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LUSTERNIK–SCHNIRELMANN CATEGORY FOR
SIMPLICIAL COMPLEXES

SETH AARONSON AND NICHOLAS A. SCOVILLE

Abstract. The discrete version of Morse theory due to Robin
Forman is a powerful tool utilized in the study of topology, com-
binatorics, and mathematics involving the overlap of these fields.

Inspired by the success of discrete Morse theory, we take the first

steps in defining a discrete version of the Lusternik–Schnirelmann

category suitable for simplicial complexes. This invariant is based

on collapsibility as opposed to contractibility, and is defined in

the spirit of the geometric category of a topological space. We

prove some basic results of this theory, showing where it agrees

and differs from that of the smooth case. Our work culminates
in a discrete version of the Lusternik–Schnirelmann theorem re-
lating the number of critical points of a discrete Morse function
to its discrete category.

1. Introduction

In his landmark paper Morse theory for cell complexes [5], Robin Forman
presented a new version of Morse theory suitable for cell complexes. This has
come to be known as discrete Morse theory. Many of the fundamental theo-
rems in smooth Morse theory have a discrete analogue. For example, the weak
and strong Morse inequalities have discrete versions relating the number of
critical simplices of a complex K to the Betti numbers of K [7, Theorem 2.11].
It is applied in a variety of settings to study problems concerning collapsibil-
ity of certain complexes [13], configuration spaces [16], and computer science
search problems [6].

Inspired by the success of a discrete version of Morse theory, we intro-
duce a discrete version of the Lusternik–Schnirelmann category for simplicial
complexes. This topological invariant measures the complexity of a space
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by breaking it up into simpler pieces. Formally, the Lusternik–Schnirelmann
category, or L–S category of a topological space X , denoted cat(X), is the
minimum number of open sets in a cover of X such that each open set is
contractible to a point in X . It was originally defined by Lusternik and
Schnirelmann in their study of critical points on manifolds [14]. They obtained
what is now known as the Lusternik–Schnirelmann theorem [3, Theorem 1.15]
which states that if M is a smooth manifold satisfying additional properties
and f : M → R is smooth, then cat(M) + 1 ≤m where m is the number of
critical points of f . The origins of L–S category in critical point theory com-
bined with our above discussion of the importance of discrete Morse theory
sets an immediate precedence for a discrete version of L–S category.

After the original paper by Lusternik and Schnirelmann, many other in-
variants were defined in order to be able to estimate the L–S category. One
such invariant, introduced by Ralph Fox [9], is the geometric category of X ,
denoted gcat(X). Rather than consider the minimum number of open sets
in a cover of X such that each open set is contractible to a point in X , Fox
removed the condition that each set in the cover had to be contractible in X
and just required that they be contractible. It is in the spirit of this geomet-
ric category that we make our definition on a simplicial complex. While one
could define category of a simplicial complex as the category of its geometric
realization, we seek a definition that can be studied in the world of simplicial
complexes. Inspired by J. H. C. Whitehead’s theory of simple homotopy type
[2], [19], [20], we use “collapsible” as our measure of simplicity and study the
minimum number of collapsible sets in K that it takes to cover K. To avoid
confusion, we use the term smooth category or smooth geometric category
when discussing the classical L–S and geometric category. It turns out that
when K is a 1-dimensional complex (i.e., a graph), our definition coincides
with arboricity of a graph, defined by Nash-Williams [17]. Another immediate
interesting connection is given in Proposition 11 where the discrete category
is related to the Zeeman conjecture and by extension the Poincaré conjecture.
We compare the discrete category to the smooth L–S category in Corollary 12,
showing that the former always bounds above the geometric realization of the
latter. In Example 21, we see that not only can inequality be strict, but
the discrete category of a space can be arbitrarily larger than its dimension
as a simplicial complex. This is in stark contrast to the smooth geometric
category which is always bounded above by its dimension. We deduce some
fundamental properties of the discrete category in Section 3.2, largely inspired
by results for the smooth category. In Section 3.5, we prove a discrete version
of the celebrated Lusternik–Schnirelmann theorem.

2. Prelimnaries

All spaces and simplicial complexes are assumed to be connected.
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2.1. Simplicial complexes.

Definition 1. Let [n] = {1,2,3, . . . , n}. An abstract (finite type) simplicial
complex K on [n] is a collection of subsets of [n] such that

(1) If σ ∈K and τ ⊆ σ, then τ ∈K.
(2) {i} ∈K for every i ∈ [n].

An element σ ∈K of cardinality i+ 1 is called an i-dimensional face or an
i-face of K. The dimension of K, denoted dim(K), is the maximum of the
dimensions of all its faces. If σ, τ ∈K with σ ⊆ τ , then σ is a face of τ and
τ is a coface of σ. A face of K that is not contained in any other face is
called a facet of K. By convention, the empty set ∅ is the unique simplex
of dimension −1 in every simplicial complex. A (closed) subcomplex L of K,
denoted L⊆K, is a subset L of K such that L is also a simplicial complex.
If σ ∈K, we write σ to denote the closed subcomplex generated by σ. The
i-skeleton of K is given by Ki = {σ ∈K : dim(σ)≤ i}.

Two fundamental constructions in topology, the cone and the suspension,
are special cases of the join of two simplicial complexes.

Definition 2. Let K,K ′ be two simplicial complexes. The join of K and
K ′ is defined by K ∗K ′ := {{x0, x1, . . . , xn, y0, y1, . . . , ym} : {x0, x1, . . . , xn} ∈
K,{y0, y1, . . . , ym} ∈ K ′}. If K ′ = {v} is given by a single point, we write
CK :=K ∗K ′ for the cone on K. The vertex v ∈ CK is called the apex of
the cone. If K ′ = {v,u}, we write ΣK :=K ∗K ′ for the suspension of K.

2.2. Geometric realization. If K is a simplicial complex, let |K| denote
its geometric realization. We note here some nice features of the geometric
realization.

Proposition 3. Let K be a simplicial complex. Then the simplicial homol-
ogy groups H∗(K) of K are isomorphic to H∗(|K|), the simplicial homology
of its geometric realization. Furthermore, |K| is a CW complex.

We now introduce collapses, the building block of the discrete category.

Definition 4. Let K be a simplicial complex and suppose that there is a
pair of simplices σ, τ such that σ is a face of τ and σ has no other cofaces.
Then K − {σ, τ} is a simplicial complex called an elementary (simplicial)
collapse of K, and K is said to collapse onto L if L can be obtained from K
through a finite series of elementary collapses, denoted K ↘ L. If K collapses
to L, we also say that L expands to K, denoted L↗K. We say that K and
L are of the same simple homotopy type, denoted K ∼ L. In the case where
L = {v} is a single point, we say that K is collapsible. More generally, let
L,L′ ⊆K be simplicial complexes. A sequence of elementary collapses and
expansions L= L0 → L1 → · · · → Ln = L′ such that Li ⊆K for all 0≤ i≤ n
is a simple homotopy equivalence between L and L′ in K. We write L∼K L′.
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If K and L have the same simple homotopy type, then there is a sequence
of elementary collapses and expansions K = K0 → K1 → · · · → Km = L. If
Ki →Ki+1 is an elementary collapse, then |Ki+1| is a deformation retraction
of |Ki|. Similarity, if Kj →Kj+1 is an elementary expansion, then |Kj | is a
deformation retraction of |Kj+1|. This yields the following proposition.

Proposition 5 ([12, Proposition 6.14]). If K and L have the same simple
homotopy type, then |K| and |L| have the same homotopy type. In particular,
if K is collapsible, then |K| is contractible.

2.3. Geometric category. The discrete category is more analogous to that
of the geometric category than the classical Lusternik–Schnirelmann category.
For example, Fox showed that the geometric category is not a homotopy
invariant, while Example 14 shows that the discrete category is not a simple
homotopy invariant. See Chapter 3 of the book [3] for more information on
the geometric category. Here we introduce the geometric category and prove
a proposition which will allow us to compare the discrete and smooth versions
of geometric category.

Definition 6. Let X be a CW complex. The (open) geometric category
of X , denoted gcatop(X) or just gcat(X), is the least integer n such that
there exists an open cover {U0,U1, . . . ,Un} of X with each Ui contractible.
The (closed) geometric category of X , denoted gcatcl(X), is the least integer
n such that there exists a closed cover {U0,U1, . . . ,Un} of X with each Ui a
contractible subcomplex of X .

If σ ⊆K is a closed subcomplex of the simplicial complex K, then |σ| is
a compact subspace [4, Theorem II.2.9] of a metric space and hence closed.
Thus any closed cover of K corresponds to a closed cover of |K|. The following
proposition will relate the discrete geometric category of K to the geometric
category of its geometric realization.

Proposition 7. Let X be a CW complex. Then gcatop(X)≤ gcatcl(X).

Proof. Let {U0,U1, . . . ,Un} be a contractible cover of X with each Ui a
closed subcomplex of X . Then for each Ui, there is an open set Vi containing
Ui with Ui a strong deformation retraction of Vi [18, Theorem 8.29]. The
contraction of Ui composed with the strong deformation provides a contraction
of each Vi. Thus Vi is contractible and {V0, V1, . . . , Vn} covers X so that
gcatop(X)≤ gcatcl(X). �

3. Discrete geometric category

We introduce our main focus of study, the discrete geometric category of a
simplicial complex.
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3.1. Definition.

Definition 8. Let L⊆K be a subcomplex. We say that L has discrete

geometric pre-category less than or equal to m in K, denoted d̃gcatK(L)≤m,
if there exists m+ 1 closed subcomplexes {U0,U1, . . . ,Um}, Ui ⊆K for 0 ≤
i≤m, each of which is collapsible such that L⊆

⋃m
i=0Ui. If d̃gcatK(L)≮m,

then d̃gcatK(L) :=m. The discrete (geometric) category of L in K is defined

by dgcatK(L) := min{d̃gcatK(L′) : L collapses to L′}. We write dgcat(K) :=
dgcatK(K). It follows immediately from the definition that if L↘ L′ then

d̃gcatK(L)≥ d̃gcatK(L′) and dgcatK(L)≤ d̃gcatK(L).

Remark 9. A word is in order concerning our definition. The need to
define the pre-category of a complex is in order to guarantee that an ele-
mentary collapse does not decrease the discrete category. Our definition of
pre-category avoids the necessity to subdivide, which is another possible ap-
proach to avoiding this problem.

The discrete geometric category generalizes the notion of a collapsible sim-
plicial complex, as the following proposition demonstrates.

Proposition 10. Let K be a simplicial complex. Then dgcat(K) = 0 if
and only if K is collapsible.

Proof. Suppose dgcat(K) = 0. Then there exists a subcomplex L ⊆ K

such that K ↘ L and d̃gcat(L) = 0. Since d̃gcat(L) = 0, there is a sequence of
elementary collapses such that L↘{v} for some vertex v ∈ L. Combining the
collapses K ↘ L and L↘ {v}, we obtain a collapse of K ↘ {v}, and hence
K is collapsible. The other direction is immediate. �

In 1963, Zeeman conjectured that if K is a contractible 2-dimensional com-
plex then K × I is collapsible. In the same paper, he also proved that the
Zeeman conjecture implies the Poincaré conjecture [21].

Combining this with Proposition 10, we obtain a rephrasing of the Zeeman
conjecture in terms of discrete geometric category.

Proposition 11. Let K be a 2-dimensional contractible complex. Then
K×I is collapsible if and only if dgcat(K×I) = 0. In particular, if dgcat(K×
I) = 0 then the Poincaré conjecture holds.

3.2. Basic properties. It is now easy to show the relationship between
discrete geometric category and geometric category.

Corollary 12. gcat(|K|)≤ dgcat(K).

Proof. The geometric realization of a (closed) subsimplex of K is a union
of closed subcomplexes of |K| [10, Theorem 3.3.2 and following discussion].
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This fact combined with Proposition 5 shows that a collapsible cover of K is
sent to a contractible closed cover of |K|. Hence, gcatop(|K|)≤ gcatcl(|K|)≤
dgcat(K) by Proposition 7. �

We show below that this inequality can be strict. Since cohomology of sim-
plicial complexes is well studied, the following corollary yields a rudimentary
lower bound for the discrete category based on its relationship to the smooth
category. We also prove a simple upper bound.

Proposition 13. If K is a simplicial complex on n vertices, then ∪(|K|)≤
dgcat(K)≤ n− 1.

Proof. Combining [3, Proposition 1.5], the fact that cat(X) ≤ gcat(X),
and Corollary 12, we see that ∪(|K|)≤ dgcat(K). To show the upper bound,

let v ∈ K be a 0-simplex,and define Lv = {σ ∈K : v ∈ σ}. We claim that
{Lv}v∈K is a collapsible cover of K. To see that Lv is collapsible, let σ ∈ Lv

be a face of maximum dimension in Lv . Then σ − {v} ∈ Lv is a free face of
σ since any other coface of σ − {v} is of the form σ − {v} ∪ {x} /∈ Lv . Thus
Lv ↘ Lv − {σ,σ − {v}}. Now we take τ ∈ Lv − {σ,σ − {v}} to be a face of
maximum dimension in Lv−{σ,σ−{v}} and repeat to collapse Lv to v. Since
{Lv}v∈K clearly covers K, dgcat(K)≤ n− 1. �

Example 14. It is well known that there are simplicial complexes which
have contractible geometric realization but which are not collapsible, such as
Bing’s house with two rooms [1] and the dunce cap D. These examples show
that the inequality in Corollary 12 can be strict. One might ask how large the
difference can be. In Example 21, we will show that the difference dgcat(K)−
gcat(|K|) can be made arbitrarily large, even for K a 1-dimensional simplicial
complex. However, it is also the case that D ∼ {v} but dgcat(D) = 1> 0 =
dgcat({v}). Hence, dgcat is not a simple homotopy invariant.

Proposition 15. Let K,L ⊆ K ∪ L. Then dgcat(K ∪ L) ≤ dgcat(K) +
dgcat(L) + 1.

Proof. Let {U0, . . . ,Un} be a collapsible cover of K and {V0, . . . , Vm} a
collapsible cover of L. Clearly {U0, . . . ,Un, V0, . . . , Vm} covers K ∪ L so that
dgcat(K ∪L)≤ n+m+ 1. �

3.3. Examples. As in the smooth case, the discrete category is 0 on a cone
and at most 1 for a suspension.

Proposition 16. Let K be a simplicial complex. Then dgcat(CK) = 0.

Proof. We show that CK collapses to a point. Let v ∈ CK be the apex
and write σv = σ ∪ {v} for any σ ∈K and view K ⊆ CK as the base of the
cone. Assume σ is an n-dimensional facet of K. Then σ is the unique coface
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of σv so that CK ↘CK−{σ,σv}. We may remove every n-dimensional facet
of K in this way so that the (n− 1)-dimensional faces are now the facets of

the base. Repeat this process. Since σ is in 1–1 correspondence with σv ,
CK ↘ v through a series of elementary collapses. Thus CK is collapsible and

dgcat(CK) = 0. �

Corollary 17. Let K be a simplicial complex. Then dgcat(ΣK)≤ 1.

Proof. This follows from the fact that ΣK =CK ∪CK. �

Example 18. We show that dgcat(Sn) = 1. Let P([n]) denote the power
set of [n]. Observe that Sn =CSn−1∪Δn where Δn is the standard n-simplex.

This follows from the fact that

CSn−1 ∪ {1,2, . . . , n+ 1}
=C

(
P

(
[n+ 1]

)
− {1,2, . . . , n+ 1}

)
∪ {1,2, . . . , n+ 1}

= P
(
[n+ 1]

)
− {1,2, . . . , n+ 2} − {1,2, . . . , n+ 1}

∪ {1,2, . . . , n+ 1}
= Sn+1.

Since both CSn−1 and Δn are collapsible, dgcat(Sn) ≤ 1. Since Sn does
not contain any free faces, Sn is not collapsible.

Example 19. There is a simplicial structure on RP2 given by

1

2 3
4

5 6

3 2

1
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It is easily seen that the following forms a collapsible cover:

2
4

5 6

3

1

3
4

6
2

1

and

1

2 3

4

It is well known that ∪(RP2) = 2 so that by Proposition 13, dgcat(RP2) = 2.

3.4. 1-dimensional complexes. We focus our attention on the connection
between the discrete category of 1-dimensional simplicial complexes (a graph)
and a well-known graph theoretic invariant. Nash-Williams [17] defined the
arboricity of a graph G to be the minimum number of forests into which the
edges of G can be partitioned. This is equivalent to our definition, as the
following proposition implies.

Proposition 20. A 1-dimensional simplicial complex is collapsible if and
only if it is a tree.

Nash-Williams computed the arboricity for all graphs, and there are many
other results known about the arboricity of graphs [11]. For completeness,
however, we give our own argument to estimate the arboricity or dgcat of a
certain collection of graphs below in order to compare the discrete category
with the classical smooth category. In the case of a graph, the geometric
category is bounded above by 1 and thus of little interest. However, the
discrete category can take on arbitrarily large values on a graph.

Example 21. Let K =Kn, the complete graph in n vertices. We show
that dgcat(K)≥ 
n

2 �−1 so that the discrete category of even a 1-dimensional
simplicial complex can be made arbitrarily large. If Ui is collapsible, the
maximum number of edges that Ui can have is n− 1. This follows from the
identity v − e = b0 − b1 where v is the number of vertices, e the number of
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edges, and b0, b1 the (unreduced) Betti numbers of G [15, Theorem 3.4]. Since

Kn has a total of n(n−1)
2 edges, Kn needs at least 
n

2 � collapsible complexes
in a cover. Thus dgcat(Kn)≥ 
n

2 � − 1 (this turns out to be the exact value
of dgcat(Kn); see [11]). It is known that for X a path-connected, finite CW
complex, gcat(X) is bounded above by dim(X) [3, Proposition 3.2.3]. Hence
gcat(|Kn|) ≤ 1. Thus the difference dgcat(Kn) − gcat(|Kn|) can be made
arbitrarily large.

Restrictions on the graph G bound the discrete category. The following
result, restated in our language, is due to Nash-Williams.

Theorem 22 ([17]). Let G be a planar graph. Then dgcat(G)≤ 2.

Example 23. It is not true, however, that a nonplanar graph has discrete
category necessarily greater than 1. To see this, let G=K3,3. The following
two sets are easily seen to be collapsible and to cover K3,3:

and

Thus dgcat(G) = 1 but G is nonplanar.

3.5. Discrete Lusternik–Schnirelmann theorem. The goal of this sec-
tion is to prove a discrete version of the Lusternik–Schnirelmann theorem.
We begin by defining a notion of equivalence of discrete Morse functions and
arguing that any discrete Morse function is equivalent to a discrete Morse
function whose critical values are all distinct. Such a discrete Morse function
is called excellent. Our reference for the definitions and basics of discrete
Morse theory is [7].

Definition 24 ([8]). Two discrete Morse functions f and g on K are said
to be equivalent if for every pair of simplices σ ⊆ τ in K satisfying dim(σ) = p
and dim(τ) = p+ 1, we have f(σ)< f(τ) if and only if g(σ)< g(τ).

Lemma 25. Let f : K →R be a discrete Morse function. Then there is an
excellent discrete Morse function g : K →R with all the same critical simplices
of f which is equivalent to f .

Proof. Let σ1, σ2 ∈K be critical simplices such that f(σ1) = f(σ2). If no
such simplices exist, then we are done. Otherwise, define f ′ : K → R by
f ′(τ) = f(τ) for all τ �= σ1 and f ′(σ1) = f(σ1) + ε where f(σ1) + ε is strictly
less than the smallest value of f greater than f(σ1). Then σ1 is a critical
simplex of f ′ and f ′ is equivalent to f . Repeat the construction for any
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two simplices of f ′ that share the same critical value. Since f has a finite
number of critical values, the process terminates with an excellent discrete
Morse function g which is equivalent to f . �

The proof of the following theorem is inspired by [3, Section 1.3]. Recall
that for all a ∈R if L is a simplicial complex with discrete Morse function f ,
then the ath level subcomplex L(a) is the subcomplex of L consisting of all
simplices τ with f(τ)≤ a as well as their faces. In other words,

L(a) =
⋃

f(τ)≤c

⋃

σ⊆τ

σ.

Theorem 26. Let f : K →R be a discrete Morse function with m critical
values. Then dgcat(K) + 1≤m.

Proof. By Lemma 25, we may assume that any discrete Morse function on
K is excellent since we are only concerned with the number of critical values.
We first claim that cn := min{a ∈R : ∃L(a)⊆K s.t. dgcatK(L(a))≥ n−1} is
a critical value of f . Suppose by contradiction that cn is a regular value of f .
Then by [5, Theorem 3.3] there is an ε > 0 such that K(cn + ε)↘K(cn − ε)
in K. Hence, dgcatK(K(cn + ε)) = dgcatK(K(cn − ε)) ≥ n− 1 so that cn >
cn− ε ∈ {a ∈R : ∃L(a)⊆K s.t. dgcatK(L(a))≥ n− 1} contradicting the fact
that cn is minimum. Thus, each cn is a critical value of f .

We now prove by induction on n that K(cn) must contain at least n critical
simplices. By the well-ordering principle, the set Im(f) has a minimum, say
f(v) = 0 for some 0-simplex v ∈K. For n= 1, c1 = 0 so that K(c1) contains
1 critical simplex. For the inductive hypothesis, suppose that K(cn) contains
at least n critical simplices. Since f is excellent, cn < cn+1 so that there
is at least 1 new critical simplex in f−1(cn+1). Thus, K(cn+1) contains at
least n+ 1 critical values. Hence if c1 < c2 < · · ·< cdgcat(K)+1 are the critical
simplices, then K(cdgcat(K)+1) ⊆ K contains at least dgcat(K) + 1 critical
simplices. Thus, dgcat(K) + 1≤m. �

Example 27. We give an example to show that is best possible in the sense
that equality is attained. Indeed, let K = Sn. Then there is a discrete Morse
function on K with 2 critical values [5, Corollary 4.4(ii)]. By Example 18,
dgcat(Sn) = 1 and hence dgcat(Sn) + 1 = 2≤ 2, showing that the inequality
obtained from Theorem 26 is best possible.
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