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ELLIPTIC CURVES ON ABELIAN VARIETIES

ROBERT AUFFARTH II

Abstract. Given a principally polarized Abelian variety (A,Θ),
we give a characterization of all elliptic curves that lie on A in

terms of intersection numbers of divisor classes in its Néron–
Severi group.

1. Introduction

The problem of finding elliptic curves on Abelian varieties has a long his-
tory, originating with works of Abel and Jacobi on the decomposition of
Abelian integrals. A very general Abelian variety contains no elliptic curve,
but Abelian varieties that do appear frequently in examples.

In their paper [ES93], Ekedahl and Serre found examples of Jacobian vari-
eties that split isogenously as the product of elliptic curves for certain curves
up to genus 1297. A question that they pose is: For what numbers g does
there exist a (smooth projective) curve of genus g whose Jacobian splits isoge-
nously (or isomorphically) as the product of elliptic curves? Another inter-
esting question is: For a fixed genus g, what is the maximum amount of
elliptic curves that appear in any isogeny decomposition of a Jacobian variety
of dimension g?

Most examples of Abelian varieties that contain elliptic curves have been
found using techniques such as group actions, but no comprehensive theory
has been established in general. In dimension 2, Humbert [Hum99] gave a
description of all 2-dimensional principally polarized Abelian varieties that
are non-simple (that is, that contain a non-trivial Abelian subvariety) in terms
of their period matrices. The case of an irreducible principal polarization has
recently been addressed in dimension 2 by Kani [Kan08] in a more algebraic
setting.
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In this paper, we address the issue of when an Abelian variety defined over
an algebraically closed field contains an elliptic curve, and we give a character-
ization of all elliptic curves on an Abelian variety in terms of numerical divisor
classes. This seems to be a first step in being able to answer the questions
posed above. Kani [Kan94] described all Abelian surfaces that contain an
elliptic curve by means of intersection theory, and in this paper we generalize
his methods to arbitrary dimension.

Throughout the paper, we let A be an Abelian variety of dimension n
defined over an algebraically closed field, and we fix once and for all an ample
divisor Θ on A. An Abelian divisor will be an Abelian subvariety of A of
codimension 1, seen as a prime (Weil) divisor on A.

One can prove that if A contains an Abelian subvariety W , then W has an
Abelian complement ; that is, there exists an Abelian subvariety Y in A such
that the addition map W × Y → A is an isogeny. There is a canonical way
to find the Abelian complement [BL91], and so there is a bijection between
Abelian subvarieties of A of dimension r and Abelian subvarieties of codi-
mension r. We will always talk about the Abelian complement of an abelian
subvariety in the sense of Birkenhake and Lange [BL91].

We are interested in characterizing Abelian varieties that contain an elliptic
curve, and thus an abelian divisor, via intersection theory. Let A∗(A) :=⊕n

i=0A
i(A) be the Chow ring of A modulo algebraic equivalence, where Ai(A)

denotes the group of algebraic cycles of codimension i on A modulo algebraic
equivalence. We take algebraic equivalence so that we may translate a cycle
by an element of A and not affect its algebraic class. For i= 1, A1(A) is the
Néron–Severi group of A, and will be denoted by NS(A). This is the group
we will be concentrating on, and we will abuse notation throughout the paper
by intersecting numerical (which in this case is the same as algebraic) classes
of divisors and divisors interchangeably. If D is a divisor, then [D] will denote
the algebraic equivalence class of D.

If G is a free Abelian group, then we will say that g ∈ G is a primitive
element of G if G/〈g〉 is torsion-free.

Our first main result is the following theorem.

Theorem 1.1. Let A be an Abelian variety of dimension n, and let Θ be
a fixed ample divisor on A. Then the map Z �→ [Z] induces a bijective corre-
spondence between Abelian divisors on A and primitive elements α ∈ NS(A)
that satisfy α2 = 0 in A∗(A) and (α · Θn−1) > 0. In particular, A contains
an elliptic curve if and only if there exists a non-zero class α ∈ NS(A) that
satisfies α2 = 0.

Let � : NS(A)→NS(A) denote the endomorphism

α �→ α� =
(
Θn

)
α−

(
α ·Θn−1

)
[Θ];
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it is easily seen to be a sort of projection away from Z[Θ] with respect to the
pairing (α,β) �→ (α · β ·Θn−2). We define the homogeneous polynomials

qr(α) :=− 1

(r− 1)(Θn)

((
α�

)r ·Θn−r
)

for 2 ≤ r ≤ n. For n = 2, we get precisely the quadratic form that Kani
introduces in his paper [Kan94]. We can see these as forms on the polarized
Néron–Severi group NS(A,Θ) := NS(A)/Z[Θ].

Recall that (A,Θ) is a principally polarized Abelian variety (ppav) if the
isogeny A→ A∨ (where A∨ = Pic0(A) is the dual Abelian variety of A) in-
duced by Θ is an isomorphism (or equivalently, h0(A,OA(Θ)) = 1).

Our second result states the following theorem.

Theorem 1.2. Let (A,Θ) be a ppav. Then there is a bijective correspon-
dence between Abelian divisors Z ⊆A with (Z ·Θn−1) = d and primitive nu-
merical classes α ∈ NS(A,Θ) that satisfy qr(α) = (−1)rdr for r = 2, . . . , n,
given by Z �→ [Z].

This theorem can be used to produce Humbert-style equations for the mod-
uli space of complex ppavs that contain an Abelian divisor (and thus elliptic
curves) of a certain degree.

2. Abelian divisors

Our first goal is to be able to characterize Abelian divisors by their numer-
ical classes. We first characterize them among all prime divisors.

Proposition 2.1. Let Z be a prime divisor on an Abelian variety A of
dimension n. Then Z is the translation of an Abelian divisor if and only if
[Z]2 = 0 in A∗(A).

Proof. If Z is the translation of an Abelian divisor and z ∈ Z, let x /∈
Z − z := t−z(Z), where ta : A→ A for a ∈ A is translation by a. Then Z ∩
(Z + x) = ∅, and so in particular [Z]2 = 0. Conversely, assume that Z is a
prime divisor and (Z2 · Θn−2) = 0. By translating, we can assume that Z
contains 0. We see that if x ∈ Z, then 0 ∈ Z ∩ (Z − x), and therefore, if
Z ∩ (Z − x) 
= Z, this would be a subvariety of A of codimension 2 and hence
(Z2 ·Θn−2)> 0, a contradiction. This implies that Z = Z − x. Similarly, we
see that for x, y ∈ Z, Z − (x+ y) = (Z − x)− y = Z − y = Z, and we therefore
conclude that Z is a group. Since we can see Z as an irreducible subvariety
of A, we obtain that it is an Abelian subvariety of codimension 1. �

We see that Abelian divisors correspond to certain elements α ∈ NS(A)
such that α2 = 0. The question we would like to answer is: How can we
characterize Abelian divisors among all such elements?
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Proposition 2.2. If Z is an effective divisor, then Z ≡ mY for some
Abelian divisor if and only if [Z]2 = 0 in A∗(A) (and this occurs if and only
if (Z2 ·Θn−2) = 0).

Proof. Assume that [Z]2 = 0 and Z 
= 0. Write Z =
∑

miFi, where the Fi

are irreducible codimension 1 subvarieties of A and mi > 0. We have that

0 =
(
Z2 ·Θn−2

)
=
∑
i,j

mimj

(
Fi · Fj ·Θn−2

)
≥ 0.

In particular, (F 2
i ·Θn−2) = 0, and so by Proposition 2.1 we have that each

Fi is the translate of an Abelian divisor. Since we can move all the Fi inside
their numerical equivalence classes, assume that all are Abelian subvarieties.
If Fi and Fj are different, for instance, we have that (Fi ∩Fj)0 is an Abelian
subvariety of codimension 2. However, this contradicts the fact that (Fi ·Fj ·
Θn−2) = 0. Therefore, we must have that all the Fi are the same, and the
result follows. �

Definition 2.3. We will say that a class α ∈ NS(A) is primitive if every
time we have α=mβ for some β ∈NS(A), then m=±1. This is equivalent to
NS(A)/Zα being torsion free. We will say that a class α ∈NS(A) is effective
if there exists an effective divisor D on A such that [D] = α.

The following two results are fundamental to all the analysis that follows.
The results are well known (see Birkenhake–Lange [BL92] and Bauer [Bau98]
for simple proofs over C), but for lack of an adequate reference over a general
algebraically closed field, we include the proofs here.

Theorem 2.4 (Nakai–Moishezon criterion). Let A be an Abelian variety of
dimension n and let Θ be an ample divisor. Then a divisor D on A is ample
if and only if (Di ·Θn−i)> 0 for all i≤ n.

Proof. The only interesting part is to prove that if (Di ·Θn−i)> 0 for all i,
then D is ample. We see that if D satisfies this, then in particular (Dn)> 0.
By Mumford [Mum12], p. 145, we have that Hp(A,D) = 0 for all p 
= i(D) and
Hi(D)(A,D) 
= 0, where i(D) is the number of positive roots of the polynomial
P (t) defined by P (m) := χ(mΘ+D). By Riemann–Roch,

P (m) =
((mΘ+D)n)

n!
,

and by our assumption onD, all the coefficients of this polynomial are positive.
Therefore i(D) = 0, and so H0(A,D) 
= 0. This means that D is linearly
equivalent to an effective divisor, and by Application 1 on page 57 of Mumford
[Mum12], we get that D is ample. �

Proposition 2.5. If A is an Abelian variety of dimension n and D is a
divisor on A, then D is numerically equivalent to an effective divisor if and
only if (Di ·Θn−i)≥ 0 for 1≤ i≤ n.
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Proof. If D is numerically equivalent to an effective divisor, then clearly
(Di ·Θn−i)≥ 0 for 1≤ i≤ n. For the other direction, assume that this inequal-
ity holds for 1 ≤ i ≤ n. Using the Nakai–Moishezon criterion with D +mΘ
and Θ, we first observe that D+mΘ is ample for all m≥ 0, and so D is nef.

We will now proceed by induction on n to prove the proposition. We see
that for n= 1 the proof is trivial. We then assume that n > 1. If (Dn)> 0,
then for the same reasons as in the previous proof we have that H0(A,D) 
= 0,
and so D is linearly equivalent to an effective divisor.

If (Dn) = 0, then K(D) := {x ∈A : t∗xD ∼D} is not finite and there exists
a divisor D′ on A/K(D)0 such that D − π∗D′ is numerically trivial, where
π :A→A/K(D)0 is the natural projection and K(D)0 denotes the connected
component of 0 in K(D). Since π is proper and surjective and π∗D′ is nef,
we also have that D′ is nef (this can be shown using the projection formula).
By our induction hypothesis, we have that D′ is numerically equivalent to
an effective divisor, and therefore π∗D′ ≡D is numerically equivalent to an
effective divisor. �

This proposition actually shows that if α2 = 0 in A∗(A), then either α or
−α comes from an effective divisor.

Corollary 2.6. If α ∈NS(A), then α=m[Z] for some Abelian divisor Z
and some m ∈ Z if and only if α2 = 0 in A∗(A).

Using Proposition 2.5, we can prove the following lemma.

Lemma 2.7. The class of an Abelian divisor is primitive.

Proof. Let Z be an Abelian divisor, and assume that Z ≡ mD for some
divisor D such that [D] is primitive. Suppose that m > 0; if not, then we
replace D by −D. Since Z is effective and m> 0, by the previous proposition
we can assume that D is effective. Now using Proposition 2.2, we see that D ≡
Y for some Abelian divisor Y , and so Z ≡mY . However, we then see that [Z ·
Y ] = 0 in A∗(A), and using the argument used in the proof of Proposition 2.2,
we get that Y ≡ Z. Therefore (m− 1)Z ≡ 0, and so m= 1. �

Remark 2.8. Another way of proving this lemma in characteristic 0 is
using the following criterion: The class of a divisor D is primitive if and only
if A[m]�K(D) for some m ∈ Z (where A[m] denotes the group of m-torsion
points of A). If D is an Abelian divisor, then by cardinality A[m]�K(D) =D
for all m.

Using this lemma and Proposition 2.2, we get the following.

Corollary 2.9. A class α ∈NS(A) comes from an Abelian divisor if and
only if it is effective, primitive and α2 = 0 in A∗(A).
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We define the degree of a divisor D on A to be

degD :=
(
D ·Θn−1

)
.

In the same way, we define the degree of an algebraic class. The degree of a
curve C on A is defined analogously as degC := (C ·Θ). Notice that if Θ is
very ample, then the degree of a divisor coincides with the degree of ϕ(D) in

Ph0(Θ)−1, where ϕ :A→ Ph0(Θ)−1 is the embedding associated with Θ.
With all we have said so far, we can prove our first main result:

Theorem 2.10. Let A be an Abelian variety of dimension n. Then the map
Z �→ [Z] induces a bijective correspondence between Abelian divisors on A and
primitive elements α ∈NS(A) that satisfy α2 = 0 in A∗(A) and degα> 0.

Proof. Injectivity was already proven. To show surjectivity, let α be a
primitive class that satisfies (α ·Θn−1)> 0 and α2 = 0. Since α2 = 0, we have
that (αi ·Θn−i) = 0 for every i≥ 2. Proposition 2.5 says that α is numerically
equivalent to (the class of) an effective divisor, and Corollary 2.9 says that α
actually comes from an Abelian divisor. �

3. The forms qr

In this section, we will mostly concentrate on principally polarized Abelian
varieties (ppavs); we will mention when this hypothesis is necessary.

Let � : NS(A)→NS(A) denote the endomorphism

α �→ α� =
(
Θn

)
α− (degα)[Θ].

We define the homogeneous polynomials

qr(α) :=− 1

(r− 1)(Θn)

((
α�

)r ·Θn−r
)

for 2≤ r ≤ n.
By expanding the right-hand side, we have that

qr(α) = (−1)r(degα)r

+
(Θn)

r− 1

r∑
m=2

(
r
m

)(
Θn

)m−2
(−1)r−m+1(degα)r−m

(
αm ·Θn−m

)
.

Lemma 3.1. If [Θ] is primitive in NS(A) and α ∈ NS(A), then qr(α) ≤ 0
for all r = 2, . . . , n if and only if α ∈ Z[Θ].

Proof. It is clearly seen that qr([Θ]) = 0. Conversely, if qr(α) ≤ 0, then
we would have that ((α�)r · Θn−r) ≥ 0 for all r (and by the definition of
α�, degα� = 0), so by Proposition 2.5 we have that α� = m[D], where D
is an effective divisor on A and m ≥ 0. But if D 
≡ 0, then degD > 0, a
contradiction. Therefore α� ≡ 0, and so (Θn)α ∈ Z[Θ]. Since [Θ] is primitive,
we obtain that α ∈ Z[Θ]. �
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Remark 3.2. We observe that if α ∈NS(A) satisfies α2 = 0 in A∗(A), then

qr(α) = (−1)r(degα)r

for all r.

Remark 3.3. It is easy to see that the forms qr descend to forms on
NS(A)/Z[Θ]. In dimension 3, the previous lemma shows that q2 is positive
definite on NS(A)/Z[Θ]. Indeed, if q2(α)≤ 0 and q3(α)≤ 0, then Lemma 3.1
says that α ∈ Z[Θ]. If q2(α)≤ 0 and q3(α)≥ 0, then q2(−α)≤ 0 and q3(−α)≤
0, and we have the same situation.

Lemma 3.4. If Z is an Abelian divisor on A and Θ is a principal polariza-
tion, then degZ = (n− 1)!(E ·Θ), where E is the Abelian complement of Z
in A.

Proof. Set d := (Θ · E); in other words, Θ restricted to E is a divisor of
degree d. Using Riemann–Roch, the fact that K(Θ|Z)� Z ∩E �K(Θ|E) and
χ(Θ|Z)2 = |K(Θ|Z)|, we have that

degZ =
(
Z ·Θn−1

)
=
(
(Θ|Z)n−1

)
= (n− 1)!χ(Θ|Z)

= (n− 1)!χ(Θ|E) = (n− 1)!d. �

The next three lemmas are technical in nature and will be used in the proof
of our main theorem. The first of the three is elementary and well known.

Lemma 3.5. If m ∈ Z\{±1} and n ∈ Z>0, then mn−1|n! if and only if
m=±2 and n is a power of 2.

Proof. We will prove this for a prime number p that divides m. If p is
a prime number such that pn−1|n!, then Legendre’s formula for the highest
power of a prime appearing in n! says that

n− 1≤
⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · ·+

⌊
n

pl

⌋

for l = �logp(n)�. If S denotes the right-hand side of the inequality, we have
that

S ≤ n

(
1

p
+

1

p2
+ · · ·+ 1

pl

)
= n

(
1− 1/pl

p− 1

)
.

This is obviously less than or equal to n
p−1 , and since n− 1≤ S, we get that p

is necessarily 2. Replacing p= 2 above and clearing the equations, we arrive
at n ≤ 2l = 2�log2(n)�. If n is not a multiple of 2, then this is impossible.
Therefore we conclude that n= 2k for some k and p= 2. �

Definition 3.6. Let NS(A,Θ) := NS(A)/Z[Θ] be the polarized Néron–
Severi group of A. As we said above, it is easy to see that the forms qr
are well defined on NS(A,Θ).
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Lemma 3.7. Let (A,Θ) be a ppav. Then the class of an Abelian divisor in
NS(A,Θ) is primitive.

Proof. Let Z be an Abelian divisor on A, and assume that Z ≡mD+ sΘ
for some divisor D and m,s ∈ Z. We can also assume that s 
= 0 and actually
(m,s) = 1, since Z is primitive in NS(A). Moreover, after changing D with
−D if necessary, we can assume that m> 0. Since [Z]2 = 0 in A∗(A), we get
the following formula:

mr
(
Dr ·Θn−r

)
=
(
(Z − sΘ)r ·Θn−r

)
= (−s)r−1

(
r degZ − s

(
Θn

))
for 1≤ r ≤ n. Assume that (Dn) 
= 0 and (Dn−1 ·Θ) 
= 0. We see that

mn−1
(
Dn−1 ·Θ

)
= (−s)n−2

(
(n− 1)degZ − s

(
Θn

))
and

mn
(
Dn

)
= (−s)n−2

(
ndegZ − s

(
Θn

))
.

This means that mn−1|(n− 1)degZ − s(Θn) and mn|ndegZ − s(Θn), and so
mn−1|degZ. But then mn−1|s(Θn) and so mn−1|n!, since (Θn) = n! in this
case. By Lemma 3.5, we conclude that n= 2k for some k and m= 2. In this
case, we have that 2n|n!(d− s), where degZ = d(n− 1)!. If d is even, then
d− s is odd and so 2n|n!. Based on the previous lemma, it is easy to see that
this is impossible. If d is odd, then

2n−1|(n− 1)!
(
(n− 1)d− sn

)
=
(
2k − 1

)
!
((
2k − 1

)
d− s2k

)
,

and since (2k − 1)d− s2k is odd, we have that 2n−1|(n− 1)!, a contradiction.
Therefore, we must have that m= 1.

If (Dn) = 0, then degZ = (n − 1)!s and (Dn−1 · Θ) 
= 0. Therefore,
mn−1|(n − 1)(n − 1)!s − sn!, and so mn−1|(n − 1)!. Thus, m = 1. If
(Dn−1 · Θ) = 0, then (n − 1)degZ = sn!. Let degZ = d(n − 1)!. Then
mn|n!(d− s), and since d= sn

n−1 , we get that

mn|n!
(

sn

n− 1
− s

)
= s

(
n2(n− 2)!− n!

)
= s(n− 2)!n.

Therefore, if p is a prime that divides m, we have that either pn|(n− 2)! or
pn|n, which is impossible based on what we have said above. We conclude
that m= 1, and so [Z] is primitive in NS(A,Θ). �

We observe that this is no longer true when Θ is not a principal polarization.
For instance, take A = E1 × E2 and Θ = {0} × E2 + 2(E1 × {0}) where E1

and E2 are elliptic curves. Putting Z = {0} ×E2, we get that Z =−2(E1 ×
{0}) + Θ, and so is not primitive in NS(A,Θ). This gives a counterexample
to Theorem 3.2 of Kani [Kan94] (which implies that the class of an elliptic
curve in NS(A,Θ) is primitive for an arbitrary primitive polarization).

Lemma 3.8. Take α ∈ NS(A) and let d, k ∈ Z be such that k is positive,
degα= d and qr(α) = (−1)rkr for r = 2, . . . , n. Then d− k ≡ 0 (mod n!).



ELLIPTIC CURVES ON ABELIAN VARIETIES 327

Proof. Let xr := n!r−1(αr · Θn−r). It is easy to see, by expanding the
definition of qr, that for r ≥ 3

xr = (r− 1)(−1)r
(
dr − kr

)
+

r−1∑
m=2

(
r
m

)
(−1)r−m+1dr−mxm

and x2 = d2 − k2. By using induction, we arrive at the following expression
for the general term:

xr = (d− k)r−1
(
d+ (r− 1)k

)
.

We can replace α by α+mΘ for m ∈ Z and assume that d ≥ 0; we further
assume that d 
= k. This shows in particular that (αr ·Θn−r) 
= 0 for all r.

Assume that n > 2 (the case n = 2 is trivial). Let p be a prime such
that ps|n! with s ∈ Z>0 maximal and let t be the largest integer such that
pt|d− k. We wish to prove that t≥ s. Assume the contrary; that is, assume
that t < s. We then have that p(s−t)(r−1)|d + (r − 1)k for every r. Then
p(s−t)(n−2)|k, and therefore p(s−t)(n−2)|d. In particular, p(s−t)(n−2)|d−k, and
so (s− t)(n− 2)≤ t < s. But then s≥ n− 1, and so by Lemma 3.5 necessarily
p= 2 and n is a power of 2. This means that for every odd prime that divides
n!, the same prime divides d− k with the same or greater power. We have
now reduced the proof to showing that the same is also true when p= 2.

With p= 2, we have that s= n− 1, and so (n−1− t)(n−2)< n−1. After
rearranging, we have that t > n− 1− n−1

n−2 , and so t≥ n− 1 = s. �

We can now state and prove our second main theorem.

Theorem 3.9. Let (A,Θ) be a ppav and let d > 0. Then there is a bijec-
tive correspondence between Abelian divisors on A of degree d and primitive
numerical classes [α] ∈NS(A,Θ) that satisfy qr(α) = (−1)rdr for r = 2, . . . , n,
given by Z �→ [Z].

Proof. First, we will prove injectivity. If [Z] = [Y ] in NS(A,Θ), then Z ≡
Y +mΘ for some m ∈ Z. By squaring and then intersecting with Θn−2, we
get that

m
(
2degY +m

(
Θn

))
= 0,

m
(
−2degZ +m

(
Θn

))
= 0.

But this is only possible if m= 0, since degZ and degY are positive.
For surjectivity, first let [α] ∈ NS(A,Θ) be a primitive class such that

qr(α) = (−1)rdr. By Lemma 3.8, we get that degα − d ≡ 0 (mod n!), and
we define

β := α− degα− d

n!
[Θ].

Since α is primitive in NS(A,Θ), it is trivial to see that β is primitive in NS(A).
Moreover, qr(β) = qr(α) and degβ = d. This means that (βr ·Θn−r) = 0 for
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all 2≤ r ≤ n, and so by Theorem 2.10, β, and thus α, comes from an Abelian
divisor. �

Corollary 3.10. The map that takes an elliptic subgroup E on A to the
numerical class of its Abelian complement induces a bijection between elliptic
subgroups of degree d and primitive numerical classes [α] ∈ NS(A,Θ) that
satisfy qr(α) = (−1)r(n− 1)!dr for r = 2, . . . , n.

Proof. This follows from the previous theorem and from Lemma 3.4. �

It may seem that the forms qr for r ≥ 3 are extraneous, especially since
Kani’s characterization of elliptic curves on an Abelian surface is by means
of only one quadratic form. However, all the forms qr are needed for this
characterization. For example, if A=E1 ×E2 ×E3 for elliptic curves Ei and
Θ is the product polarization, let

D1 := {0} ×E2 ×E3,

D2 := E1 × {0} ×E3,

D3 := E1 ×E2 × {0}.
For k ∈ Z>0, let αk :=−kD1+k(k+1)D2+(k+1)D3. We have that degαk =
2(k2+k+1), (α2

k ·Θ) = 0 and (α3
k) =−k2(k+1)2. We see that αk is primitive

and q2(αk) is a square, but αk does not come from an Abelian divisor (since
(α3

k) 
= 0). This shows that the form q3 is indispensable here. Similar examples
can be found in higher dimension.

In the case that Θ is not a principal polarization, we cannot be as explicit
as in Theorem 3.9, but something can be said. One of the main obstructions
to obtaining a similar theorem in the non-principally polarized case is the fact
that Abelian divisors are not necessarily primitive in NS(A,Θ). Nonetheless,
we can still use the forms qr to find Abelian divisors.

Proposition 3.11. Let (A,Θ) be a polarized Abelian variety. If [α] ∈
NS(A,Θ) and d ∈ Z>0 such that degα ≡ d (mod (Θn)) and qr(α) = (−1)rdr

for r ≤ n, then α=m[Z] for some Abelian divisor Z on A and some m ∈ Z.

Proof. Take β = α − degα−d
(Θn) [Θ] ∈ NS(A). We see that degβ = d and

qr(β) = (−1)rdr for r ≤ n, and so (βr ·Θn−r) = 0 for r ≥ 2. Since degβ > 0,
Proposition 2.5 says that β is effective and Proposition 2.2 says that β is
algebraically equivalent to a multiple of an Abelian divisor. �

Let x= (d2, . . . , dn) ∈ Zn−1 be a vector. We say that a polarized Abelian
variety (A,Θ) represents x if there exists a class α ∈ NS(A,Θ)) such that
qr(α) = dr. We say that it primitively represents the same vector if there is a
primitive class that satisfies the same equation.

Proposition 3.12. Let (A,Θ) be a ppav of dimension n. Then (A,Θ)
is isomorphic to a product Abelian variety (E × Y,pr∗1(0) + pr∗2Θ2) for E an
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elliptic curve and (Y,Θ2) an n−1 dimensional polarized Abelian variety if and
only if (A,Θ) represents the vector ((−1)r(n− 1)!r)nr=2. This is equivalent to
the existence of an elliptic curve E in A with (Θ ·E) = 1.

Proof. If A splits in the way that is stated, then (Θ · (E×{0})) = 1, and so
Lemma 3.4 says that the Abelian complement of E×{0} has degree (n− 1)!.

For the other direction, we will first show that if qr(α) satisfies the equation
above, then α must be primitive. If α = mβ for some primitive β (we can
assume m positive), then q2(β) = ((n− 1)!/m)2, and so m|(n− 1)!. But then
qr(β) = (−1)r((n− 1)!/m)r, and so by Theorem 3.9 there exists an Abelian
divisor Y on A with degY = (n−1)!/m. If m> 1, this contradicts Lemma 3.4.

Now assume that qr(α) = ((−1)r((n−1)!)r)nr=2. Since α is primitive, there
exists an Abelian divisor Z of degree (n− 1)! such that [Z] = [α] in NS(A,Θ).
By Lemma 3.4, the Abelian complement of Z is an elliptic curve E with
(Θ ·E) = 1. Now (

(Θ−Z)r ·Θn−r
)
= (n− r)(n− 1)!≥ 0,

and by Proposition 2.5 Θ−Z ≡D for some effective divisor D. This implies
that ((Θ−Z) ·E)≥ 0, and so 1− (Z ·E)≥ 0. But then E intersects Z in only
one point, and so the addition map E×Z →A is an isomorphism of varieties.

Since (D · E) = 0, if we see D as a divisor on E × Z, this means that
OE×Z(D)|E×{z} is trivial for every z ∈ Z. By the Seesaw theorem, we get that
OE×Z(D) � pr∗2OE×Z(Θ2) for some divisor Θ2 on Z. Summing everything
up, we get that Θ, seen as a divisor on the product, is numerically equivalent
to pr∗1(0) + pr∗2(Θ2). �

As a corollary, we obtain a nice geometric result in dimension 3.

Corollary 3.13. A ppav (A,Θ) ∈ A3 is not the Jacobian of a curve if
and only if (q2, q3) represents (4,−8).

Proof. It is known that a principally polarized Abelian 3-fold (A,Θ) is
the Jacobian of some curve if and only if it is indecomposable. Therefore,
by Proposition 3.12, (A,Θ) is not the Jacobian of a curve if and only if it
represents (4,−8). �

Assume now that (JC,ΘC) is the Jacobian of a curve C. A minimal elliptic
cover is a finite morphism f : C → E to an elliptic curve E that does not
factor through any other elliptic curve non-trivially. Two covers f : C → E
and f ′ : C → E′ are isomorphic if there is an isomorphism φ : E → E′ such
that φ ◦ f = f ′. Kani [Kan94] gives the following classification.

Proposition 3.14. The map f �→ f∗E gives a 1–1 correspondence between
the set of isomorphism classes of minimal elliptic covers f :C →E of degree
k and elliptic subgroups E ≤ JC with (E ·ΘC) = k.

Translating this to our language, we get the following proposition.



330 R. AUFFARTH II

Proposition 3.15. Let C be a curve of genus g, and let JC be its Jacobian.
Then there is a bijective correspondence between the following sets:

(1) Isomorphism classes of minimal elliptic covers C →E of degree k.
(2) Elliptic subgroups E ≤ JC such that (E ·ΘC) = k.
(3) Primitive elements α ∈ NS(JC,ΘC) such that qr(α) = (−1)r(g − 1)!rkr

for r = 2, . . . , g.

Corollary 3.16. A 3-dimensional ppav (A,Θ) is the Jacobian of a genus
3 curve and splits isogenously as the product of elliptic curves if and only if
(q2, q3) does not represent (4,−8) but there exist two distinct primitive ele-
ments in NS(A,Θ) that represent vectors of the form (d2,−d3) for d > 2.

4. Analytic calculations on An

Throughout this section, (A,Θ) will be a ppav over C. Since we are working
over the field of complex numbers, we can assume that A= Cn/Λ, where Λ
is a rank 2n lattice in Cn. Furthermore, we may assume that Λ = (τI)Zg ,
where τ ∈Hn := {N ∈Mn(C) :N =N t, ImN > 0}. We have a map

c1 : Pic(A)�H1
(
A,O×

A

)
→H2(A,Z)

that assigns to each L ∈ Pic(A) its first Chern class c1(L). The first Chern
class can be seen as a Hermitian form on Cn whose imaginary part takes on
integer values on Λ. Actually, the image of c1 is isomorphic to NS(A), and
so in this section we will write numerical classes as integral differential forms.
It can be shown that NS(A) =H2(A,Z)∩H1,1(A,Z), and this means that an
integral cohomology class ω is in NS(A) if and only if ω ∧ dz1 ∧ · · · ∧ dzn = 0.
Intersection of line bundles can be shown to be equal to

(L1 · · ·Ln) =

∫
A

c1(L1)∧ · · · ∧ c1(Ln).

Choose a symplectic basis {λ1, . . . , λ2n} for Λ, and take xi to be the real
coordinate function of λi. By Lemma 3.6.4 of [BL92], we have that

c1(Θ) =−
n∑

i=1

dxi ∧ dxi+n.

Given an integral form ω ∈ NS(A), we wish to find the intersection number
(ωr · c1(Θ)n−r). Using the explicit basis we just wrote, it is easy to see that

c1(Θ)∧s = (−1)ss!
∑

1≤i1<···<is≤n

dxi1 ∧ dxi1+n ∧ · · · ∧ dxis ∧ dxis+n.

In particular, for s= n, we get that

n! =
(
c1(Θ)n

)
=

∫
A

c1(Θ)∧n = (−1)nn!

∫
A

dx1 ∧ dxn+1 ∧ · · · ∧ dxn ∧ dx2n.
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If we put η := dx1∧dxn+1∧· · ·∧dxn∧dx2n, this implies that when calculating
intersection numbers, we have

(L1 · · ·Ln) = (−1)n · coefficient of η in c1(L1)∧ · · · ∧ c1(Ln).

From now on, let

ω =
∑
i<j

aij dxi ∧ dxj ∈NS(A)

be a differential form.

Lemma 4.1. The degree of ω is −(n− 1)!(a1,n+1 + a2,n+2 + · · ·+ an,2n).

Proof. This is easily written out by hand. �

It is clear that the formulas for the qr for a general n are complicated to
write out by hand. For small n, however, we can do this. For example, for
n= 3, we can write the forms qr as follows:

q2(ω) = 12a12a45 + 12a13a46 + 4a214 − 4a14a25 − 4a14a36 + 12a15a24

+ 12a16a34 + 12a23a56 + 4a225 − 4a25a36 + 12a26a35 + 4a236,

q3(ω) = 36a12a14a45 + 36a12a25a45 − 108a12a34a56 + 108a12a35a46

− 72a12a36a45 + 36a13a14a46 + 108a13a24a56 − 72a13a25a46

+ 108a13a26a45 + 36a13a36a46 + 8a314 − 12a214a25

− 12a214a36 + 36a14a15a24 + 36a14a16a34 − 72a14a24a56

− 12a14a
2
25 + 48a14a25a36 − 72a14a26a35 − 12a14a

2
36

+ 108a15a23a46 + 36a15a24a25 − 72a15a24a36 + 108a15a26a34

− 108a16a23a45 + 108a16a24a35 − 72a16a25a34 + 36a16a34a36

+ 36a23a25a56 + 36a23a36a56 + 8a325 − 12a225a36 + 36a25a26a35

− 12a25a
2
36 + 36a26a35a36 + 8a336.

Let us keep assuming that n = 3. Since H2(A,Z) �
∧2

H1(A,Z) �∧2
Hom(Λ,Z)� Z15 and

c1(Θ) =−(dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6),

we can take the projection

Z15 →H2(A,Z)/Zc1(Θ)� Z14

that takes

(aij)1≤i<j≤6 �→
(
a′ij

)
1≤i<j≤6,(i,j) 	=(3,6)

,

where a′ij = aij if (i, j) 
= (1,4), (2,5), and a′14 = a14− a36 and a′25 = a25− a36.
From what we said above, we have that an integral form ω is in NS(A) if
and only if ω ∧ dz1 ∧ dz2 ∧ dz3 = 0. Using the change of coordinates from real
coordinates to complex coordinates by the matrix (τ I), we get the following
proposition.
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Proposition 4.2. Let (A,Θ) be a ppav of dimension 3, corresponding to a
matrix τ = (τij) ∈H3. Then NS(A,Θ) consists of all vectors β = (b1, . . . , b14) ∈
Z14 that satisfy the linear equations

0 = b6 − τ13b7 − τ23b8 − τ33b9 + τ12b10 + τ22b11 +

∣∣∣∣τ12 τ13
τ22 τ23

∣∣∣∣ b12
+

∣∣∣∣τ12 τ13
τ23 τ33

∣∣∣∣ b13 +
∣∣∣∣τ22 τ23
τ23 τ33

∣∣∣∣ b14,
0 = b2 − τ13b3 − τ23b4 − τ33b5 + τ11b10 + τ12b11 +

∣∣∣∣τ11 τ12
τ13 τ23

∣∣∣∣ b12
+

∣∣∣∣τ11 τ13
τ13 τ33

∣∣∣∣ b13 +
∣∣∣∣τ12 τ13
τ23 τ33

∣∣∣∣ b14,
0 = b1 − τ12b3 − τ22b4 − τ23b5 + τ11b7 + τ12b8 + τ13b9 +

∣∣∣∣τ11 τ12
τ12 τ22

∣∣∣∣ b12
+

∣∣∣∣τ11 τ12
τ13 τ23

∣∣∣∣ b13 +
∣∣∣∣τ12 τ13
τ22 τ23

∣∣∣∣ b14,
0 = τ13b1 − τ12b2 +

∣∣∣∣τ12 τ13
τ22 τ23

∣∣∣∣ b4 +
∣∣∣∣τ12 τ13
τ23 τ33

∣∣∣∣ b5 + τ11b6 −
∣∣∣∣τ11 τ12
τ13 τ23

∣∣∣∣ b8
−
∣∣∣∣τ11 τ13
τ13 τ33

∣∣∣∣ b9 +
∣∣∣∣τ11 τ12
τ12 τ22

∣∣∣∣ b11 + (det τ)b14,

0 = −τ23b1 + τ22b2 +

∣∣∣∣τ12 τ13
τ22 τ23

∣∣∣∣ b3 −
∣∣∣∣τ22 τ23
τ23 τ33

∣∣∣∣ b5 − τ12b6 −
∣∣∣∣τ11 τ12
τ13 τ23

∣∣∣∣ b7
+

∣∣∣∣τ12 τ13
τ23 τ33

∣∣∣∣ b9 +
∣∣∣∣τ11 τ12
τ12 τ22

∣∣∣∣ b10 + (det τ)b13,

0 = τ33b1 − τ23b2 −
∣∣∣∣τ12 τ13
τ23 τ33

∣∣∣∣ b3 −
∣∣∣∣τ22 τ23
τ23 τ33

∣∣∣∣ b4 + τ13b6 +

∣∣∣∣τ11 τ13
τ13 τ33

∣∣∣∣ b7
+

∣∣∣∣τ12 τ13
τ23 τ33

∣∣∣∣ b8 −
∣∣∣∣τ11 τ12
τ13 τ23

∣∣∣∣ b10 −
∣∣∣∣τ12 τ13
τ22 τ23

∣∣∣∣ b11 + (det τ)b12.

After rewriting the equations for qr in Z14 and using Theorem 3.9, we get
the following corollary.

Corollary 4.3. The ppav of dimension 3 corresponding to a matrix τ =
(τij) ∈H3 contains an elliptic curve whose Abelian complement has degree d if
and only if there exists a non-zero vector β = (b1, . . . , b14) ∈ Z14 that satisfies
the equations of Proposition 4.2 and such that

d2 = 12b1b12 + 12b2b13 + 4b28 − 4b3b8 + 4b23 + 12b4b7

+ 12b5b10 + 12b6b14 + 12b9b11,

−d3 = 108b4b9b10 + 36b1b8b12 − 72b5b8b10 + 36b3b5b10 − 108b5b6b12

+ 108b1b11b13 − 72b3b7b14 + 36b9b11b8 + 108b2b7b14 − 72b2b8b13
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− 72b3b9b11 + 108b4b6b13 + 36b3b4b7 + 36b4b7b8 + 36b2b3b13

+ 108b5b7b11 − 108b1b10b14 − 12b3b
2
8 + 108b2b9b12 + 36b6b8b14

+ 36b1b3b12 + 8b33 + 8b38.

In the equations above, there is nothing special about the particular case
n = 3, except for the fact that the equations are not extremely long. With
higher dimensions, similar equations can be found using the same method. In
fact, using [vdG98] Chapter IX as inspiration, we could define the variety

Ag,d :=
{
(A,Θ) :A contains an elliptic curve of degree d

}
;

these varieties seem to be the correct generalization of Humbert surfaces. It
is not clear at first that the above set is a variety (as it could have infinitely
many components), but work done by Debarre in [Deb88] shows that it is
actually irreducible, being a cover of H×Hg−1. These varieties seem to be of
interest in their own right.

We finish with an example that shows how this theory can be used to
concretely find elliptic curves.

Example 4.4. González-Aguilera and Rodŕıguez [GAR00] found, for every
n≥ 3, a family of indecomposable principally polarized Abelian varieties each
of whose underlying Abelian variety is isomorphic to the product of elliptic
curves. More specifically, they give the family

Fn := {στ0 : σ ∈H} ⊆Hn,

where

τ0 =

⎛
⎜⎜⎜⎝

n −1 · · · −1
−1 n · · · −1
...

...
. . .

...
−1 −1 · · · n

⎞
⎟⎟⎟⎠ .

If (Aσ,Θσ) denotes the ppav associated to στ0, then

Aσ �En−1
(n+1)σ ×Eσ,

where Eσ :=C/〈1, σ〉. For n= 3, the equations of Proposition 4.2 become

0 = b6 + σb7 + σb8 − 3σb9 − σb10 + 3σb11 + 4σ2b12 − 4σ2b13 + 8σ2b14,

0 = b2 + σb3 + σb4 − 3σb5 + 3σb10 − σb11 − 4σ2b12 + 8σ2b13 − 4σ2b14,

0 = b1 + σb3 − 3σb4 + σb5 + 3σb7 − σb8 − σb9 + 8σ2b12 − 4σ2b13 + 4σ2b14,

0 = −σb1 + σb2 + 4σ2b4 − 4σ2b5 + 3σb6 + 4σ2b8 − 8σ2b9 + 8σ2b11 + 16σ3b14,

0 = σb1 + 3σb2 + 4σ2b3 − 8σ2b5 + σb6 + 4σ2b7 − 4σ2b9 + 8σ2b10 + 16σ3b13,

0 = 3σb1 + σb2 + 4σ2b3 − 8σ2b4 − σb6 + 8σ2b7 − 4σ2b8

+ 4σ2b10 − 4σ2b11 + 16σ3b12.
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If [Q(σ) :Q]> 2, then if we have an integral solution to the equations above
and x1, . . . , x11 are the coefficients of the generators, we get the following
relations:

0 = −2x1 − x6 + x11,

0 = x1 + x6 − 2x11,

0 = −x1 − 2x6 + x11,

0 = −x3 + 3x4 − x5 − 3x8 + x9 + x10,

0 = x2 + 3x3 − x4 − x5 − 3x7,

0 = −3x2 + x7 − x8 − x9 + 3x10.

This necessarily leads to x1 = x6 = x11 = 0. The general integral solution to
this system of equations is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2

x3

x4

x5

x7

x8

x9

x10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a+ c− 2d+ e
3a+ b+ c+ d

a+ c+ d
e

3a+ b+ c
c
b

c− 2d+ e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for a, b, c, d, e ∈ Z. Therefore, a vector in Z14 is a solution for the Néron–Severi
equations if and only if it is of the form⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
e

a+ c+ d
3a+ b+ c+ d

0
c
b

c− 2d+ e
3a+ b+ c

a+ c− 2d+ e
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
3
0
0
0
0
3
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ b

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
0
0
1
0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
1
0
1
0
1
1
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ d

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
1
0
0
0
−2
0
−2
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ e

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0
0
0
1
0
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using this basis, we will write an element of NS(Aσ,Θσ) as a 5-tuple
(a, b, c, d, e). The forms can then be written as

q2(a, b, c, d, e) = 108a2 + 16b2 + 36c2 + 48d2 + 16e2 + 72ab+ 96ac+ 12ad

+ 12ae+ 24bc+ 12bd− 4be− 24cd+ 24ce− 48de,
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Table 1. Examples of Abelian divisors on Aσ

Divisor class of Z (Z ·Θ2
σ) (E ·Θσ)

(0,0,0,−1,−2) 4 2
(1,−1,−1,−1,−1) 4 2
(0,−1,1,0,−1) 4 2
(1,−2,−1,0,0) 4 2
(0,1,0,0,0) 4 2
(−1,1,1,0,0) 4 2
(0,0,0,0,1) 4 2
(0,0,0,1,1) 4 2
(−1,2,0,1,2) 4 2
(0,0,1,−1,−3) 6 3
(0,0,−1,0,0) 6 3
(1,−3,0,0,0) 6 3
(−1,3,0,1,3) 6 3

q3(a, b, c, d, e) = 576ead− 504bcd+ 936cea+ 24e2b+ 24eb2 − 504bad

− 1080cad+ 576ced+ 360bae+ 360bce− 144bca− 64e3

− 64b3 + 216bc2 − 72bd2 + 216c2e− 144ce2 − 288ed2

+ 288de2 − 72ae2 + 216c3 + 648ea2 + 648ca2 + 864c2a

− 216c2d− 432cd2 − 648a2d− 648d2a− 432ab2 − 144b2c

− 72db2 − 648ba2.

Using a simple Java program, we can find many primitive elements α such
that q2(α) is a square d2 and such that q3(α) = −d3. For example, Table 1
shows all Abelian divisors in NS(Aσ,Θσ) whose coordinates lie between −3
and 3 and whose degree is less than or equal to 6.

Although this example was studied in [GAR00] by using automorphisms of
the elements of Fn, we emphasize that the above elliptic curves were found
by only using the period matrix of each element and we did not rely on the
existence of automorphisms.
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[Hum99] G. Humbert, Sur les fonctions abéliennes singulières i, J. de Math. 5 (1899),
no. 5, 297–401.

[Kan94] E. Kani, Elliptic curves on Abelian surfaces, Manuscripta Math. 84 (1994), 199–
223. MR 1285957

[Kan08] E. Kani, The moduli spaces of jacobians isomorphic to a product of two elliptic
curves, 2008, available at http://www.mast.queensu.ca/~kani/papers/jacob9.

pdf.
[Mum12] D. Mumford, Abelian varieties, 2nd ed., Research Studies in Mathematics, Amer-

ican Mathematical Society, Tata Institute of Fundamental, 2012. MR 2514037

Robert Auffarth II, Departamento de Matemáticas, Facultad de Ciencias, Uni-

versidad de Chile, Santiago, Chile

E-mail address: rfauffar@mat.puc.cl

http://www.ams.org/mathscinet-getitem?mr=1646050
http://www.ams.org/mathscinet-getitem?mr=1119951
http://www.ams.org/mathscinet-getitem?mr=1217487
http://www.ams.org/mathscinet-getitem?mr=0952234
http://www.ams.org/mathscinet-getitem?mr=1239039
http://www.ams.org/mathscinet-getitem?mr=1676344
http://www.ams.org/mathscinet-getitem?mr=0930101
http://www.ams.org/mathscinet-getitem?mr=1285957
http://www.mast.queensu.ca/~kani/papers/jacob9.pdf
http://www.ams.org/mathscinet-getitem?mr=2514037
mailto:rfauffar@mat.puc.cl
http://www.mast.queensu.ca/~kani/papers/jacob9.pdf

	Introduction
	Abelian divisors
	The forms qr
	Analytic calculations on An
	Acknowledgments
	References
	Author's Addresses

