Weighted integral inequalities for differential forms

By
Juan Li and Hongya GaO*

Abstract

In this paper, we obtain some weighted integral inequalities for differential forms, which can be considered as generalizations of the Poincaré inequality, the Caccioppoli-type estimate, and the weak reverse Hölder inequality, respectively. These results can be used to study the integrability of differential forms and to estimate the integrals of differential forms. We also give some applications of the above results.

1. Introduction

Throughout this paper, we always assume that Ω is a connected open subset of $\mathbf{R}^{\mathbf{n}}$ and write $\mathbf{R}=\mathbf{R}^{\mathbf{1}}$. Balls are denoted by B and σB is the ball with the same center as B and with $\operatorname{diam}(\sigma B)=\sigma \operatorname{diam}(B)$. We do not distinguish balls from cubes throughout this paper. The n-dimensional Lebesgue measure of a set $E \subset \mathbf{R}^{\mathbf{n}}$ is denoted by $|E|$. We call $w(x)$ a weight if $w \in L_{l o c}^{1}\left(\mathbf{R}^{\mathbf{n}}\right)$ and $w>0$ a.e.. For $0<p<\infty$, we denote the weighted L^{p}-norm of a measurable function f over E by

$$
\|f\|_{p . E . w^{\alpha}}=\left(\int_{E}|f(x)|^{p} w^{\alpha} d x\right)^{1 / p}
$$

where α is a real number.
A differential l-form ω on Ω is a Schwartz distribution on Ω with values in $\wedge^{l}\left(\mathbf{R}^{\mathbf{n}}\right)$. We denote the space of differential l-forms by $D^{\prime}\left(\Omega, \wedge^{l}\right)$. We write $L^{p}\left(\Omega, \wedge^{l}\right)$ for the l-forms $\omega(x)=\sum_{I} \omega_{I}(x) d x_{I}=\sum \omega_{i_{1} i_{2} \cdots i_{l}}(x) d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge$ $d x_{i_{l}}$ with $\omega_{I} \in L^{p}(\Omega, \mathbf{R})$ for all ordered l-tuples I. Thus $L^{p}\left(\Omega, \wedge^{l}\right)$ is a Banach space with norm

$$
\|\omega\|_{p, \Omega}=\left(\int_{\Omega}|\omega(x)|^{p} d x\right)^{1 / p}=\left(\int_{\Omega}\left(\sum\left|\omega_{I}(x)\right|^{2}\right)^{p / 2} d x\right)^{1 / p} .
$$

Received June 19, 2003
Revised July 13, 2004
*Research supported by National Natural Science Foundation of China under Grant 10271077, Science and Technology Committee of Shanghai under Grant 03JC14013, and National Natural Science Foundation of China (Mathematics Tianyuan Youth Foundation) under Grant A0324610.

Similarly, $W_{p}^{1}\left(\Omega, \wedge^{l}\right)$ are those differential l-forms on Ω whose coefficients are in $W_{p}^{1}(\Omega, \mathbf{R})$. The notations $W_{p, l o c}^{1}(\Omega, \mathbf{R})$ and $W_{p, l o c}^{1}\left(\Omega, \Lambda^{l}\right)$ are self-explanatory. We denote the exterior derivative by

$$
d: D^{\prime}\left(\Omega, \wedge^{l}\right) \rightarrow D^{\prime}\left(\Omega, \wedge^{l+1}\right)
$$

for $l=0,1, \ldots, n$. Its formal adjoint operator $d^{\star}: D^{\prime}\left(\Omega, \wedge^{l+1}\right) \rightarrow D^{\prime}\left(\Omega, \wedge^{l}\right)$ is given by $d^{\star}=(-1)^{n l+1} \star d \star$ on $D^{\prime}\left(\Omega, \wedge^{l+1}\right), l=0,1, \ldots, n$.

Differential forms ω is called an A-harmonic tensor if ω satisfies the A harmonic equation

$$
\begin{equation*}
d^{\star} A(x, d \omega)=0, \tag{1.1}
\end{equation*}
$$

where $A: \Omega \times \wedge^{l}\left(\mathbf{R}^{\mathbf{n}}\right) \rightarrow \wedge^{l}\left(\mathbf{R}^{\mathbf{n}}\right)$ satisfies the following conditions:

$$
\begin{equation*}
|A(x, \xi)| \leq a|\xi|^{p-1} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle A(x, \xi), \xi\rangle \geq|\xi|^{p} \tag{1.3}
\end{equation*}
$$

for almost every $x \in \Omega$ and all $\xi \in \wedge^{l}\left(\mathbf{R}^{\mathbf{n}}\right)$. Here $a>0$ is a constant and $1<p<\infty$ is a fixed exponent associated with (1.1). A solution to (1.1) is an element of the Sobolev space $W_{p, l o c}^{1}\left(\Omega, \wedge^{l-1}\right)$ such that

$$
\int_{\Omega}\langle A(x, d \omega), d \varphi\rangle=0
$$

for all $\varphi \in W_{p}^{1}\left(\Omega, \wedge^{l-1}\right)$ with compact support.
Iwaniec and Lutoborski prove the following result in [7]: Let $Q \subset \mathbf{R}^{\mathbf{n}}$ be a cube or a ball. To each $y \in Q$ there corresponds a linear operator K_{y} : $C^{\infty}\left(Q, \wedge^{l}\right) \rightarrow C^{\infty}\left(Q, \wedge^{l-1}\right)$ defined by

$$
\left(K_{y} \omega\right)\left(x ; \xi_{1}, \ldots, \xi_{l}\right)=\int_{0}^{1} t^{l-1} \omega\left(t x+y-t y ; x-y, \xi_{1}, \ldots, \xi_{l-1}\right) d t
$$

and the decomposition

$$
\omega=d\left(K_{y} \omega\right)+K_{y}(d \omega)
$$

We define another linear operator $T_{Q}: C^{\infty}\left(Q, \wedge^{l}\right) \rightarrow C^{\infty}\left(Q, \wedge^{l-1}\right)$ by averaging K_{y} over all points y in Q

$$
T_{Q} \omega=\int_{Q} \varphi(y) K_{y} \omega d y
$$

where $\varphi \in C_{0}^{\infty}(Q)$ is normalized by $\int_{Q} \varphi(y)=1$. We define the l-form $\omega_{Q} \in$ $D^{\prime}\left(Q, \wedge^{l}\right)$ by

$$
\omega_{Q}=|Q|^{-1} \int_{Q} \omega(y), l=0
$$

and

$$
\omega_{Q}=d\left(T_{Q} \omega\right), l=1,2, \ldots, n
$$

for all $\omega \in L^{p}\left(Q, \wedge^{l}\right), 1 \leq p<\infty$.

2. $\quad A_{r}(\lambda, \Omega)$-weighted Poincaré inequality

The following two $A_{r}(\lambda, \Omega)$-weights (or the two-weight) are introduced in [17]. And if we choose $w_{1}=w_{2}$ in Definition 2.1, we obtain the usual $A_{r}(\lambda)-$ weights introduced in [11]. See [11] for more properties of $A_{r}(\lambda)$-weights.

Definition 2.1. We say the weight $\left(w_{1}(x), w_{2}(x)\right)$ satisfies the $A_{r}(\lambda, \Omega)$ condition for $r>1$ and $0<\lambda<\infty$, write $\left(w_{1}(x), w_{2}(x)\right) \in A_{r}(\lambda, \Omega)$, if $w_{1}(x)>0, w_{2}(x)>0$ a.e., and

$$
\sup _{B}\left(\frac{1}{|B|} \int_{B} w_{1}^{\lambda} d x\right)\left(\frac{1}{|B|} \int_{B}\left(\frac{1}{w_{2}}\right)^{1 /(r-1)} d x\right)^{(r-1)}<C_{r, \lambda, w_{1}, w_{2}}
$$

for any ball $B \subset \subset \Omega$.
By a direct computation, we get that

$$
\left(w_{1}(x), w_{2}(x)\right)=\left(|x|^{\theta / \lambda},|x|^{\theta}\right)
$$

is two $A_{r}(\lambda, \Omega)$-weights if and if only $-n<\theta<n(r-1)$. We will need the following generalized Hölder inequality.

Lemma 2.2. Let $0<\alpha<\infty, 0<\beta<\infty$ and $s^{-1}=\alpha^{-1}+\beta^{-1}$. If f and g are measurable functions on $\mathbf{R}^{\mathbf{n}}$, then

$$
\|f g\|_{s, \Omega} \leq\|f\|_{\alpha, \Omega} \cdot\|g\|_{\beta, \Omega}
$$

for any $\Omega \subset \mathbf{R}^{\mathbf{n}}$.
The following weak reverse Hölder inequality appears in [9].
Lemma 2.3. Let u be a differential form satisfying the A-harmonic equation (1.1) in $\Omega, \sigma>1$ and $0<s, t<\infty$. Then there exists a constant C, depending only on s, t, a, p, n and σ, such that

$$
\|u\|_{s, B} \leq C|B|^{(t-s) / s t}\|u\|_{t, \sigma B}
$$

for all balls or cubes B with $\sigma B \subset \Omega$.
Different versions of the Poincaré inequality have been established in the study of the Sobolev spaces of differential forms, (see [3], [7], [9]). The following version of the Poincaré inequality appears in [9].

Lemma 2.4. Let $u \in D^{\prime}\left(B, \wedge^{l}\right)$ and $d u \in L^{p}\left(B, \wedge^{l+1}\right)$. Then $u-u_{B}$ is in $W_{p}^{1}\left(B, \wedge^{l}\right)$ with $1<p<\infty$ and

$$
\left\|u-u_{B}\right\|_{p, B} \leq C(n, p)|B|^{1 / n}\|d u\|_{p, B}
$$

for B a cube or a ball in $\mathbf{R}^{\mathbf{n}}, l=0,1, \ldots, n$.
We now generalize Lemma 2.4 into the following two $A_{r}(\lambda, \Omega)$-weights Poincaré inequality for differential forms.

Theorem 2.5. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)$ be a differential form satisfying the A-harmonic equation (1.1) in a domain $\Omega \subset \mathbf{R}^{\mathbf{n}}$ and $d u \in L^{s}\left(\Omega, \wedge^{l+1}\right), l=$ $0,1, \ldots, n$. Suppose that $\left(w_{1}(x), w_{2}(x)\right) \in A_{r}(\lambda, \Omega)$ for some $r>1$ and $0<$ $\lambda<\infty$. If $0<\alpha<1, \sigma>1$, and $s>\alpha(r-1)+1$, Then there exists a constant C, depending on $a, p, n, s, r, \sigma, \alpha, \lambda, w_{1}, w_{2}$, such that

$$
\begin{equation*}
\left(\int_{B}\left|u-u_{B}\right|^{s} w_{1}^{\alpha \lambda} d x\right)^{1 / s} \leq C|B|^{1 / n}\left(\int_{\sigma B}|d u|^{s} w_{2}^{\alpha} d x\right)^{1 / s} \tag{2.6}
\end{equation*}
$$

for all balls B with $\sigma B \subset \Omega$. Here u_{B} is a closed form.
Note that (2.6) can be written as

$$
\begin{equation*}
\left\|u-u_{B}\right\|_{s, B, w_{1}^{\alpha \lambda}} \leq C|B|^{1 / n}\|d u\|_{s, \sigma B, w_{2}^{\alpha}} \tag{2.6}
\end{equation*}
$$

Proof. Let $t=s /(1-\alpha)$, then $1<s<t$. Since $1 / s=1 / t+(t-s) / s t$, by Lemma 2.2, we have

$$
\begin{align*}
\left(\int_{B}\left|u-u_{B}\right|^{s} w_{1}^{\alpha \lambda} d x\right)^{1 / s} & =\left(\int_{B}\left(\left|u-u_{B}\right| w_{1}^{\alpha \lambda / s}\right)^{s} d x\right)^{1 / s} \\
& \leq\left\|u-u_{B}\right\|_{t, B}\left(\int_{B} w_{1}^{\alpha \lambda t /(t-s)} d x\right)^{(t-s) / s t} \tag{2.7}\\
& =\left\|u-u_{B}\right\|_{t, B}\left(\int_{B} w_{1}^{\lambda} d x\right)^{\alpha / s}
\end{align*}
$$

Taking $m=s /(\alpha(r-1)+1)$, we find that $m>1$ and $m<s<t$. Since u_{B} is a closed form, by Lemma 2.3 and Lemma 2.4, we find that

$$
\begin{align*}
\left\|u-u_{B}\right\|_{t, B} & \leq C_{1}(s, a, p, n, \sigma, \alpha, r)|B|^{(m-t) / m t}\left\|u-u_{B}\right\|_{m, \sigma B} \\
& \leq C_{2}(s, a, p, n, \sigma, \alpha, r)|B|^{(m-t) / m t}|B|^{1 / n}\|d u\|_{m, \sigma B} \tag{2.8}
\end{align*}
$$

for all balls B with $\sigma B \subset \Omega$. Now $1 / m=1 / s+(s-m) / s m$. By Lemma 2.2
again, we obtain

$$
\begin{align*}
\|d u\|_{m, \sigma B} & =\left(\int_{\sigma B}|d u|^{m} d x\right)^{1 / m} \\
& =\left(\int_{\sigma B}\left(|d u| w_{2}^{\alpha / s} w_{2}^{-\alpha / s}\right)^{m} d x\right)^{1 / m} \\
& \leq\left(\int_{\sigma B}|d u|^{s} w_{2}^{\alpha} d x\right)^{1 / s}\left(\int_{\sigma B}\left(1 / w_{2}\right)^{\alpha m /(s-m)} d x\right)^{(s-m) / s m} \tag{2.9}\\
& =\left(\int_{\sigma B}|d u|^{s} w_{2}^{\alpha} d x\right)^{1 / s}\left(\int_{\sigma B}\left(1 / w_{2}\right)^{1 /(r-1)} d x\right)^{\alpha(r-1) / s}
\end{align*}
$$

Combining (2.7), (2.8), and (2.9), we have

$$
\begin{align*}
& \left(\int_{B}\left|u-u_{B}\right|^{s} w_{1}^{\alpha \lambda} d x\right)^{1 / s} \\
& \quad \leq C_{2}|B|^{(m-t) / m t}|B|^{1 / n}\left\|w_{1}\right\|_{\lambda, B}^{\alpha \lambda / s}\left\|1 / w_{2}\right\|_{1 /(r-1), \sigma B}^{\alpha / s} \tag{2.10}\\
& \quad \times\left(\int_{\sigma B}|d u|^{s} w_{2}^{\alpha} d x\right)^{1 / s} .
\end{align*}
$$

Since $\left(w_{1}(x), w_{2}(x)\right) \in A_{r}(\lambda, \Omega)$, then

$$
\begin{align*}
& \left(\int_{B} w_{1}^{\lambda} d x\right)^{\alpha / s}\left(\int_{\sigma B}\left(1 / w_{2}\right)^{1 /(r-1)} d x\right)^{\alpha(r-1) / s} \\
& \quad \leq\left(\left(\int_{\sigma B} w_{1}^{\lambda} d x\right)\left(\int_{\sigma B}\left(1 / w_{2}\right)^{1 /(r-1)} d x\right)^{r-1}\right)^{\alpha / s} \\
& \quad=\left(|\sigma B|^{r}\left(\frac{1}{|\sigma B|} \int_{\sigma B} w_{1}^{\lambda} d x\right)\left(\frac{1}{|\sigma B|} \int_{\sigma B}\left(1 / w_{2}\right)^{1 /(r-1)} d x\right)^{r-1}\right)^{\alpha / s} \tag{2.11}\\
& \quad \leq C_{3}\left(r, \lambda, w_{1}, w_{2}\right)|\sigma B|^{\alpha r / s} \\
& \quad \leq C_{4}\left(r, \lambda, w_{1}, w_{2}, \sigma, \alpha, s\right)|B|^{\alpha r / s} .
\end{align*}
$$

Substituting (2.11) in (2.10) and noting $(m-t) / m t=-\alpha r / s$, we obtain

$$
\left(\int_{B}\left|u-u_{B}\right|^{s} w_{1}^{\alpha \lambda} d x\right)^{1 / s} \leq C_{5}|B|^{1 / n}\left(\int_{\sigma B}|d u|^{s} w_{2}^{\alpha} d x\right)^{1 / s} .
$$

Where C_{5} depends on $a, p, n, s, r, \sigma, \alpha, \lambda, w_{1}, w_{2}$. We have completed the proof of Theorem 2.5.

3. $\quad A_{r, \lambda}(\Omega)$-weighted Caccioppoli-type inequality

The following two $A_{r, \lambda}(\Omega)$-weights (or the two-weight), which can be considered as an extension of the usual A_{r}-weights [5], appear in [13]. Also, see [14], [15] for more applications of two $A_{r, \lambda}(\Omega)$-weights.

Definition 3.1. We say a pair of weights $\left(w_{1}(x), w_{2}(x)\right)$ satisfy the $A_{r, \lambda}(\Omega)$-condition, write $\left(w_{1}(x), w_{2}(x)\right) \in A_{r, \lambda}(\Omega)$, for some $0<\lambda<\infty$ and $1<r<\infty$ with $1 / r+1 / r^{\prime}=1$ in a domain $\Omega \subset \mathbf{R}^{\mathbf{n}}$ if $w_{1}(x)>0, w_{2}(x)>0$ a.e. and

$$
\sup _{B}\left(\frac{1}{|B|} \int_{B} w_{1}^{\lambda} d x\right)^{1 / \lambda r}\left(\frac{1}{|B|} \int_{B}\left(\frac{1}{w_{2}}\right)^{\lambda r^{\prime} / r} d x\right)^{1 / \lambda r^{\prime}}<C_{\lambda, r, w_{1}, w_{2}}
$$

for any ball $B \subset \subset \Omega$.
As two special examples of $A_{r, \lambda}(\Omega)$-weights we know that the weights $\left(w_{1}(x), w_{2}(x)\right)=\left(|x|^{\delta},|x|^{\delta}\right)$ are in $A_{r, \lambda}(\Omega)$ if and if only $-n / \lambda<\delta<n(r-1) / \lambda$ and the weights $\left(w_{1}(x), w_{2}(x)\right)=\left(|x|^{\delta_{1}},|x|^{\delta_{2}}\right)$ are in $A_{r, \lambda}(\Omega)$ if Ω is a bounded domain and $\delta_{1}>-n / \lambda, \delta_{2}<\min \left(\delta_{1}, n(r-1) / \lambda\right)$. These are easily verified by a direct computation.
we will need the following local Caccioppoli-type estimate for differential forms appearing in [9].

Lemma 3.2. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)$ be a differential form satisfying the A harmonic equation (1.1) in a domain $\Omega \in \mathbf{R}^{\mathbf{n}}, l=0,1, \ldots, n$, and $\sigma>1$. Let $1<s<\infty$ is a fixed exponent associated with the A-harmonic equation (1.1). Then there exists a constant C, depending only on a, s, n, such that

$$
\|d u\|_{s, B} \leq C \operatorname{diam}(B)^{-1}\|u-c\|_{s, \sigma B}
$$

for all balls or cubes B with $\sigma B \subset \Omega$ and all closed forms c.
We now prove the following two $A_{r, \lambda}(\Omega)$-weights Caccioppoli-type inequality for differential forms.

Theorem 3.3. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)$ be a differential form satisfying the A-harmonic equation (1.1) in a domain $\Omega \in \mathbf{R}^{\mathbf{n}}, l=0,1, \ldots, n$, . Assume that $\rho>1$ and $\left(w_{1}(x), w_{2}(x)\right) \in A_{r, \lambda}(\Omega)$ for some $1<r<\infty$ and $0<\lambda<\infty$ with $1 / r+1 / r^{\prime}=1$. If $1<s<\infty$ is a fixed exponent associated with the A-harmonic equation (1.1). Then there exists a constant C, depending on $a, s, n, r, \lambda, w_{1}, w_{2}, \beta, \rho$, but independent of u, such that

$$
\begin{equation*}
\left(\int_{B}|d u|^{s} w_{1}^{\beta} d x\right)^{1 / s} \leq \operatorname{Cdiam}(B)^{-1}\left(\int_{\rho B}|u-c|^{s} w_{2}^{\beta} d x\right)^{1 / s} \tag{3.4}
\end{equation*}
$$

for all balls B with $\rho B \subset \Omega$ and all closed forms c and any real number β with $0<\beta<\lambda$.

Proof. Choose $t=\lambda s /(\lambda-\beta)$, then $1<s<t$. Since $1 / s=1 / t+(t-s) / s t$,
by the Hölder inequality and Lemma 3.2, we have

$$
\begin{align*}
\left(\int_{B}|d u|^{s} w_{1}^{\beta} d x\right)^{1 / s} & =\left(\int_{B}\left(|d u| w_{1}^{\beta / s}\right)^{s} d x\right)^{1 / s} \tag{3.5}\\
& \leq\|d u\|_{t, B}\left(\int_{B} w_{1}^{\beta t /(t-s)} d x\right)^{(t-s) / s t} \\
& \leq C_{1}(a, s, n) \operatorname{diam}(B)^{-1}\|u-c\|_{t, \sigma B}\left(\int_{B} w_{1}^{\lambda} d x\right)^{\beta / \lambda s}
\end{align*}
$$

for all balls B with $\sigma B \subset \Omega$ and all closed form c. Since c is a closed form. Then, taking $m=\lambda s /(\lambda+\beta(r-1))$, we find that $m<s<t$. Applying Lemma 2.3 yields

$$
\begin{align*}
\|u-c\|_{t, \sigma B} & \leq C_{2}(a, n, s, \lambda, r, \beta, \rho)|B|^{(m-t) / m t}\|u-c\|_{m, \sigma^{2} B} \tag{3.6}\\
& =C_{2}(a, n, s, \lambda, r, \beta, \rho)|B|^{(m-t) / m t}\|u-c\|_{m, \rho B},
\end{align*}
$$

where $\rho=\sigma^{2}$. Substituting (3.6) in (3.5), we have

$$
\begin{align*}
\left(\int_{B}|d u|^{s} w_{1}^{\beta} d x\right)^{1 / s} \leq & C_{3} \operatorname{diam}(B)^{-1}|B|^{(m-t) / m t}\|u-c\|_{m, \rho B} \tag{3.7}\\
& \times\left(\int_{B} w_{1}^{\lambda} d x\right)^{\beta / \lambda s}
\end{align*}
$$

Where the constant C_{3} depends on $a, n, s, \lambda, r, \beta, \rho$. Now $1 / m=1 / s+(s-$ $m) / s m$, by the Hölder inequality again, we obtain

$$
\begin{aligned}
&\|u-c\|_{m, \rho B}=\left(\int_{\rho B}|u-c|^{m} d x\right)^{1 / m} \\
&=\left(\int_{\rho B}\left(|u-c| w_{2}^{\beta / s} w_{2}^{-\beta / s}\right)^{m} d x\right)^{1 / m} \\
& \leq\left(\int_{\rho B}|u-c|^{s} w_{2}^{\beta} d x\right)^{1 / s}\left(\int_{\rho B}\left(\frac{1}{w_{2}}\right)^{\beta m /(s-m)} d x\right)^{(s-m) / s m} \\
&=\left(\int_{\rho B}|u-c|^{s} w_{2}^{\beta} d x\right)^{1 / s}\left(\int_{\rho B}\left(\frac{1}{w_{2}}\right)^{\lambda /(r-1)} d x\right)^{\beta(r-1) / \lambda s}
\end{aligned}
$$

for all balls B with $\rho B \subset \Omega$ and all closed forms c. Combining (3.7) and (3.8), we obtain

$$
\begin{align*}
\left(\int_{B}|d u|^{s} w_{1}^{\beta} d x\right)^{1 / s} \leq & C_{3} \operatorname{diam}(B)^{-1}|B|^{(m-t) / m t}\left(\int_{\rho B}|u-c|^{s} w_{2}^{\beta} d x\right)^{1 / s} \tag{3.9}\\
& \times\left(\int_{B} w_{1}^{\lambda} d x\right)^{\beta / \lambda s}\left(\int_{\rho B}\left(\frac{1}{w_{2}}\right)^{\lambda /(r-1)} d x\right)^{\beta(r-1) / \lambda s} .
\end{align*}
$$

Since $\left(w_{1}(x), w_{2}(x)\right) \in A_{r, \lambda}(\Omega)$, then

$$
\begin{align*}
& \left(\int_{B} w_{1}^{\lambda} d x\right)^{\beta / \lambda s}\left(\int_{\rho B}\left(\frac{1}{w_{2}}\right)^{\lambda /(r-1)} d x\right)^{\beta(r-1) / \lambda s} \tag{3.10}\\
& \quad \leq\left(\left(\int_{\rho B} w_{1}^{\lambda} d x\right)\left(\int_{\rho B}\left(\frac{1}{w_{2}}\right)^{\lambda /(r-1)} d x\right)^{(r-1)}\right)^{\beta / \lambda s} \\
& \quad=\left(|\rho B|^{r}\left(\frac{1}{|\rho B|} \int_{\rho B} w_{1}^{\lambda} d x\right)\left(\frac{1}{|\rho B|} \int_{\rho B}\left(\frac{1}{w_{2}}\right)^{\lambda /(r-1)} d x\right)^{r-1}\right)^{\beta / \lambda s} \\
& \quad \leq C_{4}\left(r, \lambda, w_{1}, w_{2}\right)|\rho B|^{\beta r / \lambda s} \\
& \leq C_{5}\left(r, \lambda, w_{1}, w_{2}, s, \beta, \rho\right)|B|^{\beta r / \lambda s} .
\end{align*}
$$

Substituting (3.10) in (3.9) and noting $(m-t) / m t=-\beta r / \lambda s$, we obtain

$$
\left(\int_{B}|d u|^{s} w_{1}^{\beta} d x\right)^{1 / s} \leq C_{6} \operatorname{diam}(B)^{-1}\left(\int_{\rho B}|u-c|^{s} w_{2}^{\beta} d x\right)^{1 / s} .
$$

Where C_{6} depends on $s, a, n, r, \lambda, w_{1}, w_{2}, \rho, \beta$. We have completed the proof of Theorem 3.3.

4. $\quad A_{r, \lambda}(\Omega)$-weighted weak reverse Hölder inequality

Using similar methods, we can prove the following two-weight weak reverse Hölder inequality.

Theorem 4.1. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)$ be a differential form satisfying the A-harmonic equation (1.1) in a domain $\Omega \in \mathbf{R}^{\mathbf{n}}, l=0,1, \ldots, n$, Suppose that $0<s, t<\infty, \sigma>1$ and $\left(w_{1}(x), w_{2}(x)\right) \in A_{r, \lambda}(\Omega)$ for some $1<r<\infty$ and $0<\lambda<\infty$ with $1 / r+1 / r^{\prime}=1$. Then there exists a constant C, depending on $a, p, n, s, t, r, \lambda, \beta, \sigma, w_{1}, w_{2}$, but independent of u, such that

$$
\begin{equation*}
\left(\int_{B}|u|^{s} w_{1}^{\beta} d x\right)^{1 / s} \leq C|B|^{(t-s) / s t}\left(\int_{\sigma B}|u|^{t} w_{2}^{\beta t / s} d x\right)^{1 / t} \tag{4.2}
\end{equation*}
$$

for all balls B with $\sigma B \subset \Omega$ and any real number β with $0<\beta<\lambda$.
Note that (4.2) can be written as the symmetric version

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B}|u|^{s} w_{1}^{\beta} d x\right)^{1 / s} \leq C\left(\frac{1}{|B|} \int_{\sigma B}|u|^{t} w_{2}^{\beta t / s} d x\right)^{1 / t} . \tag{4.3}
\end{equation*}
$$

Proof. Choose $k=\lambda s /(\lambda-\beta)$, then $s<k$. Since $1 / s=1 / k+(k-s) / k s$,
applying the Hölder inequality yields

$$
\begin{align*}
\left(\int_{B}|u|^{s} w_{1}^{\beta} d x\right)^{1 / s} & =\left(\int_{B}\left(|u| w_{1}^{\beta / s}\right)^{s} d x\right)^{1 / s} \\
& \leq\|u\|_{k, B}\left(\int_{B} w_{1}^{\beta k /(k-s)} d x\right)^{(k-s) / s k} \tag{4.4}\\
& =\|u\|_{k, B}\left(\int_{B} w_{1}^{\lambda} d x\right)^{\beta / \lambda s}
\end{align*}
$$

for all balls B with $\sigma B \subset \Omega$. Next, choose $m=\lambda s t /(\lambda s+\beta t(r-1))$, then $m<t$. Using Lemma 2.3, we have

$$
\begin{equation*}
\|u\|_{k, B} \leq C_{1}|B|^{(m-k) / m k}\|u\|_{m, \sigma B} \tag{4.5}
\end{equation*}
$$

Where C_{1} depending on $a, p, n, s, t, r, \lambda, \beta, \sigma$. Since $1 / m=1 / t+(t-m) / t m$, by the Hölder inequality again, we obtain

$$
\begin{align*}
\|u\|_{m, \sigma B} & =\left(\int_{\sigma B}|u|^{m} d x\right)^{1 / m}=\left(\int_{\sigma B}\left(|u| w_{2}^{\beta / s} w_{2}^{-\beta / s}\right)^{m} d x\right)^{1 / m} \\
& \leq\left(\int_{\sigma B}|u|^{t} w_{2}^{\beta t / s} d x\right)^{1 / t}\left(\int_{\sigma B}\left(\frac{1}{w_{2}}\right)^{\beta m t /(t-m) s} d x\right)^{(t-m) / m t} \tag{4.6}\\
& =\left(\int_{\sigma B}|u|^{t} w_{2}^{\beta t / s} d x\right)^{1 / t}\left(\int_{\sigma B}\left(\frac{1}{w_{2}}\right)^{\lambda /(r-1)} d x\right)^{\beta(r-1) / \lambda s}
\end{align*}
$$

From (4.4), (4.5), and (4.6), we find that

$$
\begin{align*}
& \left(\int_{B}|u|^{s} w_{1}^{\beta} d x\right)^{1 / s} \leq C_{1}|B|^{(m-k) / m k}\left(\int_{B} w_{1}^{\lambda} d x\right)^{\beta / \lambda s} \tag{4.7}\\
& \quad \times\left(\int_{\sigma B}\left(\frac{1}{w_{2}}\right)^{\lambda /(r-1)} d x\right)^{\beta(r-1) / \lambda s}\left(\int_{\sigma B}|u|^{t} w_{2}^{\beta t / s} d x\right)^{1 / t} .
\end{align*}
$$

Since $\left(w_{1}(x), w_{2}(x)\right) \in A_{r, \lambda}(\Omega)$, then

$$
\begin{align*}
& \left(\int_{B} w_{1}^{\lambda} d x\right)^{\beta / \lambda s}\left(\int_{\sigma B}\left(\frac{1}{w_{2}}\right)^{\lambda /(r-1)} d x\right)^{\beta(r-1) / \lambda s} \\
& \leq\left(\left(\int_{\sigma B} w_{1}^{\lambda} d x\right)\left(\int_{\sigma B}\left(\frac{1}{w_{2}}\right)^{\lambda /(r-1)} d x\right)^{(r-1)}\right)^{\beta / \lambda s} \tag{4.8}\\
& =\left(|\sigma B|^{r}\left(\frac{1}{|\sigma B|} \int_{\sigma B} w_{1}^{\lambda} d x\right)\left(\frac{1}{|\sigma B|} \int_{\sigma B}\left(\frac{1}{w_{2}}\right)^{\lambda /(r-1)} d x\right)^{r-1}\right)^{\beta / \lambda s} \\
& \leq C_{2}\left(r, \lambda, w_{1}, w_{2}\right)|\sigma B|^{\beta r / \lambda s} \\
& \leq C_{3}\left(r, \lambda, w_{1}, w_{2}, s, \sigma, \beta\right)|B|^{\beta r / \lambda s} .
\end{align*}
$$

Finally substituting (4.8) into (4.7) and using ($m-k$) $/ k m=1 / k-1 / m=$ $1 / s-1 / t-\beta r / \lambda s$, we obtain

$$
\left(\int_{B}|u|^{s} w_{1}^{\beta} d x\right)^{1 / s} \leq C_{4}|B|^{(t-s) / s t}\left(\int_{\sigma B}|u|^{t} w_{2}^{\beta t / s} d x\right)^{1 / t}
$$

Where C_{4} depends on $a, n, p, r, s, t, \lambda, \beta, \sigma, w_{1}, w_{2}$. The proof of Theorem 4.1 is completed.

5. Applications of the above results

As applications of our main theorems obtained in this paper, we give three examples as follow.

Example 5.1. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right), l=0,1, \ldots, n$, be a differential form satisfying the equation

$$
\begin{equation*}
d^{\star}\left(|d u|^{p-2} d u\right)=0 . \tag{5.2}
\end{equation*}
$$

Then u satisfies (2.6), (3.4), and (4.2), respectively.
Proof. Let $A: \Omega \times \wedge^{l}\left(\mathbf{R}^{\mathbf{n}}\right) \rightarrow \wedge^{\mathbf{l}}\left(\mathbf{R}^{\mathbf{n}}\right)$ be an operator defined by

$$
A(x, \xi)=|\xi|^{p-2} \xi
$$

Then (1.1) reduces to (5.2) and A satisfies the conditions:

$$
|A(x, \xi)| \leq|\xi|^{p-1} \quad \text { and } \quad\langle A(x, \xi), \xi\rangle \geq|\xi|^{p}
$$

for almost every $x \in \Omega$ and all $\xi \in \wedge^{l}\left(\mathbf{R}^{\mathbf{n}}\right)$. By Theorem 2.5, Theorem 3.3, and Theorem 4.1, we find that u satisfies (2.6), (3.4), and(4.2), respectively.

In particular, we consider the equation (5.2) in \mathbf{R}^{3}. Clearly, $u=\left(a_{2} x_{3}-\right.$ $\left.a_{3} x_{2}\right) d x_{1}+\left(a_{3} x_{1}-a_{1} x_{3}\right) d x_{2}+\left(a_{1} x_{2}-a_{2} x_{1}\right) d x_{3}$ is a 1 -form in \mathbf{R}^{3}. Here a_{i} is a constant for $i=1,2,3$. By simple calculation, we know u satisfies the equation (5.2) when $1<p<\infty$, and $n=3$. Then u satisfies the inequalities (2.6),(3.4), and (4.2), respectively.

Example 5.3 ([16]). Suppose that $f: \Omega \rightarrow R^{n}-\{0\}$ is a K-quasiregular mapping, i.e., $f \in W_{l o c}^{1, n}\left(\Omega, R^{n}\right)$ and

$$
\begin{equation*}
|D f(x)|^{n} \leq K J_{f}(x), \text { for almost every } x \in \Omega \tag{5.4}
\end{equation*}
$$

We define the matrix-valued function

$$
G^{-1}(x)= \begin{cases}\frac{D^{t} f(x) D f(x)}{J_{f}(x)^{2 / n}}, & \text { if } D f(x) \text { exists and } J_{f}(x) \neq 0 \\ I, & \text { otherwise }\end{cases}
$$

By (5.4) we see that $G^{-1}(x)$ is defined everywhere in Ω as a symmetric positive definite $n \times n$ matrix such that $\operatorname{det} G^{-1}(x) \equiv 1$ and

$$
|\xi|^{2} \leq\left\langle G^{-1}(x) \xi, \xi\right\rangle \leq K^{2 / n}|\xi|^{2}
$$

Hence the inverse matrix, denoted by $G(x)$, satisfies

$$
\begin{equation*}
K^{-2 / n}|\xi|^{2} \leq\langle G(x) \xi, \xi\rangle \leq|\xi|^{2} \tag{5.5}
\end{equation*}
$$

It is known that for any K-quasiregular mapping $f: \Omega \rightarrow R^{n}-\{0\}$ the function $u=-\log |f|$ is the weak solution of the equation

$$
\begin{equation*}
\operatorname{div} A(x, \nabla u(x))=0 \tag{5.6}
\end{equation*}
$$

where $A(x, \xi)=\frac{n}{2}\langle G(x) \xi, \xi\rangle^{\frac{n-2}{2}} G(x) \xi$ and $G(x)$ satisfies (5.5). Then it can be easily derived by using (5.5) that A satisfies the following conditions

$$
|A(x, \xi)| \leq \frac{n}{2}|\xi|^{n-1}, \text { and }\langle A(x, \xi), \xi\rangle \geq \frac{n}{2} K^{-1}|\xi|^{n}
$$

Since equation (5.6) is a special case of (1.1), then by Theorems 2.5, 3.3, 4.1, we find that $u=-\log |f|$ satisfies (2.6), (3.4), and (4.2), respectively.

Example 5.7. It is known that if $f=\left(f^{1}, f^{2}, \ldots, f^{n}\right)$ be K-quasiregular in $\mathbf{R}^{\mathbf{n}}$, then

$$
u=f^{l} d f^{1} \wedge d f^{2} \wedge \cdots \wedge d f^{l-1}
$$

$l=1,2, \ldots, n$, is a differential form satisfying A-harmonic equation (1.1), where A is some operator satisfying (1.2) and (1.3) (see [6]). Then by Theorem 2.5 , we obtain the following local weighted integral inequality for quasiregular mappings.

$$
\begin{aligned}
& \left(\int_{B} \mid f^{l} d f^{1} \wedge d f^{2} \wedge \cdots \wedge d f^{l-1}\right. \\
& \left.\quad-\left.\left(f^{l} d f^{1} \wedge d f^{2} \wedge \cdots \wedge d f^{l-1}\right)_{B}\right|^{s} w_{1}^{\alpha \lambda} d x\right)^{1 / s} \\
& \quad \leq C|B|^{1 / n}\left(\int_{\sigma B}\left|d f^{1} \wedge d f^{2} \wedge \cdots \wedge d f^{l}\right|^{s} w_{2}^{\alpha} d x\right)^{1 / s}
\end{aligned}
$$

where $0<\alpha<1$ is any real number.
By Theorem 3.3 and Theorem 4.1, we obtain the following two local weighted integral inequalities for quasiregular mappings, respectively.

$$
\begin{aligned}
\left(\int_{B} \mid d f^{1} \wedge d f^{2}\right. & \left.\left.\wedge \cdots \wedge d f^{l}\right|^{s} w_{1}^{\beta} d x\right)^{1 / s} \\
& \leq C \operatorname{diam}(B)^{-1}\left(\int_{\rho B}\left|f^{l} d f^{1} \wedge d f^{2} \wedge \cdots \wedge d f^{l-1}-c\right|^{s} w_{2}^{\beta} d x\right)^{1 / s}
\end{aligned}
$$

where c is any closed form and β is any real number with $0<\beta<\lambda$.

$$
\begin{aligned}
\left(\int_{B} \mid f^{l} d f^{1} \wedge d f^{2}\right. & \left.\left.\wedge \cdots \wedge d f^{l-1}\right|^{s} w_{1}^{\beta} d x\right)^{1 / s} \\
& \leq C|B|^{(t-s) / s t}\left(\int_{\sigma B}\left|f^{l} d f^{1} \wedge d f^{2} \wedge \cdots \wedge d f^{l-1}\right|^{t} w_{2}^{\beta t / s} d x\right)^{1 / t}
\end{aligned}
$$

where β is any real number with $0<\beta<\lambda$.

Department of Applied Mathematics Shanghai Jiaotong University
Shanghai, 200240, P. R. China
e-mail: juanjuan-li@163.com or juanjuan-li@sjtu.edu.cn
College of Mathematics and Computer Science Hebei University
Baoding, 071002, P. R. China
e-mail: ghymath@hotmail.com

References

[1] G. De Rham, Differential Manifolds, Springer, Berlin, 1980.
[2] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337-403.
[3] H. Cartan, Differential forms, Houghton Mifflin, Co, Boston, MA, 1970.
[4] S. Ding, Weighted Hardy-Littlewood inequality for A-harmonic tensors, Proc. Amer. Math. Soc. 125 (1997), 1727-1735.
[5] J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford, 1993.
[6] T. Iwaniec, p-harmonic tensors and quasiregular mappings, Ann. of Math. 136 (1992), 589-624.
[7] T. Iwaniec and A. Lutoborski, Integral estimates for null Lagrangians, Arch. Rational Mech. Anal. 125 (1993), 25-79.
[8] T. Iwaniec and G. Martin, Quasiregular mappings in even dimensions, Acta Math. 170 (1993), 29-81.
[9] C. A. Nolder, Hardy-Littlewood theorems for A-harmonic tensors, Illinois J. Math. 43 (1999), 613-631.
[10] B. Stroffolini, On weakly A-harmonic tensors, Studia Math. 3, 114 (1995), 289-301.
[11] S. Ding and P. Shi, Weighted Poincaré-type inequalities for differential forms in $L^{s}(\mu)$-averaging domains, J. Math. Anal. Appl. 227 (1998), 200215.
[12] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1970.
[13] C. J. Neugebauer, Inserting A_{p}-weights, Proc. Amer. Math. Soc. 87 (1983), 644-648.
[14] D. Cruz-Uribe, SFO and C. Peter, Two-weight, weak-type norm inequalities for fractional integrals, Calderón-zygmund operators and commutators, Indiana Univ. Math. J. 49 (2) (2000), 697-721.
[15] J. Garcia-Cuerva and J. M. Martell, Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous space, Indiana Univ. Math. J. 50 (3) (2001), 1241-1279.
[16] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in $\mathbf{R}^{\mathbf{n}}$, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 8 (1983), 257-324.
[17] P. Shi and S. Ding, Two-weight Hardy-Littlewood inequalities and Caccioppoli-type inequalities for solutions to the A-harmonic equation, to appear.

