3-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of
$$
\mathfrak{g}_{e v}, \mathfrak{g}_{0} \text { and } \mathfrak{g}_{e d}
$$
Part II, $G=E_{7}$, Cases 2, 3 and 4
\section*{By}
Toshikazu Miyashita and Ichiro Yokota

According to M. Hara [1], there are five cases of 3-graded decompositions $\mathfrak{g}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}$ of simple Lie algebras \mathfrak{g} of type E_{7}. In the preceding paper [2], we gave the group realization of Lie subalgebras $\mathfrak{g}_{e v}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{2}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{3}$ of \mathfrak{g} of Case 1. In the present paper, we give the group realization of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}$ of Cases 2,3 and 4 . We rewrite the results of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}$ of Cases 2,3 and 4 .

Case 2	\mathfrak{g}	$\mathfrak{g}_{e v}$	\mathfrak{g}_{0}
		$\mathfrak{g}_{e d}$	$\operatorname{dim} \mathfrak{g}_{1}, \operatorname{dim} \mathfrak{g}_{2}, \operatorname{dim} \mathfrak{g}_{3}$
	$\mathfrak{e}_{7}{ }^{C}$	$\mathfrak{s l}(2, C) \oplus \mathfrak{s o}(12, C)$	$C \oplus C \oplus \mathfrak{s l}(6, C)$
		$C \oplus \mathfrak{s l}(7, C)$	$26,16,6$
	$\mathfrak{e}_{7(7)}$	$\mathfrak{s l l}(2, \boldsymbol{R}) \oplus \mathfrak{s o}(6,6)$	$\boldsymbol{R} \oplus \boldsymbol{R} \oplus \mathfrak{s l}(6, \boldsymbol{R})$
		$\boldsymbol{R} \oplus \mathfrak{s l}(7, \boldsymbol{R})$	$26,16,6$
Case 3	\mathfrak{g}	$\mathfrak{g}_{e v}$	\mathfrak{g}_{0}
		$\mathfrak{g}_{e d}$	$\operatorname{dim} \mathfrak{g}_{1}, \operatorname{dim} \mathfrak{g}_{2}, \operatorname{dim} \mathfrak{g}_{3}$
	$\mathfrak{e}_{7}{ }^{C}$	$C \oplus \mathfrak{e}_{6}{ }^{C}$	$C \oplus C \oplus \mathfrak{s o}(10, C)$
		$C \oplus \mathfrak{s o}^{2}(12, C)$	$17,16,10$
	$\mathfrak{e}_{7(7)}$	$\boldsymbol{R} \oplus \mathfrak{e}_{6(6)}$	$\boldsymbol{R} \oplus \boldsymbol{R} \oplus \mathfrak{s o}(5,5)$
	$\boldsymbol{R} \oplus \mathfrak{s o}(6,6)$	$17,16,10$	
	$\mathfrak{e}_{7(-25)}$	$\boldsymbol{R} \oplus \mathfrak{e}_{6(-26)}$	$\boldsymbol{R} \oplus \boldsymbol{R} \oplus \mathfrak{s o}(1,9)$
	$\boldsymbol{R} \oplus \mathfrak{s o}(2,10)$	$17,16,10$	

Received March 29, 2006
Revised June 7, 2006

Case 4	\mathfrak{g}	$\mathfrak{g}_{e v}$	\mathfrak{g}_{0}
		$\mathfrak{g}_{e d}$	$\operatorname{dim} \mathfrak{g}_{1}, \operatorname{dim} \mathfrak{g}_{2}, \operatorname{dim} \mathfrak{g}_{3}$
	$\mathfrak{e}_{7}{ }^{C}$	$C \oplus \mathfrak{e}_{6}{ }^{C}$	$C \oplus C \oplus \mathfrak{s o}(10, C)$
	$\mathfrak{s l l}^{2}(2, C) \oplus C \oplus \mathfrak{s o}(10, C)$	$26,16,1$	
	$\mathfrak{e}_{7(7)}$	$\boldsymbol{R} \oplus \mathfrak{e}_{6(6)}$	$\boldsymbol{R} \oplus \boldsymbol{R} \oplus \mathfrak{s o}(5,5)$
	$\mathfrak{s l}(2, \boldsymbol{R}) \oplus \boldsymbol{R} \oplus \mathfrak{s o}(5,5)$	$26,16,1$	
	$\mathfrak{e}_{7(-25)}$	$\boldsymbol{R} \oplus \mathfrak{e}_{6(-26)}$	$\boldsymbol{R} \oplus \boldsymbol{R} \oplus \mathfrak{s o}(1,9)$
	$\mathfrak{s l}(2, \boldsymbol{R}) \oplus \boldsymbol{R} \oplus \mathfrak{s o}(1,9)$	$26,16,1$	

Our results of Cases 2, 3 and 4 are as follows:

Case 2	G	$\begin{aligned} & G_{e v} \\ & G_{e d} \end{aligned}$	G_{0}
Case 3	$E_{7}{ }^{C}$	$\begin{aligned} & (S L(2, C) \times S \operatorname{pin}(12, C)) / \boldsymbol{Z}_{2} \\ & \left(C^{*} \times S L(7, C)\right) / \boldsymbol{Z}_{7} \end{aligned}$	$\left(C^{*} \times C^{*} \times S L(6, C)\right) /\left(\boldsymbol{Z}_{6} \times \boldsymbol{Z}_{6}\right)$
	$E_{7(7)}$	$\begin{aligned} & (S L(2, \boldsymbol{R}) \times \operatorname{spin}(6,6)) / \boldsymbol{Z}_{2} \times 2 \\ & \left(\boldsymbol{R}^{+} \times S L(7, \boldsymbol{R})\right) \times 2 \end{aligned}$	$\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times S L(6, \boldsymbol{R})\right) \times 2$
	G	$G_{e v}$	G_{0}
		$G_{e d}$	
Case 4	$E_{7}{ }^{C}$	$\begin{aligned} & \left(C^{*} \times E_{6}^{C}\right) / \boldsymbol{Z}_{3} \\ & \left(C^{*} \times \operatorname{Spin}(12, C)\right) / \boldsymbol{Z}_{2} \end{aligned}$	$\left(C^{*} \times C^{*} \times \operatorname{Spin}(10, C)\right) / \boldsymbol{Z}_{12}$
	$E_{7(7)}$	$\begin{aligned} & \left(\boldsymbol{R}^{+} \times E_{6(6)}\right) \times 2 \\ & \left(\boldsymbol{R}^{+} \times \operatorname{spin}(6,6)\right) \times 2 \end{aligned}$	$\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times \operatorname{spin}(5,5)\right) \times 2$
	$E_{7(-25)}$	$\begin{aligned} & \left(\boldsymbol{R}^{+} \times E_{6(-26)}\right) \times 2 \\ & \boldsymbol{R}^{+} \times \operatorname{spin}(2,10) \end{aligned}$	$\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times \operatorname{Spin}(1,9)\right) \times 2$
	G	$G_{e v}$	G_{0}
		$G_{\text {ed }}$	
	$E_{7}{ }^{C}$	$\begin{aligned} & \left(C^{*} \times E_{6}^{C}\right) / \boldsymbol{Z}_{3} \\ & \left(S L(2, C) \times C^{*} \times \operatorname{Spin}(10, C)\right) / \boldsymbol{Z}_{4} \end{aligned}$	$\left(C^{*} \times C^{*} \times \operatorname{Spin}(10, C)\right) / \boldsymbol{Z}_{12}$
	$E_{7(7)}$	$\begin{aligned} & \left(\boldsymbol{R}^{+} \times E_{6(6)}\right) \times 2 \\ & \left(S l(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times \operatorname{spin}(5,5)\right) \times 2 \end{aligned}$	$\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times \operatorname{spin}(5,5)\right) \times 2$
	$E_{7(-25)}$	$\begin{aligned} & \left(\boldsymbol{R}^{+} \times E_{6(-26)}\right) \times 2 \\ & \left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times \operatorname{Spin}(1,9)\right) \times 2 \end{aligned}$	$\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times \operatorname{Spin}(1,9)\right) \times 2$

This paper is a continuation of [2], so the numbering of sections and theorems start from 4.2. We use the same notations as that in [2].

4. Group E_{7}

The connected universal linear Lie groups $E_{7}^{C}, E_{7(7)}$ and $E_{7(-25)}$ are given by

$$
\begin{aligned}
E_{7}^{C} & =\left\{\alpha \in \operatorname{Iso}_{C}\left(\mathfrak{P}^{C}\right) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q\right\}, \\
E_{7(7)} & =\left\{\alpha \in \operatorname{Iso}_{R}\left(\mathfrak{P}^{\prime}\right) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q\right\}, \\
E_{7(-25)} & =\left\{\alpha \in \operatorname{Iso}_{R}(\mathfrak{P}) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q\right\}
\end{aligned}
$$

(although the definitions of E_{7}^{C} and $E_{7(7)}$ are already given in [2]), where $\mathfrak{P}=\mathfrak{J} \oplus \mathfrak{J} \oplus \boldsymbol{R} \oplus \boldsymbol{R}$ (\mathfrak{J} is the exceptional \boldsymbol{R}-Jordan algebra).

Here, we shall arrange mappings $\gamma, \gamma^{\prime}, \gamma_{1}, \sigma, \iota, \lambda, \kappa, \mu, \phi$ and φ used in this paper. By using the mapping $\varphi_{2}: S p\left(1, \boldsymbol{H}^{C}\right) \times S p\left(1, \boldsymbol{H}^{C}\right) \rightarrow G_{2}^{C}$ defined by

$$
\varphi_{2}(p, q)\left(a+b e_{4}\right)=q a \bar{q}+(p b \bar{q}) e_{4}, \quad a+b e_{4} \in \boldsymbol{H}^{C} \oplus \boldsymbol{H}^{C} e_{4}=\mathfrak{C}^{C}
$$

the C-linear transformations γ, γ^{\prime} and γ_{1} of \mathfrak{C}^{C} are defined by

$$
\gamma=\varphi_{2}(1,-1), \quad \gamma^{\prime}=\varphi_{2}\left(e_{1}, e_{1}\right), \quad \gamma_{1}=\varphi_{2}\left(e_{2}, e_{2}\right)
$$

respectively. Then $\gamma, \gamma^{\prime}, \gamma_{1} \in G_{2}^{C} \subset E_{7}^{C}$ and $\gamma^{2}=\gamma^{\prime 2}=\gamma_{1}{ }^{2}=1$. The C-linear transformation σ of \mathfrak{J}^{C} is defined by

$$
\sigma X=\left(\begin{array}{ccc}
\xi_{1} & -x_{3} & -\bar{x}_{2} \\
-\bar{x}_{3} & \xi_{2} & x_{1} \\
-x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right), \quad X \in \mathfrak{J}^{C}
$$

Then $\sigma \in F_{4}{ }^{C} \subset E_{7}{ }^{C}$ and $\sigma^{2}=1$. Next, the C-linear transformations ι and λ of \mathfrak{P}^{C} are defined by

$$
\begin{aligned}
\iota(X, Y, \xi, \eta) & =(-i X, i Y,-i \xi, i \eta), \\
\lambda(X, Y, \xi, \eta) & =(Y,-X, \eta,-\xi),
\end{aligned}(X, Y, \xi, \eta) \in \mathfrak{P}^{C}, ~ l
$$

respectively. Then $\iota, \lambda \in E_{7}{ }^{C}$ and $\iota^{4}=\lambda^{4}=1$. Further, the C-linear mappings κ and μ of \mathfrak{P}^{C} are defined by

$$
\begin{aligned}
& \kappa(X, Y, \xi, \eta)=\left(\left(\begin{array}{ccc}
-\xi_{1} & 0 & 0 \\
0 & \xi_{2} & x_{1} \\
0 & \bar{x}_{1} & \xi_{3}
\end{array}\right),\left(\begin{array}{ccc}
\eta_{1} & 0 & 0 \\
0 & -\eta_{2} & -y_{1} \\
0 & -\bar{y}_{1} & -\eta_{3}
\end{array}\right),-\xi, \eta\right), \\
& \mu(X, Y, \xi, \eta)=\left(\left(\begin{array}{ccc}
\eta & 0 & 0 \\
0 & \eta_{3} & -y_{1} \\
0 & -\bar{y}_{1} & \eta_{2}
\end{array}\right),\left(\begin{array}{ccc}
\xi & 0 & 0 \\
0 & \xi_{3} & -x_{1} \\
0 & -\bar{x}_{1} & \xi_{2}
\end{array}\right), \eta_{1}, \xi_{1}\right),
\end{aligned}
$$

$(X, Y, \xi, \eta) \in \mathfrak{P}^{C}$, respectively. For $A \in S L(2, C)$, we define the C-linear transformation $\phi(A)$ of \mathfrak{P}^{C} by

$$
\begin{gathered}
\phi(A)(X, Y, \xi, \eta)=\left(X^{\prime}, Y^{\prime}, \xi^{\prime}, \eta^{\prime}\right) \\
\binom{\xi_{1}{ }^{\prime}}{\eta^{\prime}}=A\binom{\xi_{1}}{\eta}, \quad\binom{\xi^{\prime}}{\eta_{1}^{\prime}}=A\binom{\xi}{\eta_{1}},\binom{\eta_{2}{ }^{\prime}}{\xi_{2}{ }^{\prime}}=A\binom{\eta_{2}}{\xi_{2}}, \quad\binom{\eta_{3}{ }^{\prime}}{\xi_{3}{ }^{\prime}}=A\binom{\eta_{3}}{\xi_{3}}, \\
\binom{x_{1}{ }^{\prime}}{y_{1}^{\prime}}=\left({ }^{t} A^{-1}\right)\binom{x_{1}}{y_{1}}, \quad\binom{x_{2}{ }^{\prime}}{y_{2}^{\prime}}=\binom{x_{2}}{y_{2}}, \quad\binom{x_{3}{ }^{\prime}}{y_{3}{ }^{\prime}}=\binom{x_{3}}{y_{3}} .
\end{gathered}
$$

Then $\phi(A) \in E_{7}{ }^{C}$. Finally we shall explain the mapping $\varphi: S U\left(8, \boldsymbol{C}^{C}\right) \rightarrow E_{7}{ }^{C}$. Let $g: \mathfrak{J}^{C} \rightarrow \mathfrak{J}\left(4, \boldsymbol{H}^{C}\right)$ be the C-linear mapping defined by $g(M+\boldsymbol{a})=\left(\begin{array}{cc}\frac{1}{2} \operatorname{tr}(M) & i \boldsymbol{a} \\ i \boldsymbol{a}^{*} & M-\frac{1}{2} \operatorname{tr}(M) E\end{array}\right), M+\boldsymbol{a} \in \mathfrak{J}\left(3, \boldsymbol{H}^{C}\right) \oplus\left(\boldsymbol{H}^{C}\right)^{C}=\mathfrak{J}^{C}$. By using the mapping g, we define the C-linear isomorphism $\chi: \mathfrak{P}^{C} \rightarrow$ $\mathfrak{S}\left(8, \boldsymbol{C}^{C}\right)=\left\{\left.S \in M\left(8, \boldsymbol{C}^{C}\right)\right|^{t} S=-S\right\}$ by

$$
\chi(X, Y, \xi, \eta)=k_{J}\left(g X-\frac{\xi}{2} E\right)+e_{1} k_{J}\left(g(\gamma Y)-\frac{\eta}{2} E\right)
$$

where $k_{J}: \mathfrak{J}\left(4, \boldsymbol{H}^{C}\right) \rightarrow \mathfrak{S}\left(8, \boldsymbol{C}^{C}\right)$ is C-linear mapping defined by $k_{J}((a+$ $\left.\left.b e_{2}\right)\right)=\left(\left(\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right)\right) J, a, b \in C^{C}, J=\operatorname{diag}(J, J, J, J), J=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Now, we define the mapping $\varphi: S U\left(8, C^{C}\right) \rightarrow\left(E_{7}^{C}\right)^{\lambda \gamma}$ by

$$
\varphi(A) P=\chi^{-1}\left(A(\chi P)^{t} A\right), \quad P \in \mathfrak{P}^{C}
$$

then we have an isomorphism

$$
S U\left(8, \boldsymbol{C}^{C}\right) / \boldsymbol{Z}_{2} \cong\left(E_{7}^{C}\right)^{\lambda \gamma}, \quad \boldsymbol{Z}_{2}=\{E,-E\}
$$

(see [3, Theorem 4.5.3] for details).
4.2. Subgroups of type $\boldsymbol{A}_{1}{ }^{C} \oplus \boldsymbol{D}_{6}{ }^{C}, \boldsymbol{C} \oplus \boldsymbol{C} \oplus \boldsymbol{A}_{5}{ }^{C}$ and $\boldsymbol{C} \oplus \boldsymbol{A}_{6}{ }^{C}$ of $\boldsymbol{E}_{7}{ }^{C}$ ι is conjugate to λ in $E_{7}{ }^{C}$. Indeed, let $\delta_{2}=\exp \left(\Phi\left(0,-\frac{\pi i}{4} E,-\frac{\pi i}{4} E, 0\right)\right)$. Then $\delta_{2} \in E_{7}^{C}$ and δ_{2} satisfies

$$
\delta_{2}{ }^{-1} \iota \delta_{2}=\lambda .
$$

Moreover, δ_{2} satisfies $\delta_{2} \tau \lambda=\tau \lambda \delta_{2}$ and $\delta_{2} \gamma_{1}=\gamma_{1} \delta_{2}$. Hence $\tau \lambda \iota \gamma_{1}$ is conjugate to $-\tau \gamma_{1}$ under δ_{2}. Indeed,

$$
\delta_{2}^{-1}\left(\tau \lambda \iota \gamma_{1}\right) \delta_{2}=\tau \lambda \delta_{2}^{-1} \iota \delta_{2} \gamma_{1}=\tau \lambda \lambda \gamma_{1}=-\tau \gamma_{1}
$$

Furthermore, γ is conjugate to γ_{1} in $E_{7}{ }^{C}$. Indeed, let δ_{1} be the C-linear transformation of \mathfrak{C}^{C} satisfying

$$
1 \rightarrow 1, e_{1} \rightarrow e_{4}, e_{2} \rightarrow e_{2}, e_{3} \rightarrow e_{6}, e_{4} \rightarrow e_{1}, e_{5} \rightarrow-e_{5}, e_{6} \rightarrow e_{3}, e_{7} \rightarrow-e_{7}
$$

then $\delta_{1} \in G_{2}^{C} \subset F_{4}^{C} \subset E_{6}{ }^{C} \subset E_{7}{ }^{C}, \delta_{1}{ }^{2}=1$ and δ_{1} satisfies

$$
\delta_{1} \gamma \delta_{1}=\gamma_{1}
$$

Hence we have

$$
E_{7(7)}=\left(E_{7}^{C}\right)^{\tau \gamma} \cong\left(E_{7}^{C}\right)^{\tau \gamma_{1}}=\left(E_{7}^{C}\right)^{-\tau \gamma_{1}} \cong\left(E_{7}^{C}\right)^{\tau \lambda \iota \gamma_{1}} .
$$

In the Lie algebra $\mathfrak{e}_{7}{ }^{C}$, let

$$
Z=i \Phi\left(G_{45}-G_{67},-E, E, 0\right)
$$

Theorem 4.2.1. The 3-graded decomposition of $\mathfrak{e}_{7(7)}=\left(\mathfrak{e}_{7}^{C}\right)^{\tau \lambda \iota \gamma_{1}}$ (or $\left.\mathfrak{e}_{7}{ }^{C}\right)$,

$$
\mathfrak{e}_{7(7)}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}
$$

with respect to ad $Z, Z=i \Phi\left(G_{45}-G_{67},-E, E, 0\right)$, is given by

$$
\begin{aligned}
& \mathfrak{g}_{0}=\left\{\begin{array}{l}
i G_{01}, G_{02}, i G_{03}, i G_{12}, G_{13}, i G_{23}, \\
i G_{45}, G_{46}-G_{57}, i\left(G_{47}+G_{56}\right), i G_{67}, \\
\tilde{A}_{k}(1), i \tilde{A}_{k}\left(e_{1}\right), \tilde{A}_{k}\left(e_{2}\right), i \tilde{A}_{k}\left(e_{3}\right), i\left(\tilde{E}_{k}-\hat{E}_{k}\right), \\
i\left(\tilde{F}_{k}(1)-\hat{F}_{k}(1)\right), \quad \check{F}_{k}\left(e_{1}\right)-\hat{F}_{k}\left(e_{1}\right), \\
i\left(\tilde{F}_{k}\left(e_{2}\right)-\hat{F}_{k}\left(e_{2}\right)\right), \check{F}_{k}\left(e_{3}\right)-\hat{F}_{k}\left(e_{3}\right), k=1,2,3
\end{array}\right\}, 37 \\
& \mathfrak{g}_{-1}=\left\{\begin{array}{l}
G_{04}+i G_{05}, G_{06}-i G_{07}, i G_{14}-G_{15}, i G_{16}+G_{17}, \\
G_{24}+i G_{25}, G_{26}-i G_{27}, i G_{34}-G_{35}, i G_{36}+G_{37}, \\
\tilde{A}_{k}\left(e_{4}+i e_{5}\right), \tilde{A}_{k}\left(e_{6}-i e_{7}\right), \\
\tilde{F}_{k}\left(e_{4}+i e_{5}\right)-\tilde{F}_{k}\left(e_{4}+i e_{5}\right), \check{F}_{k}\left(e_{6}-i e_{7}\right)-\hat{F}_{k}\left(e_{6}-i e_{7}\right), \\
2 i \tilde{F}_{k}\left(e_{4}-i e_{5}\right)+\tilde{F}_{k}\left(e_{4}-i e_{5}\right)+\hat{F}_{k}\left(e_{4}-i e_{5}\right), \\
2 i \tilde{F}_{k}\left(e_{6}+i e_{7}\right)+\tilde{F}_{k}\left(e_{6}+i e_{7}\right)+\hat{F}_{k}\left(e_{6}+i e_{7}\right), k=1,2,3
\end{array}\right\} \\
& \mathfrak{g}_{-2}=\left\{\begin{array}{l}
\left(G_{46}+G_{57}\right)-i\left(G_{47}-G_{56}\right), \\
2 i \tilde{F}_{k}(1)+\tilde{F}_{k}(1)+\tilde{F}_{k}(1), 2 \tilde{F}_{k}\left(e_{1}\right)+i \check{F}_{k}\left(e_{1}\right)+i \hat{F}_{k}\left(e_{1}\right), \\
2 i \tilde{F}_{k}\left(e_{2}\right)+\check{F}_{k}\left(e_{2}\right)+\hat{F}_{k}\left(e_{2}\right), 2 \tilde{F}_{k}\left(e_{3}\right)+i \check{F}_{k}\left(e_{3}\right)+i \hat{F}_{k}\left(e_{3}\right), \\
2 i E_{k} \vee E_{k}+\tilde{E}_{k}+\hat{E}_{k}+i \mathbf{1}, k=1,2,3
\end{array}\right\} \\
& \mathfrak{g}_{-3}=\left\{\begin{array}{l}
2 i \tilde{F}_{k}\left(e_{4}+i e_{5}\right)+\check{F}_{k}\left(e_{4}+i e_{5}\right)+\hat{F}_{k}\left(e_{4}+i e_{5}\right), \\
2 i \tilde{F}_{k}\left(e_{6}-i e_{7}\right)+\check{F}_{k}\left(e_{6}-i e_{7}\right)+\hat{F}_{k}\left(e_{6}-i e_{7}\right), k=1,2,3
\end{array}\right\} 6 \\
& \mathfrak{g}_{1}=\left\{\left(\mathfrak{g}_{-1}\right) \tau, \quad \mathfrak{g}_{2}=\tau\left(\mathfrak{g}_{-2}\right) \tau, \quad \mathfrak{g}_{3}=\tau\left(\mathfrak{g}_{-3}\right) \tau .\right.
\end{aligned}
$$

For the induced differential mapping $\varphi_{*}: \mathfrak{s u}\left(8, \boldsymbol{C}^{C}\right) \rightarrow \mathfrak{e}_{7}{ }^{C}$ of $\varphi: S U\left(8, \boldsymbol{C}^{C}\right)$
$\rightarrow E_{7}{ }^{C}$, we have

$$
\begin{aligned}
& \varphi_{*}\left(\operatorname{diag}\left(e_{1},-e_{1}, 0,0,0,0,0,0\right)\right)= \Phi\left(-G_{45}+G_{67}, 0,0,0\right) \\
& \varphi_{*}\left(\operatorname{diag}\left(0, e_{1},-e_{1}, 0,0,0,0,0\right)\right)= \Phi\left(-G_{67}, \frac{1}{2}\left(E_{2}+E_{3}\right),-\frac{1}{2}\left(E_{2}+E_{3}\right), 0\right), \\
& \varphi_{*}\left(\operatorname{diag}\left(0,0, e_{1},-e_{1}, 0,0,0,0\right)\right)= \Phi\left(G_{45}+G_{67}, 0,0,0\right) \\
& \varphi_{*}\left(\operatorname{diag}\left(0,0,0, e_{1},-e_{1}, 0,0,0\right)\right)= \Phi\left(\frac{1}{2}\left(G_{01}+G_{23}-G_{45}-G_{67}\right), \frac{1}{2}\left(E_{1}-E_{2}\right),\right. \\
&\left.-\frac{1}{2}\left(E_{1}-E_{2}\right), 0\right) \\
& \varphi_{*}\left(\operatorname{diag}\left(0,0,0,0, e_{1},-e_{1}, 0,0\right)\right)=\Phi\left(-G_{01}-G_{23}, 0,0,0\right), \\
& \varphi_{*}\left(\operatorname{diag}\left(0,0,0,0,0, e_{1},-e_{1}, 0\right)\right)=\Phi\left(G_{23}, \frac{1}{2}\left(E_{2}-E_{3}\right),-\frac{1}{2}\left(E_{2}-E_{3}\right), 0\right), \\
& \varphi_{*}\left(\operatorname{diag}\left(0,0,0,0,0,0, e_{1},-e_{1}\right)\right)=\Phi\left(G_{01}-G_{23}, 0,0,0\right)
\end{aligned}
$$

From the facts above, we have also

$$
\begin{aligned}
\Phi\left(G_{01}, 0,0,0\right) & =\varphi_{*}\left(\operatorname{diag}\left(0,0,0,0,-e_{1} / 2, e_{1} / 2, e_{1} / 2,-e_{1} / 2\right)\right), \\
\Phi\left(G_{23}, 0,0,0\right) & =\varphi_{*}\left(\operatorname{diag}\left(0,0,0,0,-e_{1} / 2, e_{1} / 2,-e_{1} / 2, e_{1} / 2\right)\right), \\
\Phi\left(G_{45}, 0,0,0\right) & =\varphi_{*}\left(\operatorname{diag}\left(-e_{1} / 2, e_{1} / 2, e_{1} / 2,-e_{1} / 2,0,0,0,0\right)\right), \\
\Phi\left(G_{67}, 0,0,0\right) & =\varphi_{*}\left(\operatorname{diag}\left(e_{1} / 2,-e_{1} / 2, e_{1} / 2,-e_{1} / 2,0,0,0,0\right)\right), \\
\Phi\left(0, E_{1},-E_{1}, 0\right) & =\varphi_{*}\left(\operatorname{diag}\left(e_{1} / 2, e_{1} / 2, e_{1} / 2, e_{1} / 2,-e_{1} / 2,-e_{1} / 2,-e_{1} / 2,-e_{1} / 2\right)\right), \\
\Phi\left(0, E_{2},-E_{2}, 0\right) & =\varphi_{*}\left(\operatorname{diag}\left(e_{1} / 2, e_{1} / 2,-e_{1} / 2,-e_{1} / 2, e_{1} / 2, e_{1} / 2,-e_{1} / 2,-e_{1} / 2\right)\right), \\
\Phi\left(0, E_{3},-E_{3}, 0\right) & =\varphi_{*}\left(\operatorname{diag}\left(e_{1} / 2, e_{1} / 2,-e_{1} / 2,-e_{1} / 2,-e_{1} / 2,-e_{1} / 2, e_{1} / 2, e_{1} / 2\right)\right) .
\end{aligned}
$$

Since $i Z=\Phi\left(-G_{45}+G_{67}, E,-E, 0\right)=\varphi_{*}\left(\operatorname{diag}\left(5 e_{1} / 2, e_{1} / 2,-e_{1} / 2,-e_{1} / 2\right.\right.$, $\left.-e_{1} / 2,-e_{1} / 2,-e_{1} / 2,-e_{1} / 2\right)$), by using the mapping $\varphi: S U\left(8, C^{C}\right) \rightarrow E_{7}^{C}$, we have

$$
\begin{aligned}
& z_{2}=\exp \frac{2 \pi i}{2} Z=\varphi\left(\operatorname{diag}\left(e_{1}, e_{1},-e_{1},-e_{1},-e_{1},-e_{1},-e_{1},-e_{1}\right)\right)=-\gamma, \\
& z_{4}=\exp \frac{2 \pi i}{4} Z=\varphi\left(\operatorname{diag}\left(-w_{8}, w_{8}, w_{8}^{-1}, w_{8}^{-1}, w_{8}^{-1}, w_{8}^{-1}, w_{8}^{-1}, w_{8}^{-1}\right)\right), \\
& z_{3}=\exp \frac{2 \pi i}{3} Z=\varphi\left(\operatorname{diag}\left(-w_{1},-w_{1}^{2},-w_{1},-w_{1},-w_{1},-w_{1},-w_{1},-w_{1}\right)\right) \\
& =\varphi\left(\operatorname{diag}\left(w_{1}, w_{1}^{2}, w_{1}, w_{1}, w_{1}, w_{1}, w_{1}, w_{1}\right)\right),
\end{aligned}
$$

where $w_{8}=e^{2 \pi e_{1} / 8}, w_{1}=e^{2 \pi e_{1} / 3}$. $z_{2}=-\gamma$ is conjugate to

$$
z_{2}^{\prime}=\sigma
$$

in $E_{7}{ }^{C}$. Indeed, let $\delta_{3}=\varphi(B)$, where B is

$$
B=\frac{1}{\sqrt{2}}\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-e_{1} & 0 & 0 & 0 & e_{1} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & -e_{1} & 0 & 0 & 0 & e_{1} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -e_{1} & 0 & 0 & 0 & e_{1} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -e_{1} & 0 & 0 & 0 & e_{1}
\end{array}\right) \in S U\left(8, C^{C}\right)
$$

Then $\delta_{3} \in E_{7}^{C}$ and δ_{3} satisfies $\delta_{3}{ }^{-1}\left(-\gamma_{1}\right) \delta_{3}=\sigma$. Now, we consider the element $\delta_{1} \delta_{3}$, then we have

$$
\left(\delta_{1} \delta_{3}\right)^{-1}(-\gamma)\left(\delta_{1} \delta_{3}\right)=\sigma
$$

z_{3} is conjugate to

$$
z_{3}^{\prime}=\varphi\left(\operatorname{diag}\left(w_{1}^{2}, w_{1}, w_{1}, w_{1}, w_{1}, w_{1}, w_{1}, w_{1}\right)\right)
$$

under the action of $\varphi\left(\operatorname{diag}\left(\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), 0,0,0,0,0,0\right)\right) \in \varphi\left(S U\left(8, C^{C}\right)\right) \subset$ $E_{7}{ }^{C}$.

Hereafter, we use $z_{2}{ }^{\prime}$ and $z_{3}{ }^{\prime}$ instead of z_{2} and z_{3}, respcetively.
Since $\left(\mathfrak{e}_{7}{ }^{C}\right)_{e v}=\left(\mathfrak{e}_{7}{ }^{C}\right)^{z_{2}{ }^{\prime}},\left(\mathfrak{e}_{7}{ }^{C}\right)_{0}=\left(\mathfrak{e}_{7}{ }^{C}\right)^{z_{4}},\left(\mathfrak{e}_{7}{ }^{C}\right)_{e d}=\left(\mathfrak{e}_{7}{ }^{C}\right)^{z_{3}{ }^{\prime}}$, we shall determine the structures of groups

$$
\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{z_{2}^{\prime}}, \quad\left(E_{7}^{C}\right)_{0}=\left(E_{7}^{C}\right)^{z_{4}}, \quad\left(E_{7}^{C}\right)_{e d}=\left(E_{7}^{C}\right)^{z_{3}{ }^{\prime}}
$$

Theorem 4.2.2. (1) $\left(E_{7}^{C}\right)_{e v} \cong(S L(2, C) \times \operatorname{Spin}(12, C)) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=$ $\{(E, 1),(-E,-\sigma)\}$.
(2) $\left(E_{7}^{C}\right)_{0} \cong\left(C^{*} \times C^{*} \times S L(6, C)\right) /\left(\boldsymbol{Z}_{6} \times \boldsymbol{Z}_{6}\right), \boldsymbol{Z}_{6} \times \boldsymbol{Z}_{6}=\left\{\left(\omega_{6}{ }^{k}, \omega_{6}{ }^{l}\right.\right.$, $\left.\left.\omega_{6}{ }^{k} \omega_{6}{ }^{l} E\right) \mid k, l=0,1, \ldots, 5\right\}, \omega_{6}=e^{2 \pi i / 6}$.
(3) $\left(E_{7}^{C}\right)_{e d} \cong\left(C^{*} \times S L(7, C)\right) / \boldsymbol{Z}_{7}, \boldsymbol{Z}_{7}=\left\{\left(\omega_{7}^{k}, \omega_{7}^{k} E\right) \mid k=0,1, \ldots, 6\right\}$, $\omega_{7}=e^{2 \pi i / 7}$.

Proof. (1) Let $\operatorname{Spin}(12, C)=\left\{\alpha \in E_{7}^{C} \mid \kappa \alpha=\alpha \kappa, \mu \alpha=\alpha \mu\right\}=\left(E_{7}^{C}\right)^{\kappa, \mu}$. We define a mapping $\psi: S L(2, C) \times \operatorname{Spin}(12, C) \rightarrow\left(E_{7}^{C}\right)^{\sigma}$ by

$$
\psi(A, \beta)=\phi(A) \beta
$$

Then ψ is well-defined and is a surjective homomorphism. Ker $\psi=\{(E, 1)$, $(-E,-\sigma)\}=\boldsymbol{Z}_{2}$. Hence we have $\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{\sigma} \cong(S L(2, C) \times \operatorname{Spin}(12, C))$ $/ \boldsymbol{Z}_{2}$ (see [3, Thorem 4.6.13] for details).
(2) We define a mapping $\varphi: S\left(U\left(1, \boldsymbol{C}^{C}\right) \times U\left(1, \boldsymbol{C}^{C}\right) \times U\left(6, \boldsymbol{C}^{C}\right)\right) \rightarrow$ $\left(E_{7}^{C}\right)^{z_{4}}$ by

$$
\varphi\left(b_{1}, b_{2}, B\right) P=\chi^{-1}\left(\left(b_{1}, b_{2}, B\right)(\chi P)^{t}\left(b_{1}, b_{2}, B\right)\right), \quad P \in \mathfrak{P}^{C}
$$

as the restriction mapping of $\varphi: S U\left(8, C^{C}\right) \rightarrow E_{7}{ }^{C}$. Then φ is well-defined and is a homomorphism. $\operatorname{Ker} \varphi=\{(1,1, E),(-1,-1,-E)\}=\boldsymbol{Z}_{2}$. Since $\left(E_{7}^{C}\right)^{z_{4}}$ is connected and $\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}^{C}\right)_{0}\right)=37$ (Theorem 4.2.1) $=(1+1+36)-1=$ $\operatorname{dim}_{C}\left(\mathfrak{s}\left(\mathfrak{u}\left(1, \boldsymbol{C}^{C}\right) \oplus \mathfrak{u}\left(1, \boldsymbol{C}^{C}\right) \oplus \mathfrak{u}\left(6, \boldsymbol{C}^{C}\right)\right)\right), \varphi$ is onto. Thus we have

$$
\begin{aligned}
\left(E_{7}^{C}\right)_{0} & \cong S\left(U\left(1, \boldsymbol{C}^{C}\right) \times U\left(1, \boldsymbol{C}^{C}\right) \times U\left(6, \boldsymbol{C}^{C}\right)\right) / \boldsymbol{Z}_{2} \\
& \cong S\left(C^{*} \times C^{*} \times G L(6, C)\right) / \boldsymbol{Z}_{2}
\end{aligned}
$$

Since the mapping $h: C^{*} \times C^{*} \times S L(6, C) \rightarrow S\left(C^{*} \times C^{*} \times G L(6, C)\right)$,

$$
h\left(d_{1}, d_{2}, D\right)=\left(d_{1}{ }^{6}, d_{2}{ }^{6},\left(d_{1} d_{2}\right)^{-1} D\right)
$$

induces an isomorphism $S\left(C^{*} \times C^{*} \times G L(6, C)\right) \cong\left(C^{*} \times C^{*} \times S L(6, C)\right) /\left(\boldsymbol{Z}_{6} \times\right.$ $\left.\boldsymbol{Z}_{6}\right), \boldsymbol{Z}_{6} \times \boldsymbol{Z}_{6}=\left\{\left(\omega_{6}{ }^{k}, \omega_{6}{ }^{l}, \omega_{6}{ }^{k} \omega_{6}{ }^{l} E\right) \mid k, l=0,1, \ldots, 5\right\}$. Thus we have $\left(E_{7}{ }^{C}\right)_{0}=$ $\left(E_{7}{ }^{C}\right)^{z_{4}} \cong\left(C^{*} \times C^{*} \times S L(6, C)\right) /\left(\boldsymbol{Z}_{6} \times \boldsymbol{Z}_{6}\right)$.
(3) We define a mapping $\varphi: S\left(U\left(1, \boldsymbol{C}^{C}\right) \times U\left(7, \boldsymbol{C}^{C}\right)\right) \rightarrow\left(E_{7}{ }^{C}\right)^{z_{3}{ }^{\prime}}$ by

$$
\varphi(b, B) P=\chi^{-1}\left((b, B)(\chi P)^{t}(b, B)\right), \quad P \in \mathfrak{P}^{C}
$$

as the restriction mapping of $\varphi: S U\left(8, \boldsymbol{C}^{C}\right) \rightarrow E_{7}{ }^{C}$. Then φ is well-defined and is a homomorphism. $\operatorname{Ker} \varphi=\{(1, E),(-1,-E)\} \cong \boldsymbol{Z}_{2}$. Since $\left(E_{7}{ }^{C}\right)^{z_{3}}$ is connected and $\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}{ }^{C}\right)_{e d}\right)=37+6 \times 2($ Theorem 4.2.1) $=49=(1+49)-1$ $=\operatorname{dim}_{C}\left(\mathfrak{s}\left(\mathfrak{u}\left(1, \boldsymbol{C}^{C}\right) \oplus \mathfrak{u}\left(7, \boldsymbol{C}^{C}\right)\right)\right), \varphi$ is onto. Therefore we have

$$
\begin{aligned}
\left(E_{7}^{C}\right)_{e d} & \cong S\left(U\left(1, \boldsymbol{C}^{C}\right) \times U\left(7, \boldsymbol{C}^{C}\right)\right) / \boldsymbol{Z}_{2} \\
& \cong S\left(C^{*} \times G L(7, C)\right) / \boldsymbol{Z}_{2} .
\end{aligned}
$$

Since the mapping $h: C^{*} \times S L(7, C) \rightarrow S\left(C^{*} \times G L(7, C)\right)$,

$$
h(d, D)=\left(d^{7}, d^{-1} D\right)
$$

induces an isomorphism $S\left(C^{*} \times G L(7, C)\right) \cong\left(C^{*} \times S L(7, C)\right) / \boldsymbol{Z}_{7}, \quad \boldsymbol{Z}_{7}=$ $\left\{\left(\omega_{7}{ }^{k}, \omega_{7}{ }^{k} E\right) \mid k=0,1, \ldots, 6\right\}$. Thus we have $\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{z_{3}{ }^{\prime}} \cong\left(C^{*} \times\right.$ $S L(7, C)) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{7}\right)\left(\boldsymbol{Z}_{2}=\{(1, E),(-1, E)\}\right) \cong\left(C^{*} / \boldsymbol{Z}_{2} \times S L(7, C)\right) / \boldsymbol{Z}_{7}\left(\boldsymbol{Z}_{2}\right.$ $=\{1,-1\}) \cong\left(C^{*} \times S L(7, C)\right) / \boldsymbol{Z}_{7}$.
4.2.1. \quad Subgroups of type $\boldsymbol{A}_{1(1)} \oplus \boldsymbol{D}_{6(6)}, \boldsymbol{R} \oplus \boldsymbol{R} \oplus \boldsymbol{A}_{5(5)}$ and $\boldsymbol{R} \oplus \boldsymbol{A}_{6(6)}$ of $\boldsymbol{E}_{7(7)}$

Since $\left(\mathfrak{e}_{7(7)}\right)_{e v}=\left(\mathfrak{e}_{7}^{C}\right)_{e v} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \lambda \iota \gamma_{1}}=\left(\mathfrak{e}_{7}^{C}\right)^{\sigma} \cap\left(\mathfrak{e}_{7}{ }^{C}\right)^{\tau \lambda \iota \gamma_{1}},\left(\mathfrak{e}_{7(7)}\right)_{0}=$ $\left(\mathfrak{e}_{7}{ }^{C}\right)_{0} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \lambda \iota \gamma_{1}}=\left(\mathfrak{e}_{7}{ }^{C}\right)^{z_{4}} \cap\left(\mathfrak{e}_{7}{ }^{C}\right)^{\tau \lambda \iota \gamma_{1}},\left(\mathfrak{e}_{7(7)}\right)_{e d}=\left(\mathfrak{e}_{7}{ }^{C}\right)_{e d} \cap\left(\mathfrak{e}_{7}{ }^{C}\right)^{\tau \lambda \iota \gamma_{1}}=$ $\left(\mathfrak{e}_{7}{ }^{C}\right)^{z_{3}{ }^{\prime}} \cap\left(\mathfrak{e}_{7}{ }^{C}\right)^{\tau \lambda \iota \gamma_{1}}$, we shall determine the structures of groups

$$
\begin{aligned}
\left(E_{7(7)}\right)_{e v} & =\left(E_{7}{ }^{C}\right)_{e v} \cap\left(E_{7}^{C}\right)^{\tau \lambda \iota \gamma_{1}}=\left(E_{7}^{C}\right)^{\sigma} \cap\left(E_{7}^{C}\right)^{\tau \lambda \iota \gamma_{1}}, \\
\left(E_{7(7)}\right)_{0} & =\left(E_{7}^{C}\right)_{0} \cap\left(E_{7}^{C}\right)^{\tau \lambda \iota \gamma_{1}}=\left(E_{7}^{C}\right)^{z_{4}} \cap\left(E_{7}^{C}\right)^{\tau \lambda \iota \gamma_{1}}, \\
\left(E_{7(7)}\right)_{e d} & =\left(E_{7}^{C}\right)_{e d} \cap\left(E_{7}^{C}\right)^{\tau \lambda \iota \gamma_{1}}=\left(E_{7}^{C}\right)^{z_{3}{ }_{3}^{\prime}} \cap\left(E_{7}^{C}\right)^{\tau \lambda \iota \gamma_{1}} .
\end{aligned}
$$

To define the element $\rho \in E_{7}{ }^{C}$, we use the mapping $\phi_{6}: S p\left(1, \boldsymbol{H}^{C}\right) \times$ $S U^{*}\left(6, \boldsymbol{C}^{C}\right) \rightarrow E_{6}{ }^{C}$ by

$$
\begin{aligned}
\phi_{6}(p, A)(M+\boldsymbol{n})= & (h A) M(h A)^{*}+p \boldsymbol{n}(h A)^{-1}, \\
& M+\boldsymbol{n} \in \mathfrak{J}\left(3, \boldsymbol{H}^{C}\right) \oplus\left(\boldsymbol{H}^{C}\right)^{3}=\mathfrak{J}^{C},
\end{aligned}
$$

where $k: M\left(3, \boldsymbol{H}^{C}\right) \rightarrow\left\{P \in M\left(6, \boldsymbol{C}^{C}\right) \mid J P=\bar{P} J\right\}(J=\operatorname{diag}(J, J, J), J=$ $\left.\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right)$ is defined by $k\left(a+b e_{2}\right)=\left(\left(\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right)\right), a, b \in C^{C}$ and $h=k^{-1}$. Furthermore, by using the mapping $f: S L(6, C) \rightarrow S U^{*}\left(6, C^{C}\right), f(A)=\varepsilon A-$ $\bar{\varepsilon} J A J, \varepsilon=\left(1+i e_{1}\right) / 2$, we can define the mapping $\varphi_{6}: S p\left(1, \boldsymbol{H}^{C}\right) \times S L(6, C) \rightarrow$ E_{6}^{C} by $\varphi_{6}=\phi_{6} f$.

We define $\rho \in E_{7}{ }^{C}$ by

$$
\rho=\varphi_{6}(1, \operatorname{diag}(1,-1,1,-1,1,1)) .
$$

Theorem 4.2.1.1. (1) $\left(E_{7(7)}\right)_{e v} \cong(S L(2, \boldsymbol{R}) \times \operatorname{spin}(6,6)) / \boldsymbol{Z}_{2} \times\{1, \rho\}$, $\boldsymbol{Z}_{2}=\{(E, 1),(-E,-\sigma)\}$.
(2) $\left(E_{7(7)}\right)_{0} \cong\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times S L(6, \boldsymbol{R})\right) \times\left\{1, \gamma^{\prime}\right\}$.
(3) $\left(E_{7(7)}\right)_{e d} \cong\left(\boldsymbol{R}^{+} \times S L(7, \boldsymbol{R})\right) \times\left\{1, \gamma^{\prime}\right\}$.

Proof. (1) Since δ_{2} satisfies $\delta_{2}{ }^{-1} \sigma \delta_{2}=\sigma$ and $\delta_{2}^{-1}\left(\tau \lambda \iota \gamma_{1}\right) \delta_{2}=-\tau \gamma_{1}$, we have

$$
\left(E_{7(7)}\right)_{e v}=\left(E_{7}^{C}\right)^{\sigma} \cap\left(E_{7}^{C}\right)^{\tau \lambda \iota \gamma_{1}} \cong\left(E_{7}^{C}\right)^{\sigma} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}} .
$$

So we shall determine the structure of the group $\left(E_{7(7)}\right)_{e v} \cong\left(E_{7}^{C}\right)^{\sigma} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}}$. Now, for $\alpha \in\left(E_{7(7)}\right)_{e v} \subset\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{\sigma}$, there exist $A \in S L(2, C)$ and $\beta \in \operatorname{Spin}(10, C)$ such that $\alpha=\psi(A, \beta)=\phi(A) \beta$ (Theorem 4.2.2.(1)). From $\tau \gamma_{1} \alpha \gamma_{1} \tau=\alpha$, that is, $\tau \gamma_{1} \phi(A) \beta \gamma_{1} \tau=\phi(A) \beta$, we have $\phi(\tau A) \tau \gamma_{1} \beta \gamma_{1} \tau=\phi(A) \beta$. Hence

$$
\left\{\begin{array} { l }
{ \phi (\tau A) = \phi (A) } \\
{ \tau \gamma _ { 1 } \beta \gamma _ { 1 } \tau = \beta }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\phi(\tau A)=-\phi(A) \\
\tau \gamma_{1} \beta \gamma_{1} \tau=-\sigma \beta
\end{array}\right.\right.
$$

In the former case, from $\tau A=A$, we have $A \in S L(2, \boldsymbol{R})$. We shall determine the structure of the group $\left\{\beta \in \operatorname{Spin}(12, C) \mid \tau \gamma_{1} \beta \gamma_{1} \tau=\beta\right\}=\operatorname{Spin}(12, C)^{\tau \gamma_{1}}=$ $\left(\left(E_{7}^{C}\right)^{\kappa, \mu}\right)^{\tau \gamma_{1}}$. The group $\left(\left(E_{7}^{C}\right)^{\kappa, \mu}\right)^{\tau \gamma_{1}}$ acts on the \boldsymbol{R}-vector space

$$
\begin{aligned}
V^{6,6} & =\left(\mathfrak{P}^{C}\right)_{\kappa, \tau \gamma_{1}}=\left\{P \in \mathfrak{P}^{C} \mid \kappa P=P, \tau \gamma_{1} P=P\right\} \\
& =\left\{\left.P=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi_{2} & x_{1} \\
0 & x_{1} & \xi_{3}
\end{array}\right),\left(\begin{array}{ccc}
\eta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \eta\right) \right\rvert\, \begin{array}{l}
\xi_{2}, \xi_{3}, \eta_{1}, \eta \in \boldsymbol{R}, \\
x_{1} \in\left(\mathfrak{C}^{C}\right)_{\tau \gamma_{1}}=\mathfrak{C}^{\prime}
\end{array}\right\}
\end{aligned}
$$

with the norm

$$
(P, P)_{\mu}=\frac{1}{2}\{\mu P, P\}=\eta_{1} \eta-\xi_{2} \xi_{3}+x_{1} \bar{x}_{1} .
$$

Since the group $\operatorname{Spin}(12, C)^{\tau \gamma_{1}}$ is connected, we can define the mapping π : $\operatorname{Spin}(12, C)^{\tau \gamma_{1}} \rightarrow O\left(V^{6,6}\right)^{0}=O(6,6)^{0}$ (which is the connected component subgroup of $O(6,6))$ by $\pi(\alpha)=\alpha \mid V^{6,6}$. Ker $\pi=\{1, \sigma\}=\boldsymbol{Z}_{2}$. Since $\operatorname{dim}(\mathfrak{s p i n}(12$, $\left.C)^{\tau \gamma_{1}}\right)=\operatorname{dim}\left(\left(\mathfrak{e}_{7(7)}\right)_{e v}\right)-\operatorname{dim}(\mathfrak{s l}(2, \boldsymbol{R}))=(37+16 \times 2)-3$ (Theorem 4.2.1) $=66=\operatorname{dim}(\mathfrak{s o}(6,6)), \pi$ is onto. Hence we have $\operatorname{Spin}(12, C)^{\tau \gamma_{1}} / \boldsymbol{Z}_{2}=O(6,6)^{0}$. Therefore $\operatorname{Spin}(12, C)^{\tau \gamma_{1}}$ is $\operatorname{spin}(6,6)$ as a covering group of $O(6,6)^{0}$. Hence the group of the former case is $(S L(2, \boldsymbol{R}) \times \operatorname{spin}(6,6)) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(E, 1),(-E,-\sigma)\}$. In the latter case, $A=i I(I=\operatorname{diag}(1,-1)), \beta=\phi(-i I) \rho$ satisfy the given condition and $\psi(i I, \phi(-i I) \rho)=\rho$. Thus we have $\left(E_{7(7)}\right)_{e d} \cong(S L(2, \boldsymbol{R}) \times$ $\operatorname{spin}(6,6)) / \boldsymbol{Z}_{2} \times\{1, \rho\}$.
(2) For $\alpha \in\left(E_{7(7)}\right)_{0} \subset\left(E_{7}^{C}\right)_{0}$, there exists $\left(b_{1}, b_{2}, B\right) \in S\left(U\left(1, C^{C}\right) \times\right.$ $\left.U\left(1, \boldsymbol{C}^{C}\right) \times U\left(6, \boldsymbol{C}^{C}\right)\right)$ such that $\alpha=\varphi\left(b_{1}, b_{2}, B\right)$ (Theorem 4.2.2.(2)). Since $\varphi: S U\left(8, C^{C}\right) \rightarrow E_{7}^{C}$ satisfies

$$
\begin{aligned}
\tau \varphi(A) \tau & =\varphi\left(I_{2}(\tau A) I_{2}\right), & & \gamma_{1} \varphi(A) \gamma_{1}=\varphi(J A J), \\
\lambda \varphi(A) \lambda^{-1} & =\varphi\left(I_{2} A I_{2}\right), & & \iota \varphi(A) \iota^{-1}=\varphi(J \bar{A} J),
\end{aligned}
$$

$\left(I_{2}=\operatorname{diag}(-1,-1,1, \ldots, 1) \in S U\left(8, \boldsymbol{C}^{C}\right)\right.$), we have

$$
\tau \lambda \iota \gamma_{1} \varphi(A) \gamma_{1} \iota^{-1} \lambda^{-1} \tau=\varphi(\tau \bar{A}), \quad A \in S U\left(8, C^{C}\right)
$$

From $\tau \lambda \iota \gamma_{1} \alpha \gamma_{1} \iota^{-1} \lambda^{-1} \tau=\alpha$, that is, $\tau \lambda \iota \gamma_{1} \varphi\left(b_{1}, b_{2}, B\right) \gamma_{1} \iota^{-1} \lambda^{-1} \tau=\varphi\left(b_{1}, b_{2}, B\right)$, we have $\varphi\left(\tau \bar{b}_{1}, \tau \bar{b}_{2}, \tau \bar{B}\right)=\varphi\left(b_{1}, b_{2}, B\right)$. Hence

$$
\left\{\begin{array} { l }
{ \tau \overline { b } _ { 1 } = b _ { 1 } } \\
{ \tau \overline { b } _ { 2 } = b _ { 2 } } \\
{ \tau \overline { B } = B }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\tau \bar{b}_{1}=-b_{1} \\
\tau \bar{b}_{2}=-b_{2} \\
\tau \bar{B}=-B
\end{array}\right.\right.
$$

In the former case, $b_{1}, b_{2} \in U\left(1, \boldsymbol{C}^{\prime}\right)$ and $B \in U\left(6, \boldsymbol{C}^{\prime}\right)$. Hence the group of the first case is

$$
\begin{aligned}
& S\left(U\left(1, \boldsymbol{C}^{\prime}\right) \times U\left(1, \boldsymbol{C}^{\prime}\right) \times U\left(6, \boldsymbol{C}^{\prime}\right)\right) / \boldsymbol{Z}_{2}, \quad \boldsymbol{Z}_{2}=\{(1,1, E),(-1,-1,-E)\} \\
& \quad \cong S\left(\boldsymbol{R}^{*} \times \boldsymbol{R}^{*} \times G L(6, \boldsymbol{R})\right) / \boldsymbol{Z}_{2}
\end{aligned}
$$

As a similar way to Theorem 4.2.2.(2), $S\left(\boldsymbol{R}^{*} \times \boldsymbol{R}^{*} \times G L(6, \boldsymbol{R})\right) \cong\left(\boldsymbol{R}^{*} \times \boldsymbol{R}^{*} \times\right.$ $S L(6, \boldsymbol{R})) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}\right), \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}=\{(1,1, E),(-1,1, E),(1,-1, E),(-1,-1, E)\}$. Hence the group of the first case is $\left(\boldsymbol{R}^{*} \times \boldsymbol{R}^{*} \times S L(6, \boldsymbol{R})\right) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}\right) \cong \boldsymbol{R}^{+} \times$ $\boldsymbol{R}^{+} \times S L(6, \boldsymbol{R})$. In the latter case, $\left(e_{1},-e_{1}, e_{1} I\right)(I=\operatorname{diag}(1,-1,1,-1,1,-1))$ satisfies the given condition and $\varphi\left(e_{1},-e_{1}, e_{1} I\right)=\gamma^{\prime}$. Thus we have $\left(E_{7(7)}\right)_{0} \cong$ $\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times S L(6, \boldsymbol{R})\right) \times\left\{1, \gamma^{\prime}\right\}$.
(3) For $\alpha \in\left(E_{7(7)}\right)_{e d} \subset\left(E_{7}^{C}\right)_{e d}$, there exists $(b, B) \in S\left(U\left(1, C^{C}\right) \times\right.$ $U\left(7, C^{C}\right)$) such that $\alpha=\varphi(b, B)$ (Theorem 4.2.2.(3)). From $\tau \lambda \iota \gamma_{1} \alpha \gamma_{1} \iota^{-1} \lambda^{-1} \tau$ $=\alpha$, that is, $\tau \lambda \iota \gamma_{1} \varphi(b, B) \gamma_{1} \iota^{-1} \lambda^{-1} \tau=\varphi(b, B)$, we have $\varphi(\tau \bar{b}, \tau \bar{B})=\varphi(b, B)$. Hence

$$
\left\{\begin{array} { l }
{ \tau \overline { b } = b } \\
{ \tau \overline { B } = B }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\tau \bar{b}=-b \\
\tau \bar{B}=-B .
\end{array}\right.\right.
$$

In the former case, $b \in U\left(1, \boldsymbol{C}^{\prime}\right)$ and $B \in U\left(6, \boldsymbol{C}^{\prime}\right)$. Hence the group of the first case is

$$
\begin{aligned}
& S\left(U\left(1, \boldsymbol{C}^{\prime}\right) \times U\left(7, \boldsymbol{C}^{\prime}\right)\right) \boldsymbol{Z}_{2}, \quad \boldsymbol{Z}_{2}=\{(1, E),(-1,-E)\} \\
& \quad \cong S\left(\boldsymbol{R}^{*} \times G L(7, \boldsymbol{R})\right) / \boldsymbol{Z}_{2}
\end{aligned}
$$

As a similar way to Theorem 4.2.2.(3), $S\left(\boldsymbol{R}^{*} \times G L(7, \boldsymbol{R})\right) \cong\left(\boldsymbol{R}^{*} \times S L(7, \boldsymbol{R})\right) / \boldsymbol{Z}_{2}$, $\boldsymbol{Z}_{2}=\{(1, E),(-1, E)\}$. Hence the group of the first case is $\left(\boldsymbol{R}^{*} \times S L(7, \boldsymbol{R})\right) / \boldsymbol{Z}_{2}$ $\cong \boldsymbol{R}^{+} \times S L(7, \boldsymbol{R})$. In the latter case, $\left(e_{1}, e_{1} I^{\prime}\right)\left(I^{\prime}=(-1, I)\right)$ satisfies the given condition and $\varphi\left(e_{1}, e_{1} I^{\prime}\right)=\gamma^{\prime}$. Thus we have $\left(E_{7(7)}\right)_{e v} \cong\left(\boldsymbol{R}^{+} \times S L(7, \boldsymbol{R})\right) \times$ $\left\{1, \gamma^{\prime}\right\}$.

4.3. Subgroups of type $\boldsymbol{C} \oplus \boldsymbol{E}_{6}{ }^{C}, \boldsymbol{C} \oplus \boldsymbol{C} \oplus \boldsymbol{D}_{5}{ }^{C}$ and $\boldsymbol{C} \oplus \boldsymbol{D}_{6}{ }^{C}$ of $\boldsymbol{E}_{7}{ }^{C}$

We add the mappings $\phi_{1}(\theta)$ and $\phi_{2}(\nu)$ used in the following sections. For $\theta, \nu \in C^{*}$, the C-linear transformation $\phi_{1}(\theta)$ of \mathfrak{P}^{C} and the C-linear transformation $\phi_{2}(\nu)$ of \mathfrak{J}^{C} are defined by

$$
\begin{aligned}
\phi_{1}(\theta)(X, Y, \xi, \eta) & =\left(\theta^{-1} X, \theta Y, \theta^{3} \xi, \theta^{-3} \eta\right), \quad(X, Y, \xi, \eta) \in \mathfrak{P}^{C}, \\
\phi_{2}(\nu) X & =\left(\begin{array}{ccc}
\nu^{4} \xi_{1} & \nu x_{3} & \nu \bar{x}_{2} \\
\nu \bar{x}_{3} & \nu^{-2} \xi_{2} & \nu^{-2} x_{1} \\
\nu x_{2} & \nu^{-2} \bar{x}_{1} & \nu^{-2} \xi_{3}
\end{array}\right), \quad X \in \mathfrak{J}^{C}
\end{aligned}
$$

respectively. Then $\phi_{1}(\theta) \in E_{7}^{C}$ and $\phi_{2}(\nu) \in E_{6}^{C} \subset E_{7}{ }^{C}$.
In the Lie algebra $\mathfrak{e}_{7}{ }^{C}$, let

$$
Z=\Phi\left(4\left(E_{1} \vee E_{1}\right), 0,0,-\frac{5}{2}\right)
$$

Theorem 4.3.1. The 3-graded decomposition of $\mathfrak{e}_{7(7)}=\left(\mathfrak{e}_{7}^{C}\right)^{\tau \gamma}$ (or $\mathfrak{e}_{7}{ }^{C}$),

$$
\mathfrak{e}_{7(7)}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}
$$

with respect to ad $Z, Z=\Phi\left(4\left(E_{1} \vee E_{1}\right), 0,0,-\frac{5}{2}\right)$, is given by

$$
\begin{aligned}
\mathfrak{g}_{0} & =\left\{\begin{array}{l}
i G_{k l}, 0 \leq k<4 \leq l \leq 7, G_{k l}, \text { otherwise, } \\
\tilde{A}_{1}\left(e_{k}\right), \tilde{F}_{1}\left(e_{k}\right), 0 \leq k \leq 3, i \tilde{A}_{1}\left(e_{k}\right), i \tilde{F}_{1}\left(e_{k}\right), 4 \leq k \leq 7, \\
\left(E_{2}-E_{3}\right)^{\sim}, E_{1} \vee E_{1}, \mathbf{1}
\end{array}\right\} \\
\mathfrak{g}_{-1} & =\left\{\begin{array}{l}
\left.\check{F}_{2}\left(e_{k}\right), \check{F}_{3}\left(e_{k}\right), 0 \leq k \leq 3, i \check{F}_{2}\left(e_{k}\right), i \check{F}_{3}\left(e_{k}\right), 4 \leq k \leq 7, \hat{E}_{1}\right\} 17 \\
\mathfrak{g}_{-2}
\end{array}=\left\{\begin{array}{l}
\tilde{A}_{2}\left(e_{k}\right)+\tilde{F}_{2}\left(e_{k}\right), \quad \tilde{A}_{3}\left(e_{k}\right)-\tilde{F}_{3}\left(e_{k}\right), \quad 0 \leq k \leq 3, \\
i \tilde{A}_{2}\left(e_{k}\right)+i \tilde{F}_{2}\left(e_{k}\right), i \tilde{A}_{3}\left(e_{k}\right)-i \tilde{F}_{3}\left(e_{k}\right), 4 \leq k \leq 7
\end{array}\right\} 16\right. \\
\mathfrak{g}_{-3} & =\left\{\check{F}_{1}\left(e_{k}\right), 0 \leq k \leq 3, i \check{F}_{1}\left(e_{k}\right), 4 \leq k \leq 3, \check{E}_{2}, \check{E}_{3}\right\} 10 \\
\mathfrak{g}_{1} & =\lambda\left(\mathfrak{g}_{-1}\right) \lambda^{-1}, \quad \mathfrak{g}_{2}=\lambda\left(\mathfrak{g}_{-2}\right) \lambda^{-1}, \quad \mathfrak{g}_{3}=\lambda\left(\mathfrak{g}_{-3}\right) \lambda^{-1} .
\end{aligned}
$$

$$
\text { Since } \Phi\left(4\left(E_{1} \vee E_{1}\right), 0,0,2\right)=-2 \kappa \text {, for } t \in \boldsymbol{R} \text { we have }
$$

$$
\exp \left(\Phi\left(4 i t\left(E_{1} \vee E_{1}\right), 0,0,2 i t\right)\right)(X, Y, \xi, \eta)
$$

$$
=\left(\left(\begin{array}{ccc}
e^{2 i t} \xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & e^{-2 i t} \xi_{2} & e^{-2 i t} x_{1} \\
x_{2} & e^{-2 i t} \bar{x}_{1} & e^{-2 i t} \xi_{3}
\end{array}\right),\left(\begin{array}{ccc}
e^{-2 i t} \eta_{1} & y_{3} & \bar{y}_{2} \\
\bar{y}_{3} & e^{2 i t} \eta_{2} & e^{2 i t} y_{1} \\
y_{2} & e^{2 i t} \bar{y}_{1} & e^{2 i t} \eta_{3}
\end{array}\right), e^{2 i t} \xi, e^{-2 i t} \eta\right)
$$

Especially, we have

$$
\begin{gathered}
\exp \left(\Phi\left(4 \pi i\left(E_{1} \vee E_{1}\right), 0,0,2 \pi i\right)\right)=1, \quad \exp \left(\Phi\left(2 \pi i\left(E_{1} \vee E_{1}\right), 0,0, \pi i\right)\right)=-\sigma \\
\exp \left(\Phi\left(\frac{8 \pi i}{3}\left(E_{1} \vee E_{1}\right), 0,0, \frac{4 \pi i}{3}\right)\right)=\kappa_{3}
\end{gathered}
$$

where κ_{3} is the C-linear transformation of \mathfrak{P}^{C} defined by

$$
\kappa_{3}(X, Y, \xi, \eta)=\left(\left(\begin{array}{ccc}
\omega^{2} \xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \omega \xi_{2} & \omega x_{1} \\
x_{2} & \omega \bar{x}_{1} & \omega \xi_{3}
\end{array}\right),\left(\begin{array}{ccc}
\omega \eta_{1} & y_{3} & \bar{y}_{2} \\
\bar{y}_{3} & \omega^{2} \eta_{2} & \omega^{2} y_{1} \\
y_{2} & \omega^{2} \bar{y}_{1} & \omega^{2} \eta_{3}
\end{array}\right), \omega^{2} \xi, \omega \eta\right)
$$

where $\omega=e^{2 \pi i / 3}$. This κ_{3} is nothing but $\phi\left(\left(\begin{array}{cc}\omega^{2} & 0 \\ 0 & \omega\end{array}\right)\right)$ using $\phi: S L(2, C) \rightarrow$ $E_{7}{ }^{C}$. For $\Phi(0,0,0, i t)$, we have

$$
\exp (\Phi(0,0,0, i t))(X, Y, \xi, \eta)=\left(e^{-i t / 3} X, e^{i t / 3} Y, e^{i t} \xi, e^{-i t} \eta\right)
$$

Hence $\exp (\Phi(0,0,0, i t))=\phi_{1}\left(e^{i t / 3}\right)$. Since $i Z=\Phi\left(4 i\left(E_{1} \vee E_{1}\right), 0,0,2 i\right)+$ $\Phi\left(0,0,0,-\frac{9}{2} i\right)$, furthermore $\Phi\left(4 i\left(E_{1} \vee E_{1}\right), 0,0,2 i\right)$ and $\Phi\left(0,0,0,-\frac{9}{2} i\right)$ commute, we have

$$
\begin{aligned}
z_{2} & =\exp \frac{2 \pi i}{2} Z=\exp \left(\Phi\left(4 \pi i\left(E_{1} \vee E_{1}\right), 0,0,2 \pi i\right)\right) \exp \left(\Phi\left(0,0,0,-\frac{9}{2} \pi i\right)\right) \\
& =\iota, \\
z_{4} & =\exp \frac{2 \pi i}{4} Z=\exp \left(\Phi\left(2 \pi i\left(E_{1} \vee E_{1}\right), 0,0, \pi i\right)\right) \exp \left(\Phi\left(0,0,0,-\frac{9}{4} \pi i\right)\right) \\
& =-\sigma \iota_{8}, \quad \iota_{8}=\phi_{1}\left(e^{-3 \pi i / 4}\right) \\
z_{3} & =\exp \frac{2 \pi i}{3} Z=\exp \left(\Phi\left(\frac{8 \pi i}{3}\left(E_{1} \vee E_{1}\right), 0,0, \frac{4 \pi i}{3}\right)\right) \exp \Phi(0,0,0,-3 \pi i) \\
& =-\kappa_{3}
\end{aligned}
$$

Since $\left(\mathfrak{e}_{7}{ }^{C}\right)_{e v}=\left(\mathfrak{e}_{7}^{C}\right)^{z_{2}}=\left(\mathfrak{e}_{7}{ }^{C}\right)^{\iota},\left(\mathfrak{e}_{7}^{C}\right)_{0}=\left(\mathfrak{e}_{7}\right)^{z_{4}}=\left(\mathfrak{e}_{7}{ }^{C}\right)^{\sigma \iota_{8}},\left(\mathfrak{e}_{7}{ }^{C}\right)_{e d}=$ $\left(\mathfrak{e}_{7}^{C}\right)^{z_{3}}=\left(\mathfrak{e}_{7}^{C}\right)^{\kappa_{3}}$, we shall determine the structures of groups

$$
\begin{gathered}
\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{z_{2}}=\left(E_{7}^{C}\right)^{\iota}, \quad\left(E_{7}^{C}\right)_{0}=\left(E_{7}^{C}\right)^{z_{4}}=\left(E_{7}^{C}\right)^{\sigma \iota_{8}} \\
\left(E_{7}^{C}\right)_{e d}=\left(E_{7}^{C}\right)^{z_{3}}=\left(E_{7}^{C}\right)^{\kappa_{3}}
\end{gathered}
$$

Theorem 4.3.2. (1) $\left(E_{7}{ }^{C}\right)_{e v} \cong\left(C^{*} \times E_{6}{ }^{C}\right) / \boldsymbol{Z}_{3}, \boldsymbol{Z}_{3}=\{(1,1),(\omega, \omega 1)$, $\left.\left(\omega^{2}, \omega^{2} 1\right)\right\}, \omega=e^{2 \pi i / 3}$.
(2) $\left(E_{7}{ }^{C}\right)_{0} \cong\left(C^{*} \times C^{*} \times \operatorname{Spin}(10, C)\right) / \boldsymbol{Z}_{12}, \boldsymbol{Z}_{12}=\left\{\left(\omega_{12}^{-4 k}, \omega_{12}{ }^{k}, \phi_{1}\left(\omega_{12}{ }^{4 k}\right)\right.\right.$ $\left.\left.\phi_{2}\left(\omega_{12}^{-k}\right)\right) \mid k=0,1, \ldots, 11\right\}, \omega_{12}=e^{2 \pi i / 12}$.
(3) $\left(E_{7}^{C}\right)_{e d} \cong\left(C^{*} \times \operatorname{Spin}(12, C)\right) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1,1),(-1,-\sigma)\}$.

Proof. (1) We define a mapping $\varphi_{3}: C^{*} \times E_{6}^{C} \rightarrow\left(E_{7}^{C}\right)^{\iota}$ by

$$
\varphi_{3}(\theta, \beta)=\phi_{1}(\theta) \beta
$$

Then φ_{3} is well-defined and is a homomorphism. $\operatorname{Ker} \varphi_{3}=\left\{(1,1),\left(\omega, \phi_{1}\left(\omega^{2}\right)\right)\right.$, $\left.\left(\omega^{2}, \phi_{1}(\omega)\right)\right\}=\boldsymbol{Z}_{3}$. $\left(\phi_{1}\left(\omega^{2}\right)\right.$ and $\phi_{1}(\omega)$ are nothing but the central elements $\omega 1$ and $\omega^{2} 1$ of $E_{6}{ }^{C}$, respectively. So we may write $\operatorname{Ker} \varphi_{3}=\{(1,1),(\omega, \omega 1)$, $\left.\left(\omega^{2}, \omega^{2} 1\right)\right\}$). Since $\left(E_{7}^{C}\right)^{\iota}$ is connected and $\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}^{C}\right)_{e v}\right)=47+16 \times 2$ (Theorem 4.3.1) $=79=1+78=\operatorname{dim}_{C}\left(C \oplus \mathfrak{e}_{6}{ }^{C}\right), \varphi_{3}$ is onto. Thus we have $\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{\iota} \cong\left(C^{*} \times E_{6}^{C}\right) / \boldsymbol{Z}_{3}$ (cf. [3, Theorem 4.4.4]).
(2) Let $\operatorname{Spin}(10, C)=\left(E_{6}^{C}\right)_{E_{1}}=\left(E_{7}^{C}\right)_{\left(E_{1}, 0,1,0\right),\left(-E_{1}, 0,1,0\right)}$. We define a mapping $\varphi_{4}: C^{*} \times C^{*} \times \operatorname{Spin}(10, C) \rightarrow\left(E_{7}^{C}\right)^{\sigma \iota_{8}}$ by

$$
\varphi_{4}(\theta, \nu, \beta)=\phi_{1}(\theta) \phi_{2}(\nu) \beta
$$

Then φ_{4} is well-defined, that is, $\varphi_{4}(\theta, \nu, \beta)$ commutes with $\sigma \iota_{8}$. Furthermore, since $\phi_{1}(\theta), \phi_{2}(\nu)$ and β commute with each other, φ_{4} is a homomorphism. The kernel of φ_{4} is
$\operatorname{Ker} \varphi_{4}=\left\{\left(\omega_{12}{ }^{-4 k}, \omega_{12}{ }^{k}, \phi_{1}\left(\omega_{12}{ }^{4 k}\right) \phi_{2}\left(\omega_{12}{ }^{-k}\right)\right) \mid k=0,1, \ldots, 11\right\}=\boldsymbol{Z}_{12}$.
Indeed, let $(\theta, \nu, \beta) \in \operatorname{Ker} \varphi_{4}$. Then $\varphi_{4}(\theta, \nu, \beta) P=P$ for any $P \in \mathfrak{P}^{C}$. Especially, for $P=\left(E_{1}, 0,1,0\right) \in \mathfrak{P}^{C}$, we have $\left(\theta^{-1} \nu^{4} E_{1}, 0, \theta^{3}, 0\right)=\left(E_{1}, 0,1,0\right)$.

Hence $\theta^{-1} \nu^{4}=1, \theta^{3}=1$, that is, $\nu^{4}=\theta, \theta^{3}=1$, so we have $\nu^{12}=1$. Thus $\operatorname{Ker} \varphi_{4}=Z_{12}$ is obtained. Since $\left(E_{7}^{C}\right)^{\sigma \iota 8}$ is connected and $\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}{ }^{C}\right)_{0}\right)=$ 47 (Theorem 4.3.1) $=1+1+45=\operatorname{dim}_{C}(C \oplus C \oplus \mathfrak{s p i n}(10, C)), \varphi_{4}$ is onto. Thus we have $\left(E_{7}^{C}\right)_{0}=\left(E_{7}^{C}\right)^{\sigma \iota_{8}} \cong\left(C^{*} \times C^{*} \times \operatorname{Spin}(10, C)\right) / \boldsymbol{Z}_{12}$.
(3) Let C^{*} be the subgroup $\left\{\left.a=\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right) \right\rvert\, a \in C^{*}\right\}$ of $S L(2, C)$, and we define a mapping $\psi: C^{*} \times \operatorname{Spin}(12, C) \rightarrow\left(E_{7}{ }^{C}\right)^{\kappa_{3}}$ by

$$
\psi(a, \beta)=\phi(a) \beta
$$

as the restriction mapping of $\psi: S L(2, C) \times \operatorname{Spin}(12, C) \rightarrow\left(E_{7}^{C}\right)^{\sigma}$ defined in Theorem 4.2.2.(1). Then ψ is well-defined and a is homomorphism. Ker $\psi=$ $\{(1,1),(-1,-\sigma)\}=\boldsymbol{Z}_{2}$. Since $\left(E_{7}^{C}\right)^{\kappa_{3}}$ is connected and $\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}^{C}\right)_{e d}\right)=$ $47+10 \times 2($ Theorem 4.3.1 $)=67=1+66=\operatorname{dim}_{C}(C \oplus \mathfrak{s p i n}(12, C)), \psi$ is onto. Thus we have $\left(E_{7}^{C}\right)_{e d}=\left(E_{7}{ }^{C}\right)^{\kappa_{3}} \cong\left(C^{*} \times \operatorname{Spin}(12, C)\right) / \boldsymbol{Z}_{2}$. (cf. [5, Theorem 4.22.(2)]).
4.3.1. \quad Subgroups of type $R \oplus E_{6(6)}, \boldsymbol{R} \oplus \boldsymbol{R} \oplus \boldsymbol{D}_{5(5)}$ and $\boldsymbol{R} \oplus \boldsymbol{D}_{6(6)}$ of $\boldsymbol{E}_{7(7)}$

We use the same noatation as that in 4.3. Since $\left(\mathfrak{e}_{7(7)}\right)_{e v}=\left(\mathfrak{e}_{7}{ }^{C}\right)_{e v} \cap$ $\left(\mathfrak{e}_{7}{ }^{C}\right)^{\tau \gamma}=\left(\mathfrak{e}_{7}{ }^{C}\right)^{\iota} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \gamma},\left(\mathfrak{e}_{7(7)}\right)_{0}=\left(\mathfrak{e}_{7}^{C}\right)_{0} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \gamma}=\left(\mathfrak{e}_{7}{ }^{C}\right)^{\sigma \iota_{8}} \cap\left(\mathfrak{e}_{7}{ }^{C}\right)^{\tau \gamma}$, $\left(\mathfrak{e}_{7(7)}\right)_{e d}=\left(\mathfrak{e}_{7}^{C}\right)_{e d} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \gamma}=\left(\mathfrak{e}_{7}^{C}\right)^{\kappa_{3}} \cap\left(\mathfrak{e}_{7}{ }^{C}\right)^{\tau \gamma}$, we shall determine the structures of groups

$$
\begin{aligned}
\left(E_{7(7)}\right)_{e v} & =\left(E_{7}^{C}\right)_{e v} \cap\left(E_{7}^{C}\right)^{\tau \gamma}=\left(E_{7}^{C}\right)^{\iota} \cap\left(E_{7}^{C}\right)^{\tau \gamma} \\
\left(E_{7(7)}\right)_{0} & =\left(E_{7}^{C}\right)_{0} \cap\left(E_{7}^{C}\right)^{\tau \gamma}=\left(E_{7}^{C}\right)^{\sigma \iota \iota} \cap\left(E_{7}^{C}\right)^{\tau \gamma} \\
\left(E_{7(7)}\right)_{e d} & =\left(E_{7}^{C}\right)_{e d} \cap\left(E_{7}^{C}\right)^{\tau \gamma}=\left(E_{7}^{C}\right)^{\kappa_{3}} \cap\left(E_{7}^{C}\right)^{\tau \gamma} .
\end{aligned}
$$

Theorem 4.3.1.1. (1) $\left(E_{7(7)}\right)_{e v} \cong\left(\boldsymbol{R}^{+} \times E_{6(6)}\right) \times\{1,-1\}$.
(2) $\left(E_{7(7)}\right)_{0} \cong\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times \operatorname{spin}(5,5)\right) \times\{1,-1\}$.
(3) $\left(E_{7(7)}\right)_{e d} \cong\left(\boldsymbol{R}^{+} \times \operatorname{spin}(6,6)\right) \times\{1, \rho\}$.

Proof. (1) For $\alpha \in\left(E_{7(7)}\right)_{e v} \subset\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{\iota}$, there exist $\theta \in C^{*}$ and $\beta \in E_{6}{ }^{C}$ such that $\alpha=\varphi_{3}(\theta, \beta)=\phi_{1}(\theta) \beta$ (Theorem 4.3.2.(1)). From $\tau \gamma \alpha \gamma \tau=\alpha$, that is, $\tau \gamma \phi_{1}(\theta) \beta \gamma \tau=\phi_{1}(\theta) \beta$, we have $\phi_{1}(\tau \theta) \tau \gamma \beta \gamma \tau=\phi_{1}(\theta) \beta$. Hence

$$
\left\{\begin{array} { l }
{ \phi _ { 1 } (\tau \theta) = \phi _ { 1 } (\theta) } \\
{ \tau \gamma \beta \gamma \tau = \beta , }
\end{array} \quad \left\{\begin{array} { l }
{ \phi _ { 1 } (\tau \theta) = \phi _ { 1 } (\omega) \phi _ { 1 } (\theta) } \\
{ \tau \gamma \beta \gamma \tau = \phi _ { 1 } (\omega ^ { 2 }) \beta }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\phi_{1}(\tau \theta)=\phi_{1}\left(\omega^{2}\right) \phi_{1}(\theta) \\
\tau \gamma \beta \gamma \tau=\phi(\omega) \beta .
\end{array}\right.\right.\right.
$$

In the first case, $\tau \theta=\theta$, that is, $\theta \in \boldsymbol{R}^{*}$ and $\beta \in\left(E_{6}{ }^{C}\right)^{\tau \gamma_{1}}=E_{6(6)}$. Hence the group of the first case is $\boldsymbol{R}^{*} \times E_{6(6)}$. The second and the third cases are impossible, because there exists no $\theta \in C^{*}$ satisfying $\theta=\omega^{k} \theta(k=1,2)$.

Thus we have $\left(E_{7(7)}\right)_{e v} \cong \boldsymbol{R}^{*} \times E_{6(6)}=\left(\boldsymbol{R}^{+} \times E_{6(6)}\right) \times\{1,-1\}$ (note that $\left.\varphi_{3}(-1,1)=-1\right)$.
(2) For $\alpha \in\left(E_{7(7)}\right)_{0} \subset\left(E_{7}^{C}\right)_{0}=\left(E_{7}^{C}\right)^{\sigma \iota_{8}}$, there exist $\theta, \nu \in C^{*}$ and $\beta \in \operatorname{Spin}(10, C)$ such that $\alpha=\varphi_{4}(\theta, \nu, \beta)=\phi_{1}(\theta) \phi_{2}(\nu) \beta$ (Theorem 4.3.2.(2)). From $\tau \gamma \alpha \gamma \tau=\alpha$, that is, $\tau \gamma \phi_{1}(\theta) \phi_{2}(\nu) \beta \gamma \tau=\phi_{1}(\theta) \phi_{2}(\nu) \beta$, we have $\phi_{1}(\tau \theta)$ $\phi_{2}(\tau \nu) \tau \gamma \beta \gamma \tau=\phi_{1}(\theta) \phi_{2}(\nu) \beta$. Hence

$$
\left\{\begin{array}{l}
\phi_{1}(\tau \theta)=\phi_{1}(\theta) \\
\phi_{2}(\tau \nu)=\phi_{2}(\nu) \quad \text { or } \quad\left\{\begin{array} { l }
{ \phi _ { 1 } (\tau \theta) = \phi _ { 1 } (\omega ^ { - 4 k }) \phi _ { 1 } (\theta) } \\
{ \tau \gamma \beta \gamma \tau = \beta }
\end{array} \quad \left\{\begin{array}{l}
\phi_{2}(\tau \nu)=\phi_{2}\left(\omega^{k}\right) \phi_{2}(\nu) \\
\tau \gamma \beta \gamma \tau=\phi_{1}\left(\omega^{4 k}\right) \phi_{2}\left(\omega^{-k}\right) \beta, \quad k=1, \ldots, 11
\end{array} . \quad . \quad \text {. } \quad\right.\right. \text {. }
\end{array}\right.
$$

In the former case, from $\tau \theta=\theta, \tau \nu=\nu$, we have $\theta, \nu \in \boldsymbol{R}^{*}$. We shall determine the structure of the group $\{\beta \in \operatorname{Spin}(10, C) \mid \tau \gamma \beta \gamma \tau=\beta\}=\operatorname{Spin}(10, C)^{\tau \gamma}=$ $\left(\left(E_{6}^{C}\right)_{E_{1}}\right)^{\tau \gamma}$. The group $\left(\left(E_{6}^{C}\right)_{E_{1}}\right)^{\tau \gamma}$ acts on the \boldsymbol{R}-vector space

$$
\begin{aligned}
V^{5,5} & =\left\{X \in \mathfrak{J}^{C} \mid 4 E_{1} \times\left(E_{1} \times X\right)=X, \tau \gamma X=X\right\} \\
& =\left\{\left.X=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi_{2} & x_{1} \\
0 & x_{1} & \xi_{3}
\end{array}\right) \right\rvert\, \xi_{2}, \xi_{3} \in \boldsymbol{R}, x_{1} \in(\mathfrak{C})_{\tau \gamma}=\mathfrak{C}^{\prime}\right\}
\end{aligned}
$$

with the norm

$$
\left(E_{1}, X, X\right)=x_{1} \bar{x}_{1}-\xi_{2} \xi_{3} .
$$

Since the group $\operatorname{Spin}(10, C)^{\tau \gamma}$ is connected, we can define a homomorphism $\pi: \operatorname{Spin}(10, C)^{\tau \gamma} \rightarrow O\left(V^{5,5}\right)^{0}=O(5,5)^{0}$ (which is the connected component subgroup of $O(5,5))$ by $\pi(\alpha)=\alpha \mid V^{5,5}$. Ker $\pi=\{1, \sigma\}$. Since $\operatorname{dim}\left(\left(\left(\mathfrak{e}_{6}{ }^{C}\right)_{E_{1}}\right)^{\tau \gamma}\right)$ $=\operatorname{dim}\left(\left(\mathfrak{e}_{7(7)}\right)_{0}\right)-\operatorname{dim} \boldsymbol{R}-\operatorname{dim} \boldsymbol{R}=47-1-1$ (Theorem 4.3.1) $=45=$ $\operatorname{dim}(\mathfrak{o}(5,5)), \pi$ is onto. Hence we have $\operatorname{Spin}(10, C)^{\tau \gamma} / \boldsymbol{Z}_{2} \cong O(5,5)^{0}$. Therefore $\operatorname{Spin}(10, C)^{\tau \gamma}$ is $\operatorname{spin}(5,5)$ as a double covering group of $O(5,5)^{0}$. Hence the group of the former case is $\left(\boldsymbol{R}^{*} \times \boldsymbol{R}^{*} \times \operatorname{spin}(5,5)\right) / \boldsymbol{Z}_{2}\left(\boldsymbol{Z}_{2}=\{(1,1,1),(1,-1\right.$, $\sigma)\}) \cong \boldsymbol{R}^{*} \times \boldsymbol{R}^{+} \times \operatorname{spin}(5,5)$. The other cases are impossible, because there exists no $\theta \in C^{*}$ satisfying $\tau \theta=\omega^{-4 k} \theta(k=1, \ldots, 11)$. Thus we have $\left(E_{7(7)}\right)_{0} \cong \boldsymbol{R}^{*} \times \boldsymbol{R}^{+} \times \operatorname{spin}(5,5)=\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times \operatorname{spin}(5,5)\right) \times\{1,-1\}$ (note that $\left.\varphi_{4}(-1,1,1)=-1\right)$.
(3) γ_{1} and γ are conjugate under $\delta_{1} \in G_{2}^{C} \subset F_{4}^{C} \subset E_{6}{ }^{C} \subset E_{7}{ }^{C}:$ $\delta_{1}{ }^{-1} \gamma_{1} \delta_{1}=\gamma$ and δ_{1} satisfies $\delta_{1} \kappa_{3}=\kappa_{3} \delta_{1}, \delta_{1} \tau=\tau \delta_{1}$. Hence we have $\left(E_{7}{ }^{C}\right)^{\kappa_{3}} \cap$ $\left(E_{7}^{C}\right)^{\tau \gamma} \cong\left(E_{7}^{C}\right)^{\kappa_{3}} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}}$, so we shall determine the structure of the group $\left(E_{7(7)}\right)_{e v}=\left(E_{7}^{C}\right)^{\kappa_{3}} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}}$. Now, for $\alpha \in\left(E_{7(7)}\right)_{e d} \subset\left(E_{7}^{C}\right)_{e d}=$ $\left(E_{7}^{C}\right)^{\kappa_{3}}$, there exist $a=\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right) \in C^{*} \subset S L(2, C)$ and $\beta \in \operatorname{Spin}(12, C)$ such that $\alpha=\psi(a, \beta)=\phi(a) \beta$ (Theorem 4.3.2.(3)). From $\tau \gamma_{1} \alpha \gamma_{1} \tau=\alpha$, that
is, $\tau \gamma_{1} \phi(a) \beta \gamma_{1} \tau=\phi(a) \beta$, we have $\phi(\tau a) \tau \gamma_{1} \beta \gamma_{1} \tau=\phi(a) \beta$. Hence

$$
\left\{\begin{array} { l }
{ \phi (\tau a) = \phi (a) } \\
{ \tau \gamma _ { 1 } \beta \gamma _ { 1 } \tau = \beta }
\end{array} \quad \text { or } \quad \left\{\begin{array}{c}
\phi(\tau a)=-\phi(a) \\
\tau \gamma_{1} \beta \gamma_{1} \tau=-\sigma \beta
\end{array}\right.\right.
$$

In the former case, $\tau a=a$, that is, $a \in \boldsymbol{R}^{*}$ and the group $\operatorname{Spin}(12, C)^{\tau \gamma_{1}}$ is $\operatorname{spin}(6,6)$ (Theorem 4.3.2.(1)). Hence the group of the former case is $\left(\boldsymbol{R}^{*} \times\right.$ $\operatorname{spin}(6,6)) / \boldsymbol{Z}_{2}\left(\boldsymbol{Z}_{2}=\{(1,1),(-1,-\sigma)\}\right) \cong \boldsymbol{R}^{+} \times \operatorname{spin}(6,6)$. In the latter case, $a=i I$ and $\beta=\phi(-i I) \rho$ satisfy the given condition and $\psi(i I, \phi(-i I) \rho)=\rho$. Thus we have $\left(E_{7(7)}\right)_{e d} \cong\left(\boldsymbol{R}^{+} \times \operatorname{spin}(6,6)\right) \times\{1, \rho\}$.
4.3.2. \quad Subgroups of type $\boldsymbol{R} \oplus \boldsymbol{E}_{6(-26)}, \boldsymbol{R} \oplus \boldsymbol{R} \oplus \boldsymbol{D}_{5(-45)}$ and $\boldsymbol{R} \oplus \boldsymbol{D}_{5(-26)}$ of $\boldsymbol{E}_{7(-25)}$

Theorem 4.3.2.1. The 3-graded decomposition of $\mathfrak{e}_{7(-25)}=\left(\mathfrak{e}_{7}^{C}\right)^{\tau}$,

$$
\mathfrak{e}_{7(-25)}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}
$$

with respect to ad $Z, Z=\Phi\left(4\left(E_{1} \vee E_{1}\right), 0,0,-\frac{5}{2}\right)$, is given by

$$
\begin{aligned}
\mathfrak{g}_{0} & =\left\{\begin{array}{l}
G_{k l}, 0 \leq k<l \leq 7, G_{k l}, \tilde{A}_{1}\left(e_{k}\right), \tilde{F}_{1}\left(e_{k}\right) ; 0 \leq k \leq 7, \\
\left(E_{2}-E_{3}\right)^{\sim}, E_{1} \vee E_{1}, \mathbf{1}
\end{array}\right\} 47 \\
\mathfrak{g}_{-1} & =\left\{\check{F}_{2}\left(e_{k}\right), \check{F}_{3}\left(e_{k}\right), 0 \leq k \leq 7, \hat{E}_{1}\right\} 17 \\
\mathfrak{g}_{-2} & =\left\{\tilde{A}_{2}\left(e_{k}\right)+\tilde{F}_{2}\left(e_{k}\right), \tilde{A}_{3}\left(e_{k}\right)-\tilde{F}_{3}\left(e_{k}\right), 0 \leq k \leq 7\right\} 16 \\
\mathfrak{g}_{-3} & =\left\{\check{F}_{1}\left(e_{k}\right), 0 \leq k \leq 7, \check{E}_{2}, \check{E}_{3}\right\} 10 \\
\mathfrak{g}_{1} & =\lambda\left(\mathfrak{g}_{-1}\right) \lambda^{-1}, \quad \mathfrak{g}_{2}=\lambda\left(\mathfrak{g}_{-2}\right) \lambda^{-1}, \quad \mathfrak{g}_{3}=\lambda\left(\mathfrak{g}_{-3}\right) \lambda^{-1}
\end{aligned}
$$

We use the same notation as that in 4.3. Since $\left(\mathfrak{e}_{7(-25)}\right)_{e v}=\left(\mathfrak{e}_{7}{ }^{C}\right)_{e v} \cap$ $\left(\mathfrak{e}_{7}^{C}\right)^{\tau}=\left(\mathfrak{e}_{7}^{C}\right)^{\iota} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau},\left(\mathfrak{e}_{7(-25)}\right)_{0}=\left(\mathfrak{e}_{7}^{C}\right)_{0} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau}=\left(\mathfrak{e}_{7}^{C}\right)^{\sigma \iota_{8}} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau}$, $\left(\mathfrak{e}_{7(-25)}\right)_{e d}=\left(\mathfrak{e}_{7}^{C}\right)_{e d} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau}=\left(\mathfrak{e}_{7}^{C}\right)^{\kappa_{3}} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau}$, we shall determine the structures of groups

$$
\begin{aligned}
\left(E_{7(-25)}\right)_{e v} & =\left(E_{7}^{C}\right)_{e v} \cap\left(E_{7}^{C}\right)^{\tau}=\left(E_{7}^{C}\right)^{\iota} \cap\left(E_{7}^{C}\right)^{\tau}, \\
\left(E_{7(-25)}\right)_{0} & =\left(E_{7}^{C}\right)_{0} \cap\left(E_{7}^{C}\right)^{\tau}=\left(E_{7}^{C}\right)^{\sigma \iota} \cap\left(E_{7}^{C}\right)^{\tau}, \\
\left(E_{7(-25)}\right)_{e d} & =\left(E_{7}^{C}\right)_{e d} \cap\left(E_{7}^{C}\right)^{\tau}=\left(E_{7}^{C}\right)^{\kappa_{3}} \cap\left(E_{7}^{C}\right)^{\tau} .
\end{aligned}
$$

Theorem 4.3.2.2. (1) $\left(E_{7(-25)}\right)_{e v} \cong\left(\boldsymbol{R}^{+} \times E_{6(-26)}\right) \times\{1,-1\}$.
(2) $\left(E_{7(-25)}\right)_{0} \cong\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times \operatorname{Spin}(1,9)\right) \times\{1,-1\}$.
(3) $\left(E_{7(-25)}\right)_{e d} \cong \boldsymbol{R}^{+} \times \operatorname{spin}(2,10)$.

Proof. (1) For $\alpha \in\left(E_{7(-25)}\right)_{e v} \subset\left(E_{7}{ }^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{\iota}$, there exist $\theta \in C^{*}$ and $\beta \in E_{6}{ }^{C}$ such that $\alpha=\varphi_{3}(\theta, \beta)=\phi_{1}(\theta) \beta$ (Theorem 4.3.2.(1)). From
$\tau \alpha \tau=\alpha$, that is, $\tau \phi_{1}(\theta) \beta \tau=\phi_{1}(\theta) \beta$, we have $\phi_{1}(\tau \theta) \tau \beta \tau=\phi_{1}(\theta) \beta$. Hence

$$
\left\{\begin{array} { l }
{ \phi _ { 1 } (\tau \theta) = \phi _ { 1 } (\theta) } \\
{ \tau \beta \tau = \beta , }
\end{array} \quad \left\{\begin{array} { l }
{ \phi _ { 1 } (\tau \theta) = \phi _ { 1 } (\omega) \phi _ { 1 } (\theta) } \\
{ \tau \beta \tau = \phi _ { 1 } (\omega ^ { 2 }) \beta }
\end{array} \quad \text { or } \left\{\begin{array}{l}
\phi_{1}(\tau \theta)=\phi_{1}\left(\omega^{2}\right) \phi_{1}(\theta) \\
\tau \beta \tau=\phi_{1}(\omega) \beta .
\end{array}\right.\right.\right.
$$

In the first case, $\tau \theta=\theta$, that is, $\theta \in \boldsymbol{R}^{*}$ and $\beta \in\left(E_{6}^{C}\right)^{\tau}=E_{6(-26)}$. Therefore the group of the first case is $\boldsymbol{R}^{*} \times E_{6(-26)}$. The second and the third cases are impossible, because there exists no $\theta \in C$ satisfying $\tau \theta=\omega^{k}(k=1,2)$. Thus we have $\left(E_{7(-25)}\right)_{e v} \cong \boldsymbol{R}^{*} \times E_{6(-26)}=\left(\boldsymbol{R}^{+} \times E_{6(-26)}\right) \times\{1,-1\}$.
(2) For $\alpha \in\left(E_{7(-25)}\right)_{0} \subset\left(E_{7}^{C}\right)_{0}=\left(E_{7}^{C}\right)^{\sigma \iota_{8}}$, there exist $\theta, \nu \in C^{*}$ and $\beta \in \operatorname{Spin}(10, C)$ such that $\alpha=\varphi_{4}(\theta, \nu, \beta)=\phi_{1}(\theta) \phi_{2}(\nu) \beta$ (Theorem 4.3.2.(2)). From $\tau \alpha \tau=\alpha$, that is, $\tau \phi_{1}(\theta) \phi_{2}(\nu) \beta \tau=\phi_{1}(\theta) \phi_{2}(\nu) \beta$, we have $\phi_{1}(\tau \theta) \phi_{2}(\tau \nu)$ $\tau \beta \tau=\phi_{1}(\theta) \phi_{2}(\nu) \beta$. Hence

$$
\left\{\begin{array} { l }
{ \phi _ { 1 } (\tau \theta) = \phi _ { 1 } (\theta) } \\
{ \phi _ { 2 } (\tau \nu) = \phi _ { 2 } (\nu) } \\
{ \tau \beta \tau = \beta }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\phi_{1}(\tau \theta)=\phi_{1}\left(\omega^{-4 k}\right) \phi_{1}(\theta) \\
\phi_{2}(\tau \nu)=\phi_{2}\left(\omega^{k}\right) \phi_{2}(\nu) \\
\tau \beta \tau=\phi_{1}\left(\omega^{4 k}\right) \phi_{2}\left(\omega^{-k}\right) \beta, \quad k=1, \cdots, 11
\end{array}\right.\right.
$$

In the former case, we have $\tau \theta=\theta, \tau \nu=\nu$, that is, $\theta, \nu \in \boldsymbol{R}^{*}$. We shall determine the structure of the group $\{\beta \in \operatorname{Spin}(10, C) \mid \tau \beta \tau=\beta\}=\operatorname{Spin}(10, C)^{\tau}=$ $\left(\left(E_{6}^{C}\right)_{E_{1}}\right)^{\tau}$. The group $\left(\left(E_{6}^{C}\right)_{E_{1}}\right)^{\tau}$ acts on

$$
\begin{aligned}
V^{1,9} & =\left\{X \in \mathfrak{J}^{C} \mid 4 E_{1} \times\left(E_{1} \times X\right)=X, \tau X=X\right\} \\
& =\left\{\left.\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi_{2} & x_{1} \\
0 & \bar{x}_{1} & \xi_{3}
\end{array}\right) \right\rvert\, \xi_{2}, \xi_{3} \in \boldsymbol{R}, x_{1} \in \mathfrak{C}\right\}
\end{aligned}
$$

with the norm

$$
\left(E_{1}, X, X\right)=x_{1} \bar{x}_{1}-\xi_{2} \xi_{3}
$$

Since the group $\operatorname{Spin}(10, C)^{\tau}$ is connected, we can define a homomorphism $\pi: \operatorname{Spin}(10, C)^{\tau} \rightarrow S O\left(V^{1,9}\right)=S O(1,9)$ by $\pi(\alpha)=\alpha \mid V^{1,9}$. Ker $\pi=\{1, \sigma\}=$ \boldsymbol{Z}_{2}. Since $\left.\operatorname{dim}\left(\left(\mathfrak{e}_{6}{ }^{C}\right)_{E_{1}}\right)^{\tau}\right)=\operatorname{dim}\left(\left(\mathfrak{e}_{7(-25)}\right)_{0}\right)-\operatorname{dim} \boldsymbol{R}-\operatorname{dim} \boldsymbol{R}=47-1-1$ (Theorem 4.3.1) $=45=\operatorname{dim}(\mathfrak{o}(1,9)), \pi$ is onto. Hence $\operatorname{Spin}(10, C)^{\tau} / \boldsymbol{Z}_{2} \cong$ $S O(1,9)$, so $\operatorname{Spin}(10, C)^{\tau}$ is $\operatorname{Spin}(1,9)$ as a double covering group of $S O(1,9)$. Therefore the group of the former case is $\left(\boldsymbol{R}^{*} \times \boldsymbol{R}^{*} \times \operatorname{Spin}(1,9)\right) / \boldsymbol{Z}_{2}\left(\boldsymbol{Z}_{2}=\right.$ $\{(1,1,1),(1,-1, \sigma)\}) \cong \boldsymbol{R}^{*} \times \boldsymbol{R}^{+} \times \operatorname{Spin}(1,9)$. The other cases are impossible, because there exists no $\theta \in C$ satisfying $\tau \theta=\omega^{-4 k} \theta(k=1, \ldots, 11)$. Thus we have $\left(E_{7(-25)}\right)_{0} \cong \boldsymbol{R}^{*} \times \boldsymbol{R}^{+} \times \operatorname{Spin}(1,9)=\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times \operatorname{Spin}(1,9)\right) \times\{1,-1\}$.
(3) For $\alpha \in\left(E_{7(-25)}\right)_{e d} \subset\left(E_{7}^{C}\right)_{e d}=\left(E_{7}^{C}\right)^{\kappa_{3}}$, there exist $a \in C^{*}$ and $\beta \in \operatorname{Spin}(12, C)$ such that $\alpha=\psi(a, \beta)=\phi(a) \beta$ (Theorem 4.3.2.(3)). From $\tau \alpha \tau=\alpha$, that is, $\tau \phi(a) \beta \tau=\alpha$, we have $\phi(\tau a) \tau \beta \tau=\phi(a) \beta$. Hence

$$
\left\{\begin{array} { l }
{ \phi (\tau \theta) = \phi (\theta) } \\
{ \tau \beta \tau = \beta }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\phi(\tau \theta)=-\phi(\theta) \\
\tau \beta \tau=-\sigma \beta
\end{array}\right.\right.
$$

In the former case, we have $\tau \theta=\theta$, hence $\theta \in \boldsymbol{R}^{*}$. We shall determine the structure of the group $\{\beta \in \operatorname{Spin}(12, C) \mid \tau \beta \tau=\beta\}=\operatorname{Spin}(12, C)^{\tau}=\left(\left(E_{7}^{C}\right)^{\kappa, \mu}\right)^{\tau}$. The group $\left(\left(E_{7}^{C}\right)^{\kappa, \mu}\right)^{\tau}$ acts on the \boldsymbol{R}-vector space

$$
\begin{aligned}
V^{2,10} & =\left(\mathfrak{P}^{C}\right)_{\kappa, \tau}=\left\{P \in \mathfrak{P}^{C} \mid \kappa P=P, \tau P=P\right\} \\
& =\left\{\left.P=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi_{2} & x_{1} \\
0 & x_{1} & \xi_{3}
\end{array}\right),\left(\begin{array}{ccc}
\eta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \eta\right) \right\rvert\, \begin{array}{l}
\xi_{2}, \xi_{3}, \eta_{1}, \eta \in \boldsymbol{R}, \\
x_{1} \in \mathfrak{C}
\end{array}\right\}
\end{aligned}
$$

with the norm

$$
(P, P)_{\mu}=\frac{1}{2}\{\mu P, P\}=\eta_{1} \eta-\xi_{2} \xi_{3}+x_{1} \bar{x}_{1}
$$

Since the group $\operatorname{Spin}(12, C)^{\tau}$ is connected, we can define a homomorphism $\pi: \operatorname{Spin}(12, C)^{\tau} \rightarrow O\left(V^{2,10}\right)^{0}=O(2,10)^{0}$ (which is the connected component subgroup of $O(2,10)$) by $\pi(\alpha)=\alpha \mid V^{2,10}$. Ker $\pi=\{1, \sigma\}=\boldsymbol{Z}_{2}$. Since $\operatorname{dim}\left(\left(\mathfrak{e}_{7}^{C}\right)^{\kappa, \mu}\right)=\operatorname{dim}\left(\left(\mathfrak{e}_{7(-25)}\right)_{e d}\right)-\operatorname{dim}(\mathfrak{s l}(2, \boldsymbol{R}))=(47+10 \times 2)-3$ (Theorem 4.3.1) $=54=\operatorname{dim}(\mathfrak{o}(2,10)), \pi$ is onto. Hence $\operatorname{Spin}(12, C)^{\tau} / \boldsymbol{Z}_{2} \cong O(2,10)^{0}$, so $\operatorname{Spin}(12, C)^{\tau}$ is $\operatorname{spin}(2,10)$ as a double covering group of $O(2,10)^{0}$. Therefore the group of the former case is $\left(\boldsymbol{R}^{*} \times \operatorname{spin}(2,10)\right) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1,1),(-1,-\sigma)\}$. The mapping $h: \boldsymbol{R}^{*} \times \operatorname{spin}(2,10) \rightarrow \boldsymbol{R}^{+} \times \operatorname{spin}(2,10)$,

$$
h(\theta, \beta)= \begin{cases}(\theta, \beta) & \text { for } \theta>0 \\ (-\theta,-\sigma \beta) & \text { for } \theta<0\end{cases}
$$

induces an isomorphism $\left(\boldsymbol{R}^{*} \times \operatorname{spin}(2,10)\right) / \boldsymbol{Z}_{2} \cong \boldsymbol{R}^{+} \times \operatorname{spin}(2,10)$. The latter case is impossible. Indeed, since $\beta \in \operatorname{Spin}(12, C)^{\tau}$ acts on $V^{2,10}$, β induces a matrix $B \in M(12, C)$ such that $\tau B=-B,{ }^{t} B I_{2} B=I_{2}$. Put $B=i B^{\prime}, B^{\prime} \in$ $M(12, \boldsymbol{R})$, then ${ }^{t} B^{\prime} I_{2} B^{\prime}=-I_{2}$, which is false, because the signatures of both sides are different. Thus we have $\left(E_{7(-25)}\right)_{e d} \cong \boldsymbol{R}^{+} \times \operatorname{spin}(2,10)$.

4.4. \quad Subgroups of type $\boldsymbol{C} \oplus \boldsymbol{E}_{6}{ }^{C}, \boldsymbol{C} \oplus \boldsymbol{C} \oplus \boldsymbol{D}_{5}{ }^{C}$ and $\boldsymbol{A}_{1}{ }^{C} \oplus \boldsymbol{C} \oplus \boldsymbol{D}_{6}{ }^{C}$ of $\boldsymbol{E}_{7}{ }^{C}$

In the Lie algebra $\mathfrak{e}_{7}{ }^{C}$, let

$$
Z=\Phi\left(-2 i G_{01}, 0,0,-\frac{3}{2}\right)
$$

Theorem 4.4.1. The 3-graded decomposition of $\mathfrak{e}_{7(7)}=\left(\mathfrak{e}_{7}^{C}\right)^{\tau \gamma_{1}}($ or $\left.\mathfrak{e}_{7}{ }^{C}\right)$,

$$
\mathfrak{e}_{7(7)}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}
$$

with respect to ad $Z, Z=\Phi\left(-2 i G_{01}, 0,0,-\frac{3}{2}\right)$, is given by

$$
\begin{aligned}
& \mathfrak{g}_{0}=\left\{\begin{array}{l}
i G_{01}, i G_{23}, G_{24}, i G_{25}, G_{26}, i G_{27}, i G_{34}, G_{35}, i G_{36}, G_{37}, i G_{45}, \\
G_{46}, i G_{47}, i G_{56}, G_{57}, i G_{67},\left(E_{1}-E_{2}\right)^{\sim},\left(E_{2}-E_{3}\right)^{\sim}, \mathbf{1}, \\
\tilde{A}_{1}\left(e_{2}\right), i \tilde{A}_{1}\left(e_{3}\right), \tilde{A}_{1}\left(e_{4}\right), i \tilde{A}_{1}\left(e_{5}\right), \tilde{A}_{1}\left(e_{6}\right), i \tilde{A}_{1}\left(e_{7}\right), \\
\tilde{F}_{1}\left(e_{2}\right), i \tilde{F}_{1}\left(e_{3}\right), \tilde{F}_{1}\left(e_{4}\right), i \tilde{F}_{1}\left(e_{5}\right), \tilde{F}_{1}\left(e_{6}\right), i \tilde{F}_{1}\left(e_{7}\right), \\
\tilde{F}_{2}\left(1-i e_{1}\right), \tilde{F}_{2}\left(e_{2}-i e_{3}\right), \tilde{F}_{2}\left(e_{4}-i e_{5}\right), \tilde{F}_{2}\left(e_{6}-i e_{7}\right), \\
\tilde{F}_{3}\left(1-i e_{1}\right), \tilde{F}_{3}\left(e_{2}+i e_{3}\right), \tilde{F}_{3}\left(e_{4}+i e_{5}\right), \tilde{F}_{3}\left(e_{6}+i e_{7}\right), \\
\hat{F}_{2}\left(1+i e_{1}\right), \hat{F}_{2}\left(e_{2}+i e_{3}\right), \hat{F}_{2}\left(e_{4}+i e_{5}\right), \hat{F}_{2}\left(e_{6}+i e_{7}\right), \\
\hat{F}_{3}\left(1+i e_{1}\right), \hat{F}_{3}\left(e_{2}-i e_{3}\right), \hat{F}_{3}\left(e_{4}-i e_{5}\right), \hat{F}_{3}\left(e_{6}-i e_{7}\right)
\end{array}\right\} \\
& \mathfrak{g}_{-1}=\left\{\begin{array}{l}
\tilde{A}_{2}\left(1+i e_{1}\right), \tilde{A}_{2}\left(e_{2}+i e_{3}\right), \tilde{A}_{2}\left(e_{4}+i e_{5}\right), \tilde{A}_{2}\left(e_{6}+i e_{7}\right), \\
\tilde{A}_{3}\left(1+i e_{1}\right), \tilde{A}_{3}\left(e_{2}-i e_{3}\right), \tilde{A}_{3}\left(e_{4}-i e_{5}\right), \tilde{A}_{3}\left(e_{6}-i e_{7}\right), \\
\tilde{F}_{2}\left(1+i e_{1}\right), \tilde{F}_{2}\left(e_{2}+i e_{3}\right), \tilde{F}_{2}\left(e_{4}+i e_{5}\right), \tilde{F}_{2}\left(e_{6}+i e_{7}\right), \\
\tilde{F}_{3}\left(1+i e_{1}\right), \tilde{F}_{3}\left(e_{2}-i e_{3}\right), \tilde{F}_{3}\left(e_{4}-i e_{5}\right), \tilde{F}_{3}\left(e_{6}-i e_{7}\right), \\
\tilde{F}_{1}\left(e_{2}\right), i \tilde{F}_{1}\left(e_{3}\right), \tilde{F}_{1}\left(e_{4}\right), i \tilde{F}_{1}\left(e_{5}\right), \tilde{F}_{1}\left(e_{6}\right), i \tilde{F}_{1}\left(e_{7}\right), \\
\hat{F}_{1}\left(1+i e_{1}\right), \tilde{E}_{k}, k=1,2,3
\end{array}\right. \\
& \mathfrak{g}_{-2}=\left\{\begin{array}{l}
G_{02}-i G_{12}, i G_{03}+G_{13}, G_{04}-i G_{14}, i G_{05}+G_{15}, \\
G_{06}-i G_{16}, i G_{07}+G_{17}, \tilde{A}_{1}\left(1-i e_{1}\right), \tilde{F}_{1}\left(e_{0}-i e_{1}\right), \\
\tilde{F}_{2}\left(1+i e_{1}\right), \tilde{F}_{2}\left(e_{2}+i e_{3}\right), \tilde{F}_{2}\left(e_{4}+i e_{5}\right), \tilde{F}_{2}\left(e_{6}+i e_{7}\right), \\
\tilde{F}_{3}\left(1+i e_{1}\right), \tilde{F}_{2}\left(e_{2}-i e_{3}\right), \tilde{F}_{2}\left(e_{4}-i e_{5}\right), \tilde{F}_{2}\left(e_{6}-i e_{7}\right)
\end{array}\right\} 16 \\
& \mathfrak{g}_{-3}= \begin{cases}\left.\hat{F}_{1}\left(1-i e_{1}\right)\right\} 1 \\
\mathfrak{g}_{1}= & \tau \lambda\left(\mathfrak{g}_{-1}\right) \lambda \lambda^{-1} \tau, \quad \mathfrak{g}_{2}=\tau \lambda\left(\mathfrak{g}_{-2}\right) \lambda^{-1} \tau, \quad \mathfrak{g}_{3}=\tau \lambda\left(\mathfrak{g}_{-3}\right) \lambda^{-1} \tau .\end{cases}
\end{aligned}
$$

For $a \in U\left(1, \boldsymbol{C}^{C}\right)$, we define the C-linear transformation $D(a)$ of \mathfrak{J}^{C} by

$$
D(a) X=\left(\begin{array}{ccc}
\xi_{1} & x_{3} a & \overline{a x_{2}} \\
\overline{x_{3} a} & \xi_{2} & \bar{a} x_{1} \bar{a} \\
a x_{2} & a \bar{x}_{1} a & \xi_{3}
\end{array}\right), \quad X \in \mathfrak{J}^{C} .
$$

Then $D(a) \in F_{4}^{C} \subset E_{6}^{C} \subset E_{7}^{C}$.
Since $i Z=\Phi\left(2 G_{01}, 0,0,-\frac{3}{2} i\right)=\Phi\left(2 G_{01}, 0,0,0\right)+\Phi\left(0,0,0,-\frac{3}{2} i\right)$, furthermore $\Phi\left(2 G_{01}, 0,0,0\right)$ and $\Phi\left(0,0,0,-\frac{3}{2} i\right)$ commute, we have

$$
\begin{aligned}
& z_{2}=\exp \frac{2 \pi i}{2} Z=\exp \left(\Phi\left(2 \pi G_{01}, 0,0,0\right)\right) \exp \left(\Phi\left(0,0,0,-\frac{3}{2} \pi i\right)\right)=-\sigma \iota \\
& z_{4}=\exp \frac{2 \pi i}{4} Z=\exp \left(\Phi\left(\pi G_{01}, 0,0,0\right)\right) \exp \left(\Phi\left(0,0,0,-\frac{3}{4} \pi i\right)\right)=\sigma_{4} \iota_{4} \\
& z_{3}=\exp \frac{2 \pi i}{3} Z=\exp \left(\Phi\left(\frac{4 \pi}{3} G_{01}, 0,0,0\right)\right) \exp (\Phi(0,0,0,-\pi i))=\sigma_{3} \iota_{3}
\end{aligned}
$$

where $\sigma_{4}=D\left(e_{1}\right), \iota_{4}=\phi_{1}\left(e^{-2 \pi i / 8}\right), \sigma_{3}=D\left(e^{2 \pi e_{1} / 3}\right), \iota_{3}=\phi_{1}\left(e^{-2 \pi i / 6}\right)$.
$z_{2}=-\sigma \iota$ is conjugate to

$$
z_{2}^{\prime}=\iota
$$

in $E_{7}{ }^{C}$. Indeed, let $\delta_{4}=\phi(J)$, then we have

$$
\delta_{4}^{-1}(-\sigma \iota) \delta_{4}=\iota .
$$

Next, we shall show that $z_{4}=\sigma_{4} \iota_{4}$ is conjugate to

$$
z_{4}^{\prime}=-\sigma \iota_{4}^{-1}, \quad \iota_{4}^{-1}=\phi_{1}\left(e^{2 \pi i / 8}\right)
$$

in $E_{7}{ }^{C}$. Indeed, δ_{4} satisfies $\delta_{4}{ }^{-1} \sigma_{4} \delta_{4}=\sigma_{4}$ and $\delta_{4}{ }^{-1} \iota_{4} \delta_{4}=-\sqrt{\sigma}^{-1} \iota_{4}{ }^{-1}$, where $\sqrt{\sigma} \in E_{6}{ }^{C}$ is defined by

$$
\sqrt{\sigma} X=\left(\begin{array}{ccc}
\xi_{1} & i x_{3} & i \bar{x}_{2} \\
i \bar{x}_{3} & -\xi_{2} & -x_{1} \\
i x_{2} & -\bar{x}_{1} & -\xi_{3}
\end{array}\right), \quad X \in \mathfrak{J}^{C}
$$

Hence we have

$$
\delta_{4}^{-1} \sigma_{4} \iota_{4} \delta_{4}=-\sqrt{\sigma}^{-1} \sigma_{4} \iota_{4}^{-1}
$$

that is, $\sigma_{4} \iota_{4}$ is conjugate to $-\sqrt{\sigma}^{-1} \sigma_{4} \iota_{4}^{-1}$. Next, we shall show that $\sqrt{\sigma} \sigma_{4}$ is conjugate to σ in $E_{6}{ }^{C} \subset E_{7}{ }^{C}$. For this end, for the induced differential mapping $\varphi_{6 *}: \mathfrak{s p}\left(1, \boldsymbol{H}^{C}\right) \times \mathfrak{s l}(6, C) \rightarrow \mathfrak{e}_{6}{ }^{C}$ of φ_{6}, we have $G_{01}=\varphi_{6 *}(0, \operatorname{diag}(0,0, i / 2,-i / 2$, $-i / 2, i / 2)$) ([6]). Hence we have

$$
\sqrt{\sigma}^{-1}=\varphi_{6}(1, \operatorname{diag}(-1,-1, i, i, i, i)), \quad \sigma_{4}=\varphi_{6}(1, \operatorname{diag}(1,1, i,-i,-i, i))
$$

So we have

$$
\sqrt{\sigma} \sigma_{4}=\varphi_{6}(1, \operatorname{diag}(-1,-1,-1,1,1,-1))
$$

which is conjugate to

$$
\varphi_{6}(1, \operatorname{diag}(1,1,-1,-1,-1,-1))=\sigma
$$

Furthermore, this conjugation is given under $\varphi_{6}(1, S L(6, C)) \subset E_{6}^{C} \subset E_{7}{ }^{C}$. Hence we see that $\sigma_{4} \iota_{4}$ is conjugate to $-\sigma \iota_{4}{ }^{-1}$.

Finally, we shall show that $z_{3}=\sigma_{3} \iota_{3}$ is conjugate to

$$
z_{3}{ }^{\prime}=-\sigma_{3}
$$

in $E_{7}{ }^{C}$. Indeed, denote $\omega_{6}=e^{2 \pi i / 6}$, then $\omega_{1}=\omega_{6}{ }^{2}$. First note that

$$
\begin{aligned}
\sigma_{3} \iota_{3}(X, Y, \xi, \eta) & =\left(\omega_{6} \sigma_{3} X, \omega_{6}{ }^{-1} \sigma_{3} Y,-\xi,-\eta\right)=-\left(-\omega_{6} \sigma_{3} X,-\omega_{6}{ }^{-1} \sigma_{3} Y, \xi, \eta\right) \\
& =-\left(\omega^{2} \sigma_{3} X, \omega \sigma_{3} Y, \xi, \eta\right) \\
& =-\omega^{2} 1\left(\sigma_{3} X, \sigma_{3} Y, \xi, \eta\right) \quad\left(\text { note that } \omega^{2} 1 \in E_{6}^{C}\right)
\end{aligned}
$$

Now, we use $G_{01}=\varphi_{6 *}(0, \operatorname{diag}(0,0, i / 2,-i / 2,-i / 2, i / 2))$ again, then we have

$$
\begin{aligned}
\sigma_{3} & =\varphi_{6}\left(1, \operatorname{diag}\left(1,1, e^{2 \pi i / 3}, e^{-2 \pi i / 3}, e^{-2 \pi i / 3}, e^{2 \pi i / 3}\right)\right) \\
& =\varphi_{6}\left(1, \operatorname{diag}\left(1,1, \omega, \omega^{2}, \omega^{2}, \omega\right)\right)
\end{aligned}
$$

Since the central element $\omega^{2} E$ of $S L(6, C)$ is transfered to the central element $\omega^{2} 1$ of $E_{6}{ }^{C}$ by φ_{6}, we have

$$
\left(\omega^{2} 1\right) \sigma_{3}=\varphi_{6}\left(1, \operatorname{diag}\left(\omega^{2}, \omega^{2}, 1, \omega, \omega, 1\right)\right)
$$

which is conjugate to

$$
\varphi_{6}\left(1, \operatorname{diag}\left(1,1, \omega, \omega^{2}, \omega^{2}, \omega\right)\right)=\sigma_{3}
$$

under $\varphi_{6}(1, S L(6, C)) \subset E_{6}{ }^{C} \subset E_{7}{ }^{C}$. Hence we see that $\sigma_{3} \iota_{3}$ is conjugate to $-\sigma_{3}$.

Hereafter, we use $z_{2}{ }^{\prime}, z_{4}{ }^{\prime}$ and $z_{3}{ }^{\prime}$ instead of z_{2}, z_{4} and z_{3}, respectively.

$$
\text { Since }\left(\mathfrak{e}_{7}^{C}\right)_{e v}=\left(\mathfrak{e}_{7}^{C}\right)^{z_{2}^{\prime}}=\left(\mathfrak{e}_{7}^{C}\right)^{\iota},\left(\mathfrak{e}_{7}^{C}\right)_{0}=\left(\mathfrak{e}_{7}^{C}\right)^{z_{4}^{\prime}}=\left(\mathfrak{e}_{7}^{C}\right)^{\sigma \iota_{4}-1},\left(\mathfrak{e}_{7}^{C}\right)_{e d}
$$ $=\left(\mathfrak{e}_{7}{ }^{C}\right)^{z_{3}^{\prime}}=\left(\mathfrak{e}_{7}^{C}\right)^{\sigma_{3}}$, we shall determine the structures of groups

$$
\begin{gathered}
\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{z_{2}{ }^{\prime}}=\left(E_{7}^{C}\right)^{\iota}, \quad\left(E_{7}^{C}\right)_{0}=\left(E_{7}^{C}\right)^{z_{4}{ }^{\prime}}=\left(E_{7}^{C}\right)^{\sigma \iota_{4}{ }^{-1}} \\
\left(E_{7}^{C}\right)_{e d}=\left(E_{7}^{C}\right)^{z_{3}^{\prime}}=\left(E_{7}^{C}\right)^{\sigma_{3}}
\end{gathered}
$$

Theorem 4.4.2. (1) $\left(E_{7}{ }^{C}\right)_{e v} \cong\left(C^{*} \times E_{6}{ }^{C}\right) / \boldsymbol{Z}_{3}, \boldsymbol{Z}_{3}=\{(1,1),(\omega, \omega 1)$, $\left.\left(\omega^{2}, \omega^{2} 1\right)\right\}$
(2) $\left(E_{7}^{C}\right)_{0} \cong\left(C^{*} \times C^{*} \times \operatorname{Spin}(10, C)\right) / \boldsymbol{Z}_{12}, \boldsymbol{Z}_{12}=\left\{\left(\omega_{12}{ }^{4 k}, \omega_{12}{ }^{k}, \phi_{1}\left(\omega_{12}{ }^{4 k}\right)\right.\right.$ $\left.\left.\phi_{2}\left(\omega_{12}{ }^{k}\right)\right) \mid k=0,1, \ldots, 11\right\}, \omega_{12}=e^{2 \pi i / 12}$.
(3) $\left(E_{7}{ }^{C}\right)_{e d} \cong\left(S L(2, C) \times C^{*} \times \operatorname{Spin}(10, C)\right) / \boldsymbol{Z}_{4}, \boldsymbol{Z}_{4}=\{(E, 1,1),(E,-1$, $\left.\sigma),\left(-E,-i,-D\left(e_{1}\right)\right),\left(-E, i,-\sigma D\left(e_{1}\right)\right)\right\}$

Proof. (1) $\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{\iota} \cong\left(C^{*} \times E_{6}^{C}\right) / \boldsymbol{Z}_{3}$ is already shown in Theorem 4.3.2.(1).
(2) Let $\operatorname{Spin}(10, C)=\left(E_{6}{ }^{C}\right)_{E_{1}}=\left(E_{7}^{C}\right)_{\left(E_{1}, 0,1,0\right),\left(-E_{1}, 0,1,0\right)}$. We define a mapping $\varphi_{4}: C^{*} \times C^{*} \times \operatorname{Spin}(10, C) \rightarrow\left(E_{7}^{C}\right)^{\sigma \iota_{4}-1}=\left(E_{7}^{C}\right)_{0}$ by

$$
\varphi_{4}(\theta, \nu, \beta)=\phi_{1}(\theta) \phi_{2}(\nu) \beta,
$$

Although $\iota_{4}{ }^{-1}$ is different from ι_{8}, by the same proof of Theorem 4.3.2.(2), we have $\left(E_{7}^{C}\right)_{0} \cong\left(C^{*} \times C^{*} \times \operatorname{Spin}(10, C)\right) / \boldsymbol{Z}_{2}$
(3) Let $\operatorname{Spin}(10, C)=\left(\left(E_{7}^{C}\right)^{\kappa, \mu}\right)_{\left(F_{1}(1), 0,0,0\right),\left(F_{1}\left(e_{1}\right), 0,0,0\right)}$ (cf. [5, Proposition 4.7.(2)]). We define a mapping $\varphi_{5}: S L(2, C) \times U\left(1, C^{C}\right) \times S p i n$ $(10, C) \rightarrow\left(E_{7}^{C}\right)^{\sigma_{3}}$ by

$$
\varphi_{5}(A, a, \beta)=\phi(A) D(a) \beta,
$$

φ_{5} is well-defined because $\sigma_{3}=\varphi_{5}\left(E, w_{1}, 1\right), w_{1}=e^{2 \pi e_{1} / 3}$. Since $D(a)$ commutes with $\phi(A)$ and β, φ_{5} is a homomorphism. $\operatorname{Ker} \varphi_{5}=\{(E, 1,1),(E,-1$,
$\left.\sigma),\left(-E, e_{1},-D\left(e_{1}\right)\right),\left(-E,-e_{1},-\sigma D\left(e_{1}\right)\right)\right\}=\boldsymbol{Z}_{4}$. Since $\left(E_{7}^{C}\right)^{\sigma_{3}}$ is connected and $\operatorname{dim}_{C}\left(\mathfrak{s l}(2, C) \oplus \mathfrak{u}\left(1, C^{C}\right) \oplus \mathfrak{s p i n}(10, C)\right)=3+1+45=47+1+1=$ $\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}^{C}\right)_{e v}\right)$ (Theorem 4.4.1), φ_{5} is onto. Thus we have $\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{\sigma_{3}} \cong$ $\left(S L(2, C) \times U\left(1, \boldsymbol{C}^{C}\right) \times \operatorname{Spin}(10, C)\right) / \boldsymbol{Z}_{4} \cong\left(S L(2, C) \times C^{*} \times \operatorname{Spin}(10, C)\right) / \boldsymbol{Z}_{4}$, $\boldsymbol{Z}_{4}=\left\{(E, 1,1),(E,-1, \sigma),\left(-E,-i,-D\left(e_{1}\right)\right),\left(-E, i,-\sigma D\left(e_{1}\right)\right)\right\}$ (note that by the isomorphism $f: U\left(1, C^{C}\right) \rightarrow C^{*}, f(a)=\left(a+a^{-1}\right) / 2+\left(\left(a-a^{-1}\right) / 2\right) i e_{1}, e_{1}$ is transformed to $-i$).
4.4.1. Subgroups of type $\boldsymbol{R} \oplus \boldsymbol{E}_{6(6)}, \boldsymbol{R} \oplus \boldsymbol{R} \oplus \boldsymbol{D}_{5(5)}$ and $\boldsymbol{A}_{1} \oplus \boldsymbol{R} \oplus \boldsymbol{D}_{5(5)}$ of $\boldsymbol{E}_{7(7)}$

We use the same notation as that in 4.4. Since $\left(\mathfrak{e}_{7(7)}\right)_{e v}=\left(\mathfrak{e}_{7}^{C}\right)_{e v} \cap$
 $\left(\mathfrak{e}_{7(7)}\right)_{e d}=\left(\mathfrak{e}_{7}^{C}\right)_{e d} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \gamma_{1}}=\left(\mathfrak{e}_{7}^{C}\right)^{\sigma_{3}} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \gamma_{1}}$, we shall determine the structures of groups

$$
\begin{aligned}
\left(E_{7(7)}\right)_{e v} & =\left(E_{7}^{C}\right)_{e v} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}}=\left(E_{7}^{C}\right)^{\iota} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}}, \\
\left(E_{7(7)}\right)_{0} & =\left(E_{7}^{C}\right)_{0} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}}=\left(E_{7}^{C}\right)^{\sigma \iota_{4}^{-1}} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}} \\
\left(E_{7(7)}\right)_{e d} & =\left(E_{7}^{C}\right)_{e d} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}}=\left(E_{7}^{C}\right)^{\sigma_{3}} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}} .
\end{aligned}
$$

$\sigma^{\prime} \in F_{4}^{C} \subset E_{6}{ }^{C} \subset E_{7}{ }^{C}$ is defined by

$$
\sigma^{\prime} X=\left(\begin{array}{ccc}
\xi_{1} & x_{3} & -\bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & -x_{1} \\
-x_{2} & -\bar{x}_{1} & \xi_{3}
\end{array}\right), \quad X \in \mathfrak{J}^{C} .
$$

Theorem 4.4.1.1. (1) $\left(E_{7(7)}\right)_{e v} \cong\left(\boldsymbol{R}^{+} \times E_{6(6)}\right) \times\{1,-1\}$.
(2) $\left(E_{7(7)}\right)_{0} \cong\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times \operatorname{spin}(5,5)\right) \times\{1,-1\}$.
(3) $\left(E_{7(7)}\right)_{e d} \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times \operatorname{spin}(5,5)\right) \times\left\{1, \sigma^{\prime}, \rho, \sigma^{\prime} \rho\right\}$.

Proof. (1) γ_{1} and γ are conjugate under $\delta_{1} \in G_{2}^{C} \subset F_{4}^{C} \subset E_{6}{ }^{C} \subset$ $E_{7}^{C}: \delta_{1}{ }^{-1} \gamma_{1} \delta_{1}=\gamma$ and δ_{1} satisfies $\delta_{1} \iota=\iota \delta_{1}, \delta_{1} \tau=\tau \delta_{1}$. Hence we have $\left(E_{7}{ }^{C}\right)^{\iota} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}} \cong\left(E_{7}^{C}\right)^{\iota} \cap\left(E_{7}^{C}\right)^{\tau \gamma}$, so we shall determine the structure of the group $\left(E_{7(7)}\right)_{e v}=\left(E_{7}^{C}\right)^{\iota} \cap\left(E_{7}^{C}\right)^{\tau \gamma}$. Now, for $\alpha \in\left(E_{7(7)}\right)_{e v} \subset\left(E_{7}^{C}\right)_{e v}=$ $\left(E_{7}^{C}\right)^{\iota}$, there exist $\theta \in C^{*}$ and $\beta \in E_{6}{ }^{C}$ such that $\alpha=\varphi_{3}(\theta, \beta)=\phi_{1}(\theta) \beta$ (Theorem 4.4.2.(1)). From $\tau \gamma \alpha \gamma \tau=\alpha$, that is, $\tau \gamma \phi_{1}(\theta) \beta \gamma \tau=\phi_{1}(\theta) \beta$, we have $\phi_{1}(\tau \theta) \tau \gamma \beta \gamma \tau=\phi_{1}(\theta) \beta$. Hence
$\left\{\begin{array}{l}\phi_{1}(\tau \theta)=\phi_{1}(\theta) \\ \tau \gamma \beta \gamma \tau=\beta,\end{array}\left\{\begin{array}{l}\phi_{1}(\tau \theta)=\phi_{1}(\omega) \phi_{1}(\theta) \\ \tau \gamma \beta \gamma \tau=\phi_{1}\left(\omega^{2}\right) \beta\end{array} \quad\right.\right.$ or $\quad\left\{\begin{array}{l}\phi_{1}(\tau \theta)=\phi_{1}\left(\omega^{2}\right) \phi_{1}(\theta) \\ \tau \gamma \beta \gamma \tau=\phi_{1}(\omega) \beta .\end{array}\right.$
In the first case $\tau \theta=\theta$, that is, $\theta \in \boldsymbol{R}^{*}$ and $\beta \in\left(E_{6}{ }^{C}\right)^{\tau \gamma}=E_{6(6)}$. Hence the group of the first case is $\boldsymbol{R}^{*} \times E_{6(6)}$. The second and the third cases are
impossible, because there exists no $\theta \in C^{*}$ satisfying $\tau \theta=\omega^{k} \theta(k=1,2)$. Hence we have $\left(E_{7(7)}\right)_{e v} \cong \boldsymbol{R}^{*} \times E_{6(6)}=\left(\boldsymbol{R}^{+} \times E_{6(6)}\right) \times\{1,-1\}$.
(2) Although $\iota_{4}{ }^{-1}$ is different from ι_{8}, by the same way as Theorem 4.3.1.1.(2), we have $\left(E_{7(7)}\right)_{0} \cong\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times \operatorname{spin}(5,5)\right) \times\{1,-1\}$.
(3) For $\alpha \in\left(E_{7(7)}\right)_{e d} \subset\left(E_{7}^{C}\right)_{e d}=\left(E_{7}^{C}\right)^{\sigma_{3}}$, there exist $A \in S L(2, C), a \in$ $U\left(1, C^{C}\right)$ and $\beta \in \operatorname{Spin}(10, C)$ such that $\alpha=\varphi_{5}(A, a, \beta)=\phi(A) D(a) \beta$ (Theorem 4.4.2.(3)). From $\tau \gamma_{1} \alpha \gamma_{1} \tau=\alpha$, that is, $\tau \gamma_{1} \phi(A) D(a) \beta \gamma_{1} \tau=\phi(A) D(a) \beta$, we have $\phi(\tau A) D(\tau \bar{a}) \tau \gamma_{1} \beta \gamma_{1} \tau=\phi(A) D(a) \beta$. Hence
(i) $\left\{\begin{array}{l}\phi(\tau A)=\phi(A) \\ D(\tau \bar{a})=D(a) \\ \tau \gamma_{1} \beta \gamma_{1} \tau=\beta,\end{array}\right.$
(ii) $\left\{\begin{array}{l}\phi(\tau A)=\phi(A) \\ D(\tau \bar{a})=D(-a) \\ \tau \gamma_{1} \beta \gamma_{1} \tau=\sigma \beta,\end{array}\right.$
(iii) $\left\{\begin{array}{l}\phi(\tau A)=\phi(-A) \\ D(\tau \bar{a})=D\left(e_{1} a\right) \\ \tau \gamma_{1} \beta \gamma_{1} \tau=-D\left(e_{1}\right) \beta\end{array}\right.$
or
(iv) $\left\{\begin{array}{l}\phi(\tau A)=\phi(-A) \\ D(\tau \bar{a})=D\left(-e_{1} a\right) \\ \tau \gamma_{1} \beta \gamma_{1} \tau=-\sigma D\left(e_{1}\right) \beta .\end{array}\right.$
(i) From $\tau A=A, \tau \bar{a}=a$, we have $A \in S L(2, \boldsymbol{R}), a \in U\left(1, \boldsymbol{C}^{\prime}\right) \cong \boldsymbol{R}^{*}$, respectively. The group $\left\{\beta \in \operatorname{Spin}(10, C) \mid \tau \gamma_{1} \beta \gamma_{1} \tau=\beta\right\}=\operatorname{Spin}(10, C)^{\tau \gamma_{1}}$ $=\left(\left(\left(E_{7}^{C}\right)^{\kappa, \mu}\right)_{\left(F_{1}(1), 0,0,0\right),\left(F_{1}\left(e_{1}\right), 0,0,0\right)}\right)^{\tau \gamma_{1}}$ acts on the \boldsymbol{R}-vector space

$$
\begin{aligned}
V^{5,5} & =\left(\left(\mathfrak{P}^{C}\right)_{\kappa, \tau \gamma_{1}}\right)_{\left(F_{1}(1), 0,0,0\right),\left(F_{1}\left(e_{1}\right), 0,0,0\right)} \\
& =\left\{P \in \mathfrak{P}^{C} \left\lvert\, \begin{array}{l}
\kappa P=P, \tau \gamma_{1} P=P \\
\left\{\mu\left(F_{1}(1), 0,0,0\right), P\right\}=\left\{\mu\left(F_{1}\left(e_{1}\right), 0,0,0\right), P\right\}=0
\end{array}\right.\right\} \\
& =\left\{\left.P=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi_{2} & x_{1} \\
0 & \bar{x}_{1} & \xi_{3}
\end{array}\right),\left(\begin{array}{ccc}
\eta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \eta\right) \right\rvert\, \begin{array}{l}
\xi_{2}, \xi_{3} \in C, \eta_{1}, \eta \in \boldsymbol{R}, \\
x_{1} \in \mathfrak{C}^{\prime} \\
\left(1, x_{1}\right)=\left(e_{1}, x_{1}\right)=0
\end{array}\right\}
\end{aligned}
$$

with the norm

$$
(P, P)_{\mu}=\frac{1}{2}\{\mu P, P\}=\eta_{1} \eta-\xi_{2} \xi_{3}+x_{1} \bar{x}_{1} .
$$

Hence the group $\operatorname{Spin}(10, C)^{\tau \gamma_{1}}$ is $\operatorname{spin}(5,5)$ as in a similar way to (1). Therefore the group of (i) is $\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{*} \times \operatorname{spin}(5,5)\right) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(E, 1,1),(E,-1$, $\sigma)\}$. The mapping $h: S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{*} \times \operatorname{spin}(5,5) \rightarrow S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times \operatorname{spin}(5,5)$,

$$
h(A, \theta, \beta)= \begin{cases}(A, \theta, \beta) & \text { for } \theta>0 \\ (A,-\theta, \sigma \beta) & \text { for } \theta<0\end{cases}
$$

induces an isomorphim $\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{*} \times \operatorname{spin}(5,5)\right) / \boldsymbol{Z}_{2} \cong S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times$ $\operatorname{spin}(5,5)$.
(ii) $\varphi_{4}\left(E, e_{1}, \sigma^{\prime} D\left(-e_{1}\right)\right)=\sigma^{\prime}$.
(iii) $\varphi_{4}\left(i I, \frac{1-e_{1}}{\sqrt{2}}, \phi(-i I) D\left(\frac{1+e_{1}}{\sqrt{2}}\right) \rho\right)=\rho$.
(iv) $\varphi_{4}\left(i I, \frac{1+e_{1}}{\sqrt{2}}, \phi(-i I) D\left(\frac{1-e_{1}}{\sqrt{2}}\right) \sigma^{\prime} \rho\right)=\sigma^{\prime} \rho$.

Thus we have $\left(E_{7(7)}\right)_{e d} \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times \operatorname{spin}(5,5)\right) \times\left\{1, \sigma^{\prime}, \rho, \sigma^{\prime} \rho\right\}$.
4.4.2. \quad Subgroups of type $\boldsymbol{R} \oplus \boldsymbol{E}_{6(-26)}, \boldsymbol{R} \oplus \boldsymbol{R} \oplus \boldsymbol{D}_{5(-27)}$ and $\boldsymbol{A}_{1} \oplus \boldsymbol{R} \oplus$ $\boldsymbol{D}_{5(-27)}$ of $\boldsymbol{E}_{7(-25)}$

We define $\delta_{5} \in E_{6}{ }^{C}$ by $\delta_{5}=\exp \left(\frac{\pi i}{2} \widetilde{F}_{1}(1)\right)$ and define a complex-conjugate linear transformation τ_{1} of \mathfrak{J}^{C} by

$$
\tau_{1} X=\delta_{5}^{-1} \tau \delta_{5} X=\left(\begin{array}{ccc}
\tau \xi_{1} & -i \tau \bar{x}_{2} & -i \tau x_{3} \\
-i \tau x_{2} & -\tau \xi_{3} & -\tau \bar{x}_{1} \\
-i \tau \bar{x}_{3} & -\tau x_{1} & -\tau \xi_{2}
\end{array}\right), \quad X \in \mathfrak{J}^{C}
$$

([4, 3.4.4]). This τ_{1} is naturally extented to the complex-conjugate linear transformation τ_{1} of \mathfrak{P}^{C} by

$$
\tau_{1}(X, Y, \xi, \eta)=\left(\tau_{1} X, \tau_{1} \sigma Y, \tau \xi, \tau \eta\right), \quad(X, Y, \xi, \eta) \in \mathfrak{P}^{C}
$$

In the Lie algebra $\mathfrak{e}_{7}{ }^{C}$, we have

$$
\tau_{1} \Phi(\phi, A, B, \nu) \tau_{1}=\Phi\left(\tau_{1} \phi \tau_{1}, \tau_{1} A, \tau_{1} \sigma B, \tau \nu\right)
$$

Since τ and τ_{1} are related with $\tau_{1}=\delta_{5}{ }^{-1} \tau \delta_{5}$, we have

$$
E_{6(-26)}=\left(E_{6}^{C}\right)^{\tau} \cong\left(E_{6}^{C}\right)^{\tau_{1}}, \quad E_{7(-25)}=\left(E_{7}^{C}\right)^{\tau} \cong\left(E_{7}^{C}\right)^{\tau_{1}}
$$

Lemma 4.4.2.1. In the Lie algebra $\mathfrak{e}_{7}{ }^{C}$, we have
(1) $\tau_{1} G_{0 l} \tau_{1}=-G_{0 l}, \quad \tau_{1} G_{k l} \tau_{1}=G_{k l}$.
$(2)\left\{\begin{array}{l}\tau_{1} \widetilde{A}_{1}(a) \tau_{1}=-\widetilde{A}_{1}(\tau \bar{a}), \tau_{1} \widetilde{A}_{2}(a) \tau_{1}=-i \widetilde{F}_{3}(\tau \bar{a}), \tau_{1} \widetilde{A}_{3}(a) \tau_{1}=\widetilde{F}_{3}(\tau \bar{a}), \\ \tau_{1} \widetilde{F}_{1}(a) \tau_{1}=\widetilde{F}_{1}(\tau \bar{a}), \tau_{1} \widetilde{A}_{2}(a) \tau_{1}=i \widetilde{A}_{3}(\tau \bar{a}), \tau_{1} \widetilde{A}_{3}(a) \tau_{1}=-i \widetilde{A}_{3}(\tau \bar{a}) .\end{array}\right.$
$(3)\left\{\begin{array}{l}\tau_{1}\left(\xi_{1} E_{1}+\xi_{2} E_{2}+\xi_{3} E_{3}\right)^{\sim} \tau_{1}=\left(\left(\tau \xi_{1}\right) E_{1}+\left(\tau \xi_{2}\right) E_{2}+(\tau \xi) E_{3}\right)^{\sim}, \\ \xi_{1}+\xi_{2}+\xi_{3}=0 .\end{array}\right.$
(4) $\left\{\begin{array}{lll}\tau_{1} \check{E}_{1} \tau_{1}=\check{E}_{1}, & \tau_{1} \check{E}_{2} \tau_{1}=-\check{E}_{3}, & \tau_{1} \check{E}_{3} \tau_{1}=-\check{E}_{2}, \\ \tau_{1} \hat{E}_{1} \tau_{1}=\hat{E}_{1}, & \tau_{1} \hat{E}_{2} \tau_{1}=-\hat{E}_{3}, & \tau_{1} \hat{E}_{3} \tau_{1}=-\hat{E}_{2} .\end{array}\right.$
(5) $\left\{\begin{array}{l}\tau_{1} \check{F}_{1}(a) \tau_{1}=-\check{F}_{1}(\tau \bar{a}), \tau_{1} \check{F}_{2}(a) \tau_{1}=-i \check{F}_{3}(\tau \bar{a}), \tau_{1} \check{F}_{3}(a) \tau_{1}=-i \check{F}_{3}(\tau \bar{a}), \\ \tau_{1} \hat{F}_{1}(a) \tau_{1}=-\hat{F}_{1}(\tau \bar{a}), \tau_{1} \hat{F}_{2}(a) \tau_{1}=i \hat{F}_{3}(\tau \bar{a}), \tau_{1} \hat{F}_{3}(a) \tau_{1}=i \hat{F}_{3}(\tau \bar{a}) .\end{array}\right.$
(6) $\tau_{1} \mathbf{1} \tau_{1}=\mathbf{1}$.

Theorem 4.4.2.2. The 3-graded decomposition of $\mathfrak{e}_{7(-25)}=\left(\mathfrak{e}_{7}^{C}\right)^{\tau_{1}}$,

$$
\mathfrak{e}_{7(-25)}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}
$$

with respect to ad $Z, Z=\Phi\left(-2 i G_{01}, 0,0,-\frac{3}{2}\right)$, is given by

$$
\mathfrak{g}_{0}=\left\{\begin{array}{l}
i G_{01}, G_{k l}, 2 \leq k \leq 7, i\left(E_{1}-E_{2}\right)^{\sim}, i\left(E_{2}-E_{3}\right)^{\sim}, \mathbf{1} \\
\tilde{A}_{1}\left(e_{k}\right), i \tilde{F}_{1}\left(e_{k}\right), 2 \leq k \leq 7, \\
\check{F}_{2}\left(1-i e_{1}\right)-i \check{F}_{3}\left(1-i e_{1}\right), \check{F}_{2}\left(e_{k}-i e_{k+1}\right)+i \check{F}_{3}\left(e_{k}+i e_{k+1}\right), \\
i \check{F}_{2}\left(1-i e_{1}\right)-\check{F}_{3}\left(1-i e_{1}\right), i \check{F}_{2}\left(e_{k}-i e_{k+1}\right)+\check{F}_{3}\left(e_{k}+i e_{k+1}\right), \\
\hat{F}_{2}\left(1-i e_{1}\right)-i \hat{F}_{3}\left(1-i e_{1}\right), \hat{F}_{2}\left(e_{k}-i e_{k+1}\right)+i \hat{F}_{3}\left(e_{k}+i e_{k+1}\right), \\
i \hat{F}_{2}\left(1-i e_{1}\right)-\hat{F}_{3}\left(1-i e_{1}\right), i \hat{F}_{2}\left(e_{k}-i e_{k+1}\right)+\hat{F}_{3}\left(e_{k}+i e_{k+1}\right), \\
k=2,4,6
\end{array}\right\}
$$

$\mathfrak{g}_{-1}=\left\{\begin{array}{r}\check{F}_{1}\left(e_{k}\right), 2 \leq k \leq 7, i \check{F}_{1}\left(1+i e_{k}\right), \check{E}_{1}, \check{E}_{2}-\check{E}_{3}, i\left(\check{E}_{2}+\check{E}_{3}\right), \\ \tilde{A}_{2}\left(1+i e_{1}\right)-i \tilde{F}_{3}\left(1+i e_{1}\right), \tilde{A}_{2}\left(e_{k}+i e_{k+1}\right)+i \tilde{F}_{3}\left(e_{k}-i e_{k+1}\right), \\ i \tilde{A}_{2}\left(1+i e_{1}\right)-\tilde{F}_{3}\left(1+i e_{1}\right), i \tilde{A}_{2}\left(e_{k}+i e_{k+1}\right)+\tilde{F}_{3}\left(e_{k}-i e_{k+1}\right), \\ \tilde{A}_{3}\left(1+i e_{1}\right)+i \tilde{F}_{2}\left(1+i e_{1}\right), \tilde{A}_{3}\left(e_{k}+i e_{k+1}\right)-i \tilde{F}_{2}\left(e_{k}-i e_{k+1}\right), \\ i \tilde{A}_{3}\left(1+i e_{1}\right)+\tilde{F}_{2}\left(1+i e_{1}\right), i \tilde{A}_{3}\left(e_{k}+i e_{k+1}\right)-\tilde{F}_{2}\left(e_{k}-i e_{k+1}\right), \\ k=2,4,6\end{array}\right\} 26$
$\mathfrak{g}_{-2}=\left\{\begin{array}{l}i G_{0 k}+G_{1 k}, 2 \leq k \leq 7, i \tilde{A}_{1}\left(1-i e_{1}\right), \tilde{F}_{1}\left(1-i e_{1}\right), \\ \check{F}_{2}\left(1+i e_{1}\right)-i \check{F}_{3}\left(1+i e_{1}\right), \check{F}_{2}\left(e_{k}+i e_{k+1}\right)+i \check{F}_{3}\left(e_{k}-i e_{k+1}\right), \\ i \widetilde{F}_{2}\left(1+i e_{1}\right)-\check{F}_{3}\left(1+i e_{1}\right), i \widetilde{F}_{2}\left(e_{k}+i e_{k+1}\right)+\check{F}_{3}\left(e_{k}-i e_{k+1}\right), \\ k=2,4,6\end{array}\right\} \quad 16$

$$
\begin{aligned}
\mathfrak{g}_{-3} & =\left\{\check{F}_{1}\left(e_{0}-i e_{1}\right)\right\} 1 \\
\mathfrak{g}_{1} & =\tau \lambda\left(\mathfrak{g}_{-1}\right) \lambda^{-1} \tau, \quad \mathfrak{g}_{2}=\tau \lambda\left(\mathfrak{g}_{-2}\right) \lambda^{-1} \tau, \quad \mathfrak{g}_{3}=\tau \lambda\left(\mathfrak{g}_{-3}\right) \lambda^{-1} \tau .
\end{aligned}
$$

We use the same notation as that in 4.4. Since $\left(\mathfrak{e}_{7(-25)}\right)_{e v}=\left(\mathfrak{e}_{7}^{C}\right)_{e v} \cap$ $\left(\mathfrak{e}_{7}^{C}\right)^{\tau_{1}}=\left(\mathfrak{e}_{7}^{C}\right)^{\iota} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau_{1}},\left(\mathfrak{e}_{7(-25)}\right)_{0}=\left(\mathfrak{e}_{7}^{C}\right)_{0} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau_{1}}=\left(\mathfrak{e}_{7}^{C}\right)^{\sigma \iota_{4}{ }^{-1}} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau_{1}}$, $\left(\mathfrak{e}_{7(-25)}\right)_{e d}=\left(\mathfrak{e}_{7}^{C}\right)_{e d} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau_{1}}=\left(\mathfrak{e}_{7}{ }^{C}\right)^{\sigma_{3}} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau_{1}}$, we shall determine the structures of groups

$$
\begin{aligned}
\left(E_{7(-25)}\right)_{e v} & =\left(E_{7}^{C}\right)_{e v} \cap\left(E_{7}^{C}\right)^{\tau_{1}}=\left(E_{7}^{C}\right)^{\iota} \cap\left(E_{7}^{C}\right)^{\tau_{1}}, \\
\left(E_{7(-25)}\right)_{0} & =\left(E_{7}^{C}\right)_{0} \cap\left(E_{7}^{C}\right)^{\tau_{1}}=\left(E_{7}^{C}\right)^{\sigma \iota_{4}^{-1}} \cap\left(E_{7}^{C}\right)^{\tau_{1}}, \\
\left(E_{7(-25)}\right)_{e d} & =\left(E_{7}^{C}\right)_{e d} \cap\left(E_{7}^{C}\right)^{\tau_{1}}=\left(E_{7}^{C}\right)^{\sigma_{3}} \cap\left(E_{7}^{C}\right)^{\tau_{1}} .
\end{aligned}
$$

Theorem 4.4.2.3. (1) $\left(E_{7(-25)}\right)_{e v} \cong\left(\boldsymbol{R}^{+} \times E_{6(-26)}\right) \times\{1,-1\}$.
(2) $\left(E_{7(-25)}\right)_{0} \cong\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times \operatorname{Spin}(1,9)\right) \times\{1,-1\}$.
(3) $\left(E_{7(-25)}\right)_{e d} \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times \operatorname{Spin}(1,9)\right) \times\left\{1, \sigma^{\prime}\right\}$.

Proof. (1) For $\alpha \in\left(E_{7(-25)}\right)_{e v} \subset\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{\iota}$, there exist $\theta \in C^{*}$ and $\beta \in E_{6}{ }^{C}$ such that $\alpha=\varphi_{3}(\theta, \beta)=\phi_{1}(\theta) \beta$ (Theorem 4.4.2.(1)). The condition $\tau_{1} \alpha \tau_{1}=\alpha$ is $\tau_{1} \phi_{1}(\theta) \beta \tau_{1}=\phi_{1}(\theta) \beta . \phi_{1}(\theta)$ satisfies $\tau_{1} \phi_{1}(\theta) \tau_{1}=\phi_{1}(\tau \theta)$, so we have $\phi_{1}(\tau \theta) \tau_{1} \beta \tau_{1}=\phi_{1}(\theta) \beta$. Hence

$$
\left\{\begin{array} { l }
{ \phi _ { 1 } (\tau \theta) = \phi _ { 1 } (\theta) } \\
{ \tau _ { 1 } \beta \tau _ { 1 } = \beta , }
\end{array} \quad \left\{\begin{array} { l }
{ \phi _ { 1 } (\tau \theta) = \phi _ { 1 } (\omega) \phi _ { 1 } (\theta) } \\
{ \tau _ { 1 } \beta \tau _ { 1 } = \phi _ { 1 } (\omega ^ { 2 }) \beta }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\phi_{1}(\tau \theta)=\phi_{1}\left(\omega^{2}\right) \phi_{1}(\theta) \\
\tau_{1} \beta \tau_{1}=\phi_{1}(\omega) \beta
\end{array}\right.\right.\right.
$$

In the first case, $\tau \theta=\theta$, that is, $\theta \in \boldsymbol{R}^{*}$ and $\beta \in\left(E_{6}{ }^{C}\right)^{\tau_{1}} \cong\left(E_{6}{ }^{C}\right)^{\tau}=E_{6(-26)}$. Hence the group of the first case is $\boldsymbol{R}^{*} \times E_{6(-26)}$. The second and the third cases are impossible, because there are no $\theta \in C^{*}$ satisfying $\tau \theta=\omega^{k} \theta(k=1,2)$. Thus we have $\left(E_{7(-25)}\right)_{e v} \cong \boldsymbol{R}^{*} \times E_{6(-26)}=\left(\boldsymbol{R}^{+} \times E_{6(-26)}\right) \times\{1,-1\}$.
(2) Although the proof is similar to that of Theorem 4.3.2.2.(2), we will give the proof again. For $\alpha \in\left(E_{7(-25)}\right)_{0} \subset\left(E_{7}^{C}\right)_{0}=\left(E_{7}^{C}\right)^{\sigma \iota_{4}{ }^{-1}}$, there exist $\theta, \nu \in C^{*}$ and $\beta \in \operatorname{Spin}(10, C)$ such that $\alpha=\varphi_{4}(\theta, \nu, \beta)=\phi_{1}(\theta) \phi_{2}(\nu) \beta$ (Theorem 4.3.2.(2)). The condition $\tau_{1} \alpha \tau_{1}=\alpha$ is $\tau_{1} \phi_{1}(\theta) \phi_{2}(\nu) \beta \tau_{1}=\phi_{1}(\theta) \phi_{2}(\nu) \beta$. $\phi_{1}(\theta), \phi_{2}(\nu)$ satisfy $\tau_{1} \phi_{1}(\theta) \tau_{1}=\phi_{1}(\tau \theta), \tau_{1} \phi_{2}(\nu) \tau_{1}=\phi_{2}(\tau \nu)$, so we have $\phi_{1}(\tau \theta)$ $\phi_{2}(\tau \nu) \tau_{1} \beta \tau_{1}=\phi_{1}(\theta) \phi_{2}(\nu) \beta$. Hence

$$
\left\{\begin{array} { l }
{ \phi _ { 1 } (\tau \theta) = \phi _ { 1 } (\theta) } \\
{ \phi _ { 2 } (\tau \nu) = \phi _ { 2 } (\nu) } \\
{ \tau _ { 1 } \beta \tau _ { 1 } = \beta }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\phi_{1}(\tau \theta)=\phi_{1}\left(\omega^{-4 k}\right) \phi_{1}(\theta) \\
\phi_{2}(\tau \nu)=\phi_{2}\left(\omega^{k}\right) \phi_{2}(\nu) \\
\tau_{1} \beta \tau_{1}=\phi_{1}\left(\omega^{4 k}\right) \phi_{2}\left(\omega^{-k}\right) \beta, \quad k=1, \cdots 11
\end{array}\right.\right.
$$

In the former case, from $\tau \theta=\theta, \tau \nu=\nu$, we have $\theta, \nu \in \boldsymbol{R}^{*}$. We shall determine the structure of the group $\left\{\beta \in \operatorname{Spin}(10, C) \mid \tau_{1} \beta \tau_{1}=\beta\right\}=\operatorname{Spin}(10, C)^{\tau_{1}}=$ $\left(\left(E_{6}^{C}\right)_{E_{1}}\right)^{\tau_{1}}$. The group $\left(\left(E_{6}^{C}\right)_{E_{1}}\right)^{\tau_{1}}$ acts on the \boldsymbol{R}-vector space

$$
\begin{aligned}
V^{1,9} & =\left\{X \in \mathfrak{J}^{C} \mid 4 E_{1} \times\left(E_{1} \times X\right)=X, \tau_{1} X=X\right\} \\
& =\left\{\left.X=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi_{2} & x_{1} \\
0 & \bar{x}_{1} & -\tau \xi_{2}
\end{array}\right) \right\rvert\, \begin{array}{l}
\xi_{2} \in C \\
x_{1}=i x+y, x \in \boldsymbol{R}, y \in \mathfrak{C}, \bar{y}=-y
\end{array}\right\}
\end{aligned}
$$

with the norm

$$
\left(E_{1}, X, X\right)=-\xi_{2}\left(\tau \xi_{2}\right)-x_{1} \bar{x}_{1}=-\xi_{2}\left(\tau \xi_{2}\right)+x^{2}-y \bar{y}
$$

Since the group $\operatorname{Spin}(10, C)^{\tau_{1}}$ is connected, we can define a homomorphism $\pi: \operatorname{Spin}(10, C)^{\tau_{1}} \rightarrow O\left(V^{1,9}\right)^{0}=O(1,9)^{0}$ by $\pi(\alpha)=\alpha \mid V^{1,9}$. Ker $\pi=\{1, \sigma\}$. Since $\operatorname{dim}\left(\left(\left(\mathfrak{e}_{6}{ }^{C}\right)_{E_{1}}\right)^{\tau_{1}}\right)=\operatorname{dim}\left(\left(\mathfrak{e}_{7(-25)}\right)_{0}\right)-\operatorname{dim} \boldsymbol{R}-\operatorname{dim} \boldsymbol{R}=47-1-1$ (Theorem 4.4.1) $=45=\operatorname{dim}(\mathfrak{o}(1,9)), \pi$ is onto. Hence we have $\operatorname{Spin}(10, C)^{\tau_{1}} / \boldsymbol{Z}_{2} \cong$ $O(1,9)^{0}$. Therefore $\operatorname{Spin}(10, C)^{\tau_{1}}$ is $\operatorname{Spin}(1,9)$ as a double covering group of $O(1,9)^{0}$. Hence the group of the former case is $\left(\boldsymbol{R}^{*} \times \boldsymbol{R}^{*} \times \operatorname{Spin}(1,9)\right) / \boldsymbol{Z}_{2}\left(\boldsymbol{Z}_{2}=\right.$ $\{(1,1,1),(1,-1, \sigma)\}) \cong \boldsymbol{R}^{*} \times \boldsymbol{R}^{+} \times S \operatorname{pin}(1,9)$. The other cases are impossible, because there exists no $\theta \in C^{*}$ satisfying $\tau \theta=\omega^{-4 k} \theta(k=1, \ldots, 11)$. Thus we have $\left(E_{7(-25)}\right)_{0} \cong \boldsymbol{R}^{*} \times \boldsymbol{R}^{+} \times \operatorname{Spin}(1,9)=\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \times \operatorname{Spin}(1,9)\right) \times\{1,-1\}$.
(3) For $\alpha \in\left(E_{7(-25)}\right)_{e d} \subset\left(E_{7}^{C}\right)_{e d}=\left(E_{7}^{C}\right)^{\sigma_{3}}$, there exist $A \in S L(2, C)$, $a \in U\left(1, \boldsymbol{C}^{C}\right)$ and $\beta \in \operatorname{Spin}(10, C)$ such that $\alpha=\varphi_{5}(A, a, \beta)=\phi(A) D(a) \beta$ (Theorem 4.4.2.(3)). The condition $\tau_{1} \alpha \tau_{1}=\alpha$ is $\tau_{1} \phi(A) D(a) \beta \tau_{1}=\phi(A) D(a) \beta$. $D(a)$ satisfies $\tau_{1} D(a) \tau_{1}=D(\tau \bar{a})$, so we have $\phi(\tau A) D(\tau \bar{a}) \tau_{1} \beta \tau_{1}=\phi(A) D(a) \beta$.

Hence
(i) $\left\{\begin{array}{c}\phi(\tau A)=\phi(A) \\ D(\tau \bar{a})=D(a) \\ \tau_{1} \beta \tau_{1}=\beta,\end{array}\right.$
(ii) $\left\{\begin{array}{l}\phi(\tau A)=\phi(A) \\ D(\tau \bar{a})=D(-a) \\ \tau_{1} \beta \tau_{1}=\sigma \beta,\end{array}\right.$
(iii) $\left\{\begin{array}{l}\phi(\tau A)=\phi(-A) \\ D(\tau \bar{a})=D\left(e_{1} a\right) \\ \tau_{1} \beta \tau_{1}=-D\left(e_{1}\right) \beta\end{array}\right.$ or
(iv) $\left\{\begin{array}{l}\phi(\tau A)=\phi(-A) \\ D(\tau \bar{a})=D\left(-e_{1} a\right) \\ \tau_{1} \beta \tau_{1}=-\sigma D\left(e_{1}\right) \beta .\end{array}\right.$
(i) From $\tau A=A$ and $\tau \bar{a}=a$, we have $A \in S L(2, \boldsymbol{R})$ and $a \in U\left(1, \boldsymbol{C}^{\prime}\right) \cong \boldsymbol{R}^{*}$, respectively. The group $\left\{\beta \in \operatorname{Spin}(10, C) \mid \tau_{1} \beta \tau_{1}=\beta\right\}=\operatorname{Spin}(10, C)^{\tau_{1}}=$ $\left(\left(\left(E_{7}^{C}\right)^{\kappa, \mu}\right)_{\left(F_{1}(1), 0,0,0\right),\left(F_{1}\left(e_{1}\right), 0,0,0\right)}\right)^{\tau_{1}}$ acts on the \boldsymbol{R}-vector space

$$
\begin{aligned}
V^{1,9} & =\left(\left(\mathfrak{P}^{C}\right)_{\kappa, \tau_{1}}\right)_{\left(F_{1}(1), 0,0,0\right),\left(F_{1}\left(e_{1}\right), 0,0,0\right)} \\
& =\left\{P \in \mathfrak{P}^{C} \left\lvert\, \begin{array}{l}
\kappa P=P, \tau_{1} P=P \\
\left\{\mu\left(F_{1}(1), 0,0,0\right), P\right\}=\left\{\mu\left(F_{1}\left(e_{1}\right), 0,0,0\right), P\right\}=0
\end{array}\right.\right\} \\
& =\left\{\left.P=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi_{2} & x_{1} \\
0 & \bar{x}_{1} & -\tau \xi_{2}
\end{array}\right),\left(\begin{array}{ccc}
\eta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \eta\right) \right\rvert\, \begin{array}{l}
\xi_{2} \in C, \eta_{1}, \eta \in \boldsymbol{R} \\
x_{1} \in \mathfrak{C}, \\
\left(1, x_{1}\right)=\left(e_{1}, x_{1}\right)=0
\end{array}\right\}
\end{aligned}
$$

with the norm

$$
(P, P)_{\mu}=\frac{1}{2}\{\mu P, P\}=\eta_{1} \eta+\xi_{2}\left(\tau \xi_{2}\right)+x_{1} \bar{x}_{1} .
$$

Hence the group $\operatorname{Spin}(10, C)^{\tau_{1}}$ is $\operatorname{Spin}(1,9)$ and the group of (i) is $S L(2, \boldsymbol{R}) \times$ $\boldsymbol{R}^{+} \times \operatorname{Spin}(1,9)$ as in a similar way in Theorem 4.4.2.3.(2).
(ii) $\varphi\left(E, e_{1}, \sigma^{\prime} D\left(-e_{1}\right)\right)=\sigma^{\prime}$.
(iii) and (iv) are impossible. Indeed, β satisfies $(\beta P, \beta P)_{\mu}=-(P, P)_{\mu}$, but this is false because the signatures of both sides are different.

Thus we have $\left(E_{7(-25)}\right)_{e d} \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times \operatorname{Spin}(1,9)\right) \times\left\{1, \sigma^{\prime}\right\}$.

Komoro High School

Komoro city, Nagano, 384-0801
Japan
e-mail: spin15ss16@ybb.ne.jp
339-5, Okada- Matsuoka
Matsumoto, 390-0312
Japan

References

[1] M. Hara, Real semisimple graded Lie algebras of the third kind (in Japanese), Master's thesis, Dept. Math. Shinshu Univ. (2000).
[2] T. Miyashita and I. Yokota, 3-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{0}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{\text {ev }}$, Part II, $G=E_{7}$, Case 1, J. Math. Kyoto Univ., to appear.
[3] I. Yokota, Realization of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part II, $G=E_{7}$, Tsukuba J. Math. 4 (1990), 378-404.
[4] _, 2-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$, Part I, $G=G_{2}, F_{4}, E_{6}$, Japanese J. Math. 24 (1998), 257-296.
[5] __, 2-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$, Part II, $G=E_{7}$, Japanese J. Math. 25 (1999), 154-179.
[6] \qquad , 3-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{\text {ed }}$, Part I, $G=G_{2}, F_{4}, E_{6}$, J. Math. Kyoto Univ. 41-3 (2001), 449-475.

