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A sequence of blowing-ups connecting moduli
of sheaves and the Donaldson polynomial
under change of polarization

By

Kimiko YAMADA*

Introduction

Let X be a nonsingular projective surface over C, H an ample line bundle
on X, and My (c1,c2) the moduli scheme of S-equivalence classes of rank-two
H-semistable sheaves on X with fixed Chern classes (c1,¢3). It is projective
over C.

Fix two ample line bundles H; and Hy on X. In this article, we connect
My, (c1,c2) with My, (c1,c2) by a sequence of blowing-ups and blowing-downs

(0.1)

- M,

M]_ M2 .
SN Y
) My

My, (c1,¢2 My, (c1,¢2)

using canonical properties of moduli schemes, and study the exceptional divisor
E; of ¢; in (0.1). Further, we apply this sequence to the calculation of the Don-
aldson polynomial of X. We shall algebro-geometrically inquire into the fact
the Donaldson polynomials of X are independent of the choice of Riemannian
metrics when b3 (X) = 2py(X) +1 > 1.

Now let us survey the historical background and outline the content of
this article. Roughly speaking, two methods have been developed to describe
the change of moduli of sheaves under the change of polarization as a sequence
of (birational) morphisms. First, Matsuki and Wentworth [MW] succeeded in
connecting My, (¢1,c2) and My, (c1,c2) by a sequence of Thaddeus-type flips.
They introduced the notion of twisted stability of sheaves, and reduced the
construction of the flip (0.1) to the Mumford-Thaddeus principle, which dealt
with the change of GIT quotients under a variation of G-linearization.
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On the other hand, Ellingsrud-Géttsche [EG] and Friedman-Qin [FQ] con-
structed a diagram of blowing-ups (0.1) by elementary transforms of universal
sheaves, mainly in case where the Kodaira dimension of X is 0 or —oo. Com-
paring this with the above-mentioned construction via Thaddeus-type flip, we
see that the good point of this method is its definiteness; the centers of blowing-
ups in (0.1) is directly described in terms of moduli problems. One can also get
the relation between universal sheaves on two moduli spaces in (0.1) very con-
cretely. Thanks to such definiteness, it should be possible to derive interesting
properties of this flip with the help of moduli theory. However, this method
has been established only for surfaces with x(X) < 0. One of main results
of this article is that we could complete it for any surfaces with any Kodaira
dimensions. Our construction of a flip (0.1) shall proceed as follows. In Section
2, we endow a subset

P, = {[E]| E is not Hp-semistable}

of My, (c1,c2) with a natural subscheme structure. Here several improvements
are needed since P; may admit singularities when x(X) is positive. In Section
5, one can also study some structure of this P; over Pic(X) xHilb(X) xHilb(X).
Let ¢ : M — My, (¢1,¢2) be the blowing-up of My, (c1,c2) along Pj.
Roughly speaking, we modify the pull-back (idx x¢@)*U; of the universal family
of My, (c1,c2) via an elementary transform to obtain a new flat family W on
X x M, and get a morphism t : M — Mg, (cy,co) using W in Section 3. This
1 is in fact blowing-up of My, (c1, ¢2), as shall be shown in Section 4. Therefore
we obtain a sequence of blowing-ups (0.1) connecting My, and Mpy,.
Although this idea is primarily based on that of Ellingsrud-Géttsche or
Friedman-Qin, we have to proceed more carefully. Denote the exceptional di-
visor of ¢ by E. On X X E, there is the relative Harder-Narasimhan filtration

0 — F — (id x¢)'Us|x x5 — G — 0

with respect to Hs-stability. Then one can naturally induce another exact
sequence

(0.2) O—>Q~(—E) — W|xxE — F —0.

We have to show that (0.2) is a family of nontrivial extensions in order to get
a morphism 1 : M — Mj,. In contrast to the case where x(X) < 0, it is not
sufficient for our purpose to look only over tangent spaces of E and M since
P and E admit singularities. We shall examine the infinitesimal behaviors of
FE and (ldX X (b)*ul

Here let us mention another good point of this method. When one com-
pares My, (¢1, ¢2) with My, (c1, ¢2), it is often useful and important to grasp the
structure of exceptional divisor of ¢; in (0.1). When py(X) = 0 or Kx is trivial,
this divisor was investigated in [EG, Section 4], but little has been known about
it in general; this divisor is much more complicated when x(X) > 0. In Lemmas
8.2 and 8.4, we shall show that the obstruction theory of universal families may
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provide us with some useful information about exceptional divisors. This is
possible because our construction of a flip is concrete enough. The information
obtained in such a way shall play an essential role later in this article.

Now let us turn the subject to the Donaldson polynomials. Refer to [FM]
about its basic material. Fix an integer co and a polarization H. Using the
moduli scheme My (0,c2), Jun Li [Li] introduced a homomorphism g (cg) :
Sym®©2) N§(X) — Z.

Proposition 0.1 ([Li, p. 456]).  Suppose that X is simply connected and

that pg(X) > 0. Then there is such a constant A(S) depending on a compact
subset S C Amp(X) as satisfies the following:
If ca > A(S) and if some rational multiple of an ample line bundle H is con-
tained in S, then v (ca) is equal to the restriction of the Donaldson invariant
q(cz) = Sym¥® Hy(X,Z) — Z to Sym¥ ) NS(X). In particular vy (cs) is
independent of an ample line bundle H contained in Q- S.

The independence of vy (c2) is due to the fact that the Donaldson poly-
nomial g4(c2) is independent of the choice of generic Riemannian metrics g on
X. As an application of the flip constructed in the above, we observe this fact
algebro-geometrically in the latter half of this article. Up to now, an attempt
to explain this fact via a flip succeeded only in K3 case ([EG]). We aim to
carry out this attempt in more general situations. Our result in this article is
as follows.

Suppose that ample line bundles H; and Hs are in neighboring chambers
of type (0,c2) separated by a wall of type (0,c2), say W. (See Section 1 for
the definition of walls and chambers.) Now denote by AT (W) the set of all the
triples f = (f,m,n) € Num(X) x N*2 which satisfy f € 2Num(X), Hy - f > 0,
m+n = cy+ (f2/4), and the set

W/ ={zecNum(X)|z-f=0}

is equal to W. Then, for f € AT (W) one can define a homomorphism C/(co, f) :
Sym?(¢2) NS(X) — Z such that

Y, — v, = Y, Clea,f).
feAt(W)

In Section 2 we shall divide P; into J]¢. A+ (a) Pf as a disjoint union of compo-
nents in a natural way, and C(cg, f) is the contribution of Pf to vg, — v, In
the following theorem, Pic/2(X) designates an open subset of Pic(X)

{L € Pic(X) | [2L] = f in Num(X)}.

Theorem 0.2.  Suppose that ¢(X) = 0 and that some global section
k € T'(Kx) gives a nonsingular curve K C X. Let S be any compact subset of
the ample cone Amp(X). Then there are constants do(S), di(X) and da(X)
depending on S such that the following hold:

Assume that £ = (f,m,n) € AT (W) satisfies that
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(i) the functions T® = Pic//?(X) x Hilb™(X) x Hilb™(X) — Z defined by

(L, Z1,Zy) —dimExty (O(L) ® Iz,,O(—L) ® I,) and
(L, Z1, Z) > dim Exty (O(=L) ® I5,,O(L) ® I,)

are locally-constant, and that
(i) —f2? > (4/3)ca + d1(S)/c2 + da(S).
Then C(co,f) is zero if co > do(S).

How strong are these conditions (i) and (ii)? As to (ii), recall that f €
NS(X) defines a wall of type (0, co) if WfN Amp(X) # (), f =0 mod 2Num(X)
and 0 < —f2 < 4cy. Thus the condition (ii) is reasonably weak when cy is
sufficiently large with respect to S. The condition (i) is more strict, while this
is always valid when X is a K3 surface. We prove Theorem 0.2 in Section 6,
7, and 8. In the proof it is important to grasp the structure of exceptional
divisors in the flip (0.1), as mentioned earlier.

After completing this work, the author realized by chance Mochizuki had
shown the independence of v (cz) from H when py(X) > 0 by using moduli
stacks of semistable mixed objects and master spaces with torus action in his
paper [Mo]. Mochizuki’s proof seems to be very different from ours, and our
construction of the sequence of morphisms connecting My, and My, must be
useful.

Acknowledgement. The author is grateful to Prof. Akira Ishii for in-
forming the author of Mochizuki’s work, and giving useful advice especially to
Section 3. Deep appreciation also goes to Prof. Zhenbo Qin, who gave valuable
advice especially to Lemma 7.2.

Notation.

(1) A scheme is algebraic over C. For a surface X, Num(X) is the quotient
of Pic(X) modulo the numerically equivalence. Amp(X) C Num(X) ®z R is
the ample cone of X. For a closed subscheme D of S, Ip = Ip s means its
ideal sheaf. The stability of coherent torsion-free sheaves is in the sense of
Gieseker-Maruyama.

(2) For T-schemes f : X — T and g : S — T, let Xg denote X xr S.
Let F be a sheaf on X, and D C T a subscheme. We often shorten a sheaf
(idx xg)*F on Xg to g*F, and shorten F|x, to F|p. hom and ext’ indicate,
respectively, dim Hom and dim Ext’.

1. Background materials

In this section let us review some background materials introduced in [EG]
and [Q2]. Let X be a nonsingular surface, and fix a line bundle ¢; on X and
an integer ¢y such that 4cg — ¢3 > 0.

Definition 1.1. (1) For f € Num(X) we define W/ C Amp(X) by
W/ ={z e Amp(X) |z f=0}.
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f is said to be define a wall of type (c1, c2) if W is nonempty, 0 < — f2 < deg—c2
and f—c; is divisible by 2 in Num(X). Then W/ is called a wall of type (c1, cz).

(2) A chamber of type (c1, c2) is a connected component of the complement
of the union of all walls of type (c1,c2). Two different chambers are said to
be neighboring if the intersection of their closures contains a nonempty open
subset of a wall.

For an ample line bundle H on X we denote by Mp(c1,c2) the coarse
moduli scheme of H-semistable rank-two sheaves with Chern classes (¢, ¢a).

Lemma 1.2. (1) For H not contained in any wall of type (c1,¢2), My (c1,c2)
depends only on the chamber containing H.
(2) The set of walls of type (c1,ca) is locally finite.

Proof. (1) is [EG, Proposition 2.7]. (2) is [Q2, Proposition 2.1.6]. O

Let Hy and H_ be ample line bundles lying in neighboring chambers C,
and C_ respectively, and H an ample line bundle contained in the wall W
separating C4+ and C_, and not contained in any wall but W. Such a setting is
natural because of the lemma above. We can assume that M = H, — H_ is
effective by replacing H, by its high multiple if necessary.

Lemma 1.3.  There is an integer ng such that if E is a rank-two sheaf
with Chern classes (c1,ca) on X then the following holds for any integer | > ng:

(1) E is H_-stable (resp. semistable) if and only if E(—IM) is H-stable
(resp. semistable).

(2) E is Hy-stable (resp. semistable) if and only if E(IM) is H-stable
(resp. semistable).

Proof. [EG, p. 6, Lemma 3.1]. O

Let C' denote (ng + 1)M in this section, where ng is that in the lemma
above.

Definition 1.4. Let a be a real number between 0 and 1.

(1) We define P,(F) by P,(E) = [(1—a)x(E(=C)) +ax(E(C))]/rk(FE) for
a torsion-free sheaf E.

(2) A torsion-free sheaf E on X is said to be a-stable (resp. a-semistable)
if every subsheaf F' C F satisfies P,(F(IH)) < P,(E(IH)) (resp. P,(F(IH)) <
P,(E(IH))) for sufficiently large integer [.

(3) E is a-semistable if and only if parabolic sheaf (E(C), E(—=C),a) is
parabolic semistable with respect to H. Hence from [Yk], there is a coarse
moduli scheme of S-equivalence classes of a-semistable rank-two sheaves with
Chern classes (c1,¢2) on X, denoted by M,(c1,c2). This is projective over C.
M3 (c1,c2) C My(cq,c2) denotes the open subscheme of a-stable sheaves.

By Lemma 1.3, My(cy,c2) (resp. Mj(cy,c2)) is naturally isomorphic to
Mp_(c1,c2) (resp. My, (c1,c2)). So we would like to study how M, (c1,c2)
changes as a varies.
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Definition 1.5. For a real number 0 < a < 1, A% (a) is the set of
(f,m,n) € Num(X) x Z2, satisfying that W/ is equal to the wall W dividing
HyandH ,Hy-f>0,m+n=co—(c?—f?)/4,andm—n=(f-(c;—Kx))/
2+ (2a —1)(f - C). ais called a miniwall if AT (a) is nonempty. Remark that
the number of miniwalls is finite. A minichamber is a connected component of
the complement of the set of all miniwalls in [0, 1]. Two minichambers are said
to be neighboring if their closures intersect.

Lemma 1.6. Let a_ < ay be in neighboring minichambers separated by
a miniwall a. For torsion-free rank-two sheaf E with Chern classes (c1,c2), the
following holds.

(1) If E is a_-semistable and not ay-semistable, then E is given by a
nontrivial extension

(11) 0—>Ox(F)®Izl—>E—>Ox(01—F)®IZ2—>O,
where Z1 and Zy are zero-dimensional subschemes of X such that
(1.2) (2F — 1,1(Z1),1(Z2)) € A+(a).

(2) Conversely suppose that E is given by a nontrivial extension (1.1) sat-
isfying (1.2). Then E is a_-stable, strictly a-semistable, and not b-semistable
for any b > a.

Proof. [EG, Lemmas 3.10 and 3.11]. O

We fix ample line bundles Hy and H, and neighboring minichambers
a_ < a4 separated by a miniwall a. We shorten M, (c1,c2) to My(c1,c2)
for simplicity.

2. Subscheme consisting of not a-semistable sheaves

In this section we shall give a natural subscheme structure to a well-defined
subset

(2.1) M_ D {[E]| E is not a,-semistable}

contained in M?. This closed subscheme shall be the center of a blowing-up
later.

We begin with a quick review of the construction of My (c1,c0) = My re-
ferring to [Yk]. Let F_(cq1,c2) (or Fy(c1,c2), resp.) denote the family of all a_-
semistable (ai-semistable, resp.) rank-two sheaves with Chern classes (¢, ¢2)
on X. By the boundedness of a-semistablity, there is an integer Ny such that
the following conditions are satisfied for any E € F_(c1,c2) U Fi(c1,c2).

(1) If m > Ny, then both E(C)(mH)|2c and E(—C)(mH) are generated
by its global sections.

(2) If m > No, then h'(E(C)(mH)|2c) = 0 and h*(E(—C)(mH)) = 0 for
i > 0.
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We fix an integer m > Ny. Then h°(E(C)(mH)) = R is independent of
E € Fi(c1,e2) UF_(e1,c2). The Quot-scheme QU‘OtZElZC—mH)@R/X is denoted
by @, where P(l) is the Hilbert polynomial x(E(IH)) of E € Fi(c1,c¢2). On
X there is the universal quotient sheaf 7y : (’)XQ(—C' - mH)€9R — U. Now

let Q% (or Q%F, resp.) be the maximal open subset of @ such that, for every
t e Q5 (QF, resp.),
HO(1o(C +mH) ® k(1) : k(t)®F — HOU(C + mH) ® k(t))

is isomorphic, U @ k(t) satisfies the hypothesis (i) and (ii) above, and U ® k(t) is
ay-stable (ay-semistable, resp.). Let us denote the universal quotient sheaf of

¥ by Us € Coh(Xqs:). G = PGL(R,C) naturally acts on Q% and Q3. By
[Yk] we can construct a good quotient of Q3° (or Q%, resp.) by G when m is
sufficiently large. This quotient turns out to be the moduli scheme My (1, ¢2)
(M3 (c1,¢2), resp.). Moreover, because a ay-stable sheaf is simple, one can
prove that the quotient map 7y : Q3 — M3 (1, c2) is a principal fiber bundle
with group G ([M2]) in a similar fashion to the proof of [Ma, Proposition 6.4].

Now we try to give a closed-subscheme structure to the subset (2.1). For
f = (f,m,n) € AT (a), we can define a functor

OF : (Sch /Q*%)° — (Sets)
as follows: Qf(S — Q**) is the set of all S-flat quotient sheaves U_ ®g:: Og —
G’ such that, for every geometric point ¢ € S, the induced exact sequence
0— Ker —U_k(t) — G @k(t) — 0

satisfies that (¢c1 —2¢1 (G'®k(t)), ca(Ker), ca(G'®k(t))) = (f,m,n). This functor
Of is represented by a relative Quot-scheme QF, that is projective over Q%*.
On X there is the universal quotient 7¢ : U_ ® Oge — G.

Lemma 2.1. G ® k(s) is torsion-free for every closed point s € Qf.

Proof. The proof is by contradiction. Assume that G®k(s) is not torsion-
free, and denote its torsion part by 7" # 0. Then we have a new quotient sheaf

U- D K(s) — G k(s) — G =G @ k(s)/T.

Then P,(G @ k(s)(IH)) > P,(G'(1H)) if I is sufficiently large. From the defini-
tion of f and Qf one can show that P,(G ® k(s)(IH)) = P,(U_ @ k(s)(I1H)) for
all I. So the quotient sheaf U_ ® k(s) — G’ satisfies that

(2.2) P,(U_®k(s)(IH)) > P,(G'(IH))
if [ is sufficiently large. On the other hand
(2.3) P (U ® k(s)(IH)) < P,_(G'(IH))

if 1 is sufficiently large since U_ ® k(s) is a_-semistable. From (2.2), (2.3) and
the Riemann-Roch theorem, there should be an integer a— < b < a such that
P,(U- @ k(s)(IH)) = P,(G'(IH)) for all I. We can easily prove that b is a
miniwall, which contradicts the choice of a_ and a. O
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Lemma 2.2.  The structural morphism i = if : Qf — Q%% is a closed
1Mmersion.

Proof. For s € Qf we put t = i(s). First we claim that their residue fields
satisfy k(s) = k(t). Indeed, any member A € Gal(k(s)/k(t)) induces another
k(s)-valued point

Spec(k(s)) - Spec(k(s)) — Q"

of Qf. We denote this k(s)-valued point by s’. s and s’ respectively give exact
sequences

(2.4) 0—=K——U_-Qk(t)Qk(s) —=GRk(s) —=0

0—K' —— U-®k(t) ®k(s') —= G @ k(s') —0.
Because of the definition of f and Qf, it holds that
0<{ci(K)—c1(G®k(s))}-Hy and that 0 < {ci(K')—c1(G"®@k(s))}  Hy.

Besides, the lemma above tells us that both GRk(s) and GRk(s') are torsion-free
and rank-one. Thus two horizontal rows in (2.4) respectively give the Harder-
Narasimhan filtration of U_ ® k(s) with respect to H-stability. Because of the
uniqueness of the Harder-Narasimhan filtration, two quotient sheaves in (2.4)
are isomorphic, that is, s = s’. Accordingly Gal(k(s)/k(t)) = {1}, and hence
k(s) = k(t) since ch(k(t)) = 0.

Next, 7 is injective and hence finite. Indeed, suppose that two points s and
s’ in QF satisfy that i(s) = i(s’) = t. Then k(s) = k(s’) = k(t) as mentioned
above, and we have two exact sequences

0 K U@ k(t) ———= G @ k(s) —=0

0— =K ——>U ®k({t)®k(s") —>=GRk(s") —0.

Then one can prove that s = s’ in Qf, in the same way as the preceding
paragraph.

Next, ¢ is unramified. To prove this, we only need to show that the tangent
map Tyi: Ty QF — T, Q*° is injective. t € Qf gives an exact sequence

(2.5) 0— K —U_Qk(s) — G k(t) — 0

on Xps) = Xpw). By [HL, p. 43] Ker(T}i) equals Homy, ) (K,G ® k(t)),
which is equal to zero because (2.5) gives the Harder-Narasimhan filtration of
U_ @ k(s).

Last, 7 is a closed immersion. Since ¢ is injective and unramified, the
fiber i~1(¢) is naturally isomorphic to Spec(k(s)) for s € Qf. Since i is finite,
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i~1(t) is isomorphic to Spec(i,Oge @ k(t)). These facts tell us that the natural
homomorphism Ogs: ® k(t) — i,Oge @ k(t) is surjective since k(t) = k(s). So
Ogr — ixOge itself should be surjective. This means that a finite morphism ¢
is a closed immersion. ([

We therefore obtain a closed subscheme Qf of Q*%, which is contained in
QZ by virtue of Lemma 1.6. Remembering the way to define the natural action
0:G x Q% — @7, one can verify the following:

Lemma 2.3. Denote by o_ : G x Q% — Q° the natural action of
G on Q. Then the morphism idxa_ : G x Q% — G x Q° satisfies that
(id x7_)(G x QF) = G x Qf as subschemes of G x QF.

This lemma means that
(2.6) pr; OQf = OEXQf = (ldg X 5_)*(95fo = EiOQf

as quotient sheaves of Og, . . Since m_ : Q2 — M?* is a principal fiber bundle
with group G, (G_,pry) : G X Q% — Q% X+ QF is isomorphic. Thus, the
identification (2.6) corresponds to an isomorphism

(2.7) ag 1 pry Oge — pri Opr

of quotient sheaves of Ogs «,,0= , where pr; : Q% Xps Q2 — Q2 is the i-th
projection for ¢ = 1,2. Since (2.6) results from Lemma 2.3, one can check
that the isomorphism (2.7) satisfies that pris(asg) o pris(as) = priz(as), where
pri; « Q% Xare Q% Xpre Q2 — Q2 xpy= Q2 is the (4, j)-th projection.

By faithfully-flat quasi-compact descent theory, we get a coherent sheaf F
on M_ and a homomorphism p’ : Oy — F such that 7% F = Oge and that
7% (p') = pf. This p’ : Op= — F should be surjective since m_ : Q5 — M?*
is faithfully-flat, and hence p’ gives a closed subscheme Pf of M?* such that
7~ (Pf) = Qf. On the other hand Qf is a closed subscheme of Q** fixed by G,
and so Pf = 7_(QF) is closed not only in M* but also in M_ by the property
of good quotient. Summarizing:

Lemma 2.4.  The closed subscheme Qf of Q*° obtained in Lemma 2.2
descends to a closed subscheme PY of M_ such that 7T:1(Pf) = QFf, where
m_ Q% — M_ is the quotient map. P¥ is contained in M2 . Set-theoretically,

]_[feAJr(a) Pt coincides with the subset (2.1). Both Qf N Qf and Pf N Pf are
empty if £ and £’ are mutually different member of A% (a).

At the end of this section, we define a closed subset
(2.8) My D {[E]| E is not a_-semistable}

similarly to the above M_. First we define —f.
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Definition 2.5. For f = (f,m,n) € A*(a), we define —f € Num(X) x
Zﬁg by —f = (—f,n,m).

In the same way as the case of if : Qf — Q*° and Pf C Q*°, we can show
that a projective Q)3°-scheme Q~f can be defined; the structural morphism
it.Qf - Q% is a closed immersion which factors through Q7 ; by using
faithfully-flat quasi-compact descent theory, we can obtain a closed subscheme
P~f ¢ M3 such that 7' (P~f) = QF; for different members f and £’ of A*(a),
we see that PN P~ is empty; set-theoretically, ]_[feAJr(a) P~f coincides with
the subset (2.8) of M.

3. A sequence of morphisms connecting M_(c1,co) with M, (c1,c2)

Let V_ be a closed subscheme erA+(a) QF of Q*5, and p_ : Q*5 — Q%
the blowing-up of Q** along V_, with exceptional divisor D_. Similarly, let P_

be a closed subscheme ]_[feAJr(a) Pfof M_,and ¢_ : M_ — M_ the blowing-up
of M_ along P_, with exceptional divisor F_.

Vo=@ @u G — b
f

f _ ~
p.=]]P'c Mo <" ¥l
f

Because ¢~ '7" (P_) = ¢_(V_) = D_ is an effective Cartier divisor on Q**,
a morphism 7_ is induced. In this section, we begin with constructing a mor-
phism ¢4 : Qis — M using the method of elementary transformation. Joining
the universal quotient sheaf U_| Xoe = G = G of QF, we have a quotient sheaf
U_|x, —Gon Xy = ][ Xge. This results in an exact sequence

(3.1) 0—F —U_|ly. —G—0

of V_-flat Xy_-modules. Pulling back this by idx x¢_ : Xp_ — Xy_, we get
an exact sequence of D_-flat sheaves

(3.2) 0—F—U_|p —G—0
on Xp_. Now let W, denote Ker(Z;{_ —» Z/~{_|D7 — Q), that is,

(3.3) 0— W, —U_ —G—0
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is exact. From [Fr, Lemma A.3] W, is flat over Q**. (3.2) and (3.3) induce a
commutative diagram on X ..

(3.4) 0 0
~ f ~
0—=U(-D-) Wy F 0
0—=U_(-D_) u- U-|p_ 0
h
g g
0 0

whose rows and columns are exact. The second column of (3.4) gives rise to
an exact sequence

X

0 — Tory C}T(

groXD_) = g(_D—) - W+|XD_ - Z;{—|XD_ — g~ — 0.
From (3.4), this results in an exact sequence

flp_

(3.5) 0— G(-D_) — Wy|x, — F—0.

(3.5) and the first row of (3.4) induce the following commutative diagram on
D
Q*

(3.6) 0 0

0——> Wi (=D.) W, YN —
f flp
7 7
0 0

such that its second column is equal to the first row of (3.4), and that all rows
and columns are exact. For homomorphisms h in (3.4) and h in (3.6), one can
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find an isomorphism j, : g~(—D_) — G(—D_) such that

(3.7) U.(-D_) —"=G(-D.)
. h(=D_) -
U.(-D_)—>G(-D._)

is commutative, in view of the uniqueness of the Harder-Narasimhan filtration
and the simplicity of torsion-free rank-one sheaf.
Now we recall some obstruction theory. By the exact sequence

(3.8) 0— Op (-D_) — Osp_ — Op_ — 0.

and (3.2), we have the following commutative diagram on Xsp_  whose rows
and columns are exact:

(3.9) 0

u—|X2D
0 f Z;{—|XD_ g~ 0
0

From this we can get a complex F(—D_) N U-|x,p <, G, and check
that its middle cohomology B = Ker G/Im F is a Ox,, -module. Then, again
from (3.9) we can deduce an exact sequence

(3.10) 0—G(-D) X B-LF—0
of D_-flat Ox,, -modules.

Lemma 3.1.  The following conditions are equivalent for a closed point
t of D_:
(1) The exact sequence

(3.11) 0— G(-D_)®@k(t) — B k(t) — FR k() — 0

induced from (3.10) is trivial;
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(2) Let my C Opess be the mazimal ideal defining t and I the integer such

that Ip_+ C fnt and that Ip_; ¢ mH'l, Then there is a morphism p;41 :
Spec(Oge. /i) — Vo =[1; Qf such that

(3.12) Spec(Ogs: /O(=D-) + it )C D_ V_
Spec(Oge. /gt Qs ——=>Q¥

s commutative.

Proof. Weput A = (’)st/ﬁliﬂ and A" = 0. /(O(=D-) +17 mit), which
are Artinian local rings. Tensoring A to (3.8), we have the following commu-
tative diagram whose rows are exact.

(3.13)
OD_(*D—) ®stA Osp_ ®QA—>OD7 ®QA—>O

iq \ \

I =0(=D_) + mltt /mltic A A 0

Remark that I is a k(t)-module because of the choice of I. From its bottom
row and (3.2) we get the following commutative diagram on X4 whose rows
and columns are exact, similarly to (3.9):

(3.14) 0

0—>_7:'k(t)®I—>L~{k(t)®l—>g~k(t)®l—>0

ufle

0> Fop A— =l |x, —=Gop A— =0

0

Then one can deduce a complex ]}k(t) ®I RN Z;l_|XA, < G®p A and an
exact sequence of X 4--modules

(3.15) 0—Grpy®I — B =KerG'/ImF' — F@p_ A — 0.
Now recall that obstruction theory shows the following fact ([HL, p. 43]).
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Fact 3.2.  The exact sequence (3.15) is trivial if and only if the condition
(i) 4n Lemma 3.1 is satisfied.

From the commutativity of (3.13), we can make a homomorphism B ®p_
A" — B’ such that

(3.16)
G(-D_)@p_ A'=G(~D_)®g Ac—=B&p A —=Fop A —=0

- |

gk(t)®1:g~®@j I( B! ]:—@D_ A ——=0

is commutative, where the first row is obtained by tensoring A to (3.10), and the
second row is (3.15). Further, the homomorphism ¢ in (3.13) gives a surjective
homomorphism ¢ ® k(t) : Op_ ®p_ k(t) — I, which should be isomorphic
because rkyOp_(=D_) ® k(t) = 1 and I # 0. Accordingly we obtain a
commutative diagram

(3.17)  Exty  (F®A,G(-D_)® A') —“—=Extk (F® A Gy ®I)

l (). (g@k(t)).

Extk ,(F® A',G(-D_) @ k(t)) ~ EX@(W) (Frty: G(—=D_)ir))s

where m; is a natural homomorphism A’ — k(¢). Remark that 7} is isomorphic
since F is D_-flat. Let A € EX%(A, (FRA',G(—D_)®A’) be the extension class
of the first row of (3.16). Then one can prove that (7)™ (m:.(A)) is the exten-
sion class of (3.11) and that ¢.(A) is the extension class of (3.15) by using the
commutativity of (3.16). Because (q® k(t)), is isomorphic, (7)1 (. (X)) =0
if and only if g« ()\) = 0. This and Fact 3.2 complete the proof of this lemma. O

Lemma 3.3.  There is an isomorphism o : Wy |x, — B such that the
following diagram is commutative:

(3.18) 0*>Q(—D_)*>W+|XD_ ——F——>0
ljg lro H
0—=G(-D_) —~ B—Y1—>7F 0.

Here the first row is the third column of (3.6), the second row is (3.10), and j,
is the isomorphism in (3.7).

Proof. Tensoring Osp_ to (3.4), we have a commutative diagram on
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(3.19) G(-2D_)

A

- ’ flep_ v
U (=D )ap. —>Wilap_ F 0

‘ '

U (~D )|op. —=U_|op. —=U_|p_. —=0

h‘2D7:G

QO

g

0 0

whose rows and columns are exact. In this diagram h|sp_ clearly is equal to

the homomorphism G defined just below (3.9), and so r factors into Wy |2p_ 5
Imr =KerG — U_ |ap_. One can readily check that

(3.20) W+‘2D_ W.;.‘D_

flp_

™1 ;’r‘g
\%
KerG— B :KerG/ImF—q>f

is commutative by the definition of ¢ in (3.10). Since B is naturally regarded as
an Ox,, -module, we can induce a homomorphism 7 : Wy |p_ — B such that
the left side of (3.20) becomes commutative. Then one can also check the right
side of (3.20) is commutative, since Wy |ap_ — Wy |p_ is surjective. Therefore
the right side of (3.18) is surely commutative for this rg.

Next, by the definition of p in (3.10) one can readily check that

- h(=D_)|2p_ ~
U-_(=D-)|2p_ G(—-D_)
lk’ lp
Wylop. —2 Ker G B

is commutative, where hl|ep_ and k' are those of (3.19). We have also the
following commutative diagram:

U_(—D_)|ap_ Wi > KerG

T

G(-D_) ———>Wylp_ —"—>B,
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where the left side is the upper-right side of (3.6), and the right side is the left
side of (3.20). These two commutative diagrams gives rise to a commutative
diagram

- hl2p_
(3.21) U (=D_)|ap. —>=G(=D_) —=Wi|p_
U_(—D_)|ap_ hEi))QN(—D,) B.

Then we can prove the right side of (3.18) is commutative from (3.7) and the
surjectivity of h|ap_. O

Corollary 3.4. Lett € D_ be a closed point. Then the exact sequence
0—G(—D_)@k(t) — Wy @ k(t) — FQk(t) — 0
induced from the third column of (3.6) is nontrivial.

Proof. Suppose not. Then Lemmas 3.1 and 3.3 lead to a morphism p;41 :

Spec(OQS_S/Thf;H) — V_ such that (3.12) becomes commutative. This p;q

induces a Q*-morphism g4 : Spec(OQw/ﬁziH) — Q% xgs= V_ = D_. Thus

I+

Ip_ is contained in m, 1, which contradicts the choice of [ in Lemma 3.1. [

From the corollary above one can show that W, ® k(t) € Coh(Xj ) is
a-semistable for every point ¢ € Q%5 in a similar fashion to the proof of Lemma
1.6 (ii). This sheaf W, accordingly gives a morphism @ : Q%5 — M. Now we
intend to construct a morphism ¢, : M_ — M, such that ¢ o7_ : Q% — M,
is equal to Q4.

Lemma 3.5.  The natural morphism Q%5 — Q*$x; M_ is isomorphic.

Proof. Q° denotes the open subset (¢_ o 7#_)"1(M?) of Q**, and M*
denotes ¢~'(M?*). Because E_ C M_ is contained in M? it suffices to show
that Q* — Q% ®nrs M? is isomorphic. Since m_ : Q5 — M? is flat one can
show that 7* (Ip_ a=) = Iv_ @+ , and hence that 7* (I3 /<) = I} . for any

n. O

Using this lemma one can induce an action £_ : G x Q*° = (G'x Q**) xar_
M_ — Q% = Q% x5;. M_ from the action 5_ : G x Q%% — Q*°.

Lemma 3.6.  As to the morphism ¢4, the following is commutative:

G x st T)st

lm _ l@

Qis L)M_i_.
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One can prove this lemma easily. 7_ : Q*° — M_ is a good quotient by
7_,s0 [M2, p. 8, Remark 5] and [M2, p. 27, Theorem 1] imply that 7_ : Q* =
Q% X M_ — M_is a categorical quotient by ¥_. Therefore there is a
unique morphism ¢ : M_ — M such that ¢, o 7_ C Q% — M, is equal to

¢+ because of the lemma above.
Consequently we can connect M_ = M_(¢y,co) with My = My (¢q,¢2) by

(3.22) V.C Qs < s
ﬂ_l - l P+
P M <Ly —
b+

when P_ C M_ is nowhere dense. (Without this hypothesis M_ may be
empty.)

We shall reverse M_ and M, and follow a similar argument. Let V be a
closed subscheme erA+(a)Q_f7 and P, a closed subscheme ]_[feAJr(a)P_f of
M, mentioned right after Definition 2.5. Let ¢y : QSS — Q% be the blowing-
up along Vi, and ¢, : My — M, the blowing-up along P;. Denote their
exceptional divisors by Dy C Q and E, C M, respectively. Then we can
construct a morphism @_ : Qj_s — M_ and make it descend to a morphism

b : M+ — M_. Thereby we get another sequence of morphisms connecting
M_ and M, as follows:

(3.23) )% o QF oV,
é- l l
Ty 4
M_ Y M P,
= My . + +

4. ¢, :M_ — M, is blowing-up

In this section we would like to compare (3.22) with (3.23) assuming that
P_ is nowhere dense in M_. The following lemma shall be needed later.

Lemma 4.1.  Let Uy be a universal quotient sheaf of Q5% on Xqy, and
Wy the X 5ss-module defined at (3.3). There are an open covering |J,Ua of

Q**, a morphism @5 Uy — QF° such that

=7

M,
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is commutative, and an isomorphism ® : W, |y, — (9%)*Us of Xy, -modules.
Furthermore, we can assume that U, NUg C Q% if o # 3.

Proof. The proof of the first part is easy, so may be left to the reader.
Recall that both Q% and Q°¢ are open subsets of a Quot-scheme @, and that

Uilgongy =U-|q=nq- Uy = Q**\ D_ = Q**\ V_ is an open neighborhood
of Q¢ \ Q% , and is contained in Q% N QY. Let @3_ Uy = Q¥ \ V. —
%* be a natural open immersion, and ®% : W, |y, — Uy |y, an isomorphism

Q=s\v_ = Uy |gss\v_ induced from (3.3). Then
¢ and ® satisfy the conditions in this lemma. Thus we can assume that

Us,NUs C Q% if a # 6. 0

Wilgep = U-lgenp. =U-

Lemma 4.2.  $;'(Py) is equal to D_ = =" (V_) as closed subschemes

in Q%S

Proof. Clearly D_ C @;1(P+) from the construction of . We first

consider the case where D’ := 4,5_7_1(P+) is a Cartier divisor of Q**. By virtue

of the definition of V., there is an exact sequence
(4.1) 0—>g'—>u+|xv+ — F —0

of Vi -flat Xy, -modules such that, for every closed point ¢ of Q~F, (2c1(Gry) —
c1,¢2(Gypy)s c2(Fppy)) is equal to —f. Similarly to Lemma 2.1, 7’ and " are
flat family of torsion-free sheaves. Pulling back this by @¢ of Lemma 4.1, we
have an exact sequence

(4.2) 0— (p3)" G =G, — (1) Uslp o,
’ =US|pr v, — () F =F, —0

on X x (¢3)"V4) = Xpr nv,,, where we put (¢5)*Uy = US. Let V_ denote
Ker(Z/_I_?‘_ —» Z/_[ﬂDLmUQ — F.), that is,

(4.3) 0— V. — Uy — F,—0

is exact. V_ is flat over U, since D’ is a Cartier divisor of Q**.
Because D’ O D_, the isomorphism ®¢ in Lemma 4.1 induces a surjection
U p Av., = Welp_nu.,. Hence we have a diagram on Xpr Ay,

(4.4) 0 g, Us o, Fa 0

T

0—=G(—D_)|y, —= Wylp_av, — Fly, —=0,

where the first row is (4.2) and the second row is the restriction of the third col-
umn in (3.6) to Xp_ny,. One can check that Homx_, . /o’ nu, (G, Flu,) =
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, -
Homx,, .v./p_nv.(Galp_nu.. F

Ext sheaves, and so one can find r : F), — f\Ua such that (4.4) is commutative.
Then the following also is commutative:

v..) = 0 by base change theorem on relative

(4.5) 0 V_ us F, 0
s \L({)i)_l l'r
~ V ~
0——=U_(—D_)|y, — W4|u., Flu., 0,

where the first row is (4.3) and the second row is the restriction of the second
column in (3.6) to Xy, .

Claim 4.3.  Set-theoretically, D_ N U, coincides with D’ N U,.

Proof.  Suppose not. Then one can find a closed point ¢ € D’ that is
not contained in D_. Since t € D', (4.2) implies that U ® k(t) is not a_-
semistable. Since t ¢ D_, (3.3) implies that W, ® k(t) is a—_-semistable. This

is a contradiction because U$ ® k(t) is isomorphic to Wy @ k(t). O

One can obtain the following commutative diagram by tensoring Op: Ay,
to the first row in (4.5) and Op_np, to the second row in (4.5) since D’ D D_:

(4.6)
F(=D.)——V-|p ru. U pr Ao, F 0

T e

ﬁ(—D,)|Ua(—>d(*D—)‘D—ﬂUa —>W+|D,ﬂUa f‘UQ 0.

Claim 4.4. s®k(t): V_®k(t) — U_(—D_)®@k(t) in (4.5) is isomorphic
for every closed point t € U,,.

Proof. We have to verify this only in case where ¢ is contained in D’ .
By Claim 4.3 t is also contained in D_. Tensoring k(t) to (4.6), we obtain a
commutative diagram

(4.7)

00— Fo(=D)kty ———= V- k1) US o) wk(t) —0
TR

0—— F(=D_)ppy —>U_(—D_ )iy —>= Wi k(1) Fie) 0

whose rows are exact. (®71)} is isomorphic by its definition. One can see that
also r; is isomorphic by the uniqueness of the Harder-Narasimhan filtration
with respect to a_-stability. Thus s} is nonzero map. If u; is zero map, then
s} induces a nonzero homomorphism
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5, G ® k(1) = Cok(Fp (=D ) k) = V- k() = U (=D )iy

by (4.2). This 5, should be injective because G/ ® k(t) is torsion-free and
rank-one. This contradicts the a_-semistability of Z;I_(—D_)k(t), and so u;
should be nonzero, and hence injective. Then one can see s} is injective by
diagram-chasing. (4.7) implies the Chern classes of V_ ) are equal to those

of Z;{_(—D_)k(t), we see that s; = s ® k(t) is isomorphic. O

Both V_ and U_(—D_)|y,, are U,-flat, and hence the claim above implies
that s in (4.5) is isomorphic. Then also r in (4.5) is isomorphic. Because FJ, is
D" NnU,-Aflat and Fly, is D_ N U,-flat, one can verify that D_ N U, is equal
to D’ NU,. Since this holds good for every U,, we conclude the proof of this
lemma in case where @' (P, ) is a Cartier divisor.

Next, we consider the case where ¢ '(P;) = D’ is not necessarily a
Cartier divisor of Q*%. Let <p(_2) : Q(_z) — Q** be the blowing up along D’_.
Let D_ and D’_ denote closed subschemes (go(_Q))_l(D,) and ((p(_2))_1(DL) of

Q(_2), respectively. For a natural exact sequence
0— OQS_S(—D_) — OQ_«:S — Opi — 0

on Q% one can verify that also its pull-back by ga(_g)

0— ((p(,Q))*OQiS(—D,) — OQ@ — 05 —0

(2)

is exact. In view of this, one can check that the pull-back of (3.6) by idx x¢

0 0

0—= WP (=D )—=uU? (D) —= GO (-D_)—=0

0—= WP (-D_) W W, ——=0
o) FO)
0 0

satisfies that its rows and columns are exact, where Wf) denotes
(idx xcﬁ(_z))*WJr, and so on. Now both D’ and D_ are Cartier divisors, and

we can show that D’ = D_ as subschemes of Q(f) in the same way as the
proof in the preceding case.
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Claim 4.5. Let R be a Noetherian ring, ¢t an element of R which is not
a zero-divisor, and tR D I an ideal of R. Suppose that Projp (& I"/I"T!) =
Projp (@ I™/tI™) as subschemes in Projp(®,>0I™). Then tR = I if Spec(R/I)
is nowhere dense in Spec(R).

Its proof is left to the reader. Now Lemma 4.2 is immediate from Claims
4.3 and 4.5. O

Corollary 4.6.  (¢)"'(P}) coincides with E_ = ¢_*(P_) as subschemes
of M_.

Proof. By Claim 4.3, closed subschemes E_ and (¢, )~ '(Py) of M_ are
contained in M*. Thus #_ : 7~ (E_) = D_ — E_ and 7_ : 7ol N (Py) =
@;1(P+) — q_SI_l(PJr) are faithfully-flat. Hence this corollary is immediate from
Lemma 4.2. |

By the corollary above, there is a morphism A, : M_ — ]\Zl'+~ such that

dpr oAy : M_ — M, — My is equal to ¢. LiNkevvise7 for U, C Q%° and @F

i{l Lemma 4.1, there is a morphism A : U, — @Q3° such that ¢ 0 A : U, —

5% — Q% is equal to ¢§ since (¢%) (Vi) = (¢4) H(Py) N U, is a Cartier
divisor of U, by Lemma 4.2.

Lemma 4.7.

Ua—— Q= —— M_
B
~ s L .

Q+ M+

s commutative.

Proof. One can check that both ¢4 o (A4 o7_0iy) : Uy — M, — M,
and ¢4 o (74 0A%) coincide with 7 0 ¢ : Uy — Q% — M. Then this lemma

follows by the universal property of the blowing-up ¢4 : My — M. O

Proposition 4.8.  The morphism G_oA, : M_ — M+ — M_ is equal
top_ - M_ — M_.

Proof. First, let us verify the commutativity of

(4.8) U Q% —— Q=
Q% i M-_.

Pulling back an exact sequence (4.1) on Xy, by idx x¢y : XQf — Xqszs, we
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obtain a commutative diagram on X et
+

0 W_ UL =U = F = F >0

| |

0—=¢1G =g Uslp, F 0

whose rows are exact. Remark that W_ is Qf—ﬂat. Pulling back this diagram
by idx x A%, we obtain a commutative diagram on Xy

(4.9) (AW —— (A%,

| |

0——=(A})*¢ —= (A Us|p_nv, — (AF)*F —=0

whose rows are exact, because (AY)~}(D;) = D_ N U, by Lemma 4.2. Com-
pare this with a commutative diagram

(4.10) 0—=U_(-D_) Wi F 0

F

OHQ(—D_)HW_iJDi *>]t'*>()

on X5.. in (3.6). Since (Ai)*l:br = (p%)*Uy, an isomorphism ®¢ in Lemma
4.1 connects the second row of (4.9) with that of (4.10):

(411) 00— (Ai)*gl - (Ai)*m—b_mm - (Ai)*]}’ —0
(<I>i)1l gl

N
0—=G(—D_)|y, —— WsIp_nu. Flu., 0.

Remark that all sheaves in this diagram are flat over D_ N U,. One can check
that two exact sequences in this diagram are relative Harder-Narasimhan filtra-
tions of (Aj‘_)*L~{+|D_mUQ ~ W, |p_nu, with respect to a_-stability, and hence
we get a homomorphism « : (A%)*F" — F|y, which makes (4.11) commuta-
tive. v ® k(t) is isomorphic for any ¢ € D_ N U, because of the uniqueness
of HNF, and so 7 should be isomorphic. (4.9), (4.10), ®¢ and ~ induce a
surjective homomorphism

o

(4.12) s (AYYW_ —U_(—D_)|p..

In fact s ® k(t) should be isomorphic for any closed point ¢t € U,, since
(AY)*W_ @ k(t) and U_(—D_) ® k(t) has the same Chern classes. Thereby
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(4.12) is isomorphic, and hence (4.8) is commutative. From Lemma 4.7 and
(4.8), one can verify ¢_ oAy ofr_ 01y : Uy — Q%° — M_ equals ¢_ oT_ 0 :
Uy, — Q° — M_ by diagram-chasing. Hence (¢_ o Ay)o7_ : Q% — M_ —
M_ equals ¢p_om_ : Q%% — M_ — M_. As mentioned in the preceding section,

: Q%% — M_ is a categorical quotient by G. Therefore we conclude that

QL oAy M_ — M+ — M _ coincides with ¢_, thanks to the property of
categorical quotients. ]

From the proposition above we get a morphism Ay such that

(4.13) N =

N

is commutative. Quite similarly, there is a morphism A_ : M, — M_ such
that

(4.14) N

N

M- <=— M

is commutative. Thus ¢_ o (A_oA,): M_ — M_ — M_ is equal to ¢_ :
M_ — M_, and so A_o A, : M_ — M, — M_ should be idy; because

of the universal property of blowing-up ¢_. Likewise A, o A_ : M+ — M,
equals id Ny and hence both A, and A_ are isomorphic. Summarizing:

Proposition 4.9.  As to (3.22) and (3.23), there are isomorphisms Ay

:M_ — My and A_ : My — M_ such that (4.13) and (4.14) are commutative.
In particular, the morphism ¢, : M_ — My, which is constructed by the
method of elementary transform and descent theory, is the blowing-up of M,
along W.

5. Some structure of Pf over Pic(X) x Hilb(X) x Hilb(X)
Let f = (f,m,n) be a member of AT (a). (3.1) gives an exact sequence
(5.1) 0—F —U_|grt — G —0

of Qf-flat Ox,,c-modules. By Lemma 2.1 both FRk(t) and GRk(t) are torsion-

free, rank-one, and hence H-stable for any t € Qf. Denote by My (1, F,m) the
coarse moduli scheme of H-stable rank-one sheaves on X with Chern classes
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(F,m) € Num(X) x Z. Then F and G in (5.1) induce morphisms 77 : Qf —
My(1,(cy + £)/2,m) and 7g : Qf — Mpy(1,(c; — f)/2,n). On the other
hand My (1, F,m) is isomorphic to Pic’ (X) x Hilb™(X), where Pic’ (X) is an
open closed subscheme {L € Pic(X)|[L] = F in Num(X)} of Pic(X). Thereby,
using 77 and 7g we obtain a morphism 7@ : Qf — Pic(T)/2(X) x Hilb™ (X)) x
Hilb"(X) which has the following properties: Let P € Coh(Xp;.) be a universal
line bundle of Pic(X), and let Iz, € Coh(Xuupm) (resp. Iz, € Coh(Xuipr))
be the ideal sheaf of a universal sheaf of Hilb™(X) (resp. Hilb"(X)). Define
Fo and Gy € Coh(Xpic x Hilb™ x Hilb») by

(5.2) Fo = priz(P) @ pris(Iz,) and Go := c1 ® priy(P") @ priy(Iz,).
Then one can find line bundles L; and Ly on Qf such that
(5.3) F o (19 Fo @ Ly and G ~ (79)*Gy @ Lo.

From now on, we shorten Pic(®**)/2(X) x Hilb™ (X ) x Hilb™ (X ) to T' = T*.

One can show that 7% : Qf — T is G-invariant in a similar fashion to the
proof of Lemma 3.6, and hence 79 descends to a morphism 7_ : Pf — T, since
m_ 71':1(Pf) = Qf — Pf is a categorical quotient by G. In this section we
would like to study some structure of Pf as a T-scheme.

One can find bounded complexes F'* and G* of locally-free Op-modules of
finite rank which allow quasi-isomorphisms 7 : F'* — Fg and 7 : G* — Gg of
complexes. Let g : X7 — T be the projection. The Serre duality [H1] asserts a
natural homomorphism

(5.4) O,:Rqg.RHomx, (Homx,(F*,G*),0x,[2])
— RHomr (Rg.(Homx,.(F*,G*(Kx)),Or)

in the derived category D(T) is isomorphism. Now we shall deduce the following
from this.

Proposition 5.1.  For any T-scheme f : S — T, there is an isomor-
phism

O-q : Btk s(f*Go, f*Fo) = Extk_,s(f*Fo, f*Go(Kx))"
of relative FExt sheaves.

Proof. We prove this lemma only in case where S = T'. It’s easy to extend
the proof to general case. As to the left side of (5.4), one can check that

(55) [Rq* RHomXT (HOmXT (F.u G.)v OXT [2])]—l = Ext%(;l/T (g07 fO)

for any integer I. Now consider the right side of (5.4). If we fix an affine open
covering U = {U;}; of Xr such that ¢ : U; — X1 — T is affine, then we can
construct a quasi-isomorphism

Homx, (F*,G*(Kx)) — Homx, (F*,Go(Kx))
— C*(Homx,(F*,Gy(Kx)),U)
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to the Céch complex similarly to [H2, Lemma II1.4.2].
¢ (C*(Homx,. (F*, Go(Kx)), U))

represents Rg.(Homx, (F*,G*(Kx))) since CP? (Homx,(F7,Gy(Kx)),U) is
g«-acyclic. Therefore, for an injective resolution t7 : Op — K*®, a complex

Homp(g«(C*(Homx, (F*,Go(Kx)),U)), K*)

represents RHomp (Rg.(Homx, (F*,G*(Kx))),Or). Furthermore, for any
affine open subset T, of T', there is a bounded complex H} of free Or,_ -modules
of finite rank and with a quasi-isomorphism

(5.6) Bt HS = q.C* (Homx, (F*,Go(Kx)), U]z,
by [M1, p. 47, Lemma 1.1]. This h, and ¢ : Or — K*® give rise to an
isomorphism
(5.7)  [Homr(q.C*(Homx, (F*,Go(Kx)),U), K*)|r.]_4
~ [Homp, (HS,K*)|_| ~ [Homg, (HS,O1,)]_; -
Claim 5.2. This complex H} induces an isomorphism
ia : Homg, ([H3]1, Or,) — [Homg, (HZ, Or,)] 4 -

Proof.  As aresult of the base change theorem for relative Ext sheaves [La,
Theorem 1.4], Eart%(T/T(fO,go(KX)) is equal to zero. Thus one can assume

that H, = 0 if [ > 2. The remaining part of the proof is easy and left to the
reader. O

From (5.6), (5.7) and the claim above, we obtain an isomorphism
Jo i [Homp(q.C*(Homx, (F*, Go(Kx)), U), K*)]_, [z,
— Homr ([q.C*(Homx, (F*,Go(Kx)), U)l, , Or) |z,

Claim 5.3. Let T, and T3 be affine open subsets in 7". Then ja|Taﬂ =
j5|Taﬁ'

Proof. For hy, and hg at (5.6), there are a bounded complex K2 g of locally
free Or, ,-modules of finite rank, and quasi-isomorphisms k, and kg such that

K3

H.
ks s

ko hp ‘Ta,@ l

halT,
H(; 4[; q*C°(H0mXT (F., gO(KX))v U)|Ta@

is commutative up to homotopy. This (K4, ka, kg) can be found by using [M1,
p. 47, Lemma 1.1] and the mapping cone complex Z°*(f) ([H1, p. 26]). Then a
quasi-isomorphism

ka'Taﬁ o k‘a . K(;B — q*C.(HomXT(F.,go(Kx)),U”TaB
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induces an isomorphism j,g similarly to j,. One can verify that both ja|z,,
and jglr,, coincide with jug. O

By this claim we can glue {j,}o to obtain an isomorphism

Jj [Homr(q.C*(Homx, (F*,Go(Kx)),U), K*)|_,
= [RHomp(Rg.(Homx,(F*,G*(Kx))),Or)]-1
— Homr ([¢.C*(Homx,(F*,Go(Kx)),U)}, , Or)
= Extx, ;r(Fo, Go(Kx))".

Now this j, (5.4) and (5.5) complete the proof of this lemma. O

Remark that Exty ,.(Fo,Go(Kx)) is not isomorphic to Exty (o,
Fo)V in general.

Lemma 5.4. A natural homomorphism
frExty, r(Fo,Go(Kx)) = Extk s(f*Fo, f*Go(Kx))
is isomorphic for any T-scheme f: S — T.

Proof. This lemma is immediate from base change theorem [La, p. 104].
]

Now let us study a T-scheme PFf.

Lemma 5.5.  There is a T-morphism i_ : ]P’(ExtkT/T(]:o, Go(Kx))) —
Pt

Proof. 'We shorten ]P’(ExtkT/T(fo, Go(Kx))) to P_, and denote by p_ :
P_ — T its structural morphism. Proposition 5.1 and Lemma 5.4 lead to a
natural isomorphism

Homp (p*,Ext}T/T(}—o,go(Kx))a o))
~T(P_, E’xt%(]FL /P (Go, Fo ® O_(1)))
~ Ext, (Go,Fo® O_(1))

since Homx, /p_(Go, Fo®O_(1)) = 0 by base change theorem. A tautological
quotient line bundle

(5.8) p" Eatle, 1 (Fo, Go(Kx)) = O_(1)
on P_ gives o € Extﬁqp_ (Go, Fo @ O_(1)) or an extension

(5.9) 00— Fo®0_(1) —V_. — Gy — 0.
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This Ox, -module V_ is P_-flat. For any point ¢ of P_, Proposition 5.1 and
Lemma 5.4 provide us with homomorphisms

k1o (k(t) ®Oy) : k(t) 9 T(P_, Ext, p_(Go,Fo® O — (1))
— k(t) @ (P, Bxty, 5 (Fo® O_(1),G0(Kx))")
— EXt})(k(t) (Fory> Gonw (Kx))"

and

Oek() © K2 : k(t) @ T'(P_, Ea:tﬁ(wiﬂp_ (Go, Fo ® O_(1)))
— ExtX, ,, (Gor): For(r))
— EX'@(W) (Fore)s Gore)(Kx))Y,

where x; are natural maps. In fact these homomorphisms are equal to each
other because a trace map Try : R%q.(Kx) — Or is compatible with base
change by [Co, p. 172, Theorem 3.6.5]. The extension class of the exact sequence

(5.10) 0 — Fory — V—k@t) — Yoke) — 0

induced from (5.9) is equal to k(o) € Extkkm(go k(t)> For))- On the other
hand £ o (k(t) ® O4)(0) € Homk(t)(Extﬁ(k(t) (For)» Gor()), k(t)) is nonzero
since (5.8) is surjective. Therefore we see that (5.10) is not trivial, which means
that V_ is a flat family of a_-stable sheaves by Lemma 1.6. V_ gives a morphism
i_ :P_ — M_. It’s easy to see that i_ factors through P_ — Pf < M_ and
that i_ : P_ — P! is a T-morphism. O

By (5.1) and (5.3), we have a natural exact sequence
(5.11) 0— (T9)*Fo®@ L1 — U_|gr — (19)*Gy®@ Ly — 0
on Xge. Similarly to the proof of the lemma above, one can show that
Exty , ((19)"Go @ La, (19)"Fo @ L1)
~ Home((TQ)*ExtkT/T(foaQO(KX))v L1 ® Ly),

and that the homomorphism (TQ)*Extﬁ(T/T(}"O, Go(Kx)) - L1 ® LY induced
by (5.11) is surjective. Thus j© : Qf — P(ExtkT/T(}"O,QO(KX))) is derived.

One can check that j€ is G-invariant. As a result, 79 descends to a morphism
(5.12) j— : P* — P(Batx, r(Fo, Go(Kx))).

Lemma 5.6.  For morphisms i_ in Lemma 5.5 and j_ at (5.12), it
holds that i_ o j_ = idpr and that j_ oi_ =idp_.
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Proof. Since m_ : Qf — Pf is a categorical quotient by G, i_ o j_
is equal to idpe if and only if (i_ o j_)om_ = i_ o ;%9 is equal to m_.
One can readily verify this, and hence its proof is omitted. T-morphism
it P(Ext}(T/T(}"O,QO(KX))) =P_ — Pf < M_ is induced from an Ox,-
module V_ in (5.9), and hence one can find an affine open covering {P,}, of
P_ and a morphism i, : P, — Qf such that m_ oi, = i_|y,. It’s easy to show
that j9 0i, = j_oi_ |p, : Py — P_ is equal to idp,_, and hence its proof is left
to the reader. O

Summing up, we get the following:

Proposition 5.7.  Fiz an element f of AT (a). We define a scheme T,
Ox.,-modules Fo and Gy, and line bundles Ly and Ly over Qf as in (5.2) and
in (5.3).

(1) Pt can be regarded as a T-scheme.

(2) There is an isomorphism j_ : Pt — P(ExtkT/T(fo, Go(Kx))) over T
such that Ly ® Ly € Pic(QF) in (5.3) is equal to (j_om_)*O_(1), where O_(1)
is the tautological line bundle of P(Ext%cT/T(fo,go(KX))).

6. Algebro-geometric analogy of y-map and the Donaldson polyno-
mial

From now on we shall consider the case of ¢; = 0. Hence M_ stands for
M,_(0,¢2), and so on. We begin with reviewing the algebro-geometric analogy
p— : NS(X) — NS(M_) of p-map, which was introduced in [Li]. Let C C X be
a nonsingular curve, and f¢ a line bundle on C' with deg(6¢) = g(C) —1. For a
universal sheaf i/_ of Q*° on X s+, one can show that a complex R pry , (U_|c®
0c) on Q% locally is quasi-isomorphic to a bounded complex of free modules of
finite rank. Thus its determinantal line bundle det R pr, , (U_|c ® O¢) on Q*°
exists. In fact this line bundle descends to a line bundle L, (C,6c)Y on M_,
and its algebraic equivalence class [Lp_(C,6.)Y] € NS(M_) is independent of
the choice of f¢. It can be checked that the correspondence C' +— [Lps_ (C,0¢)]
induces a homomorphism p_ : NS(X) — NS(M_). One can also construct a

homomorphism g : NS(X) — NS(M) likewise. Let M_ Ry Y AR M be
the sequence of morphisms (3.22). For £ € A™ (a), we denote by EF the Cartier
divisor ¢! (Pf) on M_, which is equal to ¢ ' (Pf) by Corollary 4.6.

Lemma 6.1.  For o € NS(X), it holds that

¢ p_(a) = Srps(a)= D Oy ((f a/2) EF)

fe At (a)
in NS(M_).

Proof. For the simplicity of notation, we prove this lemma in case of
fAT(a) = 1. It’s easy to extend the proof to general case. Let C' and ¢ be as
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explained above, and
(6.1) 0— W, —U_ —G—0

the exact sequence (3.3) on Xp... Since U_ is a flat family of torsion free
sheaves, one can show that a Océss—module Z/~{_|c is Q%-flat. By using the

method of Céch complex, one get a quasi-isomorphism

(6.2)
Lf*Rpry, (U-|c ®0c) — Rpry, Lf "(U-|c ® 0c) = Ropry, [ (U-|c ®0c),

where
C Ass
Cs —— s

prfzt \Lprz
S Vss
S —— Q%
is a fiber product. The analogy to these result about (Z;L, st) also holds to
(W4, Q%) and (G, D_). (6.1) gives a triangle
Rpr,, (Wi e ®00) — Rpry,(U-|o @ 0c) — Rpry.(G-|o @ 0c)

in D(Cz)s_s), and hence an isomorphism

(6.3) det Rpry, (U_|c ®@0c) ~ det Rpry,(Wylc @ 0¢) - det Rpry, (Gl ® 0¢)
in Pic(Q**) is induced. B
det Rpry, (Wi |c ® ¢) naturally is isomorphic to 7% ¢% L, (C,0¢)Y. In-

deed, Lemma 4.1 gives an open covering | J,, U, of Q**, a morphism oY Uy —
Ss

%, and an isomorphism of Xy, -modules ®% : Wy |y, — (%) Us. By (6.2)
®9 naturally induces an isomorphism

det(®) : det Rpry, (Wylc ® 0c)|u, — det Rpry, (09)" (Us|c ® Oc)
— (¢4)" det Rpry, (Us|c @ Oc)
= (1) ™ Lar, (C,00)" = @3 L, (C,00) |u, -

In addition, if a@ # 8 then the isomorphism

(6.4) (@) Lods W,

Uag — W+|Uaﬁ

on Xy, , = Xu.nu, is given by Ao € F(Oéa@) since W, |, , is a flat family of
simple sheaves as mentioned right after Corollary 3.4. One can define the rank
R of a perfect complex Rpry, Wi|c ® 0¢), and then

det(fbf_)*l odet(®%) : det Rpry,,(Wi|e ® 0c) Uas
— detRpry, (Wile ® GC)lUQﬁ
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is given by )\2/5. This R turns out to be zero because the Riemann-Roch
theorem implies that x(Cp), Wi |c ® Oc ® k(t)) = 0 for every ¢ € Uyp. Hence
we can glue det(®¢) to obtain an isomorphism

(6.5)  detRpry,(Wilc ®0c) ~ @ L, (C,00)Y =75 ¢ Lar, (C,0c).
From (6.2), we can get a natural isomorphisms
det Rpry, (U_|c ® 0c) — ¢* det Rpry, (U_|c @ Oc) = 75 ¢* Las (C,0c)".
Hence by (6.3) and (6.5)
72 (¢4 L, (C,00) — ¢ Las_(C,0¢)) ~ det Rpry,(Glc @ Oc).
,C';|C®90 isasheafon Cp_ C CQ‘T’ and so det R pr, *(g\c®90) can be regarded
as det Rpry, j€(Glc @ 0¢) = det j,Rpr) . (Glc ® O¢), where

.C
CD, ;J CQSj

lpr'2 lprz

D_C 1 (s

is a fiber product. By the Riemann-Roch theorem x(Cj ), Gle ®0c @ k(t)) =

—f-C/2for every t € D_. Thus the rank of a complex R pr, *(Q|C@QC) on D_
is equal to —f - C/2. In view of this we can prove that det Rpr, , (G|c ® 0c) =

— (f - C/2) D_ in Pic(Q%); its proof is omitted. Summing up, we obtain an
isomorphism
(6.6) 7" (¢} Lar. (C,0c) — 6" Lar_(C,6c))

~— Y 0gu((f-C/2)DY) == > #2045 ((f-C/2) E)

feA+(a) feAt(a)

in Pic(Q**). Moreover, both sides in (6.6) respectively have a natural G-
linearized structure. One can check that (6.6) is an isomorphism of G-linearized
line bundles. By [Se, Theorem 4] and [HL, p. 87, Theorem 4.2.16] the natural
homomorphism

(6.7) 7* ¢ Pic(M_) — Pica(Q%°)

is injective, where PiCé(Qis ) is the group of G-linearized line bundles on Qss.
Thereby (6.6) and (6.7) complete the proof of this lemma. O

Now we assume that

(68) dil’Il]\fHi (0, 62) = 402 — 3X(Ox) = d(Cg)
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and that
(6.9) codim(M, Py) > 2.

These assumptions can be considered to be reasonably weak by the following
lemma.

Lemma 6.2.  Let Amp(X) be the ample cone of X, and S C Amp(X)
a compact subset containing Hy. If co is sufficiently large with respect to S,
then assumptions (6.8) and (6.9) hold good.

Proof. Refer to [Zu, Theorem 2], [GL], and the proof of [Q1, Theorem
2.3]. O

By (6.8) we can define a multilinear map
ve =72 (c2) : Sym™ ) NS(X) — Z

by v (o, ..., agee,)) = pe(or) - - -+ p+(rg(e,)) using the intersection number
of line bundles on My = M,, (0, cz). Similarly, a multilinear map

YHy = YH, (C2) : Symd(c2) NS(X) —Z

can be defined by the intersection number of line bundles on My (0, c2).

Concerning v (cz2) let us recall its relation to the Donaldson polynomials,
which was stated in Proposition 0.1. As explained in Introduction, Proposition
0.1 originally results from differential geometry. We would like to observe this
proposition from an algebro-geometric point of view. For this reason we shall
study g (C)%2) -y, (C)¥2) for a nonsingular curve C'in X. We often shorten
d(cz) to d.

Since (6.9) both ¢_ : M_ — M_ and ¢, : M_ — M, are birational,
4 (C)4 — p_(C)? is equal to ¢* pi (C)4 — ¢* pu_(C)% For f € NS(X) , we set

= (f-C/2). Then Lemma 6.1 implies that

O (C) = ¢ p_(C)*
= {¢5n(C) - 0)}- Z¢ p(C)F - py (C)F1F

d—1
Z[¢u (ZSJ,-/L dlk Z}\CEf

0

(6.10)

b

M_

where [ ]y, stands for the multiplication of line bundles is calculated on M-_.
By [KL, p. 297, Proposition 4], (6.10) is equal to

d—1
> X éf’*_ﬂ—(C)|]Ef'{¢iﬂ—(C)Z)\?Ef}

fEA*(a) k=0 f

d—1-k

Ef Ef

U
—

=D AGD [¢ u(O) e - {6" - (C) = AFE H M e,
f

0

~
Il
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since Ef N EY = 0 if £ and £ are different by 2.4. ¢_ and ¢, induce a
commutative diagram
Ef — P—f

b+
¢—l lm
Pf ; T.

Let Fy and Gy be Ox,-modules defined in (5.2). By Proposition 5.7 there are
tautological line bundles OFf (1) and O;f(1) on, respectively, Pf and P~£.

Lemma 6.3. A line bundle Og:(—E®) on Ef is naturally isomorphic
to = OL (1) + ¢2. 07 (1).

Proof. We shorten Of (1) and (’);f(l) to, respectively, O_(1) and O4(1).
Let Df denote a closed subscheme (7_)~1(Ef) of Q**. Then

Qf <s— Df —Df U, —>Q°F

S } . |-

Pf . Ef P—f

is commutative for U, C Q** and @9 in Lemma 4.1. By (5.3), we can rewrite
the exact sequence (3.5) to obtain

(6.12) 0 — Go® La(—D') — Wy|x,, — Fo® L — 0

on X pr. Next, let

(6.13) 0—G —Ulge—F —0

be the exact sequence (4.1) on X-¢. Similarly to (5.3), there are isomorphisms
F'~Fy@ M, and G ~Gy® M,

with some line bundles M; and M, on Q~—f. Analogously to Proposition 5.7,
M,y ® MY is isomorphic to 75 O4(1). Thus we obtain an exact sequence

(6.14) 0— Go® (¢p5) My — (0%) Uy |peru, — Fo @ (9F)" My — 0

on Xpe N Ug, pulling (6.13) back by idx x@$ : Xpeqy, — Xg-¢. Connecting
(6.12) and (6.14) by the isomorphism ®¢ in Lemma 4.1, we get the following:
(6.15)

0—>Go ® Ly(=DF) ——= Wy |ptrp, ———>Fo @ _L1|U(, —0

o l‘i’i iTa

v v
00— Go® (93)" My —— (0%)* U | prav, — Fo ® (¢)* My ——0.
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As observed in the proof of Lemma 4.2, there is an isomorphism 7, : Fy ®
Lily, — Fo ® (¢%)*M; which makes (6.15) commutative. This r, induces an
isomorphism 7/, in (6.15). Because both Fy and Gy are flat families of simple
sheaves, r, and r/, induce isomorphisms

L(ro): Lilu, — (¢5)"M; and L(rl): Ly ® ODf(—Df)

Us — (93)" Mo
of line bundles on Df N U,. I'(r,) and I'(r!) induce an isomorphism
D(ra) ™" - T(rg) : Ope(=D)|u, = 7 Ope (—E")|y,
= (L @ L) v, ® (73)" (Mo @ MY)
~ 79 O_ (Do, © (72) 7104 (1)
=7 (¢20-(1) + ¢1.0+(1))|prrw.

By (6.4) one can check that T'(r,)~! - T'(r}) = '(rg) =" - T'(r,), and hence glue
[(ro)~t-T(rl) to obtain an isomorphism

a

TLOpe (—E") = 7 (620_(1) + ¢ 0+ (1))

of line bundles on Df. One can also check this is an isomorphism of G-linearized
line bundles. Then we complete the proof of this lemma in similar fashion to
the proof of Lemma 6.1. o

From (6.11) and Lemma 6.3 we obtain that

(6.16) p_(C)") —py(C)H=) = 3~ A
feAt(a)
d(c2)—1

> [0 (O {6 (O e + AT(OF.(1) + OFF (1)) e 1
k=0

Ef

In the following section, we shall in detail examine the right side of this equation
in some special case.

7. The relation to the intersection theory of P(A_) x P(AY)

From now on, adding to (6.8) and (6.9) we assume that the irregularity
q(X) = 0 and that

(7.1) some section k € I'(Kx) gives a nonsingular curve £ C X

in view of Proposition 0.1. (We can expect this will be weakened to the con-
dition py(X) > 0; to do so, we have to adjust the assumption in Proposition
7.1.) Moreover we assume the following about f = (f,m,n) € A™(a):

dim Ext, (Fo ® k(t),Go ® k(t)) = Ly and

(7.2) ] L
dim Exty, (Go ® k(t), Fo @ k(t)) = L_
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are independent of ¢ € T' = Picl//(X) x Hilb™(X) x Hilb™(X), where F, and
Go are Ox,-modules defined in (5.2). This assumption (7.2) holds good if, for
example, Kx is numerically equivalent to zero, but is not weak at all in general.
Assuming (7.2) we see that both

(73) A_ = Emt&T/T(fo, go (Kx)) and A+ = Ext}(T/T(QO, fo(Kx))

are locally free Op-modules, and hence P*f = P(A+) are projective bundles
over a nonsingular scheme 7. Under these assumptions we would like to exam-
ine

d(c2)—1
4) Y [ S (O]
k=0
c2)—
Z [ O)llye - {620-(C) + AT (O (1) + OZ (W)} 5],

which appeared in (6.16). We shorten Of (1) and Oj_f to, respectively, O_(1)
and O (1) for the time being. Since P*f are projective bundles over T there
are line bundles G+ on T and integers N1 such that

p—(C)pe = 72(8-) + O-(N-) and p4(C)|p-r = 71(84) + O1(N4)

in Pic(P*f). By Lemmas 6.1 and 6.3 we have
(7.5) ¢272(B-—B4)+¢- O (N-) =65 04 (N1) = =2F (62 O-(1)+1.0(1))

in Pic(Ef). Suppose that Ny # )\? = (f - C/2). Then (7.5) implies that Ogs
is ¢_-ample since Ope(—EF) = ¢* O_(1) + ¢%.04(1) is ¢_-ample. By [EGA,
11.5.1], the proper morphism ¢_ : Ef — Pf should be finite if O ge is ¢_-ample.
This contradicts (6.9). Therefore as divisors on Ef we have

S 1 (C)lpr = (T A+ O (X))} and

G5 (O)|pe = ¢4 {4 B+ O+(/\Jq)}

with 8 = f_ € Pic(T). Hence one can check that (7.4) is equal to

U
—

(7.6) [¢*_(ﬂ+(9_(—)\}§))k.ggi(ﬂJr@Jr()\?))d—kk}

0

EBf

ES
Il

d d—1-t

_ 4-1Cy - (A )d—l—t [ﬂt 04 (1)* ,0_(71)d—1—t—s}
0

t=

EBf

I
o

S

by using the equation Z?:o s+1C1* 4—1-s—1Cs—1 = 4—1C%.
Let Ef, ..., Ef be the reductions of all irreducible components of E¥, and
let Ff ..., Ff c P! x7 P~f be their image schemes by ¢_ xr ¢, : Ef — Pfxp



Moduli of sheaves under change of polarization 863

P~f. [KL, Section 1] implies that Zd o (8- O, (1) (’)_(—1)61_1_t_“”]Ef in
(7. 6) is equal to
n d—1—t

(7.7) Zdegz Z ﬁt 0.(1 'O_(—l)d_l_t_s}Ff
=0 s=0

i

with some rational number deg;. We shorten Ff to Ff for the time being. We
fix some integer M, and divide (the right side of) (7.7) into

M d—1—t

Z+Z [Bt ( dltMZO+ ._ )Ms)]
s=0 s=M+1 Ff
-M

d—2—t
+ 80O
s=0

(04_(1)5 .O_ (l)thSN[)]

Ff

(7.8) is related to the intersection theory on Pf xp P~f = P(A_) x7 P(A})
since Ff is its closed subscheme. In this section we would like to reduce the
problem of computing (7.8) to the intersection theory on P(A_) x7+P(AY) and
P(AY) x7 P(Ay) by choosing M suitably. The reason why we would like to do
so will be explained in the next section. It is possible to connect Pf x, P~f
with P(A_) x7 P(AY) because py(X) > 0.

Since T is projective over C, there is a line bundle Gy on T such that
coherent Op-modules A_ ® Gy, A_ ® 26y and A_ ® (8 + [p) are generated
by their global sections. Because § = {O_(1) 4+ 5+ 6o} — {O_(1) + Bo} and
O_(1) =2{O_(1)+fo} —{O_(1)+20y}, one can express 3°-O_(—1)4-1-t-M
in (7.8) as

I d—1—M

ZNz H ~(1)+L})

with integers NV; and line bundles L;- on T such that
(7.9) T_(0-(1) + L;) =A_® L;- is generated by its global sections.

Hence, in order to understand the first half of (7.8), let us examine

d—1-M M
(7.10) [T ©-()+1,)-Y 00y -0_(-1")| |
j=1 s=0

f

where L; € Pic(T) satisfies (7.9). We shall denote the natural projections by
p+: Ff — PExp P~f — P* (7.10) clearly is zero if d—1— M > dim p_(F¥),
and so we can assume that d — 1 — M < dimp_(Ff). Then one can find
nonzero global sections \; € I'(Pf,0_(1) ® L;) = I'(T, A_ ® L;) such that
dim(Ff np=t(Ayn---NA;)) = dim Ff — j, where A; C Pf is the effective
Cartier divisor of Pf corresponding to Aj. These A; induce a homomorphism

(7.11) @ ON LT @@Lyl — A
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AyN---NAg_1_p C Pfis just a closed subscheme P(Cok(€D; ®A;)) C P(A-).
By a general property of intersection number [KL, p. 297, Proposition 4], (7.10)
is equal to

M

(7.12) Z [O+(1)S : O—(_1)M_s]pzl(Alﬁ~-ﬁAd_1—M) )
s=0

On the other hand, x € T'(Kx) in (7.1) induces a homomorphism
(7.13) @K A = ExtkT/T(.’Fo,go) —-A_ = ExtkT/T(}"o,go(KX))

by virtue of Proposition 5.1. We define I_ by I_ = rk(Cok(®«_)) and prove
the following proposition.

Proposition 7.1. Ifd—1—-M > [_ 4 dim7T, then we can choose A;
so that

(7.14)
AY = Eaty 1(Fo,Go) &5 A = Eatl 7(Fo @ Go(Kx)) — Cok(EP) @;)
J
is surjective. In particular, le(Al N---Ag_1-nr) can be regarded as a closed
subscheme of P(AY) xp P~f = P(AY) x1 P(AL).

Proof. Suppose that the following lemma is valid:
Lemma 7.2.  Define a closed subscheme T; of T by

T { teT | rkCok{®r : Extk, (Fo @ k(t),Go @ k(t)) — }
v Extk, (Fo ® k(t),Go(Kx) @ k(t)} > 1_+i [

Then codim(T;,T) > i for all i > 0.

Then the dimension of a closed subscheme P(Cok (2x)) of P(A_) = Pf
is less than [_ + dim T since relative Ext sheaves A_ and AY are compatible
with base change by the assumption (7.2). Thus if d —1 - M >[_ + dim7T,

then one can choose \; suitably so that Ay N --- N Ag_1_p NP(Cok (®kK)) =0
X

inPfor Li'e-@ L] YOV A = Extﬁ(T/T(fo,go(KX)) — Cok(®k)
is surjective. Hence also AY BE A — Cok(® ® A;) is surjective, and so the
proof of Proposition 7.1 is completed.

To prove Lemma 7.2 let us observe good properties of Hilb(X). Fo ® k(t)
and Gy ® k(t) are isomorphic to, respectively, O(L) ® Iz, and O(c1 — L) @ I,
for some divisor L on X; and codimension-two closed subschemes Z; and Zs
in X;. The long exact sequence of Ext sheaves associated with a short exact
sequence

0— O(c; — L) =Go @ k(t) 25 O(c1 — L+ Kx ) ® I,
=Go(Kx) ®k(t) — O(c1 = L+ Kx)|x ® Iz, — 0
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tells us that

rk Cok{x : Extly, (Fo ® k(t), Go ® k(t)) — Ext, (Fo ® k(t), Go(Kx) ® k(t))}
=L_—-L, —homx(Izl,O(Cl — 2L—|—Kx) ®IZQ)
+homx (Iz,,0(c1 —2L + Kx)|x ® Iz,),
where Ly are those of (7.2). Since

dimEXt‘lxt (go ® k(t)7.7:0 X k’(t)) = dlmExtkt (IZUO(CI — 2L + Kx) ® IZZ)

is independent of t € T, homx (Iz,,0(c; — 2L + Kx) ® Iz,) is independent
of t € T. Moreover, if t € T is so general that Z; N K = Zy N K = (), then
homx (Iz,,0(c1 —2L+ Kx)|x ®1z,) is equal to h®(O(c; — 2L+ Kx)|x), which
is independent of ¢t € T since ¢(X) = 0. Therefore one can show that

rk Cok{®k : Ext, (Fo ® k(t), Go ® k(t)) — Extl,(Fo @ k(t), Go(Kx) ® k(t))}
—1_ =homx(Iz,,0(c; — 2L+ Kx)|x ® Iz,) — h°(O(c1 — 2L 4+ Kx)|x).

Now we divide Artinian schemes Z; and Zy into Zy = Wi [[T) and Z; =
Wo ][ T so that, set-theoretically, W, = Wy = Z; N Za N K.

Claim 7.3.

homy (I7,,0(c; — 2L + Kx)|x ® Iz,) — h°(O(c1 — 2L + Kx)|x)
< Z(Zl n IC) + l(Z2 N ]C) + homX(OWZ, OW])
+ homx (Ow,, Im(®k : Ow, — Ow,)).

Proof. From the long exact sequence of Tor sheaves, one derives two exact
sequences

(7.15) 0— Fy — Oz, 25 0y, — Ogync — 0
and
0 — Fy — Iz,|x — Lo = Ker(Ox — Oxnz,) — 0.

Hence one can show that

homy (Iz,,0(c;i — 2L + Kx)|x ® Iz,) — h°(O(c1 — 2L + Kx)|x)

< homy (Iz,,0(c; — 2L + Kx)|x) 4+ homx (Iz,, Fy) — h°(O(c; — 2L + Kx)|x)

= [x(Iz,,0(c; — 2L + Kx)) + exty (Iz,, O(c; — 2L + Kx)|x)
—x(Iz,,0(c1 —2L))] = [x(O(e1 — 2L + Kx)) — x(O(e1 — 2L))
+ RN O(cr — 2L + Kx)|x)] + x(Iz,, F2) + extk (Iz,, )

= exty (Iz,,0(c; — 2L + Kx)|ic) + 1(Fy) + extk (Iz,, F»)
—hYO(c1 — 2L + Kx)|x)

= extx (Iz,,0(c1 —2L + Kx)|x) — ' (O(c1 — 2L + Kx)|x)
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+1U(ZyNK) +exty (Iz,, Fy)
by the Riemann-Roch theorem and (7.15). If we define F; by an exact sequence

0— F — Oz, 25 0y, — Og,rc — 0,
then we have that
exty(Iz,,0(c; — 2L+ Kx)|x) — h'(O(c1 — 2L + Kx)|x)
< extg((Ozl,O(cl — 2L + Kx)|;c) = homX(O(01 — 2L)‘}C, Ozl)
= homX((’);c, 021) = homX((’);C,Fl) S Z(Fl) = l(Zl N K:)

For Wy C Z5 mentioned above, there is an exact sequence

0—>G2 —>OW2 &sz —)OW2ﬂK: — 0.

extl (Iz,, Fy) = ext%(Ogz,, Fy) = homy (Fz, Oz ) equals homx (G2, Ow, ) nat-
urally. GG induces an exact sequence

0 — Gy — Ow, — Im(®k) — 0.
This sequence implies that
homyx (G2, Ow,)
< homx (Ow,, Ow,) — homx (Im(®k), Ow, ) + extk (Im(®~), Ow,)
= —x(Im(®k), Ow,) + ext% (Im(®~), Ow, ) + homx (Ow,, Ow,)
= homx (Ow,, Im(®k)) + homx (Ow,, Ow, ).
Hence we conclude the proof of this claim. O

For nonnegative integers p, ¢ and r,

(Zl,ZQ) S l(Zl ﬁIC):p, Z(ZQQIC):(L
Woar = Wpgr = ¢ Hilb™(X) x| hom(Ow,, Ow, ) + hom(Ow,, Im(®k :
Hilb™ (X) OW2 — OW2)) =T

is a locally-closed subscheme of Hilb™(X) x Hilb"(X). By the claim above, the
proof of Lemma 7.2 is completed if we prove that

(7.16) codim(W »" Hilb™(X) x Hilb™(X)) > p+qg+r.

pqr>

Let Hilb™ (X, z) denote Hilb™(Spec(Ox . )) for a closed point € X, and let
Z" C Hilb™(X) be a locally closed subscheme {z € Hilb™(X) [I(ZNK) = p}
for p e N.

Claim 7.4. If we prove that

(7.17)
codim(W™™ A [Hilb™ (X, z) x Hilb™(X, )], Hilb™ (X, z) x Hilb"(X, z))

pqr
2p+tqg+r+1
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and that
(7.18) codim(Z", Hilb™ (X)) > p,
then (7.16) follows.

Proof. The proof is by induction on (m,n). Fix (m,n) and suppose that
(7.16) holds good for (m’,n’) # (m,n) such that m’ < m and n’ < n. If either
m or n is zero, then (7.16) for (m,n) is immediate from (7.18). Hence we
assume that both m and n are positive. We divide the proof into several cases.
Let (Z1, Z2) be a member of Wi C Hilb™(X) x Hilb"(X).

First, suppose that # supp(Z;) > 2 and f supp(Z3) > 2. Let my, ma, ng
and ny be positive integers such that m; +ms = m and ny + no = n. If we
define an open subset U™ of Hilb™* (X) x Hilb™?(X) by

v =A@z 2 | 2V 0z = oy,

then we can define a natural map ¢™ : U™ — Hilb™(X). Similarly we can
define o™ : U™ — Hilb™(X). Let V™1 be an open subset of U™ x U™

1 2 1 2 2 1 1 2
(2", 2, 2", 23 1 27 n 25" = 21V n zg? = oy
(Zy,Z3) is contained in ¢™! x "1 (V™1:"1) for some mq, ny. It’s easy to prove
that, in Hilb™ x Hilb™ x Hilb™ x Hilb"?,
(7.19) (™ x ™) Wymynvmem co | W x W

par P1q17T1 p2qaT2’
(pi,qi,mi)

where (p;, gi, ;) runs over the set of all triples such that p; +p2 = p, g1 +¢2 = ¢
and r1+re = r. The inductive hypothesis tells us that the dimension of the right
side of (7.19) is not exceeding 2(m +n) — (p+ g+ ), since dim Hilb"(X) = 2n
by [Fo]. Hence dim(Wypr N (o™ x @) (V™) <2(m+n) — (p+q+7).

Unless # supp(Z1) > 2 and f supp(Z2) > 2, it holds either § supp(Z;) =
1 and §supp(Z2) > 2, §supp(Z1) > 2 and §supp(Z2) = 1, supp(Z1) =
supp(Zz) = {z} or supp(Z;) N supp(Z2) = (. In all cases one can ver-
ify that (Z1,Z) is contained in a subscheme whose dimension does not ex-
ceed 2(m + n) — (p+ g + r), similarly to the case where § supp(Z;) > 2 and
f supp(Zz) > 2. O

Claim 7.5.  Let us denote Z;* N Hilb™(X,z) by Z*(x). If we prove
that

(7.20) codim(Z)"(z), Hilb™ (X, z)) > p -1,
then (7.17) and (7.18) follow.

Proof. We can prove (7.18) by using (7.20) in a similar fashion to the
proof of Claim 7.4. Shorten W7 N [Hilb™ (X, x) x Hilb" (X, z)] to W7 (x). If
(Z1,Z2) € Wy (z), then

r =homx(0gz,, 0z, ) +homx(Oz, ,Im(®k : Oz, — Og,))
<UZ) +1(Im(®k)) =UZ1) +U(Z2) =l (ZaNK)=m+n —q.
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Hence if Z™"(z) # (), then (7.20) means that

par
2m+n)—(p+q+r)>2(m+n)—(p+qg+m+n—q)
=m+n—-p=m—-1—(p—1)+(n—-1)+1
> dim(Z)" (z) x Hilb™ (X, z)) + 1 > dim(W " (z)) + 1
since dim Hilb™ (X, z) = m + 1 by [Br]. Thus (7.17) follows. O

Now we prove the following claim, which completes the proof of Proposition
7.1 because of the claim above.

Claim 7.6. For an integer ¢ > 2 and a closed point € X, we define a
locally closed subscheme Wi () of Z7*(z) C Hilb™(X) by

W(;f(x) ={ze Z;"(x) | dime(Iz ® k(t)) = i}.
Then it holds that

(7.21) dmZM@)<m—q  (1<q<m),
and that
(7.22) dim Wi (z) <m —q+2—i (2<i,1<qg<m).

Proof. Tt suffices to prove this in case where x € K. The proof is by
induction on m. It’s easy to prove this claim for m = 1. Fix m and suppose
that this claim is valid for all m’ < m. Referring to [ES], we here recall the
incidence subvariety H,y, 41 of Hilb™(X) x Hilb™ ™! (X):

Hypymi1r = {(Z1, Zy) € Hilb™(X) x HIIb™ (X)) | Z; C Zy}.

Let f : Hypmy1 — HilD™(X) and g : Hyppmy1 — Hilbm‘H(X) be the pro-
jections. There is a natural morphism ¢ : Hy, my1 — X sending (Z1, Zs) to
the unique point where Z; and Z, differ. They give a (birational) morphism
¢ =(f,q) : Hnms+1 — Hilb™(X) x X. By [ES, Section 3] it holds that

(7.23) dim =1 (Z1,y) = dime (I, ® k(y)) — 1
for (Zy,y) € Hilb™(X) x X, and that if (g,q) "' (Z2,y) # () then
(7.24) dim(g, q) ™" (Z2, y) = dime(Iz, ® k(y)) — 2

for (Zs,y) € Hilb™ 1 (X) x X.

First let us show (7.21) for m + 1. Suppose that ¢ < m. Then for any
Zy € ZZ]LH(Q:) one can find 7, € Z;"(x) such that (Z1,Z2) € Hpmy1. Thus
Z N (x) € g(¢ 1 (2] (x) x {x})). Z]'(x) clearly is equal to Uise Wyl (), and
so dim Z]" () < max;>y dim ¢! (W7 (z) x {z}). The inductive hypothesis
(7.22) and (7.23) imply that

(7.25) dim¢~ (Wi (z) x {z})
SdimWil(z)+i—-1<m—-q+2—i+i—1=m—q+1.
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Now we claim that dim Z2{{ () = 0. Indeed, if Z> € Z/{1(x), then Oy, is
isomorphic to Oz,nx, which is equal to O /m%il since K is a nonsingular
curve. Therefore (7.21) is valid for m + 1.

Next let us show (7.22) for m+ 1. If ¢ = m + 1 or ¢ = 2, then (7.22)
results form (7.21). So suppose that ¢ < m and i > 3. If (Z1,Z3) € Hypmt1
satisfies 75 € W;?H(x), then Z; € Hilb™(X,z), I(Z1NK) = ¢—1 or ¢, and
dime(Iz, ® k(z)) =i—1, i, or i + 1. Hence

(7.26)
i+1 i+1
g (Wit (@) U ¢t (W () x {a}) U U ¢t (z) x {z}).

If Zy € Z]" () and Zy € Z]" ! (z) satisfy Z) C Za, then Iz, is equal to

Ker(Iz, — Iz |x = Iz,nc =mi, —»mf, /mE , ~C)

since K is nonsingular, where my . is the ideal sheaf of x € K. Consequently
the inductive hypothesis (7.22) implies that

(7.27)  dim ™" (Wg'y j(2) x {z}) N g~ (W (2)
<dim Wy s(z) x{zf <m—-qg+3—-j<m—q+1
since j > i —1 > 2. (7.25), (7.26) and (7.27) mean that dim(Wq’?H(x)) <
m — ¢+ 1. By (7.24) we have
dim Wit (@) <m—q+1—(i—2)=m+1-q+2—i.
Therefore we have proved (7.22). O
Claim 7.6 concludes the proof of Proposition 7.1. O

Therefore (7.12), which is the first half of (7.8), is related to the intersection
theory on P(AY) xp P(Ay) ifd—1—-M >1_ +dimT.

8. The relation to incidence varieties

To understand (7.12) still more, let us examine subschemes Ff and p~'(A;
N NAg_1_p) of Pf xp P~f. We denote the reduction of cpjl(Qf) =
¢ (P~f) by DE.

Lemma 8.1.  Letr: HomXDf/Df(g,Q(KX)) — E:Etﬁ( /Df(g,f(KX))
be a homomorphism induced by the restriction of (3.2) to XDf (We here

shorten J:'\XDf to F, etc.) The extension class of the third column of (3.6)
gives an element s of

Exty,,(F,G(—D-)) = I(D, Batk  pe(F,G(—D-)))
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by virtue of Proposition 5.1. Then sor : HomXDf/Df(g7 G(Kx)) — Ope(—D_)
18 zero.

Proof. We shall appeal to some obstruction theory. For a closed point ¢
of Df the third column of (3.6) induces an exact sequence

(8.1) 0 — Gty (—D-) — Wylx,, — Firy — 0

on Xy;. As observed in the proof of Lemma 3.1 and lemma 3.3, the extension
class o of (8.1) in Extkw) (}:k(t),gNk(t)(—D,)) is the obstruction to extend a
morphism

Spec(A’) = Spec(Og.. /O(—D_) + 1y — D_ “= V.

to a morphism Spec(A) = Spec(Ost/ThiH) — V_, where [ is the integer in
Lemma 3.1. Next, let

ry s Ext (Fe), ey (—D-)) — Ext} (Gr(y» Gy (—D-))

be an homomorphism induced by (3.2). Then 7}(o) is the obstruction to extend
G ®p_ Ox € Coh(X /) to an A-flat family of simple sheaves on X 4 by [HL,
Section 2.A]. Moreover, the trace map

(8.2) tr : ExtX (Gr(r), Gy (—D-)) — H*(Ox(—D-))

sends 7} (o) to the obstruction to extend a line bundle det(g~ ®p_ Oa) on Xa
to a line bundle on X4 by [HL, Theorem 4.5.3]. Now Pic(X) is smooth over C,
and the trace map (8.2) is isomorphic since rk(Gy4)) = 1. Therefore r¢(0) = 0.
Remark that

Ext (Fi(e), Gy (—D-)) ; Ext% (Gr(s), Gr(ty(—D-))

Ty

X v °

Exth (Grer) (—D- ), Firy (K x))¥ — > Homx (Gr(y(—D-), Grgoy (K x))V

is commutative, where O is an isomorphism induced by the Serre duality (5.4),
and

Tt Hom(Gk(t)(_D7)7 Gk(t)(KX)) - EXt}((gk(t)(—Df)»ﬁk(t)(KX))
is defined similarly to r in this lemma. One can verify that

HomXDf/Df(g,g(KX)) ® k(t)

can 5 5 ry 0O(0)
— Homx, ., (Gr(1), Gr() (Kx)) ‘=" Ogss(—D-) @ k(t)

is equal to (sor) ® k(t). Hence (sor)® k(t) = 0 for every closed point t € Df,
which implies s o 7 = 0 since Df is reduced. O

An exact sequence (5.9) on Xpr induces a homomorphism

(83) rp: HomXPf/pf(go,go(Kx)) — Extkpdpf(go,fo ® 07(1)(Kx))
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Lemma 8.2. The image scheme of ¢_ X ¢y : (Ef)red — Pfxp P f
is contained in a subscheme

P(Cok(rp)) C P(Ext}xpf/,jf(go,fo ® O_(1)(Kx))) = Pt xp P~F
defined in (8.3).

Proof. We shorten (Ef)rcd to E, in this proof. There is a natural exact
sequence

(8.4) 0—G®0O0:(1) —Vy — Fy—0

on X ~f similarly to (5.9). Pulling back (5.9) and (8.4) by, respectively, ¢_ and
¢+, we have two exact sequences

(8.5) 0— Fo®O_(1) —V_ — Gy — 0,

on Xg . They induce two homomorphisms

rg :Homx, /5,(90,G0(Kx)) — Eatx, /5 (Go,Fo® O_(1)(Kx)) and
sp Bty g (Go,Fo® O_(1)(Kx)) — O_(1) @ O4(1).

We pull them back by #_ : Df — E,.. Then

72 Homxy, /5, (Go, Go(Kx)) —= 72 (O-(1) ® O4(1))

! |

Hom ,jpe(G.G(Kx)) — "> Ope(~D_)

is commutative, where f; is a natural homomorphism and f5 is the isomorphism
in Lemma 6.3. One can prove this by recollecting the way to construct ¢, and
the proof of Proposition 5.7. Therefore 7* (sg o rg) = 0 by Lemma 8.1.

On the other hand, 7_ : (7_)~Y(Ef ;) — Ef ; = E, is a principal G-bundle
since BEf € M?. Thereby (7_)~'(Ef,) is reduced, and hence (7_) "' (Ef)eq =
Df. Accordingly #_ : Df — E, is faithfully-flat, and so #* (sg o rg) = 0
implies sp o rg = 0. In fact, sg gives a morphism P(sg) : F, — E, X
pPf= ]P’(E:EtkEr/Er(go, Fo(Kx)) and P(sg) is equal to id x ¢, because of its
definition. Thus sg o rgp = 0 implies this lemma. O

Here we remark that F¥ also is contained in P(Cok(rp)) C Pf x7 P~f by
virtue of its definition and the lemma above.

Let us proceed to study a closed subscheme pil(Al N---NAg_1_p) of FFf
in (7.12). We assume that ¢(X) > 0, (6.8), (6.9), (7.1) and (7.2).

Definition 8.3.  Dualizing a canonical quotient A @7 Op-¢ — O (1),
we have an exact sequence
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(8.7) 0— O04(-1) — AL @1 Op-¢+ — Coky — 0

on P~f. The incidence subvariety D~F of P(AY @7 Op-t) = P(AY) x7 P(Ay)
is a closed subscheme P(Cok ).

Lemma 8.4.  Suppose that the homomorphism (7.14) is surjective.
Then a closed subscheme pjl(Al N Ng—1-m1) of]P’(Extﬁ(T/T(]—'O, Go)) xp P~ ¥

is contained in the incidence variety D~F.

Proof. 1In the proof we shorten A;N---NAyz_1_ 5 to A for simplicity. From
the assumption we have the following commutative diagram of Op-modules:

(8.8) { = Baty,1(Fo,G0) Cok(® ® \;)

o] /

A, = El‘t}(T/T(fo, go(Kx))

This induces two closed immersions:

(8.9) P(AY) (T)P(C()k(@ @A) =A

P(A_) = Pt
Now we can find isomorphisms

§V1iVFOY (1) — i O_(1) and j:i*O_(1) — Ox(1)

such that
(8.10) AY @1 Oy = A_ @7 Op — Cok(® ® Aj) @7 Oa
(W)*Aii i*()\)i AAi
() OL1) =0 (1) > Ox()
J

is commutative, where A_, AY and Ax are the natural surjections on Pt P(AY)
and A, respectively. Pull back this diagram by ¢_ : Ey := ¢_'(A) — A,
which is a restriction of ¢_ : Ef ; — Pf. The following diagram on Ej is
commutative:
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(8.11) O4(-1)|py, ——— Homx,, /5,(Fo ® O+(1), Fo)

®K

! Homx,, /5,(Fo® O+(1), Fo(Kx))
T
A @1 O, 2> A_ @7 Op, = Exty, g, (Fo,G0(Kz))
(i¥Yop_)*AY (f0¢_)*A_

0Y (1) U 0_(1).

Here, [ is the pull back of O (—1) — AY ®7Op-¢ in (8.7) by Ex — Ef — P~F,
r’z is defined by using (8.6) similarly to rp (8.3), and the lower diagram is
obtained from the left side of (8.11). Then, (io¢_)*A_ in (8.11) coincides with
the homomorphism s’ : Ea:t%cEA/EA (Fo,G0(Kx)) = O_(1) defined by using
(8.5) similarly to sg in the proof of Lemma 8.4. Hence one can verify that

io¢_)*A_or’, = 0in the same way as the proof of Lemma 8.4, which implies
E
(iVo@p_)*AY ol =01in (8.11). This and (8.10) imply that

A
O4(~1)|5, = AY ©1 O, — Cok(& & ;) &1 Op, * =) 04(1)

is the zero map. By this we can conclude the proof. O

For the time being we suppose a homomorphism (7.14) is surjective. More-
over, we assume that dim Ff = dim Ef = d — 1 since (7.7) is zero unless this
holds good. Then, by the lemma above a subvariety p~'(A; N --- N Ag_1_ar)
of P(AY) x7 P(A) gives an algebraic cycle w € A”(D~F) of the incidence va-
riety D~ with r = codim(p:l(Al N---NAg_1-a), D). DT is nonsingular,
so we can use the intersection theory of Df. Because O_(1)|a,nnry 12 =
OY(1)|A,n-nAg_1_» as mentioned in (8.10), one can verify that (7.12) is equal
to

M
(8.12) > " deg (e1(O4 (1)) - et (OY(—1)M e w) ) o,

t=0

where ()pe designates the multiplication in the Chow ring A(D~f). We shall
omit ¢;() from now on. Moreover, one can write w € A"(D7f) as w =

ZLj ? b; OY (1) with some b; € A"~J(P~f) = A"~J(P(A)) because the sheaf

Cok in (8.7) is a vector bundle on P~f whose rank is Ly —1 =rkAY — 1. By
(8.7), (—=1)M times (8.12) is equal to
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Li-2 M+j 4
=deg ) <bﬂ Z Op(Cok.) (1 ‘O+(_1)Mﬂ_t>

j=0 P(Cok )
Li—-2 j—1
—deg Z <bj SO (—1)MT. Z Op(cok.)(1)" - O+(—1)]_1_t>
Jj=0 t=0 P(Cok)
Ly—2 M—j
= deg bj - Z St—(L+—2)((COk+)v) : O+(1)M+]t>
=0 t=0 p-f

Li-2 j—1
— deg <bj COL (=DM T (1, —2)((Coky)Y)

=0 t=0

: O+(1)j_1_t>

p—-f

Here s;((Cok,)V) € AY(P~F) is the Segre class of a vector bundle (Cok, )Y on
P~f, which is explained in [Fu, Section 3.1].

In general, the Chern polynomial ¢;(V) = Z;io ¢;j(V) ¥ of a vector bundle

V satisfies that ¢;(V)~' = 377 s;(V)#/ as power serieses. Thus the dual of
(8.7) tells us that

s1((Coky)) - (1 + Z O4(=1) /) = 5:(Ay @1 Op-e).

7>0

In addition, s;(V) = 0 if j < 0. We see that (8.13) is equal to the degree of

Ly—2
Y (b sarrjory—2)(A+ O7 Opr)) s
7=0
Li—2
(8.14) = > (b O (=DM sy (1, —2) (A @7 Ope))
§=0
Ly—2
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taking into account that j — 1 — (L4 —2) < 0. Since A, is a vector bundle
on T, 5M+j—(L+—2)(A+ ®T Op—f) = O provided that M +_] — (L+ — 2) Z
M — (Ly —2) > dimT. Therefore we obtain the following proposition as a
result of (7.8), Proposition 7.1, (8.12), (8.14), etc.

Proposition 8.5. Ifd—1-M >I_+dimT and M — (L4 —2) > dim T,
then the first term Zivio in (7.8) is zero.

Furthermore, the second term ZZ;ML of (7.8),

d—2—t—M
(8.15) O D D T N e
s=0

f
clearly is zero if M +1>dimPf =L, —1+dimT.

Proposition 8.6.  The contribution of Ef to u_(C)He2) — i, (C)4e2),
that is (7.4), is equal to zero ifd > Ly —1_ +2dimT.

Proof. By Proposition 8.5 and (8.15), (7.8) is equal to zero if M < d —
1—I_—dimT and M > Ly —2+dim7. One can find such an integer M if
d—1—-1_—dimT > Ly —2+dimT. O

As observed before Claim 7.3,
l_=L_—L4— homx(Izl,O(Cl — 2L+ Kx) ®IZ2)
+ hO(O(Cl — 2L + Kx)|;c)
=—X(Iz,,0(c1 —2L+ Kx) ® Iz,) — Ly + h?(O(c1 — 2L + Kx)|x),
where L and Z; satisfies that ([2L — ¢1],1(Z1),1(Z2)) = £ = (f, m,n). From
the Riemann-Roch theorem and Clifford’s theorem [H2, Theorem IV.5.4], we
deduce that
o+ Ly =—f-(f = Kx)/2+ (m+n) = x(Ox) + h°(O(e1 — 2L + Kx)|x)
<—f-(f = Kx)/2+ (m+n) = x(Ox)
+max(—Kx - f,(Kx — f) - Kx/2+1,0).
On the other hand, dim 7' = dim(Pic(X) x Hilb™(X) x Hilb" (X)) = 2(m +n)
and m+n = cg + (f2 — c})/4 since (f,m,n) € AT (a). Therefore one can verify
d—(L+ +1-+2dimT)
> —cz = (3/4)f = 2x(Ox) + min(£Kx - f/2,-K% /2 - 1).
Now fix a compact subset S in Amp(X). Then one can find a constant do(S)
depending on S such that |f - Kx| < do(S)-/—f2 if W/ NS # 0, as shown in
the proof of [Q1, Lemma 2.1]. Hence one can find constants d;(S) and da(S)
depending on S such that if —f% > (4/3)ca + di(S)\/c2 + d2(S), then (8) is
greater than zero.

Therefore we arrive at Theorem 0.2 in Introduction, which is the observa-
tion of Proposition 0.1 in algebro-geometric view.
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Remark 8.7.  Suppose that X is K3 surface and that assumptions (6.8)
and (6.9) hold good for (0,¢3). Then (7.1) and (7.2) are always valid, and
furthermore, the homomorphism (7.14) is always surjective. (It is not necessary
to assume that d—1—M > [_+4dimT'.) Thus one can prove yg_(c2) = vm, (c2).
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