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The group homology and an algebraic version of
the zero-in-the-spectrum conjecture

By

Shin-ichi Oguni

Abstract

We introduce an algorithm which transforms a finitely presented
group G into another one GΨ. By using this, we can get many finitely
presented groups whose group homology with coefficients in the group
von Neumann algebra vanish, that is, many counterexamples to an alge-
braic version of the zero-in-the-spectrum conjecture. Moreover we prove
that the Baum-Connes conjecture does not imply the algebraic version of
the zero-in-the-spectrum conjecture for finitely presented groups. Also
we will show that for any p ≥ 3 the p-th group homology of GΨ coming
from free groups has infinite rank.

1. Introduction

In this paper we will give an algorithm Ψ which transforms a discrete
group G into another one GΨ and its applications to the zero-in-the-spectrum
conjecture and the group homology. GΨ is given by successive procedures:
taking infinite sums of G, a semi-direct product with Z and an HNN-extension
(Section 2). We see that when G is a finitely presented group, then GΨ is also
finitely presented. In the case when G satisfies certain conditions, then GΨ

shows particular phenomena in so-called the zero-in-the-spectrum conjecture
by Gromov ([3]) and the group homology.

Firstly we will give an application to the zero-in-the-spectrum conjecture.
The conjecture claims that for a closed, aspherical and connected Riemannian
manifold M there always exists some p ≥ 0, such that zero belongs to the
spectrum of the Laplace-Beltrami operator ∆p acting on square integrable p-
forms on the universal covering M̃ of M . In the non-aspherical case there exist
counterexamples ([4], [5]). In this paper we discuss the case of non-manifolds.
Let Hp (G;N (G)) be the homology of G with coefficients in the group von
Neumann algebra N (G). It is known that if BG is a closed manifold, then the
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original conjecture is equivalent to the algebraic condition that for some p ≥ 0,
Hp (G;N (G)) �= 0 holds ([6, p.438]).

Here we use the following notation.

Definition 1.1. Let n be a non-negative integer or n = ∞. Define Fn

to be the class of groups for which BG are CW-complexes which have a finite
number of p-dimensional cells for p ≤ n. Moreover define Fclm to be the class
of groups for which BG are closed manifolds.

For example, G ∈ F0 if and only if G is a discrete group, G ∈ F1 if and only if
G is a finitely generated group, G ∈ F2 if and only if G is a finitely presented
group, and G ∈ F∞ if and only if G is a finite type group.

Formally we can generalize the zero-in-the-spectrum conjecture to an al-
gebraic version of it. When n is a non-negative integer, ∞ or clm, we will call
the following conjecture the zero-in-the-spectrum conjecture for Fn.

Conjecture 1.1. Let G be in Fn. Then for some p ≥ 0, Hp (G;N (G))
�= 0 holds.

Several counterexamples to the zero-in-the-spectrum conjecture for F1 are eas-
ily constructed, but they are infinitely presented. In this paper we show that
many GΨ do not satisfy the zero-in-the-spectrum conjecture for F2. Actually,
the following theorem is proved in Section 3.

Theorem 1.1. When G is a non-amenable group, then GΨ satisfies
H∗ (GΨ;N (GΨ)) = 0.

In particular when G is a finitely presented and non-amenable group, then
GΨ is a counterexample to the zero-in-the-spectrum conjecture for F2.

Moreover we should study the relation of GΨ to the Baum-Connes conjec-
ture because it is known that the Baum-Connes conjecture implies the zero-
in-the-spectrum conjecture for Fclm ([8, p.61]). The Baum-Connes conjecture
identifies G-equivariant K-homology with G-compact supports of the classify-
ing space EG for proper actions of G and the K-theory of the reduced C∗-
algebra C∗

r (G) ([8]). We show that the situation is completely different when
BG is far from being a manifold. Assume that G is finitely presented, non-
amenable and has the Haagerup property. For example, G could be a free group
of rank m ≥ 2. Then GΨ satisfies the Baum-Connes conjecture, but does not
satisfy the Conjecture 1.1 (Section 3). Therefore,

Theorem 1.2. The Baum-Connes conjecture does not imply the the
zero-in-the-spectrum conjecture for F2.

Finally we will calculate the group homology of GΨ coming from free
groups in Section 4. Let Hp (G; Z) be the group homology of G.

Theorem 1.3. Suppose that G is a free group of rank m ≥ 1, then GΨ
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satisfies the following.

Hp(GΨ; Z)hasinfinite rank (p ≥ 3),

H2(GΨ; Z) ∼= Z2m+m2
,

H1(GΨ; Z) ∼= Zm+1,

H0(GΨ; Z) ∼= Z.

In particular GΨ is in F2 \ F3

Moreover Ψ is injective on the class of free groups.

This theorem shows that there exist many finitely presented groups most far
from finite type groups by using only the rational homology.

The author would like to express his gratitude to his adviser Professor
Tsuyoshi Kato for numerous suggestions and stimulating discussions. The au-
thor would like to express his gratitude to Professor Kenji Fukaya for conver-
sations on some topics discussed herein.

2. Construction of the algorithm Ψ

We will use [g, h] := g−1h−1gh and gh := h−1gh for g, h ∈ G.
We construct the algorithm

Ψ : F0 → F0; G �→ GΨ

passing through three steps.
Let G(k) (k ∈ Z) be infinite copies of G and g(k) be an element in G(k).

We identify G(0) with G. Let us put

G0 :=
⊕
k∈Z

G(k), H0 :=
⊕
l∈Z

G(2l) ⊕ G(2l+1), K0 :=
⊕
l∈Z

G(3l) ⊕ G(3l+1).

G1 := G0 � Z is the HNN-extension of G0 =
⊕
k∈Z

G(k) by the isomorphism

G0
∼→ G0; g(k) �→ g(k+1).

H1 := H0 � Z is the HNN-extension of H0 =
⊕
l∈Z

G(2l) ⊕G(2l+1) by the isomor-

phism

H0
∼→ H0; g(k) �→ g(k+2).

K1 := K0 �Z is the HNN-extension of K0 =
⊕
l∈Z

G(3l) ⊕G(3l+1) by the isomor-

phism

K0
∼→ K0; g(k) �→ g(k+3).
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Then we have presentations as:

G1 = 〈G, a | [G, Gak

](0 �= k ∈ Z)〉,

H1 =

〈
G(0), G(1), b

∣∣∣∣∣ [G(0), (G(1))bk

](k ∈ Z),
[G(0), (G(0))bk

], [G(1), (G(1))bk

](0 �= k ∈ Z)

〉
,

K1 =

〈
G(0), G(1), c

∣∣∣∣∣ [G(0), (G(1))ck

](k ∈ Z),
[G(0), (G(0))ck

], [G(1), (G(1))ck

](0 �= k ∈ Z)

〉
.

Let us regard H1 and K1 as subgroups of G1 by

H1 ↪→ G1; g(0), g(1), b �→ g, ga, a2,

K1 ↪→ G1; g(0), g(1), c �→ g, ga, a3.

Definition 2.1. GΨ is the HNN-extension of G1 by the isomorphism

H1
∼→ K1; g(0), g(1), b �→ g(0), g(1), c.

Then we have a presentation as:

GΨ =
〈

G, a, t

∣∣∣∣ [G, Gak

](0 �= k ∈ Z),
gt = g, (ga)t = ga(g ∈ G), (a2)t = a3

〉
.

Here we claim the following.

Lemma 2.1. The relations

gt = g, (ga)t = ga(g ∈ G), (a2)t = a3, 1 = [G, Ga]

imply the following relations

1 = [G, Gak

](0 �= k ∈ Z).

Proof. We have

1 = [G, Ga]ata−1
= [Ga, Ga2

]ta
−1

= [Ga, Ga3
]a

−1
= [G, Ga2

]

and

1 = [G, Ga2
]t = [G, Ga3

].

Suppose 1 = [G, Gak

] for 1 ≤ k ≤ 3N (N ≥ 1). Then since 2N + 1 ≤ 3N we
have

1 = [G, Ga2N+1
]t = [G, Ga3N+1

],

1 = [G, Ga2N+1
]ata−1

= [Ga, Ga2(N+1)
]ta

−1
= [Ga, Ga3(N+1)

]a
−1

= [G, Ga3N+2
].

Then since 2(N + 1) ≤ 3N + 1 we have

1 = [G, Ga2(N+1)
]t = [G, Ga3(N+1)

].
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Hence we have 1 = [G, Gak

] for 1 ≤ k ≤ 3(N + 1) (N ≥ 1). Consequently we
have 1 = [G, Gak

] for k ≥ 1. Moreover we have

1 = ([G, Gak

]a
−k

)−1 = [Ga−k

, G]−1 = [G, Ga−k

]

for k ≥ 1. Thus we get 1 = [G, Gak

] for 0 �= k ∈ Z.

Hence we get the most important property of the algorithm Ψ.

Corollary 2.1. Let

G = 〈si(1 ≤ i ≤ m) | ri(1 ≤ i ≤ n)〉
be a presentation. Then we have

GΨ =
〈

si(1 ≤ i ≤ m), a, t

∣∣∣∣ ri(1 ≤ i ≤ n), [si, s
a
j ](1 ≤ i, j ≤ m),

st
i = si, (sa

i )t = sa
i (1 ≤ i ≤ m), (a2)t = a3

〉
.

In particular when G is finitely presented or generated, GΨ has the same
property respectively.

If G is a finitely generated free group of rank m ≥ 1, then we have

H1(GΨ; Z) ∼= GΨ/[GΨ, GΨ] = 〈si(1 ≤ i ≤ m), t〉 ∼= Zm+1.

Accordingly we have the following.

Corollary 2.2. Ψ is injective on the class of free groups.

Also we can confirm easily that the algorithm Ψ has the following proper-
ties.

Proposition 2.1. GΨ is torsion-free if and only if G is torsion-free.

Proof. GΨ is an HNN-extension of G1 and G1 is an HNN-extension of
G0. Thus this proposition is clear by the torsion theorem for HNN-extensions
([7, p.185]).

Proposition 2.2. The cohomological dimension of GΨ is infinite if and
only if G is not trivial.

Proof. G has a torsion element if and only if GΨ has a torsion element
by Proposition 2.1. Then the cohomological dimension of each is infinite. If G

is torsion-free and not trivial, then we have G ⊃ Z. Thus we have GΨ ⊃
⊕
k∈Z

Z.

Consequently the cohomological dimension of GΨ is infinite. If G is trivial,
then we have GΨ = 〈a, t | (a2)t = a3〉. Hence GΨ is a torsion-free one-relator
group. Therefore the cohomological dimension of GΨ is two.

3. Counterexamples to the zero-in-the-spectrum conjecture for F2

In this section we will get counterexamples to the zero-in-the-spectrum
conjecture for F2.
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Definition 3.1. Let d be a non-negative integer or ∞. Define Zd to be
the class of groups for which Hp (G;N (G)) = 0 hold for p ≤ d.

Lemma 3.1. Let d, e be a non-negative integer or ∞. Then
(1) Let G be the directed union

⋃
i∈I

Gi of subgroups Gi ⊂ G. Suppose that

Gi ∈ Zd for each i ∈ I. Then we have G ∈ Zd.
(2) If G contains a normal subgroup H ⊂ G with H ∈ Zd, then we have

G ∈ Zd.
(3) If G ∈ Zd and H ∈ Ze, then we have G × H ∈ Zd+e+1.
(4) Z0 is the class of non-amenable groups.
(5) Let G = G1 ∗A G2 where A ↪→ G1 and A ↪→ G2. Suppose that G1, G2 ∈

Zd and A ∈ Zd−1. Then we have G ∈ Zd.
(6) Let G = H∗A = 〈H, t | θ(a) = at〉 where A ⊂ H and θ : A ↪→ H.

Suppose that H ∈ Zd and A ∈ Zd−1. Then we have G ∈ Zd.

Proof. (1) ∼ (4) are proved in [6, p.448] and (5), (6) are clear by Mayer-
Vietoris sequences ([1, p.178]), where we use that induction with an injective
homomorphism between two groups is a faithfully flat functor between two
categories of group von Neumann algebra modules ([6, p.253]).

Now we can prove Theorem 1.1 by using Corollary 2.1 and the above
Lemma.

Proof. When G is non-amenable, then we have G0, H0 ∈ Z∞ by Lemma
3.1 (1), (3), (4). Moreover we have G1, H1 ∈ Z∞ by Lemma 3.1 (2) or (6).
Accordingly we have GΨ ∈ Z∞ by Lemma 3.1 (6).

In particular when G is finitely presented and non-amenable, GΨ is a
counterexample to the zero-in-the-spectrum conjecture for F2 by Corollary 2.1.
Also we note that G0 is a counterexample to the zero-in-the-spectrum conjec-
ture for F0 and G1 is a counterexample to the zero-in-the-spectrum conjecture
for F1.

We note that there exist many counterexamples to the zero-in-the-
spectrum conjecture for F2 by Corollary 2.2.

We see the relation of GΨ to the Baum-Connes conjecture. We refer to [8]
about the Baum-Connes conjecture and Haagerup property.

Proposition 3.1. Suppose that G has Haagerup property, then GΨ sat-
isfies the Baum-Connes conjecture.

Proof. If G has Haagerup property, then
⊕

−K≤k≤K

G(k) has Haagerup

property, too. So
⊕

−K≤k≤K

G(k) satisfies the Baum-Connes conjecture ([8,

p.43]). G0 and H0 satisfy the Baum-Connes conjecture because G0 and H0

are directed unions of
⊕

−K≤k≤K

G(k) for all K ∈ Z ([8, p.38]). G1 and H1 sat-

isfy the Baum-Connes conjecture because G1 and H1 are HNN-extensions of
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G0 and H0 respectively ([8, p.40]). Therefore GΨ satisfies the Baum-Connes
conjecture because GΨ is an HNN-extension of G1 on H1 ([8, p.40]).

When G is a free group of rank m ≥ 2, this is finitely presented, non-
amenable and has the Haagerup property. Hence Theorem 1.2 follows by using
Theorem 1.1 and the above proposition.

Unfortunately none of GΨ is a counterexample to the zero-in-the-spectrum
conjecture for Fclm because if G is not trivial, then the cohomological dimension
of GΨ is infinite and if G is trivial, GΨ satisfies the Baum-Connes conjecture.

The author believes that neither the zero-in-the-spectrum conjecture for
Fn for any n = 3, 4, . . . ,∞ is true nor the Baum-Connes conjecture implies the
zero-in-the-spectrum conjecture for Fn for any n = 3, 4, . . . ,∞. We may expect
that GΨ can be a counterexample for Fn for n = 3, 4, . . . ,∞, but for example
GΨ coming from a free group is not contained in F3. In fact we calculate the
group homology of GΨ coming from free groups by using Künneth formula and
a Mayer-Vietoris sequence in the next section.

4. The group homology of GΨ coming from a free group

In this section, we calculate the group homology of GΨ coming from a free
group G, that is, we give the proof of Theorem 1.3. Let the generators of G be
si(1 ≤ i ≤ m).

We will follow five steps.
Firstly we can decide the group homology of G0, H0 and K0 by

Hn(G; Z) ∼= 0 (n ≥ 2),
H1(G; Z) = 〈si(1 ≤ i ≤ m)〉,
H0(G; Z) ∼= Z.

and Künneth formula. In fact we have

Hn(G0 = H0; Z) =
〈

s
(k1)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

(1 ≤ i1, i2, . . . , in ≤ m, k1 < k2 < · · · < kn)

〉
(n ≥ 1),

H0(G0 = H0; Z) ∼= Z.

Hn(K0; Z) =
〈

s
(k1)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

(1 ≤ i1, i2, . . . , in ≤ m,
k1 < k2 < · · · < kn, kj ≡ 0, 1 mod 3)

〉
(n ≥ 1),

H0(K0; Z) ∼= Z.

Secondly we will decide the group homology of G1. G1 = G0 � Z is the
HNN-extension of G0 =

⊕
k∈Z

G(k) by the isomorphism

θ : G0
∼→ G0; s

(k)
i �→ s

(k+1)
i .
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Thus we can use a Mayer-Vietoris sequence

· · · → Hn(G0; Z) αn→ Hn(G0; Z) → Hn(G1; Z) → Hn−1(G0; Z) → · · ·

where α∗ := θ∗ − id∗.

Lemma 4.1. αn is injective for n ≥ 1.

Proof. Let us put k := (k1, k2, . . . , kn),1 := (1, 1, . . . , 1), i := (i1, i2, . . . ,
in) and sk

i := s
(k1)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

.
Now we have αn(sk

i ) = sk+1
i − sk

i . If we have αn(
∑

λi
ksk

i ) = 0, then we
have

∑
(λi

k-1 − λi
k)sk

i ) = 0. Hence we have λi
k = λi

k-1. Because Hn(G0; Z) is
finitely generated, we have λi

k = 0 (∀i, ∀ k).

Because we have αn(sk
i ) = sk+1

i − sk
i and

Hn(G1; Z) ∼= Hn(G0; Z)/αn(Hn(G0; Z))

for n ≥ 2, we have

Hn(G1; Z) ∼=
〈

[s(0)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

]
(1 ≤ i1, i2, . . . , in ≤ m, 0 < k2 < · · · < kn)

〉
(n ≥ 2),

H1(G1; Z) ∼= G1/[G1, G1] = 〈si(1 ≤ i ≤ m), a〉,
H0(G1; Z) ∼= Z,

where [s(0)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

] denotes the equivalence class of s
(0)
i1

× s
(k2)
i2

×
· · · × s

(kn)
in

in Hn(G0; Z)/αn(Hn(G0; Z)).

Thirdly we will decide the group homology of H1. H1 := H0 � Z is the
HNN-extension of H0 =

⊕
l∈Z

G(2l) ⊕ G(2l+1) by the isomorphism

θ
′
: H0

∼→ H0; s
(k)
i �→ s

(k+2)
i .

Thus we can use a Mayer-Vietoris sequence

· · · → Hn(H0; Z)
α

′
n→ Hn(H0; Z) → Hn(H1; Z) → Hn−1(H0; Z) → · · ·

where α
′
∗ := θ

′
∗ − id∗. We have the following by the same argument as that in

the proof of Lemma 4.1.

Lemma 4.2. α
′
n is injective for n ≥ 1.

Because we have α
′
n(sk

i ) = sk+2
i − sk

textbfi and for n ≥ 2

Hn(H1; Z) ∼= Hn(H0; Z)/α
′
n(Hn(H0; Z)),
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we have

Hn(H1; Z) ∼=
〈 [s(0)

i1
× s

(k2)
i2

× · · · × s
(kn)
in

]
′

(1 ≤ i1, i2, . . . , in ≤ m, 0 < k2 < · · · < kn)
[s(1)

i1
× s

(k2)
i2

× · · · × s
(kn)
in

]
′

(1 ≤ i1, i2, . . . , in ≤ m, 1 < k2 < · · · < kn)

〉
(n ≥ 2),

H1(H1; Z) ∼= H1/[H1, H1] = 〈s(0)
i , s

(1)
i (1 ≤ i ≤ m), b〉,

H0(H1; Z) ∼= Z,

where [s(0)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

]
′

and [s(1)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

]
′

denote the
equivalence classes of s

(0)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

and s
(1)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

in
Hn(H0; Z)/α

′
n(Hn(H0; Z)) respectively.

Fourthly we will decide the group homology of K1. K1 := K0 � Z is the
HNN-extension of K0 =

⊕
l∈Z

G(3l) ⊕ G(3l+1) by the isomorphism

θ
′′

: K0
∼→ K0; s

(k)
i �→ s

(k+3)
i .

Thus we can use a Mayer-Vietoris sequence

· · · → Hn(K0; Z)
α

′′
n→ Hn(K0; Z) → Hn(K1; Z) → Hn−1(K0; Z) → · · ·

where α
′′
∗ := θ

′′
n − id∗. We have the following by the same argument as that in

the proof of Lemma 4.1.

Lemma 4.3. α
′′
n is injective for n ≥ 1.

Because we have α
′′
n(sk

i ) = sk+3
i − sk

i (k1 < k2 < · · · < kn, kj ≡ 0, 1
mod 3) and

Hn(K1; Z) ∼= Hn(K0; Z)/α
′′
n(Hn(K0; Z))

for n ≥ 2, we have

Hn(K1; Z) ∼=
〈 [s(0)

i1
× s

(k2)
i2

× · · · × s
(kn)
in

]
′′
(1 ≤ i1, i2, . . . , in ≤ m,

0 < k2 < · · · < kn, kj ≡ 0, 1 mod 3)
[s(1)

i1
× s

(k2)
i2

× · · · × s
(kn)
in

]
′′
(1 ≤ i1, i2, . . . , in ≤ m,

1 < k2 < · · · < kn, kj ≡ 0, 1 mod 3)

〉
(n ≥ 2),

H1(K1; Z) ∼= K1/[K1, K1] = 〈s(0)
i , s

(1)
i (1 ≤ i ≤ m), c〉,

H0(K1; Z) ∼= Z,

where [s(0)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

]
′′

and [s(1)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

]
′′

denote the

equivalence classes of s
(0)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

and s
(1)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

in
Hn(K0; Z)/α

′′
n(Hn(K0; Z)) respectively.
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Finally we will calculate the group homology of GΨ. GΨ is the HNN-
extension of G1 by the isomorphism

φ : H1
∼→ K1; s

(0)
i , s

(1)
i , b �→ s

(0)
i , s

(1)
i , c.

Thus we can use a Mayer-Vietoris sequence

· · · → Hn(H1; Z)
βn→ Hn(GΨ; Z) → Hn(GΨ; Z) → Hn−1(H1; Z) → · · ·

where β∗ := φ∗ − i∗. We use l := (0, l2, . . . , ln),q := (q1, q2, . . . , qn), (q1, q2, . . . ,

qn = 0, 1, q1 < 2l2 + q2 < . . . < 2ln + qn). Since we have βn([s2l+q
i ]

′
) =

[s3l+q
i ] − [s2l+q

i ], we have βn([s2l
i ]

′
) = βn([s2l+1

i ]
′
). Thus we have Ker βn ⊃

〈[s2l+1
i ]

′ − [s2l
i ]

′
(0 < 2l2 < . . . < 2ln)〉. Hence Kerβn has infinite rank for

n ≥ 2. Thus Hn+1(GΨ; Z) has infinite rank, too. Also since we have Kerβ1 =
〈s(0)

i , s
(1)
i 〉 ∼= Z2m and H2(G1; Z)/β2(H2(H1; Z)) ∼= 〈[s(0)

i1
× s

(1)
i2

]〉 ∼= Zm2
, we

have H2(GΨ; Z) ∼= Z2m+m2
. Hence we observe

Hn(GΨ; Z)hasinfinite rank (n ≥ 3),

H2(GΨ; Z) ∼= Z2m+m2
,

H1(GΨ; Z) ∼= GΨ/[GΨ, GΨ] = 〈si(1 ≤ i ≤ m), t〉,
H0(GΨ; Z) ∼= Z.

Let G2 be GΨ. In this section, we proved that for n = 0, 1, 2 Gn coming
from a free group of rank m ≥ 1 is in Fn and the p-th group homology of
Gn has infinite rank for any p ≥ n + 1. It is known when n is a non-negative
integer, then Fn � Fn+1 ([2]). Here we will formulate the following conjecture.

Conjecture 4.1. When n is a non-negative integer, then there is G ∈
Fn whose p-th group homology has infinite rank for any p ≥ n + 1.

The author does not know whether this holds or not except for the case
n = 0, 1, 2.
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