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3-graded decompositions of exceptional Lie
algebras g and group realizations of

Gev, 80 and Hed
Part II, G = E7, Cases 2, 3 and 4

By

Toshikazu MIYASHITA and Ichiro YOKOTA

According to M. Hara [1], there are five cases of 3-graded decompositions
g=09-3Dg 2D g_1DgoD g1 D g2 D g3 of simple Lie algebras g of type E7.
In the preceding paper [2], we gave the group realization of Lie subalgebras
Gev = 9-2D go D 92,90 and geq = g—3 @ go D g3 of g of Case 1. In the present
paper, we give the group realization of ge,, go and geq of Cases 2, 3 and 4. We
rewrite the results of gy, g0 and geq of Cases 2, 3 and 4.

Case 2 ¢ Jev 9o
ed dim g1, dim g, dim g3
er¢ sl(2,C) ®s0(12,C) C @ C @ sl(6,C)
Cosl(7,0) 26,16,6
e7(7) sl(2,R) ®s0(6,6) R®RDsl(6,R)
R®sl(7,R) 26,16, 6
Case 3 ¢ Gew go
fed dim g1, dim go, dim g3
er¢ C @ e C o Cds0(10,0)
C ®so(12,C) 17,16,10
e7(7) R © e56) R® R®so0(5,5)
R ®s0(6,6) 17,16,10
€7(—25) R@eﬁ(_gﬁ) R R®s0(l,9)
R @ s0(2,10) 17,16, 10
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Case 4 g Jew go
Ged dim g1, dim g2, dim g3
erC C®eg® C & C®s0(10,0)
sl(2,C)® C ®s0(10,C) 26,16,1
e7(7) R& €6(6) R® R®so(5,5)
sl(2,R) & R@s0(5,5)  26,16,1
€7(—25) R@Qﬁ(_gﬁ) R@R@EO(].,Q)

sl(2,R) @ R®so(1,9)  26,16,1

Our results of Cases 2, 3 and 4 are as follows:

Case2 G Gew Go
Ged
E,C (SL(2,C) x Spin(12,C))/Z2  (C* x C* x SL(6,C))/(Zs x Zs)

(C* x SL(7,C))/ Z~7
Ere7y (SL(2, R) x spin(6,6))/Z2x2 (RT x Rt x SL(6, R)) x 2
(RT x SL(7,R)) x 2

Case3 G Gev Go
Geq
E; ¢ (C* x E6©)/Z3 (C* x C* x Spin(10,C))/Z12
(C* x Spin(12,C))/Z>
Ere7y (RT X Egg)) x 2 (Rt x RT x spin(5,5)) x 2
(RT x spin(6,6)) x 2
Er_a5)  (RY X Eg(_a6)) X 2 (RT x RT x Spin(1,9)) x 2
Rt x spin(2,10)
Case4 G Gev Go
Ged
B, (C* x Es©)/Z3 (C* x C* x Spin(10,C))/Z12
(SL(2,C) x C* x Spin(10,C))/Z4
Eq7(7y (RY X Eg)) X 2 (Rt x RT x spin(5,5)) x 2
(S1(2, R) x Rt x spin(5,5)) x 2
Er(_25) (R' X Eg(_2g)) X 2 (Rt x RT x Spin(1,9)) x 2

(SL(2, R) x RT x Spin(1,9)) x 2

This paper is a continuation of [2], so the numbering of sections and the-
orems start from 4.2. We use the same notations as that in [2].



3-graded decompositions of exceptional Lie algebras g and group realizations 807

4. Group E;

The connected universal linear Lie groups E,°, E7(7y and Er(_o5) are given
by
B¢ = {a € Tsoc(PC) |a(P x Q)a~t = aP x aQ},
Erry = {a € Isor(P) |a(P x Q)a™" = aP x aQ},
Er(_25) = {a € Isog(P) |a(P x Q)a™' = aP x aQ}

(although the definitions of E;¢ and E7(7y are already given in [2]), where
P=JOI D RD R (J is the exceptional R-Jordan algebra).

Here, we shall arrange mappings v,7’, 71, 0, t, A, 5, i, ¢ and ¢ used in this
paper. By using the mapping o : Sp(1, HY) x Sp(1, H®) — G5 defined by

@2(p, q)(a+ bes) = qag + (pbq)es, a+bey € HY @ H ey = €°,

the C-linear transformations v,+’ and 7; of €¢ are defined by

/

v=p2(1,-1), ' =aler,e1), 71 = p2(ez, e2),

/2

respectively. Then v,7,v1 € G2¢ c E;° and 72 =47 =42 = 1. The

C-linear transformation o of JC is defined by

&1 —T3 —To
cX = | -3 & T , XEe€e 30.
—X2 Z1 &

Then o € F,¢ ¢ E;° and 62 = 1. Next, the C-linear transformations ¢ and A
of P are defined by

L(X7K€777) = (*’L'X,Z'Y; 7257’“7)7
A(X))/?€7 T]) = (K _X’ 777 _6)7 (X7)/7§7 7]) 6 ;'BC7

respectively. Then ¢, A € E;¢ and 1* = A = 1. Further, the C-linear mappings
x and p of P are defined by

=& 0 0 n 0 0

H(X7K€777) = 0 §2 Z1 ], 0 —N2 —H a7£777 )
0 = & 0 -y —m
n 0 0 & 0 0
M(XaK§7n) = 0 3 —Yi ], 0 53 —I1 7n1a€1 )
0 -y, m 0 —-71 &
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(X,Y,€6,m) € PBC, respectively. For A € SL(2,C), we define the C-linear
transformation ¢(A) of B¢ by

/ <¢i(A)(X7 Y,&n) = (X/’,Y’7£’7n’)7 ,
() =2() G =a(s) () =2(2) (&)=4(2)
() =ean (3 ()= () ()= (2

Then ¢(A) € E-€. Finally we shall explain the mapping ¢ : SU(8, CC) — F;°.
Let g : 3¢ — J(4, HC) be the C-linear mapping defined by

1

—tr(M) ia o o
g(M+a)=|?2 , M+aec3(3,HY)®(H)" =3

1
ia* M — itr(M)E

By using the mapping g, we define the C-linear isomorphism x : B¢ —
G(8,C%) ={S e M(8,C% |*S =-S5} by

X(X,Y, & m) = kJ(gX - gE) + e1ky (g(vY) - gE)

where k; : 3(4, HY) — &(8,C°) is C-linear mapping defined by kj((a +

a b ) 0 1
b€2)): ((—5 E)) J, a,b e CY,J = diag(J,J,J,J),J = (1 0). Now,

we define the mapping ¢ : SU(8,C°) — (E;°)* by
p(A)P = x"1(A(xP)"4), P ePC,
then we have an isomorphism
SU8,C%)/Z> = (B:°)™, Z,={E, -E}
(see [3, Theorem 4.5.3] for details).

4.2. Subgroups of type A,¢ EBD6C7CEBCG§A50 and C @ AgC of E,©

¢ is conjugate to A in E7C. Indeed, let §> = exp (@(0, f%zE, —TE,O)).
Then &5 € E, and d, satisfies
(‘)‘271L62 =\

Moreover, 0o satisfies o7 A = 7AJo and d2y; = 71d2. Hence 7Ary; is conjugate
to —771 under 2. Indeed,

82 H(TAy1)82 = TAG Mudomt = TAM =~
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Furthermore, v is conjugate to 1 in E;°. Indeed, let §; be the C-linear
transformation of €€ satisfying

1—1, e —eq, e2 — €3, €3 — €5, €4 — €1, €5 — —€5, €5 — €3, €7 — —er,
then §; € Go¢ c F,¢ c Eg¢ ¢ E7C,512 =1 and ¢, satisfies
01701 = 71-
Hence we have
Exn = (Br€)77 2 (BrO) = (B0) 7 = (BO)™.
In the Lie algebra ¢;€, let
Z =iP(Gys — Ge7, —E, E,0).

Theorem 4.2.1.  The 3-graded decomposition of e7(7) = ez (or

676)

e77) = 9-3DPg2Dg-1 DY DY1 DP2D g3
with respect to ad Z, Z = i®(Gys — Ge7, —F, E,0), is given by

iGo1, Goz, 1Gos, 1G12, Gi3, iGas,

iGas, Gag — Gs7, i(Gar + Gse), iGer,

Akv(l)’ iAkA(el),Ak(e%), Z'Ak(eg), Z(Ek — Ek),

i(Fp(1) = Fi(1)),  Fi(er) — Fi(er),
i(Fk(eg)—Fk(EQ)),Fk(eg,)—Fk(e?,), k=1,2,3 37

Gos +1Gos, Gos — iGor, 1G14 — G1s, iG16 + Gr,

Gaq + 1G5, Gas — iGar, 1G3s — G35, iG3e + Gar,

_ ) Axles +ies), Ap(eg —ier), R

g-1= Fk(64 + i€5) — Fk(64 + i€5), Fk(@(} — i67) — Fk(e6 — i67),
QiFk(€4 — i65) + Fk(€4 — i65) + Fk(€4 — i€5),

2iFk(€6 +ier) + Fk(ee +ier) + Fk(ee + i€7), k=1,2,3 26
(Gag + Gs7) — i(Gar — Gre),

2iF(1) + Fi(1) + Fkgl), 2F(e1) + iFk(er) + il:jk(ﬁ),
2iFy(e2) + Fk(eg) -|: Fk(eg), 2F(e3) + iFk(eg) + iFi(es),
2B,V Ep+ E + Ep +il, k=1,2,3 16

_ 27;1?’]@(644-1'65) +Fk(64+i€5> -‘1-1':7}6(64-1-1'65),
b-3 2iFy (e — ier) + Fy(eg — ier) + Eyeq —ier), k=1,2,3 | 6

g1 = 7(971)7, g2 = 7(9—2)7, g3 = 7(973)7

go

For the induced differential mapping ¢, : su(8, C%) —e;€ of p: SU(8,C°)
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— E7C, we have
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w*(dlag(el, 61,0 0 O 0 0 0)) @( G45 +G67,0 0 O)
1
(,D*(dlag(0761, —e1,0,0,0,0 0)) @( G677 (Eg +E3) —§(E2 +E3),0),
w*(dlag(0,0,el, —e1,0,0,0 O)) @(G45 —|—G67,0,0,0),
1 1
. (diag(0,0,0, e1, —e1,0,0,0)) = ¢(§(G01 + Gy — Gis — Ger), 5 (B — E),
1
§(E1 E2)70>7
Px (dlag(0707 03 07617 _617070)) = @(—GOI - G237 03 070)7
. 1 1
¢« (diag(0,0,0,0,0,e1,—e1,0)) = ¢(G237 §(E2 — B3), _E(EQ - E3),0),
Px (dlag(O, 0, 0, 0, O7 0, €1, —61)) = @(G()l — G23, O7 0, O)
From the facts above, we have also
&(Go1,0,0,0) = p.(diag(0,0,0,0,—e1/2,e1/2,e1/2, —e1/2)),
®(G23,0,0,0) = p.(diag(0,0,0,0,—e1/2,e1/2,—e1/2,€1/2)),
®(Gy5,0,0,0) = p.(diag(—e1/2,e1/2,e1/2,—€1/2,0,0,0,0)),
&(Ge7,0,0,0) = p.(diag(e1 /2, —e1/2,e1/2,—e1/2,0,0,0,0)),
®(0, B, —E1,0) = p.(diag(e1/2,e1/2,e1/2,e1/2,—e1/2,—e1/2,—e1 /2, —e1/2)),
@(O,EQ,—EQ,O) w*(dlag(el/Q 61/2 —61/2 61/2 61/2 61/2,—61/2,—61/2)),
@(0,E3,—E3,0) w*(dlag(el/Q 61/2 —61/2 —61/2 —61/2 61/2,61/2,61/2)).

Since iZ = ¢(—Gu5+ Ge7, B, —E,0)

_61/27 _61/27
we have

21 .
Z2 = €Xp TZ = @(dlag(el, €1, —€1, —€1,—€1, —€1, —€1, —61)) =

211
Z4y =€exp—2 =

4

o
z;;z(ﬂxp%zZ:

¥

@(diag(—wl,

2
—w1,

—wi,

—wi,

= p.(diag(be1/2,e1/2,—e1/2,—e1/2,
—e1/2, —e1/2)), by using the mapping ¢ : SU(S,CC) — E;°,

-

(dlag( ’LUg,’UJg,’LUg 7w8 7w8 va va 7w81))7

—wy, —W1, —Wi, _wl))

= (Io(diag(whlea w1, W1, W1, Wi, wlawl))y

where wg = e
zZ9 =

2me1 /8

, W1 =€

2me1 /3

— is conjugate to

ZQI
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in £-. Indeed, let 05 = ©(B), where B is

1 0 0 0 1 0 0 0
4 0 0 0 e 0 0 0
0 1 0 0 0 1 0 0
1 0 —€1 0 0 0 €1 0 0 C

B=Z%10o o 1 o0 0o 0 1 ofS5UECY
0 0 — 0 0 0 e 0
0O 0 0 1 0 0 0 1
0 0 0 —e1 0 0 0 e

Then 05 € F7C and d5 satisfies 6371(—71)53 = ¢. Now, we consider the element
6163, then we have

(6165) 7 (—7)(6165) = 0.

z3 is conjugate to

Z3l = ‘P(diag(w127w17w1, w17w17w17w17w1))

under the action of ¢ (diag (( 01 0) 0,0,0,0,0 o)) € o(sU(s,C%)) c
E:C.

Hereafter, we use 29" and 23" instead of zo and z3, respcetively.
C)ZQ C) _

Since (e7%)ew = (e79)%2, (670 = (e7°)7, (¢7%)ea = (e7)%", we shall

determine the structures of groups
(B7%)ew = (B:9)?, (Ex)0 = (Br), (Br)ea = (B9)

Theorem 4.2.2. (1) (F;%)e, = (SL(2,C) x Spin(12,C))/Zy, Zy =
{(E,1),(-E,—0)}.

(2) (E7%)o = (C* x C* x SL(6,C))/(Zs x Zs), Zs x Zes = {(ws",wg',
we*we' B) |k, 1 =0,1,...,5}, ws = e2™/6,
( ) <E7 )ed =~ (C* X SL(7,C))/Z7, Z7 = {(w7k,w7kE) | k‘ = 0, 1, .. .,6},
271'1/7.

Wy =
Proof. (1) Let Spin(12,C) = {a € E;% | ka = ak, pa = au} = (B;9)"+
We define a mapping ¢ : SL(2,C) x Spin(12,C) — (E;°)? by
P(A, B) = ¢(A)8.

Then v is well-defined and is a surjective homomorphism. Ker ¢ = {(FE,1)

(—E,—0)} = Z5. Hence we have (E;%)., = (E;)? = (SL(2,C) x Spin(12,C))
/Z5 (see [3, Thorem 4.6.13] for details).
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(2) We define a mapping ¢ : S(U(1,C%) x U(1,C%) x U(6,C°)) —
(E-“)™ by

@(blvanB)P:Xﬁl((blvb27B)(XP)t(blvb2’B))a Pe“pc7

as the restriction mapping of ¢ : SU(8, CC) — E,%. Then @ is well-defined and
is a homomorphism. Ker ¢ = {(1,1, E), (=1,—1,—E)} = Z,. Since (E;%)*
is connected and dimc((e79)o) = 37 (Theorem 4.2.1) = (1 +1+436) — 1 =
dime (s(u(1,C%) @ u(1,C%) @ u(6,C°))), ¢ is onto. Thus we have

(B:%)0 = S(U(1,C%) x U(1,C°) x U(6,C))/Z>
= S5(C* xC* x GL(6,C))/ Zs.

Since the mapping h : C* x C* x SL(6,C) — S(C* x C* x GL(6,(C)),
h(dy, dz, D) = (d:°,d>°, (d1d2) ™' D)

induces an isomorphism S(C* x C* x GL(6,C)) = (C* x C* x SL(6,C))/(Z¢ x
Z¢), ZoxZg = {(we",we!,wskwe E) | k,1=0,1,...,5}. Thus we have (7)o =
(E;C)% = (C* x C* x SL(6,C))/(Z¢ x Z).

(3) We define a mapping ¢ : S(U(1,C%) x U(7,C°)) — (E;°)*" by
(b, B)P = x"'((b, B)(xP)"(b, B)), P € P,

as the restriction mapping of ¢ : SU(8, CC) — E7°. Then @ is well-defined
and is a homomorphism. Ker ¢ = {(1, E), (-1, —E)} = Z,. Since (E;%)* is
connected and dime ((e7¢)eq) = 37+ 6 x 2 (Theorem 4.2.1) = 49 = (1+49) — 1
= dim¢ (s(u(1,C%) @ u(7,C°))), ¢ is onto. Therefore we have

(E79)eq = S(UQ,C) x U(7,C%))/ Z,
S(C* x GL(7,C))/ Z>.

1%

Since the mapping h : C* x SL(7,C) — S(C* x GL(7,C)),
h(d,D) = (d",d ' D)

induces an isomorphism S(C* x GL(7,C)) = (C* x SL(7,C))/Z7, Z; =
{(wr¥,w*E) |k = 0,1,...,6}. Thus we have (E;%)., = (B;°)®" =~ (C* x
SL(7, C))/(ZQ X Zz7) (Z2 = {(17E)7 (_17E>}> = (C*/Z2 x SL(7,C))/Z~ (Z2
={1,-1}) 2 (C* x SL(7,C))/ Z7. 0
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4.2.1. Subgroups of type A1) ® D¢, RO R® As5) and R© Agg) of
Eqr)

Since (e7(7))5” = (e7c)ev N (670)7)\”1 = (€7C>a N (e70)7—>\wl,(e7(7))0 =
(270)0 N (€7C>T>\W1 = (676)24 N (670)7-/\L’Yl, (67(7))ed = (€7C)ed ) (670)"'/\W1 _
(e79)% N (e,9)™ 1, we shall determine the structures of groups

(E7(7))e” = (E7C)ev N (E7C)T)\VYl = (E7C)U N (E?C)ka'yl,
(E7(n)o = (E7)o N (B9) = (B;)* 0 (B 9)™n,
(Brny)ea = (Br9)ea N (7)™ = (B:)% 0 (B,9)™.

To define the element p € F;°, we use the mapping ¢ : Sp(l,HC) X
SU*(6,C°) — E¢¢ by

¢6(p, A)(M +n) = (hA)M (hA)* + pn(hA)~",
M+ne33,H) e (H)? =3,

where k : M(3,HY) — {P € M(6,C°)|JP = PJ} (J = diag(J, J,J),J =

0 1 i . a b c o
(_1 O))1sdeﬁnedbyk(a+b€2)—<<_5 a)),a,bEC’ and h = k1.

Furthermore, by using the mapping f : SL(6,C) — SU*(6, CC), f(A) =cA -
gJAJ,e = (1+ie1)/2, we can define the mapping ¢g : Sp(1, HY) x SL(6,C) —
E¢© by 0 = ¢ f-

We define p € E;¢ by

p= 906(17 dlag(L -1,1,-1,1, 1))

Theorem 4.2.1.1. (1) (E7(7))es = (SL(2, R) x spin(6,6))/Z2 x {1, p},
Zy={(E,1),(—F,—0)}.

(2) (Ern)o = (R x R" x SL(6, R)) x {1,7'}.

(3) (Er(r))ea = (R* x SL(7,R)) x {1,7'}.

Proof. (1) Since 8, satisfies 0y '0dy = o and 05 (T Aiy1)da = —71, we
have

(Br(n)ev = (B79)7 N (B;9)™7 2 (B9)7 N (B,)™.

So we shall determine the structure of the group (Er(7))es = (E7C)” N (E7C)”1.
Now, for a € (Br(7))en C (Br%)ew = (E79)7, there exist A € SL(2,C) and
B € Spin(10,C) such that o = (A, B) = ¢(A)S (Theorem 4.2.2.(1)). From
Ty ay1T = «, that is, 7v10(A) By = ¢(A) B, we have ¢(TA)Tv1 8717 = ¢(A)B.
Hence

o(rA)=o(4) P(TA) = —¢(A)

™BNT =B ™BNT = —0op.
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In the former case, from 7A = A, we have A € SL(2, R). We shall determine
the structure of the group {8 € Spin(12,C) | 77187 = B8} = Spin(12,C)™ " =
((EB79)#)™1 . The group ((E;°)"*)™ acts on the R-vector space

VO = (P, e, = {P € P |kP = P,77, P = P}

0 0 0 m 0 0
0 T & 0 0 0 ! ™

with the norm
1
(P,P), = E{MRP} =mn —&83 + T171.

Since the group Spin(12,C)™ is connected, we can define the mapping  :
Spin(12,0)™ — O(V4)? = O(6,6)° (which is the connected component sub-
group of O(6,6)) by m(a) = a|V5S. Ker 7 = {1,0} = Z,. Since dim(spin(12,
C)™) = dim((e7(7))ev) — dim(sl(2, R)) = (37 + 16 x 2) — 3 (Theorem 4.2.1)
= 66 = dim(s0(6,6)), 7 is onto. Hence we have Spin(12,C)™/Z; = O(6,6)°.
Therefore Spin(12, C)™" is spin(6, 6) as a covering group of O(6, 6)°. Hence the
group of the former case is (SL(2, R) x spin(6,6))/Z2, Zo={(E,1),(—E, —0)}.
In the latter case, A = il (I = diag(1,—1)),8 = ¢(—il)p satisfy the given
condition and (il, p(—il)p) = p. Thus we have (E7(7))ea = (SL(2, R) X
spin(6,6))/Zs x{1, p}.

(2) For a € (Er(r))o C (E7%)o, there exists (bi,bs, B) € S(U(1,C°) x
U(1,C%) x U(6,C°)) such that o = (b1, by, B) (Theorem 4.2.2.(2)). Since
@ : SU(8,C°) — E;° satisfies

Te(A)T = p(I2(TA)2),  me(A)n = p(JAT),
Ap(ANT! = (I, AL), vp(A) ™t = (JAT),

(I = diag(—1,-1,1,...,1) € SU(8,C)), we have
TAY1p(A) 1IN = p(TA), A e SU(8,CY).

From 7Avyiayit " A" 7= a, that is, TAry10(b1, b, B)y1t " *A "1 = o(by, ba, B),
we have (b1, by, TB) = ¢ (b1, b, B). Hence

7'61:()1 7'51:—{)1
7'62 = b2 or 7'52 = _b2
TB=B 7B = -B.

In the former case, by, by € U(1,C") and B € U(6,C"). Hence the group of the
first case is
S(U(lv C/) X U(LC,) X U(6a C/))/Z27 Z2 = {(17 17E)7 (_17 _17 _E)}
> S(R*"x R* xGL(6,R))/Z>.
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As a similar way to Theorem 4.2.2.(2), S(R* x R* x GL(6,R)) = (R" x R" x
SL(6, R))/(Z2% Zs), Zax Zs = {(1,1,E),(~1,1,E), (1, -1, E), (-1, -1, E)}.
Hence the group of the first case is (R* x R* x SL(6,R))/(Z2 x Z3) = R x
R' x SL(6, R). In the latter case, (e1, —ey, e ) (I = diag(1,—1,1,—1,1,—1))
satisfies the given condition and ¢(e1, —e1, e1]) = +'. Thus we have (E7(7))o =
(RT x RT x SL(6, R)) x {1,7'}.

(3) For a € (Ey(r))ea C (E79)eq, there exists (b, B) € S(U(1,C%) x
U(7,C%)) such that o = (b, B) (Theorem 4.2.2.(3)). From 7Atyiay1e A~ 17
= a, that is, TAty10(b, B)y1t"'A™ 1 = (b, B), we have ¢(7b, 7B) = ¢(b, B).

Hence
h=b or b= —b
TB=DB 7B = —B.
In the former case, b € U(1,C") and B € U(6,C"). Hence the group of the first

case is
SUQ,CNxU(1,C"))Z2, Zy={(1,E),(-1,-E)}
~ S(R* xGL(7,R))/ Z5.

As a similar way to Theorem 4.2.2.(3), S(R*XGL(7, R)) 2 (R*XSL(7, R))/ Z>,
Zy={(1,E),(—1,E)}. Hence the group of the first case is (R* x SL(7,R))/Z>
~ R x SL(7, R). In the latter case, (e1,e ") (I' = (—1,I)) satisfies the given
condition and ¢(eq,e1I’) = 7. Thus we have (E7(7))ev = (RY x SL(7, R)) X
{17} O

4.3. Subgroups of type C & Eﬁc, C®C D5 and C ® D¢ of E;°

We add the mappings ¢1(6) and ¢2(v) used in the following sections. For
,v € C*, the C-linear transformation ¢; () of B¢ and the C-linear transfor-
mation ¢ (v) of J¢ are defined by

1 (0)(X,Y,&,m) = (07'X,0Y,0°€,0 %), (X,Y,&n) € P,

e Vs Vo
¢2(V)X = VT3 I/_2§2 I/_2£L'1 s X € 307
vre vT2T v

respectively. Then ¢, () € B, and ¢5(v) € E¢ C E;°.

In the Lie algebra e;¢, let

7= <15(4(E1 v E1),0,0, —g)

Theorem 4.3.1.  The 3-graded decomposition of e77y = (ez)™ (or
c
e7”)

)

e7(7) = 9-3DPg2Dg-1Dg0 D g1 DP2D g3
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. 5y ..
with respect to ad Z, Z = @(4(E1 vV Ep),0,0, 75), is given by

iGri, 0 <k <4 <1<7, Gy, otherwise,
go=1< Ailer), Filer), 0 <k <3, iA(er), iFi(ex), 4 <k <7,
(B2 — E3)~, Ey1VE;1 47

g-1= {Fz(ek) Fg(ek) 0 S k S 3,iF2(€k), iFg(ek), 4 S k S 7, El} 17

g Ag(ek) + FQ(ek) fl%(ek) - Fggek), 0<k< 3,
27\ ida(er) +iFa(er), iAs(er) —iFs(er), A<k <7 [ 16

g3 ={Fi(ex), 0< k<3, iFi(ex), 4 <k <3, Fy,F3} 10
g1 =Ag-)A, g2 =Ag_2)A !, gz = A(goz)A

Since ¢(4(E; V E1),0,0,2) = —2k, for t € R we have

exp (@(4it(E1 Vv E1),0,0, 21'25))()(7 Y, ¢, n)

24t = —2it =
ey 363 ) e "'m Y3 Yo
_ = —21t —2'Lt I 2zt 2zt 2it —2it
- T3 6 ) Ys 12 yl , € fa € n
— 21t —21 t 24t
zy e T e §3 y2 €My el

Especially, we have

exp (P(47i(EL V Ey),0,0,27i)) =1, exp (®(2mi(Ey1 V Ey),0,0,7i)) = —o,

8mi 41
€xXp (é(%(El \/El)a0707§>> = k3,

where k3 is the C-linear transformation of ¢ defined by

w2 wy To W Y3 Yo )
KB(X7K€777) = T3 wf? wry |, yS W2772 w2y1 , W 57“}77 3
Ty wr; ws yo Wy, wns

UJ2

where w = €2™/3. This ks is nothing but ¢ (( 0 g)) using ¢ : SL(2,C) —

E;€. For #(0,0,0,it), we have

exp(9(0,0,0,it)) (X, Y, &,n) = (e7 /23X, e"/3Y, ¢, e7'y).

@(0,0,0,fgz), furthermore @(4@'(E1 v El),0,0,Qz‘) and @(o 0,0, — i

commute, we have

Hence exp(®(0,0,0,it)) = ¢1(e'/3). Since iZ = @(42’(E1 vV F1),0,0 22) +
9,
2
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211 9
2 = exp 7 = exp (B (4mi(Ey V E}), 0,0, 2mi)) exp (@(0, 0,0, ——m'))
2 2
= L7
2mi . . 9 |
Z4 = exp TZ = exp (@(ZM(El \% El),070,m)) exp (@(0, 0,0, 71m>)
= —ous, 3= ¢1(e ST,
2m 8mi 4mi
23 = exp %ZZ = exp (@(%@(El V F1),0,0, %Z)) exp@(0,0, 0, —3771')

= —KR3.

Since (e7%)er = (e79)72 = (e79)", (e7%)0 = (e79)** = (e29)7%, (7% )ea =

(e79)* = (e79)"3, we shall determine the structures of groups
(Br)ew = (B79)?2 = (B;9)', (B0 = (B79)™ = (B,)7*s,
(Er9)ea = (B79)™ = (E;7)r.

Theorem 4.3.2. (1) (E7%)e, 2 (C* x Es©)/Z3, Z5 = {(1,1), (w,wl),
(w?,w?1)}, w = e2™i/3,

(2) (E7C)0 = (C*xC*xSpin(10,C))/ Z12, Z12={ (w12~ **,wi2", ¢1(wi2**)
qbg(wlg_k)) | k=0,1,..., 11}, Wwig = e2mi/12,

(3) (B79)ea = (C* x Spin(12,C))/ Zy, Zo = {(1,1),(~1,—0)}.

Proof. (1) We define a mapping @3 : C* x Eg® — (E;%)" by

v3(0,8) = $1(0)B.

Then 3 is well-defined and is a homomorphism. Ker o3 = {(1,1), (w, ¢1(w?)),
(W2, ¢1(w))} = Z3. (¢1(w?) and ¢y (w) are nothing but the central elements
wl and w?1 of EgY, respectively. So we may write Ker 3 = {(1,1), (w,wl),
(w?,w?1)}). Since (F;%)" is connected and dime ((¢7%)ey) = 47 + 16 x 2 (The-
orem 4.3.1) = 79 = 1+ 78 = dimc(C @ %), @3 is onto. Thus we have
(B9 = (FB79) 2 (C* x E)/Z5 (cf. [3, Theorem 4.4.4]).

(2) Let Spin(10,C) = (E¢“)p, = (E7C)(E170’170),(_E1,071’0). We define a
mapping ¢4 : C* x C* x Spin(10,C) — (E7C)‘”8 by
pa(0,v,8) = ¢1(0)p2(v) .

Then ¢4 is well-defined, that is, p4(0, v, 3) commutes with otg. Furthermore,
since ¢1(6), ¢2(v) and B commute with each other, ¢4 is a homomorphism.
The kernel of ¢4 is

Ker ¢4 = {(wi2 ™", wi2", ¢1(w12™)pa(wi2 ) |k =0,1,...,11} = Z1».

Indeed, let (0,v,3) € Ker 4. Then ¢4(0,v,8)P = P for any P € BC. Es-
pecially, for P = (FEy,0,1,0) € B, we have(§~'v*E;,0,0%,0) = (E1,0,1,0).
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Hence 6~ 'v* = 1,63 = 1, that is, v* = 6,03 = 1, so we have v'2 = 1. Thus
Ker o4 = Z15 is obtained. Since (E7C)f”8 is connected and dimc((e79)g) =
47 (Theorem 4.3.1) =1+ 1+ 45 = dime(C @ C @ spin(10,C)), @4 is onto.
Thus we have (E7;“)g = (F;%)7* = (C* x C* x Spin(10,C))/Z 2.

a 0
0 a !
we define a mapping ¢ : C* x Spin(12,C) — (E;)" by

¥(a,B) = ¢(a)B

as the restriction mapping of ¢ : SL(2,C) x Spin(12,C) — (E;°)? defined in
Theorem 4.2.2.(1). Then 1 is well-defined and a is homomorphism. Ker ¢ =
{(1,1),(~=1,-0)} = Z,. Since (E;%)" is connected and dime((e7S)eq) =
47410 x 2 (Theorem 4.3.1) = 67 = 1466 = dimc(C @ spin(12,C)), ¢ is onto.
Thus we have (E79)eq = (B;%)" = (C* x Spin(12,C))/Zs. (cf. [5, Theorem
4.22.(2))). O

(3) Let C* be the subgroup {a = ( ) ‘a € C*} of SL(2,C), and

4.3.1. Subgroups of type R ® Egi), R® R ® D55y and R ® Dggy of
Eqr)

We use the same noatation as that in 4.3. Since (e7(7))er = (€7)eu
(7)™ = (ez9) N (e79)™, (ez(my)o = (e7%)0 N (ez9)™ = (e79)7% N (e79)™,
(e7(7))ed = (79)eaN (e79)™ = (e79)"2 N (e79)™, we shall determine the struc-
tures of groups

(Brn))ew = (Br)ew N (Br9)TT = (B-)" N (B:9)7,
(Err))o = (Ex)o N (E:9)™ = (BE;)7* N (B,“)™,
(Br(7))ed = (B2 )ea N (B7C)7 = (B;°)" 0 (B;%)™.

Theorem 4.3.1.1. (1) (E7(7))es = (RT x Eg(6)) % {1,-1}.
(2) (Bz(n))o = (R x R" x spin(5,5)) x {1, —1}.
(3) (Br(r))ea = (RT x spin(6,6)) x {1, p}.

Proof. (1) For a € (E7(7))ev C (E7%)ew = (E79)", there exist § € C*
and 8 € Eg° such that a = @3(6,8) = ¢1(0)3 (Theorem 4.3.2.(1)). From

TYQYT = «, that is, 7y¢1(0)ByT = ¢1(0)5, we have ¢1(70)TyByT = ¢1(0)8.
Hence

¢1(10) = ¢1(0) $1(10) = p1(w)p1(0) or $1(70) = ¢1(w?)91(0)
™6y = 3, BT = ¢1(w?)PB TYBYT = P(w)B.

In the first case, 70 = 6, that is, # € R* and 3 € (EGC)”1 = FEg). Hence
the group of the first case is R* x Eg(g). The second and the third cases are
impossible, because there exists no § € C* satisfying § = w*0 (k = 1,2).
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Thus we have (Er(7))ev = R* x Eg6) = (R" X Eg()) % {1,—1} (note that
w3(—1,1) = —1).

(2) For a € (E7m))o C (E:%)0 = (BE;%)7*s, there exist 6, € C* and
B € Spin(10,C) such that a = p4(0,v,8) = ¢1(0)¢2(v)5 (Theorem 4.3.2.(2)).
From 7yayT = «, that is, 7v¢1(0)d2(v)ByT = ¢1(0)p2(v) B, we have ¢1(70)
G2 (TV)TYByT = ¢1(0)P2(v)B. Hence

¢1(70) = ¢1(0) $1(10) = ¢1(w™**)1(0)
G2(TV) = ¢ga(v)  or $2(Tv) = G2 (wW*)d2(v)
T’Yﬂ’YT:ﬂ TVﬁ’VTZle( 4k)¢2(w )ﬁ7 k= L..., 1L

In the former case, from 76 = 6, 7v = v, we have 0, v € R*. We shall determine
the structure of the group {8 € Spin(10,C) | TyfvyT = B} = Spin(10,C)™" =
((F6®)E,)™. The group ((Es%)p,)™ acts on the R-vector space

V5’5:{X€30’4E1 % (B1 x X) = X, 77X = X}

0 0 0
= {X =10 & 2 || L& eRx€(€)y= Q:/}
0 71 &

with the norm
(Br, X, X) = 2171 — 283,

Since the group Spin(10,C)™ is connected, we can define a homomorphism
71 Spin(10,C)™ — O(V®2)? = O(5,5)° (which is the connected component
subgroup of O(5,5)) by n(a) = a|V>®. Ker m = {1,0}. Since dim(((ec%)z,)™)
= dim((e7(7))o) — dimR — dimR = 47 — 1 — 1 (Theorem 4.3.1) = 45 =
dim(o(5,5)), 7 is onto. Hence we have Spin(10,C)77/Z5 = O(5,5)°. Therefore
Spin(10,C)™ is spin(5,5) as a double covering group of O(5,5)°. Hence the
group of the former case is (R* x R* x spin(5,5))/Z2(Z2 = {(1,1,1),(1, -1,
0)}) = R* x R" x spin(5,5). The other cases are impossible, because there
exists no § € C* satisfying 70 = w=*¢ (k = 1,...,11). Thus we have
(Err)o = R*x R x spin(5,5) = (R x R* x spin(5,5)) x {1, —1} (note that
w4(—1,1,1) = =1).

(3) 71 and v are conjugate under d; € G.¢ c F,° c E¢ c E;°
61_17151 = v and ¢, satisfies §1k3 = k301,017 = 761. Hence we have (E7C)"3 N
(B:9™ = (E;%)"s N (B;°)™, so we shall determine the structure of the
group (E7(7))ev = (E7C)K3 N (E7C)T'Yl. Now, for o € (E7(7))ed - (E7C)ed =
a 0
0 a”
such that a = ¢(a, 8) = ¢(a)B (Theorem 4.3.2.(3)). From 7y;ay17 = «, that

(E;%)"3, there exist a = ( 1) e C* C SL(2,C) and 8 € Spin(12,C)
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is, T7y16(a) BT = ¢(a)B, we have ¢(Ta)Ty1 87 = ¢(a)B. Hence

¢(ta) = ¢(a) or d(ta) = —¢(a)
T BNT =0 TV BNT = —0f.

In the former case, Ta = a, that is, a € R* and the group Spin(12,C)™" is
spin(6,6) (Theorem 4.3.2.(1)). Hence the group of the former case is (R* x
spin(6,6))/Zy (Zo = {(1,1),(—1,—0)}) = R* x spin(6,6). In the latter case,
a = il and 8 = ¢(—il)p satisfy the given condition and ¢ (il, p(—il)p) = p.
Thus we have (E7(7))ea = (R x spin(6,6)) x {1, p}. O

4.3.2. Subgroups of type RO Eg(_2), RO© R® D5(_45) and R® D5(_s)
of E7(_o5)

Theorem 4.3.2.1.  The 3-graded decomposition of e7(_a5) = (ez)7

e7(—25) = 9-3DPg-2DFg-1 DG D g1 D g2 D 93
5
with respect to ad Z, Z = 4')(4(E1 V Ep),0,0, —§>, is given by
g0 = G, 0<k<1<7, Gy, fll(ek) Fl(ek) 0<k<T,
’ (Ba — E3)~, E1V By, 1 47

g-1= {Fz(ek), Fy(er), 0< k<7, El} 17

g2 = {As(ex) + Fa(er), As(er) — Fy(er), 0< k <7} 16

g-3 = {Fl(ek), 0 S k S 7, Eg, Eg} 10

g1 =Ma—1)A ™", @2 =A(g—2)A ", g3 =A(g_s)A "

We use the same notation as that in 4.3. Since (e7(—25))co = (679)ew N
(e79)™ = (e79)" N (e79)7, (er(—a25))0 = (e79)0 N (e79)7 = (e79)7*s N (e79)7,
(e7(=25))ed = (e79)eaN (e79)7 = (e79)%2 N (e7Y)™, we shall determine the struc-
tures of groups

(Er(=25))ev = (Br9)ew N (B79)T = (E7°)" 0 (E;°)T,
(Er(~25))0 = (B7%)o N (E79)T = (B;)7* N (B;°)T,
(Br(—25))ed = (E19)ea N (B7°)T = (B;9)" 0 (B;°)".

Theorem 4.3.2.2. (1) (E7(_a5))er = (RT X Eg(_6)) x {1,—1}.
(2) (Br(—25))0 = (R" x R" x Spin(1,9)) x {1, -1}
(3) (E7(—25))ed = 1?,+ X SpZ’I’L(2, 10)

Proof. (1) For o € (E7(_25))ev C (E7 New = (B79), there exist 6 € C*
and 8 € Eg% such that a = p3(6,8) = ¢1(0)3 (Theorem 4.3.2.(1)). From
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TaT = «, that is, 7¢1(60)57 = ¢1(0)5, we have ¢1(70)761 = ¢1(0)5. Hence

¢1(70) = ¢1(0) $1(10) = p1(w)p1(0) or $1(70) = 1 (w?)1(0)
AT = B3, AT = ¢1(w?)p TAT = ¢1(w)p.

In the first case, 760 = 0, that is, 6 € R* and 3 € (E6C)T = Fg(_26). Therefore
the group of the first case is R* X Eg(_o6). The second and the third cases are
impossible, because there exists no 6 € C satisfying 760 = w* (k = 1,2). Thus
we have (E7(—25))ev ~ R* x E6(—26) = (R+ X EG(_QG)) X {]., 71}.

(2) For a € (E7(—25)0 C (E7C)0 = (E;%)7's, there exist 0, € C* and
B € Spin(10,C) such that a = p4(0,v,8) = ¢1(0)¢2(v)5 (Theorem 4.3.2.(2)).
From Tar = «, that is, 7¢1(0)¢2(v)BT = ¢1(0)p2(v) 5, we have ¢1(76)pa(Tv)
TBT = ¢1(0)d2(v)B. Hence

o1(10) = ¢1(0) P1(10) = d1(w™ )1 (0)
$2(Tv) = ¢2(v) or P2(Tv) = g (W) P2 (v)
AT =0 78T = ¢1 (W) po(w™4) 3, k=1,---,11.

In the former case, we have 70 = 0, 7v = v, that is, 6, € R*. We shall deter-
mine the structure of the group {8 € Spin(10,C) | 787 = B} = Spin(10,C)” =
((E¢“)g,)". The group ((Es®)g,)™ acts on

V1’9={X630‘4E1 ¥ (Byx X) = X,7X = X}

0 0 0
= 0 & 71| &G eR €€
0 71 &

(B, X, X) =217 — &63.

with the norm

Since the group Spin(10,C)" is connected, we can define a homomorphism
7 Spin(10,C)" — SO(V1?) = SO(1,9) by m(a) = a|VY?. Ker 7 = {1,0} =
Z,. Since dim((e69)g,)7) = dim((e7(—25))0) — dimR — dim R = 47 -1 -1
(Theorem 4.3.1) = 45 = dim(0(1,9)), 7 is onto. Hence Spin(10,C)"/Zy =
S0O(1,9), so Spin(10,C)7 is Spin(1,9) as a double covering group of SO(1,9).
Therefore the group of the former case is (R* x R* x Spin(1,9))/Zs(Z, =
{(1,1,1),(1,-1,0)}) = R* x R x Spin(1,9). The other cases are impossible,
because there exists no 0 € C satisfying 70 = w0 (k = 1,...,11). Thus we
have (E7(_a5))0 = R* x R" x Spin(1,9) = (RT x R* x Spin(1,9)) x {1, —1}.

(3) For a € (Er(—25))ed C (E7C)€d = (E7C)"””3, there exist a € C* and
8 € Spin(12,C) such that o = 9(a,8) = ¢(a)B (Theorem 4.3.2.(3)). From
TaT = o, that is, 7¢(a) 87 = «, we have ¢(ra)T07 = ¢(a)B. Hence

G0 =00) [ o(r0) = ~600)
TOT =0 TOT = —0f
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In the former case, we have 76 = 0, hence § € R*. We shall determine the struc-
ture of the group {8 € Spin(12,C) |47 = B} = Spin(12,0)7 = ((E;°)=+)".
The group ((E7;°)™*)™ acts on the R-vector space

V30 = (BC),r ={P € B |kP = P,7P = P}
0 0 0 m

0 0
) ) ) eR?
—dpr={lo & «|. [0 o 0],09 §2,83,m1,7
07 &) \o 00 nee
with the norm
1 _
(P,P)H = §{NP»P} =mn — &8s + 2171.

Since the group Spin(12,C)" is connected, we can define a homomorphism
7 1 Spin(12,C)T — O(VZ190 = 0(2,10)° (which is the connected compo-
nent subgroup of O(2,10)) by m(a) = «|V?10. Ker 7 = {1,060} = Z,. Since
dim((e7%)"*) = dim((e7(—25))ea) — dim(sl(2, R)) = (47+10 x 2) — 3 (Theorem
4.3.1) = 54 = dim(0(2, 10)), 7 is onto. Hence Spin(12,C)7/Zs = 0(2,10)°, so
Spin(12,C)™ is spin(2,10) as a double covering group of O(2,10)°. Therefore
the group of the former case is (R* x spin(2,10))/Zs, Z2 = {(1,1), (-1, —0)}.
The mapping h : R* x spin(2,10) — R* x spin(2,10),

h6.5) = { (6, 8) for 6 > 0

(—0,—0p) for # <0
induces an isomorphism (R* x spin(2,10))/Zy = R x spin(2,10). The latter
case is impossible. Indeed, since 3 € Spin(12,C)7 acts on V219 3 induces a
matrix B € M(12,C) such that 7B = —B,'BIsB = I,. Put B = iB',B’ €
M (12, R), then ‘B'I, B’ = —I,, which is false, because the signatures of both
sides are different. Thus we have (E7(_25))eq = R™ x spin(2,10). O

4.4. Subgroups of type C & E6C, CaCadD; and A,° ®C ® DsC of
E;¢

In the Lie algebra ;¢ let
) 3
7= @(— 2iGo1,0,0, —5).

Theorem 4.4.1.  The 3-graded decomposition of er(7) = (ez9)™ (or
c
(44 )

J

e77) =9-3Dg-2Dg-1 DY D Y1 D P2 D g3

3
with respect to ad Z, Z = Q')(— 2iGo1, 0,0, —§>, is given by



3-graded decompositions of exceptional Lie algebras g and group realizations 823

iGo1, iGa3, Gaa, iGas, Gag, 1Gar, iG34, G35, iG36, Ga7, iGys,
Gae, 1Gar, iGs6, Gs7, iGer, (E1— E»)™, (B2 — E3)™, 1,
/}1(62) ’LAl(eg) A1(€4) ZAl( ) Al(eg) iA1(€7)
_ ) Files), iFi(es), Fi(ea), iFi(es), Files), iFi(er),
g0 = Eg(l — 281) }?2(62 — 263), F2(€4 — 285), 2(66 - 267),
A3(1 —iep), fz’g(EQ + ie3), 3(84 +ies), 3(66 + ier),
Fy(1 +ie1), Fa(ez +ies), F2(€4 + ies), Fz(ee. + te7),
Fg(l + iel), F3(62 — 163), F3(€4 — 7,65), F3(66 — 167) 47
1{12(1 + zel), 1{12(62 + 263), /}2(64 + 285), A2(€6 + 267),
Ag(l + iel), {13(62 - 263), 14 (84 — i85), A3(€6 — i€7),
. F2(1 +iep), Fg(eg + ies), F2(€4 +ies), F (66 + ier),
! Eg(l + ie1), F3(€2 —ies), F3(64 —ies), F (66 —ier),
Fy(ez), iFy(e3), Fi(es), iFi(es), Fi(es), iFi(er),
Fi(1+iey), By, k=1,2,3 26
Goz — iG12, iGos + Gis, Gos — G4, 1Gos + Gis,
go— Gos — iGre, 1Gor + Gz, A1(1 —ier), Fl( ep —ie1),
F2(1 + iel), FQ(@Q + i63) F2(€4 + 265) FQ(@G + i67),
Fg(l + iel), FQ(EQ — ieg), F2(64 — Z€5), F2(€6 — i67) 16

g-3= {Fl(l — iel)} 1
g1 =7Ag-)A'T, ga=TA(g-2)AT'T, g3 =TA(g-3)A T
For a € U(1,C%), we define the C-linear transformation D(a) of 3¢ by

& w3a axm
D)X = |z3a & amal|, XeJ©.
are azria &3

Then D(a) € F,© ¢ Es¢ ¢ BE;°.
3 3
Since iZ = @(26‘01,0,0,—51') = B(2G1,0,0,0) + @(0,0,0,—51'), fur-
3
thermore @(2G01,0, 0, O) and @(0,0, 0, —52) commute, we have
27 3
29 = exp TZ = exp(P(27Go1,0,0,0)) exp @(O, 0,0, —§m) = —014,
271 3 .
Z4 = exp TZ = exp(®(7Go1,0,0,0)) exp 45(0, 0,0, —im) = Oyly,
271 47 .
23 = exp TZ = exp @(?Gm, 0, 0,0) exp($(0,0,0, —7i)) = o33,

where 04 = D(e1), 14 = ¢1(e”2™/8), 03 = D(e?71/3), 13 = ¢ (e27/0).

z9 = —ot is conjugate to

2 =1
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in B;¢. Indeed, let 6, = ¢(.J), then we have
6y N (—01)by =1
Next, we shall show that z4 = o4¢4 is conjugate to
a = —ou, =g (e¥TE)

in E7C. Indeed, §, satisfies 8, Y0404 = 04 and 6, L1404 = o a 71L4*1, where
Vo € Eg© is defined by

§1 dx3z  iTo
\/C_TX =\|iT3 —-& —-x1 |, Xe€ 30.
ixg —x1 —E&3

Hence we have

—1 -1
84" outady = —Jo oga ",

that is, o4t4 is conjugate to —/o _1O'4L4_1. Next, we shall show that /ooy is
conjugate to o in E¢® C E;°. For this end, for the induced differential mapping
06, 1 5p(1, H ) xsl(6,C) — e6C of g, we have Go1 = s, (0, diag(0,0,i/2, —i/2,
—1/2,i/2)) ([6]). Hence we have

Vo o we(1,diag(—1,—1,4,4,4,%)), o4 = @e(1,diag(1,1,4,—i,—i,1)).
So we have
Voo, = pe(1,diag(—1,-1,-1,1,1,-1)),

which is conjugate to
306(17 dlag(17 17 _17 _17 _17 _1)) =J0.

Furthermore, this conjugation is given under ¢g(1, SL(6,C)) C E¢“ < F°.

Hence we see that o4¢4 is conjugate to —ouy L.

Finally, we shall show that z3 = o3t3 is conjugate to
z3' = —03
in E;°. Indeed, denote wg = €2™/6 then w; = wg?. First note that

o3t3(X, Y, €,n) = (w03 X, we ™ o3, =&, —n) = —(~weo3 X, —ws ™ 'o3Y, &, m)
= —(w?0o3X,wo3Y, &, )
= —w(03X,03Y,€,m)  (note that w?1 € Eg©).

Now, we use Go1 = g, (0, diag(0,0,i/2, —i/2,—i/2,i/2)) again, then we have

2771/3’6—2771/3’6—2771/3,62#2/3))

03 = ¢6<1ﬂdlag(1a Le
= apg(l,diag(l,1,w,w2,w27w)).
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Since the central element w?E of SL(6,C) is transfered to the central element
w21 of Eg¢ by g, we have

(w21>03 = 506(17 diag(w27w2u 1w, w, 1))7
which is conjugate to
we(1, diag(1, 1,w,w2,w2,w)) =03

under pg(1,SL(6,C)) C E¢® c E;°. Hence we see that o33 is conjugate to
—03.

Hereafter, we use 29’, 24" and 23" instead of 23, z4 and z3, respectively.

Since (e'?C)ev — (€7C)z2/ _ (€7C)L, (676)0 — (€7C)z4/ _ (e7C)a'L4*17 (€7C)ed
= (e79)* = (¢79)73, we shall determine the structures of groups

(Br%)ew = (BrO)2 = (B:O), (Bx%)o = (BO)™ = (BO)™ ™,
(B79)ea = (B79)*" = (B;%)7s,

o Tgh%)rem 4.4.2. (1) (B9 = (C* x E9) /23, Z5 = {(1,1), (w,wl),
w, w1

(2) (E7C)0 = (C*xC*xSpin(10,C))/ Z12, Z12 = {(w124k,w12k; ¢1(W124k)
¢2(W12k)) | k= 0, ].7 ey 11}, W12 = 627Ti/12.

(3) (E'?C)ed = (SL(27 C) x C* x szn(107 C))/Z4a Zy= {(Ea 1, 1)7 (E7 -1,
0)3 (_E7 _iy _D(el))v (_Ea ia _GD(el))}

Proof. (1) (E7C)ev = (E7C)L >~ (C* x E6C)/Z3 is already shown in The-
orem 4.3.2.(1).

(2) Let Spin(10,C) = (Es9) g, = (E7C)(E170’170),(_E1,071’0). We define a
mapping ¢4 : C* x C* x Spin(10,C) — (B;C)ou" = (E:%)o by

304(97 v, 5) = ¢1(9)¢2(V)ﬂ7
Although ¢4~ is different from tg, by the same proof of Theorem 4.3.2.(2), we
have (E7%)o = (C* x C* x Spin(10,C))/ Z,

(3) Let Spin(10,C) = ((E7%)™")(r,(1),0.0,0).(F: (e1),0,0,0) (cf. [5, Propo-
sition 4.7.(2)]). We define a mapping ¢5 : SL(2,C) x U(1, C%) x Spin
(10,0) — (B%)”* by

¢5(A, a, 8) = ¢(A)D(a)B,

@5 is well-defined because o3 = @5(F,wy,1),w; = €*™1/3. Since D(a) com-
mutes with ¢(A4) and 3, 5 is a homomorphism. Ker p5 = {(F,1,1), (E, —1,
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0),(=E,e1,—D(ey)), (—E, —e1,—oD(e1))} = Z4. Since (E;9)?® is connected
and dimg(s((2,C0) @ u(1,C%) @ spin(10,C)) = 3+ 1+45 = 474+ 1+ 1 =
dimc((e79)ey) (Theorem 4.4.1), @5 is onto. Thus we have (E7C)€U = (E7C)‘73
(SL(2,C) x U(1,C%) x Spin(10,C))/ Z4 = (SL(2,C) x C* x Spin(10,C))/ Zy,
Z,={(F,1,1),(E,—-1,0),(—E,—i,—D(e1)),(—E,i,—0D(e1))} (note that by
the isomorphism f : U(1,C%) — C*, f(a) = (a+a~)/2+ ((a —a~1)/2)ieq, e
is transformed to —i). O

Il

4.4.1. Subgroups of type R® Eg), RO RO D55y and A1 © R ® Dy
of E7(7)

We use the same notation as that in 4.4. Since (e7(7))er = (7%)e N
(e7C)T'}/1 _ (e7C)Lm(e7C)T’Yl, (27(7))0 — (270)0ﬂ(e70)771 — (Q7C)UL4*1m(e7C)T’Yl’
(er¢7))ed = (e79)ea N (e79)™ = (e79)73 N (7)™, we shall determine the
structures of groups

(E7(7))ev = (E7C)ev N (E7C)TA/1 = (E7C)L N (E7C)TA/17
(Brry)o = (Br9)o N (B9)™ = (%)™ 0 (B,°)™,
(Brr))ed = (B7%)ea N (E79)™ = (B;9)7* N (B,°)™™.
o' € F,¢ ¢ E¢¢ c E;“ is defined by
&1 T3 —T2
o’'X = T3 52 -z |, Xe€ 30.
—ry —T1 &3

Theorem 4.4.1.1. (1) (E7(7))es = (RT % Eg(6)) % {1,-1}.

(2) (E7(7))0 = (R+ X R+ X szn<5a5)) X {17 _1}

(3) (E7(7))ed = (SL(27R) X R+ X szn(575)) X {Lalapa OJIO}'

Proof. (1) 71 and « are conjugate under &; € GyY c B¢ c EC ¢
B¢ : 6171'7161 = v and §; satisfies 61t = 161,017 = 7. Hence we have
(E:9) N (B9 = (E;%) N (E;°)™, so we shall determine the structure of
the group (Er(7))es = (E79)" N (Ez9)™. Now, for a € (E7z))er C (B7)ew =
(E;9), there exist # € C* and 8 € E¢© such that o = @3(0,3) = ¢1(0)3
(Theorem 4.4.2.(1)). From 7yayT = «, that is, 7y¢1(0)8yT = ¢1(0)3, we have
¢1(T0)TyByT = ¢1(0)B. Hence

{ $1(70) = ¢1(0) { $1(70) = ¢1(w)91(0) or { $1(70) = 1 (w?)1(0)

)1
By = 3, VBT = ¢1(w?) B VBT = ¢1(w)B.

In the first case 70 = 0, that is, 6 € R* and 3 € (EGC)” = FEg). Hence
the group of the first case is R* x Eg(g). The second and the third cases are
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impossible, because there exists no € C* satisfying 70 = w*0 (k = 1,2).
Hence we have (Er(7))ev = R* x Eg(5) = (R" x Eg6)) % {1, —1}.

(2) Although ¢4~! is different from tg, by the same way as Theorem
4.3.1.1.(2), we have (E(7))o = (RT x RY x spin(5,5)) x {1,—1}.

(3) For a € (E7(7))eqa C (E79)ea = (B7%)73, there exist A € SL(2,C),a €
U(1,C%) and 3 € Spin(10,C) such that o = @5(A, a, ) = ¢(A)D(a)B (The-
orem 4.4.2.(3)). From 7yiay17 = «, that is, 7y16(A)D(a)fym = ¢(A)D(a)s,
we have ¢(7A)D(7a)Ty1 5717 = $(A)D(a)s. Hence

P(TA) = ¢(A) P(TA) = ¢(A)
(i) D(ra) = D(a) (i) D(r@) = D(—a)
™PnT =5, ™BNT = of,
o(TA) = ¢(-A) o(TA) = ¢(—-A)
(iii) ¢ D(7a) = D(eja) or (iv){ D(ra) = D(—eja)
™BNT = —D(e1)p ™PNnT = —oD(e1)p.

(i) From 7A = A, 7@ = a, we have A € SL(2,R),a € U(1,C’) = R",
respectively. The group {# € Spin(10,C)|rmv16m7 = B} = Spin(10,C)™
= (((E7C)“*“)(Fl(1))0}070)7(5(61%07070))”1 acts on the R-vector space
VS = ((mc)n,rwl)(Fl(l),0,0,0),(Fl(el),0,0,0)

{PE‘BC kP =Pt P =P, }
{M(Fl(1)70’070)7p} = {/’L(Fl(el)70’070)7p} =0

0 0 0 m 0 0 £, €Com,ne R,
P = 0 fz x|, 0 0 0 ,0717 T € Q:/
0 T1 53 0 00 (1 1'1) (617$1) 0

with the norm

1
(P,P)H = §{NP»P} =mn — &3 + x171.

Hence the group Spin(10,C)™ " is spin(5,5) as in a similar way to (1). There-
fore the group of (i) is (SL(2, R) x R* x spin(5,5))/Z2, Z2 = {(F,1,1),(E, —1,
0)}. The mapping h : SL(2, R) x R* x spin(5,5) — SL(2, R) x R x spin(5, 5),
(A,0,5) for >0

A,0,8) =
h(4,8, ) { (A, —0,08) for <0

induces an isomorphim (SL(2, R) x R* x spin(5,5))/Z> = SL(2, R) x R x
spin(5,5).

(ii) ¢4 (E, el,a’D(— D)) =o'
(i) g (i1, ol >D(1j§1)p):p
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(iv) 4 (z’L H—\/; qS(—iI)D(%)U’p) = o'p.

Thus we have (E7(7))eq = (SL(2,R) x R" x spin(5,5)) x {1,0", p, 0’ p}. O

4.4.2. Subgroups of type R ® Eg_2;), R® R® D5(_37) and A, ® RS
D5(—27) of E7(—25)

We define 85 € Eg® by 85 = exp (%1151(1)) and define a complex-conjugate

linear transformation 7 of J¢ by

7'51 7’L'TT2 7’L'7'$3
X = 65_17'(55)( = | —itxs —7&3 —-171 |, XE€E SC
—iTTy —TX1 —7&5

([4, 3.4.4]). This 7 is naturally extented to the complex-conjugate linear trans-
formation 7 of B¢ by

Tl(XaK§7T]) = (Tle TIUY7 TfaTn)v (XaY7§7n) € mq

C

In the Lie algebra e;~, we have

T19(¢, A, B,v)T1 = @(11971, 11 A, T10B, TV).
Since 7 and 77 are related with 71 = 65717'(55, we have
Eg(—26) = (E6°)™ = (B6“)™, Eq(_as) = (B:°)" = (B;,“)™.
Lemma 4.4.2.1.  In the Lie algebra ¢;©
(1) 1Gom = —Goi, TG = G
(2 le{l(a)’rl = 7121{1(7'5), 7'1112((1)7’1 = 7Z‘ﬁ3(7'a), le?{g(a)’rl :ﬁg(’]’a ,
TlFl(a)’Tl :Fl(Ta), TlAQ(a)leiAg(Ta), TlAg(a)lefiAg(Tﬁ).
3) T1(§1E1 + & B2 + §3E3) 1 = ((7&1) Er + (7€) Ea + (T€) E3)7,
&1+ &+ & =0.
" { nEym =By, mEor =—E3, 7 Esm = —E»,

BT = Ey, mEyry =—FE3, 71E3m = —E>.

, we have

~—

T1F1(Q)7'1:7F1(T§),TlFQ((Z)’Tl:72.1*:’3(’7'6),Tng(a)lefiF:;(Ta),
7'113’1((1)71 = 7F1(’T§), 7'1}:_‘2((1)71 = iFg(Tﬁ), 7'1}:_‘3((1)71 = iFg(Tﬁ).
(6) 7'117'1 =1.

Theorem 4.4.2.2.  The 3-graded decomposition of e7(_zs5) = (ez)™

)

e7(—25) = 9-3DP2DFg-1 DG D g1 D g2 D 93
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3
with respect to ad Z,Z = @(f 2iGo1, 0,0, 75), is given by

iGo1, Gri, 2 <k <7, i(E1 — Es)™, i(Ey— E3)™, 1,
Ay(er), iFy(ex), 2<k<T,

Fg(l — iel) — ZF3(1 — iel), g(ek — Z@k+1> + ng(ek + i€k+1),
go=1q iF3(1—ier) — F3(1 —ier), iFy(ep —iery1) + F;»,(e;c +iegt1),
F2(1 —idey) — 2F3(1 —ieq) g(ek —iegt1) + ng(e;C +iegt1),
ZFQ(l —iep) — F3(1 — iel), iFy(er —iegy1) + Fg(ek +iekt1),

k=246 ) 47

Fl(ek) 2 < k < 7 ZFl(l +Z€k> Eh Eg — E3, E(EQ + Eg),

9

A2(1 + 261) ZF3(1 + 161) Ag(ek + i€k+1) + ZF&( er — i6k+1),
gy = zAg(l +ie1) — F3(1 +ieq), Z:AQ(ek +ieks1) + Fg(ek —iept1),
A3(1 +ier) + ng(l +ie1), As(ex +ieg+1) — ZEQ(Ek — i€k+1)s
iAs(1+iey) + Fo(1+ieq), iAs(eg +iepr1) — Fo(er — iepy1),
k=246 ) 26
iGok + Gk, 2 <k <7,iA (1 —iey), Fi(1 —iey),
gg= Fg(l—‘riel)—iFg(l—l—iel) Fg(ek—I-Z'ek_,_l)—l-ZFg( k—iek+1),

iFy(1 +iep) — Fg(]. +iep), ng(ek +iegt1) + Fg(ek — i€k+1),
k=246 ) 16

g3 = {Fi(eg —ie1)} 1
g1 =TA@-)AT'T g2 =TA(g-2)ATIT, g3 =TA(g-3) AT
We use the same notation as that in 4.4. Since (e7(_25))ev = (e7c)eu N
(e79)™ = (e29) N (7)™, (er(—25))0 = (ez%)0 N (er9)™ = (e79) 74" M (€)™

(er(—25))ea = (e79)ea N (e79)™ = (e79)72 N (e79)™, we shall determine the
structures of groups

(Er(=25))ev = (Br9)ew N (Br9)™ = (B:9)" N (B;9)™,
(Br(—25))0 = (B:)o N (E:C) = (B,C)™ " n (B,°)"
(Br(—25))ea = (E79)ea N (B;°)™ = (B;°)75 N (B;°)™.

)

Theorem 4.4.2.3. (1) (E7(_a5))er = (R" X Eg(_26)) x {1,—1}.

(2) (Br(-25))0 = (R" x R" x Spin(1,9)) x {1, ~1}.

(3) (Era9)ea = (SL2,R) x R x Spin(1,9)) x {1,0'}.

Proof. (1) For a € (E7(—25))ev C (EB7 New = (E79), there exist § € C*
and 8 € Eg” such that a = ¢3(0,3) = ¢1(0)B (Theorem 4.4.2.(1)). The
condition myar; = ais 71¢1(0) 811 = ¢1(0)8. ¢1(0) satisfies 101 (0)11 = ¢1(70),
so we have ¢1(70)m10m1 = ¢1(0)5. Hence

¢1(76) = ¢1(0) $1(70) = ¢1(w)d1(0) or P1(10) = ¢1(w?)h1(0)
17T = [, T = ¢1(w?)B 1811 = ¢1(w)B.
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In the first case, 70 = 0, that is, # € R* and 3 € (E(;C)T1 ~ (E6C)T = Fg(—2)-
Hence the group of the first case is R* X Eg(_26). The second and the third cases

are impossible, because there are no § € C* satlsfylng 0 = Wk (k = 1,2).
Thus we have (E7(—25))ev ~ R* x EG(—QG) (R X EG ) {1 —1}

(2) Although the proof is similar to that of Theorem 4.3.2.2.(2), we will
give the proof again. For o € (E7(_25))0 C (E:%) = (E7C)m4_1’ there exist
0,v € C* and 8 € Spin(10,C) such that a = p4(0,v, ) = ¢1(0)p2(v)5 (The-
orem 4.3.2.(2)). The condition mamn = « is 71¢1(0)p2(v) B = ¢1(0)P2(v)0.

#1(0), ¢2(v) satisfy 71¢1(0)71 = ¢1(70), T1d2(v)T1 = ¢2(TV), SO we have ¢1(70)
G2 (TV)T1 8711 = ¢1(0)P2(v) 3. Hence

¢1(70) = ¢1(0) ¢1(70) = dr(w™**)¢1(0)
P2(Tv) = $2(v) or P2(Tv) = d2(w )¢ (v)
T18m1 = 71811 = ¢1(WF)po(w™F)B, k=1,---11.

In the former case, from 76 = 6, 7v = v, we have 0, v € R*. We shall determine
the structure of the group {8 € Spin(10,C) |11 fm = B} = Spin(10,C)™ =
((F6%)g,)™. The group ((Es)p,)™ acts on the R-vector space

VIO ={X € 3C|4E; x (B, x X) = X, 7 X = X}

0 0 0
eC,
—x=1[0 & x &2

0 7 —1b 1 =1wwx+y,z€e R ye€y=—y

with the norm
(B, X, X) = —&(7&) — 21T1 = —&2(7€2) + z* — Y.

Since the group Spin(10,C)™ is connected, we can define a homomorphism
7 : Spin(10,C) — O(V19)? = 0(1,9)° by 7(a) = V9. Ker m = {1,0}.
Since dim(((e6“) p,)™) = dim((e7(—25))0)—dim R—dim R = 47—1—1 (Theorem
4.4.1) = 45 = dim(o(1,9)), 7 is onto. Hence we have Spin(10,C)™/Zy =
0O(1,9)Y. Therefore Spin(10,C)™ is Spin(1,9) as a double covering group of
0(1,9)°. Hence the group of the former case is (R*x R*x Spin(1,9))/Z2 (Z4 =
{(1,1,1),(1,-1,0)}) =2 R* x RT x Spin(1,9). The other cases are impossible,
because there exists no § € C* satisfying 70 = w™4*0 (k =1,...,11). Thus we
have (E7(—o5))0 = R* x R* x Spin(1,9) = (R" x R x Spin(1,9)) x {1, -1}.
(3) For o € (Er(—25))ed C (Er9)eq = (B7%)73, there exist A € SL(2,C),
a € U(1,C%) and § € Spin(10,C) such that a = ¢5(4,a,3) = ¢(A)D(a)s
(Theorem 4.4.2.(3)). The condition 7 am = «ais T1¢(A)D(a)Bm = ¢(A)D(a)s.
D(a) satisfies 71 D(a)my = D(1a), so we have ¢(7A)D(ra)r 71 = ¢(A)D(a)p.
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Hence
P(TA) = ¢(A) P(TA) = ¢(A)
(i){ D(ra) = D(a) (ii) ¢ D(ra) = D(—a)
1811 =, 1811 = 0,
P(TA) = ¢(—A) P(TA) = ¢(—A)
(iii) ¢ D(ra) = D(eya) or (iv)] D(ra) = D(—eja)
71811 = —D(e1)f 71811 = —oD(e1)p.

(i) From 7A = A and 7@ = a, we have A € SL(2,R) and a € U(1,C’) & R,
respectively. The group {8 € Spin(10,C)|n8n = B} = Spin(10,C)™ =
(((E7C)’““)(Fl(1),0’0’0)’(5(el)’oﬁoﬁo))Tl acts on the R-vector space

V= (B ) (£1(1),0,0,0),(Fi (1),0,0,0)

—{PE‘,BC kP =P,7P =P, }
{u(F1(1),0,0,0), P} = {u(Fi(e1),0,0,0), P} =0
00 0 m 0 0 &eCn,neR,
=< P= 0 & m ,10 0 01],0,n r1 €C,
0 = —7'52 0O 0 O

(1,z1) = (e1,21) =0

with the norm
1
(P, P), = §{uP,P} =mn + &(782) + 2171

Hence the group Spin(10,C)™ is Spin(1,9) and the group of (i) is SL(2, R) x
R*' x Spin(1,9) as in a similar way in Theorem 4.4.2.3.(2).
(ii) (E,e1,0'D(—e1)) =o.
(iii) and (iv) are impossible. Indeed, § satisfies (8P, 5P), = —(P,P),,
but this is false because the signatures of both sides are different.
Thus we have (E7(_25))ea = (SL(2, R) x R* x Spin(1,9)) x {1,0'}.
1
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