩΣA be a right homotopy
inverse of r. Let ∂ be the composite

∂ : B(27, 35) s−→ ΩΣA ∂−→ X.
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Lemma 5.13. There is a factorization

ΩΣA
∂ ��

r

��

X

B(27, 35) ∂ �� X.

Proof. The homotopy fibration connecting map ΩΣA ∂−→ X has an action
θX : ΩΣA ×X −→ X which makes the right square in the following diagram
homotopy commute:

B(27, 35) × ΩΣR
s×Ωλ ��

π1

��

ΩΣA× ΩΣA
µ ��

1×∂

��

ΩΣA

∂

��
B(27, 35)

s×∗ �� ΩΣA×X
θX �� X.

As for the left square, π1 is the projection onto the first factor and the left
square homotopy commutes by Corollary 5.1. Observe that the top row is
a homotopy equivalence e, while the bottom row is homotopic to ∂. So the
homotopy commutative square shows that ∂ ◦ e � ∂ ◦ π1. Composing on the
right with e−1 then gives ∂ � ∂ ◦ π1 ◦ e−1. If we knew that π1 ◦ e−1 was
homotopic to r then the proof would be complete.

To show π1 ◦ e−1 � r we need to use the fact that r is also a homotopy
fibration connecting map (by its definition) and so there is a homotopy ac-
tion θB : ΩΣA × B(27, 35) −→ B(27, 35). The same diagram as above with
(X, ∂, θX) replaced by (B(27, 35), r, θB) shows that r ◦e � θB ◦ (s×∗)◦π1. But
θB ◦ (s×∗) is homotopic to the identity map on B(27, 35) so we have r◦e � π1.
Composing on the right with e−1 then gives r � π1 ◦ e−1, as required.

Extending the diagram in Lemma 5.13 gives a homotopy pullback

ΩW ��

r′

��

ΩΣA
∂ ��

r

��

X

F
ϕ �� B(27, 35) ∂ �� X

which defines the space F and the maps ϕ and r′.

Lemma 5.14. F is an H-space, ϕ and r′ are H-maps, and r′ has a
right homotopy inverse.
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Proof. Consider the iterated homotopy pullback diagram

F
s′

��

ϕ

��

ΩW
r′

��

��

F

ϕ

��
B(27, 35) s ��

∂

��

ΩΣA
r ��

∂

��

B(27, 35)

∂

��
X X X.

Here, s′ is defined by the left pullback. Observe that the outer diagram is also
a homotopy pullback. Thus, as r ◦ s is homotopic to the identity on B(27, 35),
we have r′ ◦ s′ homotopic to the identity on F . This shows that r′ has a right
homotopy inverse and F is a retract of an H-space and so is an H-space itself.

The pullbacks above, together with the fact that ΩW −→ ΩΣA is a loop
map, give a homotopy commutative diagram

F × F
s′×s′

��

ϕ×ϕ

��

ΩW × ΩW
µ ��

��

ΩW
r′

��

��

F

ϕ

��
B(27, 35) ×B(27, 35)

s×s �� ΩΣA× ΩΣA
µ �� ΩΣA

r �� B(27, 35).

The top and bottom rows are the definitions of the mulitplications µF and µB

on F and B(27, 35) respectively. Thus ϕ is an H-map.
Finally, recall from Example 4.1 that r can be chosen to be anH-map. The

pullback of r and ϕ (immediately preceeding the Lemma) is then a pullback of
H-spaces and H-maps, so r′ can be chosen to be an H-map.

We wish to calculate H∗(F ) and show it is isomorphic to H∗(ΩK5). To do
so, we need to improve the isomorphism H∗(X) ∼= H∗(K5) ⊗H∗(B(27, 35)) of
Lemma 5.1 (e) from being one only of modules over the Steenrod algebra.

Lemma 5.15. There is a short exact sequence of Hopf algebras

0 −→ H∗(K5) −→ H∗(X) ∂
∗

−→ H∗(B(27, 35)) −→ 0

and a splitting H∗(X) ∼= H∗(K5)⊗H∗(B(27, 35)) of left H∗(K5)-modules and
right H∗(B(27, 35))-comodules.

Proof. Let A = H∗(K5), B = H∗(X), and C = H∗(B(27, 35)). Since
each of K5, X, and B(27, 35) are H-spaces, A, B, and C are Hopf algebras.
Let ψA, ψB , and ψC be the comultiplications on A, B, and C respectively.
Lemma 5.1 (b) says that, as an algebra A ∼= Z/5Z[x12] ⊗ Λ(x3, x11). Since
ψA is an algebra homomorphism, it is determined by its value on the algebra
generators x3, x11, and x12. But for degree reasons, the reduced diagonal on
each of these elements is zero and so each is primitive. Hence the isomorphism
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for A above is actually as (primitively generated) Hopf algebras. Similarly,
C ∼= Λ(x27, x35) is an isomorphism of (primitively generated) Hopf algebras.
Lemma 5.1 (e) says there is an algebra isomorphism B ∼= A ⊗ C. Again, for
degree reasons, ψB is primitive on x3, x11, and x12. Thus there is a Hopf
algebra inclusion i : A −→ B. On the other hand, B27 and B35 have vector
space bases {x27, x3x

2
12} and {x35, x11x

2
12} respectively. So degree arguments

alone are not sufficient to show that x27, x35 ∈ B are primitive. But their
reduced diagonals, if not zero, are in A⊗ A.

Next, the map of spaces B(27, 35) ∂−→ X gives an algebra map ∂
∗

: B −→
C which is the projection of B ∼= A ⊗ C onto C. We now wish to compare
(∂

∗ ⊗ ∂
∗
) ◦ ψB and ψC ◦ ∂∗. Since ψB and ψC are algebra homomorphisms, it

suffices to check what happens to the algebra generators in B. But ∂
∗

is zero
on x3, x11, and x12, and we have just seen that ψB(x27), ψB(x35) ∈ A ⊗ A,
showing that (∂

∗ ⊗ ∂
∗
) ◦ ψB = ψC ◦ ∂∗. Hence ∂

∗
is actually a Hopf algebra

homomorphism. Combining the previous two paragraphs, we obtain a short
exact sequence of Hopf algebras

0 −→ A
i−→ B

∂
∗

−→ C −→ 0

and a splitting B ∼= A⊗ C as left A-modules and right C-comodules.

Lemma 5.16. There is an algebra isomorphism H∗(F ) ∼= H∗(ΩK5).

Proof. We begin with the Eilenberg-Moore spectral sequence for the ho-

motopy fibration F −→ B(27, 35) ∂−→ X which converges to H∗(F ). We
have E2(F ) = TorH∗(X)(H∗(B(27, 35)),Z/5Z), and the spectral sequence con-
verges to H∗(F ) as a coalgebra. The isomorphism of left H∗(K5)-modules
in Lemma 5.15 implies TorH∗(X)(H∗(B(27, 35)),Z/5Z) ∼= TorH∗(K5)(Z/5Z,
Z/5Z). The right side in this equation converges, as a coalgebra, to H∗(ΩK5).
Hence there is a coalgebra isomorphism H∗(F ) ∼= H∗(ΩK5). Dualizing proves
the Lemma.

Lemma 5.17. The composite ΩK5
Ωg−→ ΩW r′

−→ F is a homotopy
equivalence.

Proof. Let t = r′◦Ωg. We are considering H∗(ΩK5)
t∗−→ H∗(F ). To show

t is a homotopy equivalence it suffices to show that t∗ is an isomorphism. By
Lemma 5.16, there is an algebra isomorphism H∗(F ) ∼= H∗(ΩK5). As well, by
Lemma 5.14, r′ is an H-map and so t is also an H-map. Thus to show t∗ is an
isomorphism it suffices to do so on algebra generators. By Lemma 3.2, H∗(ΩK5)
has three algebra generators and they are all connected by Steenrod operations,
so it suffices to show that t∗ is an isomorphism on the lowest dimensional
algebra generator – that is, on the bottom cell. But this follows since both
(Ωg)∗ and (r′)∗, by their definitions, are isomorphisms on the bottom cell.

Let a be the composite

a : K5
g−→W −→ ΣA.
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Let γ be the composite

γ : ΩK5
Ωa−→ ΩΣA r−→ B(27, 35).

Proof of Theorem 1.1 (a). Lemma 5.17 and the pullback immediately
preceding Lemma 5.14 imply that there is a homotopy fibration ΩK5

γ−→
B(27, 35) ∂−→ X.

6. The exponent of X

We begin by factoring certain maps to get more control over the com-
ing exponent calculations. In Section 5 we constructed a homotopy fibration

ΩK5
γ−→ B(27, 35) ∂−→ X where γ was defined as the composite ΩK5

Ωa−→
ΩΣA r−→ B(27, 35). Let δ : ΩX −→ ΩK5 be the homotopy fibration connect-
ing map.

Recall from Section 3 that there is a homotopy fibration B(3, 11) b−→
K5 −→ J4(S12). The dimension of B(3, 11) is 14 while the connectivity of
ΣA is 26, so the composite B(3, 11) b−→ K5

a−→ ΣA is null homotopic. Let
C be the homotopy cofiber of b. Then a ◦ b � ∗ implies there is a homotopy
commutative square

K5
��

a

��

C

c

��
ΣA ΣA

for some map c. As well, there is a homotopy fibration diagram

ΩK5
��

��

ΩJ4(S12) ��

d

��

B(3, 11) b ��

��

K5

��
ΩC ΩC �� ∗ �� C

for some map d. The previous two diagrams show that the composite ΩK5 −→
ΩJ4(S12) d−→ ΩC Ωc−→ ΩΣA r−→ B(27, 35) is homotopic to γ. Define e :
ΩJ4(S12) −→ B(27, 35) by the composite e = r ◦ Ωc ◦ d.

Next consider the EHP fibration S11 −→ ΩJ4(S12) T−→ ΩS59. By con-
nectivity, the composite S11 −→ ΩJ4(S12) e−→ B(27, 35) is trivial. This gives
a homotopy fibration diagram

Ω2J4(S12) ΩT ��

Ωe

��

Ω2S59 ��

ε

��

S11 ��

��

ΩJ4(S12)

e

��
ΩB(27, 35) ΩB(27, 35) �� ∗ �� B(27, 35)

for some map ε. We have shown:
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Lemma 6.1. In the homotopy fibration Ω2K5
Ωγ−→ ΩB(27, 35) Ω∂−→ ΩX

there is a factorization of Ωγ as a composite

Ω2K5 −→ Ω2J4(S12) ΩT−→ Ω2S59 ε−→ ΩB(27, 35)

for some map ε.

Lemma 6.2. The composite S57 E2−→ Ω2S59 ε−→ ΩB(27, 35) has or-
der ≤ 52.

Proof. Applying [MNT, 6.3] in the case of B(27, 35) shows π58(B(27, 35))
∼= Z/52Z.

Remark 2. It should be the case that the map ε in Lemma 6.1 is a
loop map, ε � Ωε′, where ε′ : ΩS35 −→ B(27, 35) is a multiplicative extension
of a map ε′′ : S58 −→ B(27, 35). In his proof of the indecomposability of X,

Davis [D2] mentions that it is likely that the composite S58 ε′′−→ B(27, 35) −→
S35 is homotopic to α3, the generator of the stable 23-stem. Any such lift of
α3 to B(27, 35) generates the element of order 52 in π58(B(27, 35)) referred to
in the proof of Lemma 6.2. Another such lift would be ε ◦ E2. Thus ε′′, if it
exists, or the map ε ◦E2 in Lemma 6.2, should have order exactly 52.

For an odd prime p, Cohen, Moore, and Neisendorfer [CMN] show there

is a map φ : Ω2S2n+1 −→ S2n−1 satisfying: (1) the composition S2n−1 E2−→
Ω2S2n+1 φ−→ S2n−1 is homotopic to the degree p map, and (2) the composi-

tion Ω2S2n+1 φ−→ S2n−1 E2

−→ Ω2S2n+1 is homotopic to multiplication by p on
Ω2S2n+1. We are about to use both of these properties of φ when p = 5 and
n = 29.

The p = 5 case of Proposition 3.1 (a) gives maps S59 t−→ K5 and ΩK5
T−→

ΩS59 with the property that T ◦ Ωt is homotopic to multiplication by 5.

Lemma 6.3. There is a homotopy commutative diagram

S57 E2
��

s

��

Ω2S59 5 �� Ω2S59

Ω2t
��

Ω2X
Ωδ �� Ω2K5

for some map s.

Proof. Consider the homotopy fibration Ω2X
Ωδ−→ Ω2K5

Ωγ−→ ΩB(27, 35).
If Ωγ ◦(Ω2t◦5◦E2) is null homotopic then there is a lift of Ω2t◦5◦E2 to a map
s : S57 −→ Ω2X which gives the asserted homotopy commutative diagram. To
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show the null homotopy, consider the diagram

S57 E2
�� Ω2S59 5 �� Ω2S59

φ ��

Ω2t
��

S57

E2

��
Ω2K5

ΩT �� Ω2S59 ε �� ΩB(27, 35).

The commutative square in Proposition 3.1 (a) together with the factorization
of the 5th-power map on Ω2S59 through the double suspension imply that
the middle square above homotopy commutes. Observe that the top row is
homotopic to the degree 52 map on S57. Lemma 6.2 then implies that the
upper direction around the diagram is null homotopic. On the other hand, the
definition of T and the factorization in Lemma 6.1 says that the bottom row
in the diagram is homotopic to Ωγ. Thus Ωγ ◦ (Ω2t ◦ 5 ◦E2) is null homotopic,
as required.

Consider the map S57 s−→ Ω2X appearing in Lemma 6.3. Since Ω2X is a
double loop space, s extends to a map s̄ : Ω2S59 −→ Ω2X. However, it is not
clear whether s̄ can be chosen so there is a homotopy commutative diagram

Ω2S59 5 ��

s̄

��

Ω2S59

Ω2t
��

Ω2X
Ωδ �� Ω2K5.

On the other hand, let u be the composite u : Ω2S59 φ−→ S57 s−→ Ω2X. We do
have the following.

Lemma 6.4. There is a homotopy commutative diagram

Ω2S59 52
��

u

��

Ω2S59

Ω2t
��

Ω2X
Ωδ �� Ω2K5,

where the map u is divisible by 5.

Proof. By definition of u, Lemma 6.3, and the factorization of multipli-
cation by 5 on Ω2S59, we have Ωδ ◦ u = Ωδ ◦ s ◦ φ � (Ω2t ◦ 5 ◦ E2) ◦ φ �
Ω2t ◦ 5 ◦ 5 � Ω2t ◦ 52. This proves the homotopy commutativity of the as-
serted diagram. The divisibility of u is given by the sequence of homotopies
u = s ◦ φ � s̄ ◦ E2 ◦ φ � s̄ ◦ 5.

Proposition 6.1. exp(X) ≤ 531.
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Proof. Recall from Section 3 the homotopy fibration M −→ ΩK5
T−→

ΩS59. Consider the homotopy pullback

N ��

h

��

M ��

��

B(27, 35)

ΩX
δ ��

eT

��

ΩK5
γ ��

T
��

B(27, 35)

ΩS59 ΩS59,

where T̃ is defined as the composite T ◦ δ and the pullback defines the space N
and the map h. Juxtaposing the homotopy commutative diagrams in Lemma
6.4 and Proposition 3.1 (a) gives a homotopy commutative diagram

Ω2S59 53
��

u

��

Ω2S59

Ω2X
Ω eT �� Ω2S59,

where u is divisible by 5. By Lemma 2.1 this results in a homotopy fibration

Ω2N × Ω3S59 Ω2h·(−Ωu)−−−−−−→ Ω3X −−−−−−→ Ω2S59{53}.
Recall that exp(S59) = 529. Suppose exp(N) ≤ 529. Lemma 2.1 then says
that exp(X) ≤ 53 · 529 = 532. But we can do a bit better by considering the
order of the map Ω2h · (−Ωu) on torsion homotopy groups. Since u is divisible
by 5, π∗(u) has order 528 on torsion homotopy groups. Now supoose we have
a slightly stronger exponent bound, exp(N) ≤ 528. Then π∗(Ω2h · (−Ωu)) has
order ≤ 528 on torsion homotopy groups. So (as in Corollary 2.1) we have
exp(X) ≤ 53 · 528 = 531.

It remains to show that exp(N) ≤ 528. The pullback defining N gives a
homotopy fibration

ΩB(27, 35) −→ N −→M.

Thus exp(N) ≤ exp(B(27, 35)) · exp(M). By Example 2.1, exp(B(27, 35)) ≤
515. By Proposition 3.1 (c), exp(M) = 5. Thus exp(N) ≤ 516.

7. The spherical resolution and exponent of Y

In this section we prove Theorem 1.1 (b), that Y is spherically resolved.
We then iteratively use the methods in Section 2 to show that exp(Y ) ≤ 526.
Again, we assume that all homology calculations are with Z/5Z coefficients.

Lemma 7.1. There are homotopy fibrations
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(a) Y1 −→ Y −→ S47,

(b) Y2 −→ Y1 −→ S39, and

(c) S15 −→ Y2 −→ S23.

Proof. Recall that H∗(Y ) ∼= Λ(x15, x23, x39, x47). The action of the
Steenrod algebra is given by P1(x15) = x23 and P1(x39) = x47.

The proof of each part is by blunt force, part (a) being by far the longest.
Let (Y )m be the m-skeleton of Y . Noting that Y has one cell in dimension 47,
consider the pinch map f : (Y )47 −→ S47 onto the top cell. We wish to show
that f can be extended to a map g : Y −→ S47. The Serre spectral sequence
will then imply that the fiber Y1 of g satisfies H∗(Y1) ∼= Λ(x15, x23, x39).

The cells of Y in dimensions larger than 47 occur in dimensions

S = {54, 62, 70, 77, 85, 86, 101, 109, 124}.
Let m0 = 47 and m1, . . . ,m9 be, in order from left to right, the elements of S.
For i ≥ 1, the obstruction to extending (Y )mi−1 −→ S47 to (Y )mi

−→ S47 is
an element t ∈ πmi−1(S47). Note that each mi − 1 is in the stable range of S47

so t ∈ πS
mi−48(S

0). Comparing the dimensions mi − 48 to the dimensions of
the stable elements in π∗(S0) we see there is only one match, when i = 6 and
we have β1 ∈ π38(S0). Thus the only potential obstruction to extending f to g
is β1 ∈ π85(S47).

We show this potential obstruction is not an actual obstruction. Recall
that β1 is detected by the secondary operation

ψ : Ker P2H47(Y ) −→ H86(Y )/P3H62(Y )

associated to the Adem relation P3P2 = 0. If we can show ψ has no indeter-
minacy in these dimensions while ψ(x47) is defined and equals zero, then β1 is
not detected and so is not an obstruction in extending f to g, proving part (a).

Observe that H47(Y ) has basis {x47} and H62(Y ) has basis {x23x39,
x15x47}. Since P1(x23) = P1(x47) = 0, P1(x15) = x23, and P1(x39) = x47,
we have KerP2H47(Y ) = H47(Y ) and P3H62(Y ) = 0. Thus ψ : H47(Y ) −→
H86(Y ) is well-defined and has no indeterminacy. A similar calculation shows
that

ψ : Ker P2H47(Y × Y ) −→ H86(Y × Y )/P3H62(Y × Y )

has no indeterminacy and gives a well-defined map ψ : H47(Y ×Y ) −→ H86(Y ×
Y ). Since Y is a retract of the H-space E8, it has a multiplication µ : Y ×Y −→
Y . This gives a comultiplication µ∗ : H∗(Y ) −→ H∗(Y ) ⊗ H∗(Y ). The two
maps ψ : H47( ) −→ H86( ) above together with the naturality of ψ implies that
ψ(x45) is primitive. But a basis for H86(Y ) is {x39x47} which is not primitive.
Hence ψ(x47) = 0, as required.

For part (b), apply the same method in trying to extend the pinch map
f : (Y1)39 −→ S39 to a map g : Y1 −→ S39. Here H∗(Y1) ∼= Λ(x15, x23, x39)
so Y1 has cells of dimension greater than 39 in dimensions {54, 62, 77}. The
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potential obstructions in extending f to g are in πm+39(S39) = πS
m(S0) for

m ∈ {14, 22, 37}. But all such groups are zero. Thus f extends to g and the
Serre spectral sequence implies the fiber Y2 of g satisfies H∗(Y2) ∼= Λ(x15, x23).

For part (c), the one obstruction to extending the pinch map (Y2)23 −→
S23 to Y2 −→ S23 is an element of π37(S23) = πS

14(S0) = 0. Thus the extension
exists and the Serre spectral sequence implies its fiber has the cohomology of
S15 and so is homotopy equivalent to S15.

Lemma 7.2. There are compositions

(a) S47 −→ Y −→ S47 of degree 53,

(b) S39 −→ Y1 −→ S39 of degree 52, and

(c) S23 −→ Y2 −→ S23 of degree 5.

Proof. We first prove (c), then (b), and then (a). It suffices to show the
right adjoints of the composites exist. The homotopy fibration S15 −→ Y2

q2−→
S23 of Lemma 7.1 (c) results in a homotopy fibration ΩY2

Ωq2−→ ΩS23 −→ S15.
Consider the composite S22 E−→ ΩS23 −→ S15, where E is the suspension.
Since π23(S15) = Z/5Z (generated by α1) we have 5 · E lifting through Ωq2.
This proves (c).

Next, the homotopy fibration Y2 −→ Y1
q1−→ S39 of Lemma 7.1 (b) results

in a homotopy fibration ΩY1
Ωq1−−→ ΩS39 −−→ Y2. Consider the composite

S38 E−→ ΩS39 −→ Y2. In the fibration S15 −→ Y2 −→ S23 we have π38(S15) =
Z/5Z and π38(S23) = Z/5Z (generated by α3 and α2 respectively). Thus
52 · π38(Y2) = 0. So 52 · E lifts through Ωq1, proving (b).

Part (c) will follow as in the proof of (b) once we know 53 · π46(Y1) = 0.
In the fibration S15 −→ Y2 −→ S23 we have π46(S15) = Z/5Z and π46(S23) =
Z/5Z (generated by α4 and α3 respectively) so 52 · π46(Y2) = 0. Combine
this with the fibration Y2 −→ Y1 −→ S39 and the fact that π46(S39) = Z/5Z
(generated by α1) and we have 53 · π46(Y1) = 0.

Lemma 7.3. The following exponent bounds hold :

(a) exp(Y ) ≤ 526,

(b) exp(Y1) ≤ 521, and

(c) exp(Y2) ≤ 513.

Proof. Again, we first prove (c), then (b), and then (a). In what follows,
we apply Lemma 2.1 assuming Y1 and Y2 are H-spaces; if they are not, apply
Lemma 2.1 to ΩY1 and ΩY2.

Use part (c) of both Lemmas 7.1 and 7.2 as input into Lemma 2.1 to obtain
a homotopy fibration ΩS15 × ΩS23 −→ ΩY2 −→ S23{5}, implying exp(Y2) ≤
5 · exp(S23) = 513.
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Do the same for part (b) of Lemmas 7.1 and 7.2 to obtain a homotopy
fibration ΩY2 × ΩS39 −→ ΩY1 −→ S39{52}. Since exp(Y2) < exp(S39) = 519,
we have exp(Y1) ≤ 52 · exp(S39) = 521.

Similarly, from part (a) of Lemmas 7.1 and 7.2 we obtain a homotopy
fibration ΩY1 × ΩS47 −→ ΩY −→ S47{53}, and as exp(Y1) < exp(S47) = 523,
we have exp(Y ) ≤ 53 · exp(S47) = 526.
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[G] D. C. Gonçalves, The mod-5 splitting of the compact exceptional Lie
group E8, Publ. RIMS Kyoto Univ. 19 (1983), 1–6.

[H] J. R. Harper, H-spaces with torsion, Mem. Amer. Math. Soc. 22 (1978),
no. 223.

[K] A. Kono, On Harper’s mod p H-space of rank 2, Proc. Roy. Soc. Edin-
burgh 118A (1991), 75–78.

[MNT] M. Mimura, G. Nishida, and H. Toda, Mod-p decomposition of compact
Lie groups, Publ. RIMS Kyoto Univ. 13 (1977), 627–680.

[MT] M. Mimura and H. Toda, Cohomology operations and the homotopy of
compact Lie groups I, Topology 9 (1970), 317–336.

[N] J. Neisendorfer, Properties of certain H-spaces, Quart. J. Math. Oxford
34 (1983), 201–209.

[T1] S. D. Theriault, Homotopy exponents of Harper’s spaces, to appear in
J. Math. Kyoto Univ.

[T2] , The H-structure of low rank torsion free H-spaces, submitted.

[W] C. W. Wilkerson, Self-maps of classifying spaces, Lecture Notes in
Math. 418, Springer, Berlin, 1974, pp. 150–157.


