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MARKOVIAN LOOP CLUSTERS ON GRAPHS

YVES LE JAN AND SOPHIE LEMAIRE

Abstract. We study the loop clusters induced by Poissonian en-
sembles of Markov loops on a finite or countable graph (Markov

loops can be viewed as excursions of Markov chains with a ran-
dom starting point, up to re-rooting). Poissonian ensembles are

seen as a Poisson point process of loops indexed by ‘time’. The

evolution in time of the loop clusters defines a coalescent process

on the vertices of the graph. After a description of some general

properties of the coalescent process, we address several aspects

of the loop clusters defined by a simple random walk killed at

a constant rate on three different graphs: the integer number

line Z, the integer lattice Zd with d≥ 2 and the complete graph.

These examples show the relations between Poissonian ensembles

of Markov loops and other models: renewal process, percolation
and random graphs.

Introduction

The notion of Poissonian ensembles of Markov loops (loop soups) was intro-
duced by Lawler and Werner in [8] in the context of two dimensional Brownian
motion (it already appeared informally in [13]): the loops of a Brownian loop
soup on a domain D ⊂ C are the points of a Poisson point process with in-
tensity αμ where α is a positive real and μ is the Brownian loop measure
on D. Loop clusters induced by a Brownian loop soup were used to give a
construction of the conformal loop ensembles (CLE) in [14] and [12]. They
are defined as follows: two loops � and �′ are said to be in the same cluster
if one can find a finite chain of loops �0, . . . , �n such that �0 = �, �n = �′ and
for all i ∈ {1, . . . , n}, �i−1 ∩ �i �= ∅. Poissonian ensembles of Markov loops can
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also be defined on graphs. They were studied in details in [9] and [6]. In par-
ticular Poissonian ensembles of loops on the integer lattice Z2 induced by
simple (nearest neighbor) random walks give a discrete version of Brownian
loop soup (see [7]).

The aim of this paper is to study loop clusters induced by Markov loop
ensembles on graphs. The facts presented here, which are built on the re-
sults presented in [9], are more elementary than in the Brownian loop soup
theory, but they point out that Poissonian ensembles of Markov loops and re-
lated partitions are of more general interest. The examples we develop show
relations with several theories: coalescence, percolation and random graphs.

In Section 1, we recall the different objects needed to define the Markovian
loop clusters on a graph and the coalescent process induced by the partition
of vertices they define. In Section 2 we state general properties of the clusters
and establish some formulae useful to study the semigroup of the coalescent
process. In the last three sections, we address several aspects of the loop
clusters induced by a simple random walk killed at a constant rate κ on
different graphs:

• On Z, the loop cluster model reduces to a renewal process. We establish
a convergence result by rescaling space by

√
ε, killing rate by ε and let ε

converge to 0.
• The loop cluster model can be seen as a percolation model with two pa-
rameters α and κ. Bernoulli percolation appears as a limit if α and κ tend
to +∞ so that α

κ2 converges to a positive real. We show that a non-trivial

percolation threshold occurs for the loop cluster model on the lattice Zd

with d≥ 2.
• As a last example, we consider the complete graph. We give a simple
construction of the coalescent process on the complete graph and we deduce
a construction of a coalescent process on the interval [0,1]. Letting the size
of the graph increase to +∞, we determine the asymptotic distribution of
the coalescence time: it appears to be essentially the same as in the Erdös–
Rényi random graph model (see [4]) though the lack of independence makes
the proof significantly more difficult.

1. Setting

We consider a finite or countable simple graph G = (X,E) endowed with
positive conductances Ce, e ∈ E and a positive measure κ= {κx, x ∈X} (called
the killing measure). We denote by Cx,y the conductance of the edge between
vertices x and y and set λx =

∑
y∈X,{x,y}∈E Cx,y + κx for every x ∈X . The

conductances and the killing measure κ induce a sub-stochastic matrix P :

Px,y =
Cx,y

λx
1{{x,y}∈E} ∀x, y ∈X . We assume that P is irreducible.

1.1. Loop measure. A discrete based loop � of length n ∈N∗ on G is defined
as an element of Xn; it can be extended to an infinite periodic sequence. Two
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Figure 1. Representation of a loop � of length 4 on the
complete graph K4 corresponding to the equivalence class
of the based loop �̇= (4,1,2,1); the measure of this loop is
μ(�) = P4,1P1,2P2,1P1,4.

based loops of length n are said equivalent if they only differ by a shift of
their coefficients (i.e., the based loops of length n, (x1, . . . , xn) is equivalent to
the based loop of length n (xi, . . . , xn, x1, . . . , xi−1) for every i ∈ {2, . . . , n}).
A discrete loop is an equivalent class of based loops for this equivalent relation
(an example is drawn in Figure 1). Let DL(X) (resp. DL̇(X)) denote the
set of discrete loops (resp. discrete based loops) of length at least 2 on X .
We associate to each based loop � = (x1, . . . , xn) of length n ≥ 2 the weight

μ̇(�) = 1
nPx1,x2Px2,x3 · · ·Pxn,x1 . This defines a measure μ̇ on DL̇(X) which is

invariant by the shift and therefore induces a measure μ on DL(X).

Remark 1.1 (Doob’s h-transform). If h is a positive function on X such
that (P − I)h≤ 0, a new set of conductances C{h} and a new killing measure

κ{h} can be defined as follows: C
{h}
x,y = h(x)h(y)Cx,y for every {x, y} ∈ E and

κ
{h}
x = h(x)[(I − P )h](x)λx for every x ∈X . This modification corresponds

to the Doob’s h-transform: the associated transition matrix P {h} verifies
P

{h}
x,y = h(y)

h(x)Px,y ∀x, y ∈ X . It is a self-adjoint operator on L2(h2λ) since

P {h} = T−1
h PTh with

Th :
L2(h2λ)→ L2(λ)

f 
→ hf
.

The loop measure μ is invariant under Doob’s h-transform.
The loop measure can be defined without assuming that P is a substochas-

tic matrix. A weaker condition would be to assume that P is a positive and
contractive matrix. Taking such matrices does not extend the set of loop
measures. Indeed, Perron–Frobenius theorem states that if Q is a positive
and irreducible matrix and if its spectral radius ρ(Q) is smaller or equal to 1,
then there exists a positive function h on X such that Ph = ρ(Q)h. The
h-transform of Q is then a substochastic matrix.

1.2. Poisson loop sets. Let DP be a Poisson point process with intensity
Leb⊗μ defined on R+ ⊗DL(X). For α≥ 0, let DLα denote the projection of
the set DP ∩ ([0, α]×DL(X)) on DL(X); (DLα)α≥0 is an increasing family of
loop sets which has stationary independent increments. It coincides with the
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Figure 2. Example of a loop set DLα at time α on a finite
graph G, the subgraph Gα defined by the open edges and the
partition Cα induced by its loop clusters (the dotted-lines on
the left figure represent the edges of G; DLα consists of three
loops of length 2, two loops of length 3 and two loops of
length 4).

family of non-trivial discrete loop sets induced by the Poisson Point process
of continuous-time loops defined in [9].

1.3. Coalescent process. An edge e ∈ E is said to be open at time α if
e is traversed by at least one loop of DLα. The set of open edges defines
a subgraph Gα with vertices X . The connected components of Gα define a
partition of X denoted by Cα. The elements of the partition Cα are the loop
clusters defined by DLα (an example is drawn in Figure 2). This paper is
devoted to the study of Cα.

Remark 1.2. If A is a subset of X , let us define the DLα-neighborhood
of A:

τα(A) =A∪ {x ∈X,∃� ∈DLα visiting A and x}.
Given any (x, y) ∈X2, set x∼

α
y if and only if ∃k ∈N∗ such that y ∈ τkα({x})

(in the example drawn in Figure 2, τα({10}) = {10,11} and for every k ≥ 2,
τkα({10}) = τα({10,11}) = {8,10,11,12} for instance). This defines an equiv-
alence relation and the associated partition is Cα.

2. General properties of discrete loop clusters

2.1. The distribution of the set of primitive discrete loops. Posi-
tive integer powers of a based discrete loops is defined by concatenation: if
�= (x1, . . . , xn) is a based discrete loop of length n then [�]1 = �, [�]2 is the
discrete based loop (x1, . . . , xn, x1, . . . , xn) and so on. As the mth power of
equivalent based loops are also equivalent, powers of discrete loops are well-
defined. A discrete loop ξ is said to be primitive if there is no integer m≥ 2
and no discrete based loop � such that ξ is the equivalent class of [�]m; any
discrete loop ξ ∈DL(X) can be represented as a power of a unique primitive
discrete loop denoted by πξ. Let PL(X) denote the set of primitive discrete
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loops X of length at least 2 and let PLα denote the set of primitive discrete
loops defined by DLα. Clearly Cα depends only on PLα.

Proposition 2.1. The probability distribution of PLα is a product measure
ν on {0,1}PL(X) defined by

ν(ω,ωη = 1) = 1−
(
1− μ(η)

)α
.

Proof. If η1, . . . , ηr are distinct primitive discrete loops, the sets

Li =
{
� ∈DL(X), π�= ηi

}
, i= 1, . . . , r

are disjoint, hence the r events Ei = {∃� ∈ DLα such that π� = ηi} for
i ∈ {1, . . . , r} are independent. Therefore, the law of PLα is a product measure
on {0,1}PL(X) and for every η ∈ PL(X),

P(η ∈ PLα) = P(∃� ∈DLα, π�= η) = 1− exp

(
−α

+∞∑
m=1

μ
(
�, �= [η]m

))
.

As μ([η]m) = 1
mμ(η)m for every m ∈N∗, we deduce that

P(η ∈ PLα) = 1− exp
(
α log

(
1− μ(η)

))
. �

It follows from Proposition 2.1 that the Harris inequality (and also the B-K
inequality) holds on increasing events (see, e.g., [15]). In particular, let us say
that a subset A of X is connected at time α if it is contained in a cluster
of Cα. Then by the Harris inequality,

P(A and B are both connected at time α)

≥ P(A is connected at time α)P(B is connected at time α).

In a similar way, we say that a subgraph is open at time α if all its edges are
traversed by jumps of loops in DLα. Then the same inequality holds.

These inequalities can be extended to any number of increasing events. In
particular,

• for every partition π = (Bi)i∈I of X into non-empty blocks, the probability
that Cα is a coarser1 partition than π satisfies:

P(Cα � π)≥
∏
i∈I

P(Bi is connected at time α);

• if F ⊂ E , then P(F is open at time α)≥
∏

e∈F P(e is open at time α).

2.2. The transition rate of the coalescent process. The evolution in
α of Cα defines a partition-valued Markov chain. Let π be a partition of X

1 Given two partitions σ and π of X , σ is said to be coarser than π (denoted by σ � π)
or π is said to be finer than σ (denoted by π � σ) if every block of π is a subset of a block

of σ.
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into non-empty blocks {Bi, i ∈ I}. From state π, the only possible transitions
are to a partition π⊕J obtained by merging blocks indexed by some subset J
of I to form one block BJ =

⋃
j∈J Bj and leaving all other blocks unchanged.

The transition rate from π to π⊕J is

τπ,π⊕J = μ(�,∀j ∈ J, � intersects Bj and(2.1)

∀u /∈ J, � does not intersect Bu)

=
∑
k≥2

1

k

∑
(x1,...,xk)∈Wk(Bj ,j∈J)

Px1,x2 · · ·Pxk,x1 ,

where Wk(Bj , j ∈ J) is the set of k-tuples of elements of BJ having at least
one element that belongs to each block Bj , j ∈ J :

Wk(Bj , j ∈ J) =

{
(x1, . . . , xk) ∈

(⋃
j∈J

Bj

)k

,∀j ∈ J,xu ∈Bj for some u

}
.

If the graph G is finite, these transition rates can be expressed with deter-
minants of Green’s functions of subgraphs. In order to describe the formula,
let us introduce some notations; Let G denote the Green’s function of G:
G = (λI − C)−1 where λ = (λx)x∈X , I is the identity matrix and C is the
conductance matrix. For every subset F of vertices, set F c =X \ F and let
G(F ) denote the Green’s function of the subgraph (F,E|F×F ) of G: G(F ) is
the inverse of the matrix (λI −C)|F×F .

Proposition 2.2. Let us assume that G = (X,E) is a finite graph.
For every partition π = {Bi, i ∈ I} of X and every subset J of I with at

least two elements:

(2.2) τπ,π⊕J =
∑
I�J

(−1)|I| log
(
det

(
G(

⋃
u∈J\I Bu)

))
.

Proof. By the inclusion–exclusion principle,

τπ,π⊕J = μ

(
�, � does not intersect

⋃
j /∈J

Bj

)

− μ

(
�,∃u ∈ J, � does not intersect

⋃
j∈Jc∪{u}

Bj

)

=
∑
K�J

(−1)|K|μ

(
�, � does not intersect

⋃
u∈Jc∪K

Bu

)
.

To conclude, we use that:

• For a subset F of vertices,

μ(�, � does not intersect F ) = μ
(
DL

(
F c

))
= log

(
det

(
G(F c)

) ∏
x∈F c

λx

)
.
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• For every family of reals (au)u∈J indexed by a finite subset J with at least
two elements,

(2.3)
∑
I�J

(−1)|I|
∑

u∈J\I
au = 0.

�
Example 2.3. Let us consider the complete graph Kn with unit conduc-

tances and a uniform killing measure with intensity κ. The transition matrix
P verifies: Px,y = 1

n−1+κ1{x 	=y} for every vertices x and y. Thus for every

subset F of vertices, det(G(F )) = ((n+ κ)|F |−1(n+ κ− |F |))−1 (the compu-
tation of this determinant is detailed in Lemma A.3). Using (2.2) and (2.3),
we obtain:

(2.4) τπ,π⊕J =
∑
I�J

(−1)|I|+1 log

(
1− 1

n+ κ

∑
u∈J\I

|Bu|
)
.

2.3. The semigroup of the coalescent process on a finite graph. In
this section, we assume that the graph G is finite. For a partition π of X ,
let Pπ(·) denote the conditional probability P(·|C0 = π). The probability that
Cα is finer than a given partition of X has a simple expression in terms of
determinants of Green’s functions:

Lemma 2.4. Let us assume that the graph G = (X,E) is finite. Let π be a
partition of X into non-empty blocks {Bi, i ∈ I}. For every partition π0 of X ,

(2.5) Pπ0(Cα � π) =

(∏
i∈I det(G

(Bi))

det(G)

)α

1{π0
π}.

Proof. Let us assume that π is coarser than π0. The event ‘Cα is finer than
π’ means that every loop of DLα is included in a block of π. Therefore,

Pπ0(Cα � π) = exp

(
−α

(
μ
(
DL(X)

)
−

∑
i∈I

μ
(
DL(Bi)

)))
since the set of loops in each block Bi of π at time α defines independent
Poisson point processes. To conclude, we use that

μ
(
DL(X)

)
= log

(
det(G)

∏
x∈X

λx

)
and

μ
(
DL(Bi)

)
= log

(
det

(
G(Bi)

) ∏
x∈Bi

λx

)
.

�
An explicit formula for Pπ0(Cα = π) can be derived from Lemma 2.4. Let

us first introduce some notations. For a partition π, let |π| denote the number
of non-empty blocks of π. For a subset A, let π|A denote the restriction of π
to A: π|A is a partition of A, the blocks of which are the intersection of the
blocks of π with A.
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Lemma 2.5. Let us consider a finite graph G = (X,E). Let π0 and π be two
partitions of X . If π has k non-empty blocks denoted by B1, . . . ,Bk then

(2.6) Pπ0(Cα = π) =
∑
π̃
π

(−1)|π̃|−k
k∏

i=1

(
|π̃|Bi

| − 1
)
!Pπ0(Cα � π̃).

Proof. Let us first assume that π = {X}. To obtain equation (2.6), it is
sufficient to prove the following identity:

(2.7) 1{Cα={X}} =

|X|∑
�=1

(−1)�−1(�− 1)!
∑

π�∈P�(X)

1{Cα
π�},

where P�(X) denotes the set of partitions of X with � non-empty blocks. Let
us assume that Cα is a partition with j non-empty blocks. For �≤ j, we can
construct a partition coarser than Cα with � non-empty blocks by choosing
how to merge some blocks of Cα, that is by choosing a partition of {1, . . . , j}
with � blocks. Therefore,∑

π�∈P�(X)

1{Cα
π�} =
∣∣P�

(
{1, . . . , j}

)∣∣1{�≤j}

and the right-hand side of (2.7) is equal to

j∑
�=1

(−1)�−1(�− 1)!
∣∣P�

(
{1, . . . , j}

)∣∣.
By an identity on the Stirling numbers of the second kind (see, for example,
[11], equation (1.30), p. 22), this sum is equal to 1 if j = 1 and 0 if j ≥ 2.

To prove (2.6) for a partition π with k non-empty blocks (B1, . . . ,Bk),
we consider Cα as a sequence of partitions on B1, . . . ,Bk respectively, and
apply (2.7):

1{Cα=(B1,...,Bk)} =
k∏

i=1

1{Cα|Bi
=Bi} =

|B1|∑
�1=1

· · ·
|Bk|∑
�k=1

k∏
i=1

Vi,�i ,

where Vi,� = (−1)�−1(�− 1)!
∑

π̃∈P�(Bi)
1{Cα|Bi


π̃}. Therefore,

1{Cα=(B1,...,Bk)}

=

|B1|∑
�1=1

· · ·
|Bk|∑
�k=1

(−1)�1+···+�k−k
k∏

i=1

(�i − 1)!
∑

π̃∈P�1
(B1)×···×P�k

(Bk)

1{Cα
π̃}

=
∑
π̃
π

(−1)|π̃|−k
k∏

i=1

(
|π̃|Bi

| − 1
)
!1{Cα
π̃}.

�
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Example 2.6. Let us consider the complete graph Kn endowed with unit
conductances and a uniform killing measure of intensity κ. If π is a partition
of the set of vertices X with k blocks B1, . . . ,Bk, then

Pπ0(Cα � π) =

(
κ

κ+ n

)α ∏
i∈I

(
1− |Bi|

n+ κ

)−α

1{π0
π}

and Pπ0(Cα = π) is equal to(
κ

κ+ n

)α ∑
π̃=(B̃j)j∈J

s.t. π0
π̃
π

(−1)|J|−k
k∏

i=1

(∣∣{j ∈ J, B̃j ⊂Bi}
∣∣−1

)
!
∏
j∈J

(
1− |B̃j |

n+ κ

)−α

.

Let us note that (1− j
n+κ )

−α is the jth moment mj of the random variable

Y = exp( Z
n+κ ) where Z denotes a Gamma(α,1)-distributed random variable.

Thus Pπ0(Cα � π) = mn∏k
i=1 m|Bi|

1{π0
π}. Let cn denote the nth cumulant of Y .

Formula (2.6) and the expression of cumulants in terms of moments (see for-
mula (1.30) in [11] for example) yield Pπ0(Cα = {X}) = cn

mn
.

2.4. Loop clusters included in a subset of X. For a subset D of X , let

DL(D)
α denote the loops of DLα contained in D and C(D)

α the partition of D

induced by DL(D)
α . In general, C(D)

α is finer than the restriction of Cα to D
but coincides with it if D is a union of elements of Cα.

For every partition π of X with k non-empty blocks B1, . . . ,Bk, the loop

sets DL(B1)
α , . . . ,DL(Bk)

α ,DLα \ (
⋃k

i=1DL(Bi)
α ) are independent. This yields

the following equality:

P(Cα = π) = P(Cα � π)

k∏
i=1

P
(
C(Bi)
α = {Bi}

)
.

Let us note also that if U ⊂D ⊂X then

P
(
Cα �

{
U,U c

})
= P

(
C(D)
α � {U,D \U}

)
P
(
�� ∈DLα visiting U and Dc

)
(see [5], p. 2, for a related result in Schramm–Loewner Evolution (SLE) con-
text). The second term on the right-hand side equals

e−α(μ(DL(X))−μ(DL(Uc))−μ(DL(D))+μ(DL(D\U))).

If X is finite, it can be written as (det(G
(Uc)) det(G(D))

det(G) det(G(D\U))
)α or, with Jacobi’s

identity, as (
det(G|U×U ) det(G|Dc×Dc )

det(G|(U∪Dc)×(U∪Dc))
)−α.

2.5. Computation of the semigroup using exit distributions. The
probability that Cα is finer than a partition π can also be expressed using exit
distributions. The formula obtained is easier to use than (2.5) for graphs such
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as tori, trees . . . Let us first introduce some notations. For a subset D of X ,
let ∂D denote the inner boundary of D:

∂D =
{
x ∈D,Cx,y > 0 for some y ∈Dc

}
and let H(D) denote the exit distribution (or Poisson kernel) from D: for

x ∈X and y ∈Dc, H
(D)
x,y is the probability that a Markov chain with transition

matrix P starting from x exits from D at y.

Lemma 2.7. Let π = (Bi)i=1,...,k be a partition of X . Let B =
⋃k

j=1 ∂Bj

denote the union of the boundary points of the blocks of π. Let H(π) denote
the matrix indexed by B defined by:

H(π)
x,y =

{
1{x=y} if x, y ∈ ∂Bi,

−H
(Bi)
x,y if x ∈ ∂Bi, y ∈ ∂Bj and i �= j.

If B is finite, then the probability for Cα to be finer than π is

P(Cα � π) = det
(
H(π)

)α
.

Proof. • First, let us assume that X is finite. Let K denote the prod-
uct of the block diagonal matrix diag(G(Bi), i ∈ {1, . . . , k}) by the matrix
G−1. We can rewrite the expression of P(Cα � π) given by Lemma 2.4 as
P(Cα � π) = det(K)α. The restriction of K to Bi ×Bi is the identity. The

exit distribution from a subset D verifies: H
(D)
x,y =

∑
z∈DG

(D)
x,z Cz,y for every

x ∈D and y ∈Dc. Therefore,

(2.8) P(Cα � π) = det(K)α

with

Kx,y =

{
1{x=y} if x, y ∈Bi,

−H
(Bi)
x,y if x ∈Bi, y ∈Bj and i �= j.

Let (ξn)n denote a Markov chain with transition matrix P . The trace of

(ξn)n on B defines a Markov chain denoted by (ξ̃n) on B and thus a Poisson

point process DP̃ on R+ ×DL(B) (see [9], Chapter 7): the discrete loops
set at time α is

DL̃α :=
{
�|B , � ∈DLα \ DL(Bc)

α

}
.

Let C̃α be the partition of B induced by DL̃α. The non-empty subsets ∂Bi,
i ∈ {1, . . . , k} define a partition of B denoted by ∂π. As {Cα � π} is the
event ‘∀i, j ∈ {1, . . . , k} such that i �= j, ∀x ∈ ∂Bi, y ∈ ∂Bj , {x, y} is not
crossed by a loop of DLα at time α’, it only depends on the restriction of
the loops on B, hence P(Cα � π) = P(C̃α � ∂π).

For a subset F of B, let H̃(F ) denote the exit distribution from F for
(ξ̃n). It follows from formula (2.8) applied to C̃α that

P(Cα � π) = det(K̃)α,
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where

K̃x,y =

{
1{x=y} if x, y ∈ ∂Bi,

−H̃
(∂Bi)
x,y if x ∈ ∂Bi, y ∈ ∂Bj and i �= j.

To conclude, it remains to note that H̃
(∂Bi)
x,y =H

(Bi)
x,y for every x ∈ ∂Bi and

y ∈B \ ∂Bi.
• Let us now assume that X is a countable set. Let (Xk)k be an increasing

sequence of finite subsets of X such that X =
⋃+∞

k=1Xk. As B is assumed
to be finite, there exists an integer k0 such that B is included in Xk0 .

For k ≥ k0, a loop in DL(Xk)
α that passes through two different blocks of

π, passes through two different blocks of π|Xk
the restriction of π to Xk.

Therefore, the probability that Cα is finer than π is:

1− sup
k≥k0

P
(
∃� ∈DL(Xk)

α passing through two different blocks of π
)

= inf
k≥k0

P
(
C(Xk)
α � π|Xk

)
.

By the first part of the proof, P(C(Xk)
α � π|Xk

) = det(H(π|Xk
))α. It remains

to note that the matrix H(π|Xk
) coincides with H(π) for every k ≥ k0 to

deduce that P(Cα � π) = det(H(π))α. �

2.6. Closed edges in a finite graph. An edge is said to be closed at time
α if it is not crossed by a loop of DLα. More generally, a family of edges E is
said to be closed at time α if every edge of E is closed at time α.

Let us assume that G is a finite graph. To compute the probability for a
family of edges E to be closed, we modify the conductances and the killing
measure so that the conductance of every edge in E is 0 and the measure λ is
unchanged: C̃x,y =Cx,y1{{x,y}/∈E} ∀{x, y} ∈ E and κ̃x = κx +

∑
y,{x,y}∈E Cx,y

∀x ∈ X . Let GE denote the Green’s function associated with {C̃e, e ∈ E ,
κ̃x, x ∈X}.

Lemma 2.8. Let us assume that G = (X,E) is a finite graph. The probability

for a family of edges E to be closed at time α is (det(GE)
det(G) )α.

Proof. For a loop � and an edge e, let Ne(�) denote the number of jumps
of � across e. Set NE(�) =

∑
e∈E Ne(�).

P(E is closed at time α) = exp
(
−αμ

(
DL(X)

)
+ αμ

(
�,NE(�) = 0

))
.

Recall that μ(DL(X)) =− log(det(I − P )). For s ∈ [0,1], let PE(s) denote a
perturbation of P defined by

[
PE(s)

]
x,y

=

{
sPx,y if {x, y} ∈E,

Px,y if {x, y} /∈E.
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Similarly, μ(sNE ) =− log(det(I − PE(s))). In particular,

μ
(
�,NE(�) = 0

)
=− log

(
det

(
I − PE(0)

))
.

Lemma 2.8 follows since PE(0) is the transition matrix associated with the

{C̃e, e ∈ E , κ̃x, x ∈X}. �
We can deduce from Lemmas 2.8 and 2.4 that if E is a set of edges of a

finite graph with extremities in different blocks of a partition π = {Bi, i ∈ I}
then

P(Cα � π|E is closed at time α) =

(∏
i∈I det(G

(Bi))

det(GE)

)α

.

3. Renewal processes

On the graph Z, the clusters Cα are intervals between closed edges at time
α (namely edges which are not crossed by any loop of DLα). The Poisson
loop sets induced by a simple random walk killed at constant rate κ have the
following properties:

Proposition 3.1. Let us consider the graph Z endowed with unit conduc-
tances and a uniform killing measure with intensity κ. Set

ρ(κ) = log

(
1 +

κ

2
+

√
κ+

κ2

4

)
.

(i) The midpoints of the closed edges at time α form a renewal process. More-
over,
– the probability that {n,n + 1} is closed at time α is equal to

(1− e−2ρ(κ)

)α for every n ∈ Z;
– given that {0,1} is closed at time α, the probability that {n,n+ 1} is

also closed is equal to ( 1−e−2ρ(κ)

1−e−2ρ(κ)(n+1)
)α for every n ∈N.

(ii) Assume that α ∈ ]0,1[. Let ν(κ) denote the law of this renewal process
that is, the law of the distance between two consecutive closed edges at
time α. For ε > 0 let (Yε,i)i∈N∗ denote a sequence of independent random

variables with distribution ν(κε).

For every t > 0, as ε converges to 0,
√
ε
∑[ε−((1−α)/2)t]

i=1 Yε,i converges in

law to the value at t of a subordinator with potential density ( 2
√
κ

1−e−2u
√

κ )
α.

Remark 3.2. This subordinator is associated with the Poisson covering
(cf. [1], Chapter 7) defined by the infinite measure on R+ with density

u 
→ −α
d2

du2
log

(
1− e−2u

√
κ
)
=

4καe−2u
√
κ

(1− e−2u
√
κ)2

.

These covering intervals can be viewed as images of the “loop soup” of inten-
sity α associated with the Brownian motion killed at constant rate κ.
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Proof of Proposition 3.1. (i) An edge {x− 1, x} is closed at time α if and

only if DLα is equal to DL(x+N)
α ∪ DL(x−1−N)

α . The next closed edge is

the first edge which is not crossed by any loop of DL(x+N)
α , and previous

closed edges are defined by DL(x−1−N)
α which is independent of DL(x+N)

α .

Stationarity is obvious as DL(x+N)
α − x is distributed like DL(N)

α . For

n ∈N, let r
(κ)
n denote the probability that {n,n+ 1} is closed at time α.

By Lemma 2.7, r
(κ)
n = (1−H

(n+1+N)
n+1,n H

(n−N)
n,n+1 )

α where H
(D)
x,y denote the

probability that a simple random walk killed at constant rate κ and start-

ing at x exits D at point y. The functions x 
→H
(D)
x,y can be computed

from the solutions of equation

(2 + κ)u(x)− u(x+ 1)− u(x− 1) = 0,

which are linear combinations of exp(ρ(κ)x) and exp(−ρ(κ)x).

We obtain H
(n+1+N)
n+k,n =H

(n−N)
n+1−k,n+1 = exp(−ρ(κ)k) for every k ∈N.

For n ∈N∗, let q(κ)(n) denote the probability that {n,n+ 1} is closed
at time α given that {0,1} is closed at time α. To compute q(κ)(n),
we consider a simple random walk on N killed at rate κ and at point

0; we denote it (ζk)k. As (DL(N)
α )α is the Poisson loop sets associated

with (ζk)k, by Lemma 2.7 we obtain: q(κ)(n) = (1− h
({0,...,n})
n h

(n+1+N)
n+1 )α

where h(D) is the exit distribution from a subset D of N for (ζk)k:

h
({0,...,n})
k =

sinh(ρ(κ)k)

sinh(ρ(κ)(n+ 1))
for 1≤ k ≤ n+ 1

and h
(n+1+N)
k = eρ

(κ)(n−k) for k ≥ n. Therefore

q(κ)(n) =

(
1− sinh(ρ(κ)n)

sinh(ρ(κ)(n+ 1))
e−ρ(κ)

)α

=

(
1− e−2ρ(κ)

1− e−2ρ(κ)(n+1)

)α

.

(ii) Let Iκ denote the Laplace transform of the function u 
→ ( 2
√
κ

1−e−2
√

κu )
α:

Iκ(s) =

∫ ∞

0

(
2
√
κ

1− e−2
√
κu

)α

e−su du for s > 0.

Let ν̂(κ) denote the Laplace transform of ν(κ). We shall prove that for

every s > 0, −ε
α−1

2 log(ν̂(κε)(s
√
ε)) converges towards 1/Iκ(s) as ε tends

to 0 which yields (ii).
As q(κ)(n) =

∑∞
k=1(ν

(κ))∗k(n) for every n ∈ N∗, we have the Laplace

transforms identity: ν̂(κ) = q̂(κ)

1+q̂(κ)
. Therefore, it is sufficient to show that

ε(1−α)/2q̂(κε)(s
√
ε) converges to Iκ(s) as ε tends to 0. Let κ1 and κ2

be two positive reals such that 0 < κ1 < κ < κ2. For ε small enough,√
εκ1 ≤ ρ(κε) ≤√

εκ2 and 2
√
εκ1 ≤ 1− e−2ρ(κε) ≤ 2

√
εκ2. For a > 0 let fa
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be the function defined by fa(x) = (1 − e−2ax)−α for x > 0. Therefore,
for ε small enough,

(2
√
εκ1)

αfκ2

(√
ε(n+ 1)

)
≤ q(κε)(n)≤ (2

√
εκ2)

αfκ1

(√
ε(n+ 1)

)
for every n ∈ N. By Lebesgue’s dominated convergence theorem applied
to the function ga,s,ε defined by

ga,s,ε(x) = fa

(√
ε

⌈
x√
ε

⌉)
e
−s

√
ε
 x√

ε
� ∀x > 0,

we obtain:

√
ε

+∞∑
n=0

fa
(√

ε(n+ 1)
)
e−s

√
εn →

ε→0

∫ +∞

0

fa(x)e
−sx dx

(for ε < 1
2a , ga,s,ε is dominated by

x 
→
(

2

ax

)α

1]0, 1
2a ](x) +

e−sx

(1− e−1/2)α
1] 1

2a ,+∞[(x)

)
.

This implies that for every s > 0

limε(1−α)/2q̂(κε)(s
√
ε)≥

∫ +∞

0

(
2
√
κ1

1− e−2
√
κ2u

)α

e−su du

and

limε(1−α)/2q̂(κε)(s
√
ε)≤

∫ +∞

0

(
2
√
κ2

1− e−2
√
κ1u

)α

e−su du.

These inequalities hold for every 0< κ1 < κ< κ2. Therefore for every s >

0, ε(1−α)/2q̂(κε)(s
√
ε) converges to Iκ(s) which ends the proof of (ii). �

Remark 3.3. In the case of the simple random walk on N killed at 0, a
similar argument (detailed in [10]) shows that:

• For 0< α< 1, the midpoints of the closed edges at time α form a renewal

process with holding times (Y
(α)
n )n≥1; The generating function of Y

(α)
n is

1− s
Liα(s) where Li denotes the polylogarithm: ∀|s|< 1, Liα(s) =

∑+∞
k=1

sk

kα .

Set S
(α)
n =

∑n
i=1 Y

(α)
i for n≥ 1. As ε tends to 0, (εS

(α)

εα−1t�, t≥ 0) converges

in law towards a stable subordinator (S
(α)
t , t≥ 0) with index 1−α. In the

case of a finite interval [0,L], we obtain a renewal process conditioned to
jump at point L.

• For α > 1, there are only a finite number of clusters. In particular,

P(S
(α)
1 =∞) = 1

ζ(α) .
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4. Bernoulli percolation and loop percolation

4.1. Bernoulli percolation. Let s= {se, e ∈ E} be a family of coefficients
in [0,1]. In the Bernoulli percolation model of parameter s on the graph
G = (X,E), every edge e is, independently of each other, called ‘open’ with
probability se and ‘closed’ with probability 1−se. Vertices connected by open
paths define a partition of X denoted by P(s). We can compare P(s) to the
partition induced by the set of primitive discrete loops of length 2 for a finite
graph (X,E).

Lemma 4.1. Let us consider a finite graph (X,E). For α> 0 and {x, y} ∈ E ,
set sα,{x,y} = 1− (1− Px,yPy,x)

α.
The partition induced by the set of primitive discrete loops of length 2 at

time α has the same law as P({sα,e, e ∈ E}).
Proof. Let PAα denote the set of primitive discrete loops of length 2 at

time α. The law PAα for every α is a product measure ν on {0,1}E : for
every edge {x, y} ∈ E , let ηx,y denote the class of the based loop (x, y). The
probability that a loop in DLα has {x, y} as support is

ν(ω,ω{x,y} = 1) = 1− exp
(
−αμ(�, π�= ηx,y)

)
and

μ(�, π�= ηx,y) =

+∞∑
k=1

1

k
(Px,yPy,x)

k =− log(1− Px,yPy,x). �
Bernoulli percolation clusters on a graph appear to be a limiting case of

partitions defined by loop clusters in which only two points loops contribute
asymptotically.

Proposition 4.2 ([10]). Let us consider a finite graph G = (X,E) endowed
with unit conductances and a uniform killing measure with intensity κ > 0.

Let C(κ)
α be the partition induced by the Poisson loop set on G at time α. Fix

u > 0.
If κ and α tend to +∞ such that α

κ2 converges to u, then C(κ)
α converges in

law towards the Bernoulli percolation of parameter 1− e−u.

Proof. For a partition π = {Bi, i ∈ I} of X , let L(π) denote the set of
edges of E linking different blocks of π. The law of the Bernoulli percolation
of parameter 1−e−u denoted by P(1−e−u) is characterized by the identities:

P
(
P

(
1− e−u

)
� π

)
= e−u|L(π)| for every partition π of X.

To prove the convergence of P(C(κ)
α � π), we apply Lemma 2.7: P(C(κ)

α � π)
is equal to det(H(π))α where H(π) is defined as in Lemma 2.7. We note

then that H(π)
x,y is equivalent to κ−1 if {x, y} belongs to L(π) and of order

less or equal to κ−2 otherwise. Indeed, if x ∈ ∂Bi and y ∈ ∂Bj for i �= j,

H
(Bi)
x,y =

∑
z∈Bi

Px,zH
(Bi)
z,y + Px,y and Pi,j ≤ 1

κ for all (i, j) ∈X ×X .
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A second-order Taylor expansion shows that log(det(H(π))) = Tr(log(H(π)))
is equivalent to −1

2 Tr(Q
2), with Qx,y = κ−11{{x,y}∈L(π)}. �

4.2. Loop percolation on Zd with d≥ 2. Let us consider the Poisson loop
process induced by the simple random walk on Zd, d≥ 2, killed at a constant
rate κ > 0: Px,x+u = 1

2d+κ for every x ∈ Zd and u ∈ {±1}d. Let θ(α,κ) denote
the probability of percolation at time α that is, the probability of any fixed
point to be connected to infinity by an open path at time α. The following
proposition presents some properties of the function (α,κ) 
→ θ(α,κ).

Proposition 4.3. Let pc denote the critical probability for bond percolation
on Zd (d≥ 2).

(i) θ(α,κ) is an increasing function of α and a decreasing function of κ.
(ii) θ(α,κ)> 0 for every α> 0 and κ > 0 such that (1− 1

(2d+κ)2 )
α < 1− pc.

(iii) For any α> 0, θ(α,κ) vanishes for κ large enough.

Proof. (i) θ(α,κ) is an increasing function of α since α 
→ DL(κ)
α is in-

creasing.
To show that θ(α,κ) is a decreasing function of κ, we use an indepen-

dent thinning procedure. Let κ1 > κ2 > 0. The corresponding measures
on based loops satisfy:

μ̇(κj)
(
�= (x1, . . . , xk)

)
=

1

k

(
1

2d+ κj

)k

1{xi+1−xi∈{±1}d ∀i∈{1,...,k}}

for j ∈ {1,2}, k ≥ 2 and x1, . . . , xk ∈ Zd with the convention xk+1 = x1.

By erasing independently each based loop � ∈DL̇(κ2)
α of length k ≥ 2 with

probability 1− ( 2d+κ2

2d+κ1
)k, we obtain a discrete loop set having the same

distribution as DL(κ1)
α .

(ii) By Lemma 4.1, the partition induced by the set of primitive discrete
loops of length 2 at time α has the same law as the Bernoulli percolation
with parameter 1− (1− 1

(2d+κ)2 )
α. It follows from Bernoulli percolation

on Zd that if 1− (1− 1
(2d+κ)2 )

α > pc then θ(α,κ)> 0.

(iii) To prove that θ(α,κ) vanishes for κ large enough, we show that
there exists a finite real Cα > 0 such that any self-avoiding path x =
(x1, x2, . . . , xL) of length L ∈ 2N∗ is open at time α with probability less
than (Cα

κ )L. We can then conclude with the usual path-counting ar-
gument: for every L ∈ 2N∗, θ(α,κ) is bounded above by the probability
that there exists an open self-avoiding path of length L at time α starting
from the origin, hence

θ(α,κ)≤ limsup
L→+∞

(2d)L
(
Cα

κ

)L

= 0 for κ > 2dCα.

Let us first introduce some notations.
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Figure 3. Example of an open path x= (1,2,3,4,5,6,7,8)
with five loops covering its edges. Three of them (drawn
in solid lines) cover the set of edges Ex; we associate to
these three loops, the partition π ∈P(2,{1, . . . ,8}) with three
blocks π1 = {1,2}, π2 = {3,4,7,8} and π3 = {5,6}.

– Let P(2,{1, . . . ,L}) consist of partitions of {1, . . . ,L} in which all
blocks have at least two elements (the number of blocks of such a
partition π is denoted by |π| and blocks are denoted by π1, π2, . . .).

– For a vertex v and a loop � ∈ DL(Zd), let Nv(�) denote the number

of times � passes through v: Nv(�) =
∑k

i=1 1{ui=v} if � is the class of
the based loop (u1, . . . , uk).

Let us consider a self-avoiding path of length L ∈ 2N∗ denoted by
x= (x1, x2, . . . , xL) and let Ex denote the set of edges {x2i−1, x2i},
1≤ i≤ L/2.

To be open, the edges of x have to be covered by the edges of N ≤ L
loops of DLα. Among these loops, those that cover at least one edge
e ∈ Ex can be used to define a partition π ∈P(2,{1, . . . ,L}) as follows:
let �1 be a loop in DLα covering edge {x1, x2}. The first block π1 of
π consists of the indices of the endpoints of e ∈ Ex covered by �1. If
π1 �= {1, . . . ,L}, let j be the smallest integer i such that xi is not in π1

and let �2 be a loop covering {xj , xj+1}. The second block π2 of π is
defined as the set of indices of endpoints of e ∈ Ex covered by �2 that are
not in π1, and so on until all elements of {1, . . . ,L} belong to a block
written down (an example is presented in Figure 3). Therefore,

1{x open at time α} ≤
∑

π∈P(2,{1,...,L})

( ∑
�1,...,�|π|∈DLα

pairwise distinct

|π|∏
j=1

∏
i∈πj

1{Nxi
(�j)>0}

)

≤
∑

π∈P(2,{1,...,L})

( ∑
�1,...,�|π|∈DLα

pairwise distinct

|π|∏
j=1

∏
i∈πj

Nxi(�j)

)
.
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By Campbell’s formula (equation (4.2), p. 36 in [9]), for every k ∈N∗

and for every positive functions F1, . . . , Fk

E

( ∑
�1,...,�k∈DLα

pairwise distinct

k∏
i=1

Fi(�i)

)
=

k∏
i=1

(∫
Fi(�)αdμ(�)

)
.

Therefore,

P(x is open at time α)≤
∑

π∈P(2,{1,...,L})

|π|∏
j=1

∫ ( ∏
i∈πj

Nxi(�)

)
αμ(d�).

For a finite set A, let SA denote the set of permutations of elements
of A. By Proposition 5, p. 20 in [9], for every k ≥ 2 and for every vertices
y1, . . . , yk,∫ k∏

i=1

Nyi(�)dμ(�)

=
1

k

(
k∏

i=1

λyi

) ∑
σ∈S{1,...,k}

Gyσ(1),yσ(2)
Gyσ(2),yσ(3)

· · ·Gyσ(k),yσ(1)
.

Therefore, P(x is open at time α)≤ (
∏L

i=1 λxi)Sα(x) where

Sα(x) =
∑

π∈P(2,{1,...,L})
α|π|(4.1)

×
|π|∏
j=1

(
1

|πj |
∑

σ∈Sπj

Gxσ(1),xσ(2)
Gxσ(2),xσ(3)

· · ·Gxσ(|πj |),xσ(1)

)
.

The blocks of a partition π ∈P(2,{1, . . . ,L}) in (4.1) can be seen as the
orbits of a permutation without fixed point. Since a circular order on k
integers corresponds to k different permutations of these integers, Sα(x)
can be rewritten as follows:

(4.2) Sα(x) =
∑

σ∈S0
{1,...,L}

αm(σ)Gx1,xσ(1)
· · ·GxL,xσ(L)

,

where
– m(σ) denotes the number of cycles in a permutation σ,
– S0

{1,...,L} denotes the set of permutations of {1, . . . ,L} without fixed

point (such a permutation corresponds to a configuration without iso-
lated points).
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(See Lemma A.1 in the Appendix for details.) The right-hand side of
equality (4.2) is nothing but Per0α(Gxi,xj ,1≤ i, j ≤ L) defined in [9], p. 41.
To conclude, we use that

Per01(Gxi,xj ,1≤ i, j ≤ L)≤
L∏

i=1

( ∑
1≤j≤L,j 	=i

Gxi,xj

)
≤

( ∑
y∈Zd\{0}

G0,y

)L

since the vertices xi are pairwise distinct. As (P1)u = 2d
2d+κ for every

u ∈ Zd, ∑
y∈Zd\{0}

λyG0,y =

+∞∑
k=1

(
P k1

)
0
=

2d

κ
.

Thus P(x is open at time α)≤ (2dκ max(α,1))L which ends the proof. �

Remark 4.4. (i) It follows from Proposition 4.3 that for every α > 0,
there is a finite value of κ, which we denote by κc(α), above which θ(α,κ)
vanishes; Moreover, κc is an increasing function that converges to +∞ as
α→∞.

(ii) As the simple random walk on Z2 is recurrent, for d= 2 the probability
that a fixed edge is open at time α > 0 converges to 1 as κ tends to 0.

Indeed, let us first note that P(N
(α)
x = 0) = ( 1

λxGx,x
)α for every x ∈ Z2

(this equality has been proven for a finite graph,2 so we apply it to the
restriction of the random walk to Z2∩ [−M,M ]2 and let M tend to +∞).

Therefore, P(N
(α)
x > 0) converges to 1 as κ tends to 0.

Fix x ∈ Z2 and u ∈ {±1}2. By symmetry,

P
(
N (α)

x > 0
)
=

∑
v∈{±1}2

P
(
N

(α)
x,x+v > 0

)
= 4P

(
N

(α)
x,x+u > 0

)
.

Since α 
→ DLα has independent stationary increments,

P
(
N

(α)
x,x+u = 0

)
= P

(
N

(α/n)
x,x+u = 0

)n
for every n > 0.

Therefore,

(4.3) P
(
N

(α)
x,x+u > 0

)
= 1− P

(
N

(α/n)
x,x+u = 0

)n ≥ 1−
(
1− 1

4
P
(
N (α/n)

x > 0
))n

.

For a fixed ε > 0, let us choose n such that (1− 1
8 )

n ≤ ε. There exists

κε such that for κ ≤ κε, P(N
(α/n)
x = 0) ≤ 1

2 . It follows from (4.3) that

P(N
(α)
x,x+u > 0)≥ 1− ε.

2 For a finite graph G = (X,E), P(N(α)
x = 0) is equal to

exp
(
−α

(
μ
(
DL(X)

)
− μ

(
DL

(
X \ {x}

))))
=

(
det(G(X\{x}))

det(G)λx

)α

= (λxGx,x)
−α.
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5. Complete graph

This section is devoted to the study of Poisson loop sets on the complete
graph Kn endowed with unit conductances and a uniform killing measure.
The set of vertices is identified with {1, . . . , n} and the set of partitions of
{1, . . . , n} is denoted by P({1, . . . , n}). The intensity of the killing measure
is denoted by κn = nεn with εn > 0, hence the coefficients of the transition

matrix P are: Px,y =
1{x�=y}
λ(n) with λ(n) = n−1+nεn for every x, y ∈ {1, . . . , n}.

As n will vary, the loop set and the partition defined by the loop clusters at

time α will be denoted by DL(n)
α and C(n)

α , respectively. In the first part, n

is fixed; We present another construction of the coalescent process (C(n)
α )α≥0

and use this construction to define a similar coalescent process on the interval
[0,1]. In the second part, we let n tend to +∞ and describe the distribution

of the first time when C(n)
α has no block of size one (cover time) and the first

time when (C(n)
α )α has only one block (coalescent time).

5.1. Another construction of the coalescent process.

Proposition 5.1. From state π = {Bi, i ∈ I} ∈P({1, . . . , n}), the only pos-

sible transitions of (C(n)
α )α≥0 are to partitions π⊕J where J = {j1, . . . , jL} is

a subset of I with L≥ 2 elements. Its transition rate from π to π⊕J is equal
to:

τ
(n)

π,π⊕J =
∑
k≥L

1

knk(εn + 1)k

∑
(i1,...,ik)∈Wk(J)

k∏
u=1

|Biu |(5.1)

=
∑
k≥L

1

knk(εn + 1)k

∑
(k1,...,kL)∈(N∗)L

k1+···+kL=k

(
k

k1, . . . , kL

) L∏
u=1

|Bju |ku ,(5.2)

where Wk(J) is the set of k-tuples of J in which each element of J appears.

Proof. Let us recall the expression of τ
(n)

π,π⊕J obtained in Example 2.3:

τ
(n)

π,π⊕J =
∑
I�J

(−1)|I|+1 log

(
1− 1

λ(n) + 1

∑
u∈J\I

|Bu|
)
.

By expanding the logarithm, we obtain:

τ
(n)

π,π⊕J =
∑
k≥1

1

k(λ(n) + 1)k

∑
I�J

(−1)|I|
( ∑

u∈J\I
|Bu|

)k

.

To establish

(5.3)
∑

I,I�J

(−1)|I|
( ∑

u∈J\I
|Bu|

)k

=
∑

(i1,...,ik)∈Wk(J)

k∏
u=1

|Biu |
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which ends the proof of (5.1), we make use of the exclusion–inclusion princi-
ple. Let us consider the following random experiment: ‘we choose uniformly
at random k points in the set B :=

⋃
j∈J Bj ’ and for j ∈ J , let Ej denote the

event ‘at least one of the k points falls into Bj ’. By the inclusion–exclusion

principle, the coefficient
∑

I�J(−1)|I|(
∑

u∈J\I |Bu|)k divided by |B|k is equal

to P(
⋂

j∈J Ej). The probability P(
⋂

j∈J Ej) can also be decomposed by in-

troducing the events Ai,j ‘the i-th point falls into Bj ’ for every i ∈ {1, . . . , k}
and j ∈ J : P(

⋂
j∈J Ej) =

∑
(i1,...,ik)∈Wk(J)

P(
⋂k

u=1Au,iu). This corresponds to

the right-hand side of (5.3) divided by |B|k. Equation (5.2) is obtained by

rearranging the terms of the product
∏k

u=1 |Biu |. �

Formula (5.1) of the transition rate has a simple interpretation: if we
choose R points uniformly at random in {1, . . . , n} where R has the loga-
rithmic series distribution3 with parameter 1

εn+1 , the probability that at least

one point falls into each block {Bi, i ∈ J} and none outside of
⋃

j∈J Bj is

equal to (− log(1− 1
εn+1 ))

−1τ
(n)

π,π⊕J . From this remark, we derive a simpler

construction of (C(n)
α )α≥0.

Proposition 5.2. Let us define a P({1, . . . , n})-valued sequence (Yk)k it-
eratively as follows:

• Y0 is a random variable with values in P({1, . . . , n}).
• Let k ∈N. Given Yk,

– we choose an integer R≥ 2 independent of Y0, . . . , Yn, following the prob-
ability distribution

ν =
1

βεn

∑
k≥2

1

k(εn + 1)k
δk where βεn =− log

(
1− 1

εn + 1

)
− 1

εn + 1
;

– we choose R points U1, . . . ,UR uniformly at random on {1, . . . , n} and
independently of Y0, . . . , Yk,R;

– Yk+1 is obtained from Yk by merging blocks of Yk that contain at least
one of the R points U1, . . . ,UR.

Let (Zt)t≥0 be a Poisson process with intensity βεn and independent of (Yk)k.

The process (Π
(n)
t )t≥0 defined by Π

(n)
t = YZt for every t≥ 0 is a continuous

Markov chain:

• The only possible transitions from state π = (Bi)i∈I are to partitions π⊕J

where J is a subset of I with at least two elements and its transition rate

from π to π⊕J is τ
(n)

π,π⊕J defined in Proposition 5.1.

3 The logarithmic series distribution with parameter 0< a < 1 is defined as the measure
1

− log(1−a)

∑+∞
k=1

ak

k
δk .
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• If π is a partition of {1, . . . , n} with k non-empty blocks (B1, . . . ,Bk), then

Pπ0

(
Π

(n)
t � π

)
=

(
εn

εn + 1

)t k∏
i=1

(
1− |Bi|

n(1 + εn)

)−t

1{π0
π}.

5.2. A similar coalescent process on the interval [0,1]. The algorithm
described in Proposition 5.2 can be adapted to define a coalescent process
(Πt)t≥0 on the interval [0,1] such that for every partition π of [0,1] and every

t≥ 0, P(Π
(n)
t � π(n)) converges to P(Πt � π) if εn converges to ε > 0 and the

partition π(n) of {1, . . . , n} converges to π as n tends to +∞.

Proposition 5.3. For k ∈N∗, let Pk([0,1]) denote the set of partitions of
[0,1] with k blocks having a positive Lebesgue measure and let P([0,1]) denote⋃

k∈N∗ Pk([0,1]). For a partition π = (bi)i∈I ∈P([0,1]) and a subset J of I , let

π⊕J denote the partition obtained from π by merging blocks bi for i ∈ J . Let
ε be a positive real. Let us define a P([0,1])-valued sequence (Yn)n iteratively
as follows:

• Y0 is a random variable with values in P([0,1]).
• Let n ∈N. Given Yn,

– we choose an integer R≥ 2 independent of Y0, . . . , Yn following the prob-
ability distribution

ν =
1

βε

∑
k≥2

1

k(ε+ 1)k
δk where βε =− log

(
1− 1

ε+ 1

)
− 1

ε+ 1
;

– we choose R points U1, . . . ,UR uniformly at random in the interval [0,1]
and independently of Y0, . . . , Yn,R;

– Yn+1 is obtained from Yn by merging blocks of Yn that contain at least
one of the R points U1, . . . ,UR.

Let (Zt)t≥0 be a Poisson process with intensity βε and independent of (Yn)n.
The process (Πt)t≥0 defined by Πt = YZt for every t ≥ 0 is a continuous

Markov chain:

• Its positive transition rates are from a partition π = (bi)i∈I to a partition
π⊕J with J ⊂ I having at least two elements; the value of such a transition
rate is

τπ,π⊕J :=
∑
k≥|J|

1

k(ε+ 1)k

∑
(k1,...,k|J|)∈(N∗)|J|

k1+···+k|J|=k

(
k

k1, . . . , k|J|

) |J|∏
u=1

Leb(bu)
ku .

• If π is a partition of [0,1] with k non-empty blocks (b1, . . . , bk) then

Pπ0(Πt � π) =

(
ε

ε+ 1

)t k∏
i=1

(
1− Leb(bi)

1 + ε

)−t

1{π0
π}.
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Proof. By construction (Yn)n is a P([0,1])-valued Markov chain such that
for every n ∈ N, Yn+1 = Yn or Yn+1 is a coarser partition of [0,1] than Yn

obtained by merging several blocks of Yn in one block.
Let π = (bi)i∈I be a partition of [0,1] and let J be a subset of I with at

least two elements. Set bJ =:
⋃

i∈J bi. Given the event {Yn = π}, Yn+1 is

equal to π⊕J if among the R points U1, . . . ,UR uniformly distributed in the
interval [0,1] at least one point falls in every block bi for i ∈ J and none falls
in [0,1] \ bJ . Therefore, P (Yn+1 = π⊕J |Yn = π) is equal to

+∞∑
k≥|J|

ν
(
{k}

) ∑
(i1,...,ik)∈Wk(J)

k∏
u=1

Leb(biu)

=
1

βε

+∞∑
k≥|J|

1

k(ε+ 1)k

∑
(k1,...,k|J|)∈(N∗)|J|∑

i ki=k

(
k

k1, . . . , k|J|

)∏
i∈J

Leb(bi)
ki .

Given the event {Yn = π}, Yn+1 is equal to π if U1, . . . ,UR fall in one block
of the partition π. Therefore,

P (Yn+1 = π|Yn = π) =

+∞∑
k=2

ν
(
{k}

)(∑
i∈I

Leb(bi)
k

)
=− 1

βε

(
1

ε+ 1
+

∑
i∈I

log

(
1− Leb(bi)

ε+ 1

))
.

The generator of (Πt)t≥0 is then A = βε(Q − I) where Q is the transition
matrix of (Yn)n.

Let us now compute Pπ0(Πt � π) where π is a partition of [0,1] with k non-
empty blocks (b1, . . . , bk) coarser than or equal to π0. {Πt � π} means that all
points that are chosen simultaneously in the interval [0,1] before time t belong
to the same block of π. Therefore, by decomposing {Πt � π} according to the
value of Zt and the number of points falling at the same time, we obtain that
Pπ0(Πt � π) is equal to

e−βεt

{
1 +

+∞∑
n=1

(βεt)
n

n!

∑
r1≥2,...,rn≥2

n∏
i=1

(
ν
(
{ri}

)(
Leb(b1)

ri + · · ·+Leb(bk)
ri

))}
.

We expand the product
n∏

i=1

(
Leb(b1)

ri + · · ·+Leb(bk)
ri

)
=

∑
(u1,...,un)∈{1,...,k}n

Leb(bu1)
r1 · · ·Leb(bun)

rn

and use that∑
r≥2

ν
(
{r}

)
Leb(bu)

r =
1

βε

(
− log

(
1− Leb(bu)

ε+ 1

)
− Leb(bu)

ε+ 1

)
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to obtain that Pπ0(Πt � π) is equal to

e−βεt

{
1 +

+∞∑
n=1

tn

n!

∑
(u1,...,un)∈{1,...,k}n

n∏
i=1

(
− log

(
1− Leb(bui)

ε+ 1

)
− Leb(bui)

ε+ 1

)}
.

The second sum is also equal to:∑
(n1,...,nk)∈Nk

n1+···+nk=n

(
n

n1, . . . , nk

) k∏
i=1

(
− log

(
1− Leb(bi)

ε+ 1

)
− Leb(bi)

ε+ 1

)ni

.

Therefore, Pπ0(Πt � π) is equal to

e−βεt

{
1 +

+∞∑
n=1

∑
(n1,...,nk)∈Nk

n1+···+nk=n

k∏
i=1

tni

ni!

(
− log

(
1− Leb(bi)

ε+ 1

)
− Leb(bi)

ε+ 1

)ni
}
.

The expression inside the braces is equal to

exp

(
t

k∑
i=1

(
− log

(
1− Leb(bi)

ε+ 1

)
− Leb(bi)

ε+ 1

))
.

This yields

Pπ0(Πt � π) = exp

(
t log

(
1− 1

ε+ 1

)
− t

k∑
i=1

log

(
1− Leb(bi)

ε+ 1

))
.

�

5.3. Asymptotics for cover time. A vertex x is said to be isolated at time

α if no loop � ∈ DL(n)
α passes through x. We call ‘cover time’ the smallest α

such that Kn has no isolated vertex at time α and we denote it Tn.
Let us assume that the intensity of the killing measure is proportional to

the size of the graph: κn = nε with ε > 0. If we use the algorithm described

in Proposition 5.2 to define C(n)
α , then we need to choose uniformly at ran-

dom an average of αβεE(R) = α
ε(ε+1) points in {1, . . . , n}. If the points are

drawn one by one and not by packs of random sizes, then the solution of the
classical coupon collector’s problem provides that the values of Tn is around
ε(1 + ε)n log(n) for large n. This analogy holds:

Proposition 5.4. Let us assume that the intensity of the killing measure
on Kn is κn = nε with ε > 0. For every a ∈R, the number of isolated vertices
at time αn = ε(1 + ε)n(log(n) + a + o(1)) converges in law to the Poisson
distribution with parameter e−a. In particular, Tn

nε(1+ε) − log(n) converges in

law to the Gumbel distribution.4

4 The cumulative distribution function of the Gumbel distribution is x �→ e−e−x
.
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Proof. For each vertex x, let In,x denote the indicator of the event ‘x
is isolated at time αn’. The number of isolated vertices at time αn is
Sn =

∑n
x=1 In,x. For every k ∈N∗, let E(Sn)k := E(Sn(Sn−1) · · · (Sn−k+1))

denote its kth factorial moment; E(Sn)k is the sum of P(In,x1 = · · · =
In,xk

= 1) over all (ordered) k-tuples of distinct vertices (x1, . . . , xk).
As P(In,x1 = · · ·= In,xk

= 1) is the probability that no loop in DLαn inter-
sects the subset F = {x1, . . . , xk},

P(In,x1 = · · ·= In,xk
= 1) = exp

(
−αnμ(�, � intersects F )

)
and

μ(�, � intersects F ) = μ
(
DL(X)

)
− μ

(
DL

(
F c

))
= log

(
det(G)

∏
x∈{1,...,n}

λx

)
− log

(
det

(
G(F c)

) ∏
x∈F c

λx

)
.

Therefore,

E(Sn)k = k!
∑

F∈Pk({1,...,n})

(
det(G(F c))

det(G)
∏

x∈F λx

)αn

.

In our setting, for every x ∈ {1, . . . , n}, λx = λ(n) = n(ε + 1) − 1 and for
every D ⊂ {1, . . . , n}, det(G(D))−1 = (λ(n) + 1)|D|−1(λ(n) + 1− |D|). Thus

E(Sn)k = n(n− 1) · · · (n− k+ 1)

(
1− 1

n(1 + ε)

)−kαn
(
1 +

k

nε

)−αn

=

k−1∏
i=1

(
1− i

n

)
exp

(
k

(
log(n)− αn

nε(1 + ε)

)
+ k

αn

2n2

(
1

(1 + ε)2
+

k

ε2

)
+ αnO

(
1

n3ε3

))
.

As αn = nε(1 + ε)(log(n) + a + o(1)), we deduce that E(Sn)k converges to
exp(−ka) for every k ∈N∗. The convergence to the Poisson distribution with
parameter e−a follows from the theory of moments. �

Remark 5.5. (i) The distribution of the number of isolated vertices at
a time α can also be obtained by the inclusion–exclusion principle; the
probability that there exists r isolated vertices at time α is

n−r∑
j=0

(−1)j
n!

r!j!(n− r− j)!

(
1− 1

n(1 + ε)

)−α(r+j)(
1 +

r+ j

nε

)−α

.

(ii) In the statement of Proposition 5.4, we assume that the intensity of the
killing measure κn is proportional to the number of vertices n: κn = nε.
In fact the same proof shows that Proposition 5.4 also holds if we only
assume that κn

log(n) converges to +∞ and replace ε with εn = κn

n in the
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statement. Let us note that if κn

log(n) converges to a constant c > 0 then

E(Sn)k converges to mk = exp(−ka+ k2

2c ) for every k ∈N∗ and tkmk

k! tends
to +∞ for any t > 0.

5.4. Asymptotics for coalescence time. Let τn denote the coalescence

time, that is, the first time at which C(n)
α has only one block. The following

theorem shows that the cover time and the coalescent time have the same
asymptotic distribution.

Theorem 5.6. Let us assume that κn = nε for every n ∈ N∗ with ε > 0.
Set αn = ε(1 + ε)n(log(n) + a+ o(1)) where a is a fixed real.

For every k ∈N, the probability that DL(n)
αn

consists only of a component of

size greater or equal to 2 and k isolated points converges to exp(−e−a) e
−ak

k!

as n tends to +∞.
In particular, τn

nε(1+ε) − log(n) converges in distribution to the Gumbel dis-

tribution.

Remark 5.7. (i) Theorem 5.6 shows that ε(ε + 1)n log(n) is a sharp
threshold function for the connectedness of the random graph process

(G(n)
α )α≥0 defined by the loop sets (DL(n)

α )α.
(ii) Such properties have been proven for the first time by Erdös and Rényi

in [4] for the random graph model they have introduced. To facilitate
comparison, the following theorem states some of their results in a slightly
different way from that used in [4].

Theorem (Erdös and Rényi, [4]). Let G(n,N) denote a random graph

obtained by forming N links between n labelled vertices, each of the
(

N
(n2)

)
graphs being equally likely.

For every c ∈R and every k ∈N, the probability that the random graph
G(n, �n

2 (log(n) + c)�) contains a connected component of size n− k and

k isolated points converges to exp(−e−c) e
−ck

k! as n tends to +∞.

(iii) Let us note that the ratio μ(�,� passes through exactly two vertices)
μ(DL({1,...,n})) converges

to − 1
2 (ε+1+(ε+1)2 log(1− 1

ε+1 ))
−1 as n tends to +∞. The limit is an

increasing function of ε that converges to 1 as ε tends to +∞. Therefore,
it is not surprising to obtain properties similar to the Erdös–Rényi model
for large ε.

In fact, we can show using the same proof that Theorem 5.6
holds if we replace ε with a positive sequence (εn)n such that
lim infn→+∞ log(n)εn > 0.

By contrast, if we let ε converge to 0 as n tends to +∞, the loop
sets can have very large loops: a result of Y. Chang in [3] implies that if
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ε ∼
n→+∞

n−d with d > 1, then

P
(
∃� ∈DL(n)

1/ log(n) covering {1, . . . , n}
)

→
n→+∞

1− e−(d−1).

The rest of the section is devoted to the proof of Theorem 5.6.

Let An,k denote the event ‘DL(n)
αn

consists only of a component of size
greater or equal to 2 and k isolated points’, let Vn be the number of isolated

vertices in DL(n)
αn

and let Bn be the event ‘DL(n)
αn

has at least two components
of size greater or equal to 2’. For n≥ k+ 2,

P(An,k) = P(Vn = k)− P
(
{Vn = k} ∩Bn

)
.

By Proposition 5.4, P(Vn = k) converges to e−e−a e−ka

k! . We shall prove that
P(Bn) converges to 0. For a subset F , let qF,n denote the probability that F
is a block at time αn

P(Bn)≤

n/2�∑
r=2

∑
F∈Pr({1,...,n})

qF,n.

As DL(n,F )
αn

is independent of DL(n)
α \ DL(n,F )

αn
, we have

qF,n = P
(
DL(n,F )

αn
is connected

)
P
(
no loop in DL(n)

αn
intersects F and F c

)
.

For a sufficiently large set F , we shall simply bound qF,n from above by

P
(
no loop in DL(n)

αn
intersects F and F c

)
.

For small F , the probability P(DL(n,F )
αn

is connected) is small. Instead of
computing it, we shall consider its upper bound by the probability that the

total length of non-trivial loops on DL(n,F )
αn

is greater or equal to |F |, that
is P(

∑
x∈F N

(αn,F )
x ≥ |F |) where N

(α,F )
x denotes the number of crossings of a

vertex x by the set of non-trivial loops included in F at time α. Therefore
for a small set F , we shall use that

qF,n ≤ P

(∑
x∈F

N (αn,F )
x ≥ |F |

)
P
(
no loop in DLαn intersects F and F c

)
.

We start by stating two lemmas: Lemma 5.8 provides an upper bound for the

probability that no loop in DL(n)
αn

intersects F and F c. Lemma 5.9 gives an

exponential inequality for P(
∑

x∈F N
(αn,F )
x ≥ |F |) based on Markov’s inequal-

ity. To shorten the notations, let P(n) denote the power set of {1, . . . , n} and
let Pr(n) consist of subsets of {1, . . . , n} of cardinality r.

Lemma 5.8. For every non-empty proper subset F of {1, . . . , n}, let An,F

denote the event ‘no loop in DL(n)
αn

passes through both F and F c’ where
αn = ε(ε+ 1)n(log(n) + a+ o(1)).
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For every δ ∈ ]0,1[ there exists nδ > 0 such that for every n > nδ and for
every n1−δ ≤ r ≤ n

2 ,∑
F∈Pr(n)

P(An,F )≤
1√
r
exp

(
−1− δ

2
n1−δ log(n)

)
.

Proof. Let r ∈ {1, . . . , n/2} and let F be a subset of {1, . . . , n} with r ele-
ments.

P(An,F ) = exp
(
−αnμ

(
�, � intersects F and F c

))
=

(
det(G(F ))det(G(F c))

det(G)

)αn

.

In our setting, det(G(D)) = (n(1 + ε))−|D|+1(n(1 + ε)− |D|)−1 for every sub-

set D. Therefore, P(An,F ) = (1 + 1
ε(ε+1)

|F |
n (1− |F |

n ))−αn . Using that(
n

r

)
≤ 1√

2πr
√

1− r
n

(
n

r

)r(
1− r

n

)−(n−r)

(see, for example, [2], Formula 1.5, p. 4), we obtain:∑
F∈Pr(n)

P(An,F )≤
1√
r
exp

(
−nfn

(
r

n

))
,

where fn is the function on ]0,1/2] defined by:

fn(x) = x log(x) + (1− x) log(1− x) + unε(1 + ε) log

(
1 +

x(1− x)

ε(ε+ 1)

)
for x ∈ ]0,1/2], with un = log(n) + a+ o(1).

The function fn is of class C2 in the interval ]0,1/2] and the first two
derivatives of fn are:

• f ′
n(x) = log(x)− log(1− x) + un

1−2x
1+x(1−x)/(ε(ε+1)) ,

• f ′′
n (x) =

Qn(x(1−x))
x(1−x)(1+x(1−x)/(ε(ε+1)))2 , where Qn is the polynomial function of

second order defined, for every y, by:

Qn(y) = 1+ y

(
2

ε(1 + ε)
−

(
2 +

1

ε(1 + ε)

)
un

)
+ y2

1

ε(1 + ε)

(
1

ε(1 + ε)
+ 2un

)
.

Thus fn has the following properties:

(i) limx→0+ fn(x) = 0, fn(1/2)> 0,
(ii) limx→0+ f ′

n(x)< 0, f ′
n(1/2) = 0,

(iii) f ′′
n = 0 has at most two solutions in ]0,1/2].
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A C2 function in the interval ]0,1/2] that verifies conditions (i), (ii), (iii)
has the following property: for every c ∈ ]0,1/2] such that fn(c) is positive,
the minimum of fn on the interval [c,1/2] lies on c or 1

2 (see Lemma A.2 in
the Appendix). In fact, (fn(1/2))n converges to +∞, whence for sufficiently
large n, infx∈[c,1/2] fn(x) = fn(c).

To conclude, let us consider fn at point 1
nδ for some δ ∈ ]0,1[.

fn

(
1

nδ

)
= −δ log(n)

nδ
+

(
1− 1

nδ

)
log

(
1− 1

nδ

)
+ unε(1 + ε) log

(
1 +

n−δ(1− n−δ)

ε(1 + ε)

)
.

Therefore, fn(
1
nδ ) is equivalent to

1−δ
nδ log(n). We deduce that for sufficiently

large values of n and for every x ∈ [ 1
nδ ,1/2], fn(x)≥ fn(

1
nδ )≥ 1−δ

2nδ log(n) which
ends the proof. �

Lemma 5.9. Let δ and δ̄ be two positive reals such that 0 < δ̄ < δ < 1.
Assume that κn = nε with ε > 0 and set αn = ε(1 + ε)n(log(n) + a + o(1))
with a ∈R for every n ∈N.

There exists nδ,δ̄ > 0 such that for every n≥ nδ,δ̄ , and F ∈ P(n) with 2≤
|F | ≤ n1−δ ,

P

(∑
x∈F

N (αn,F )
x ≥ |F |

)
≤ n− δ̄

2 |F |.

Proof. To prove Lemma 5.9, we shall apply Markov’s inequality to the

random variable exp(θ
∑

x∈F N
(αn,F )
x ) for a well-chosen positive real θ.

The generating function of the vector (N
(α,F )
x , x ∈ F ) has been computed

for any finite graph G = (V ,E) in [9],5 p. 37: ∀(sx)x∈V ∈ ]0,1]V ,

E

(∏
x∈F

s
N(α,F )

x
x

)
=

(
det

([
sxδx,y + λx(1− sx)G

(F )
x,y

]
x,y∈F

))−α
.

In our setting, the generating function of
∑

x∈F N
(α,F )
x satisfies:

E
(
s

∑
x∈F N(α,F )

x
)
=

(
det

(
sI|F | + λ(n)(1− s)G(F )

))−α ∀0< s≤ 1,

where λ(n) = n(ε + 1) − 1 and G
(F )
x,y = 1

λ(n)+1
(1{x=y} + 1

λ(n)+1−|F | ) for

x, y ∈ F . The computation of that determinant is detailed in the Appendix
(Lemma A.3). We obtain:

det
(
sI|F | + λ(n)(1− s)G(F )

)
(5.4)

=

(
1− 1− s

λ(n) + 1

)|F |−1(
1 + (1− s)

|F | − 1

λ(n) + 1− |F |

)
.

5 Formula (4.3), p. 37 in [9] contains a misprint: the exponent 1 in the left-hand side term

of the equation has to be replaced by α.
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Equality (5.4) can be extended to s ∈ R and the determinant is positive for

every 0≤ s < λ(n)

|F |−1 . By Markov’s inequality, for every θ > 0,

(5.5) P

(∑
x∈F

N (αn,F )
x ≥ |F |

)
≤ exp

(
−ψF,n(θ)

)
,

where ψF,n(θ) = − log(E(exp(−θ|F |+ θ
∑

x∈F N
(αn,F )
x ))). The expression of

the generating function of
∑

x∈F N
(αn,F )
x shows that the value of ψF,n(θ)

depends on F only via |F |; we denote it ψ|F |,n(θ). The value of ψr,n(θ) is

ψr,n(θ) = θr+αn

(
(r−1) log

(
1+

eθ − 1

λ(n) + 1

)
+log

(
1−

(
eθ−1

) r− 1

λ(n) + 1− r

))
for every θ > 0 such that eθ ≤ λ(n)

r−1 .

Set βr,n = λ(n)+1√
αn(r−1)

and θr,n = log(βr,n) for every integer 2 ≤ r ≤ n. We

shall use inequality (5.5) for θ = θr,n. Before, let us note that

• min(βr,n, r ∈ {2, . . . , n1−δ}) converges to +∞;

• max(
βr,n(r−1)

λ(n) , r ∈ {2, . . . , n1−δ}) converges to 0.

Therefore, for sufficiently large values of n and r ∈ {2, . . . , n1−δ}, the two

conditions θr,n > 0 and exp(θr,n)≤ λ(n)

r−1 are satisfied.

It remains to bound from below ψr,n(θr,n).

ψr,n(θr,n) = r

(
log

(
λ(n) + 1

)
− 1

2
log(αn)−

1

2
log(r− 1)

)
+ αn

(
(r− 1) log

(
1 +

βr,n − 1

λ(n) + 1

)
+ log

(
1− (r− 1)

βr,n − 1

λ(n) + 1− r

))
.

Using the classical lower bounds

log(1− t)≥−t− t2 for 0< t < 1/2 and log(1 + t)> t− t2

2
for t > 0

along with max((r− 1)
βr,n

λ(n)+1
, r ∈ {2, . . . , n1−δ}) →

n→+∞
0, we obtain

ψr,n(θr,n)≥
r

2

(
log(n)− log(r− 1)− In,1

)
− In,2 − In,3,

where, for sufficiently large values of n

• In,1 = log(1 + ε
1−ε ) + log(log(n) + a+ o(1))≤ 2 log(log(n));

• In,2 = αn(r− 1)r
βr,n−1

(λ(n)+1)(λ(n)+1−r)
≤ 2r

√
r−1
n (log(n) + a+ o(1));

• In,3 = αn(r− 1)(βr,n − 1)2( 1
2(λ(n)+1)2

+ r−1
(λ(n)+1−r)2

)≤ 1
2 + 2(r− 1).
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Therefore there exists a constant M such that for sufficiently large values of
n and for every 2≤ r ≤ n

2 ,

ψr,n(θr,n)≥
r

2

(
log(n)− log(r)− 2 log

(
log(n)

)
−M

)
.

In particular for 2 ≤ r ≤ n1−δ , ψr,n(θr,n) ≥ δ r
2 log(n) − 2 log(log(n)) − M .

This shows that for every 0 < δ̄ < δ and sufficiently large values of n,

minr∈{2,...,n1−δ}ψr,n(θr,n)≥ δ̄
2r log(n) which ends the proof.

Let us note that a study of ψr,n shows that for every r ∈ {2, . . . , n1−δ},
and sufficiently large values of n, ψr,n has a maximum at a point which is
equivalent to θr,n as n tends to +∞. �

We can now complete the proof of Theorem 5.6. Set Sr,n =
∑

F∈Pr(n)
qF,n.

We shall prove that the upper bound of P(Bn),
∑
n/2�

r=2 Sr,n converges to 0 as
n tends to +∞. By Lemma 5.8,

n/2∑
r=n1−δ

Sr,n ≤ n exp

(
−1− δ

2
n1−δ log(n)

)
.

Let us consider the case of subsets F with r ≤ n1−δ elements. Using the
notations introduced in Lemmas 5.8 and 5.9, we have

Sr,n ≤ 1√
r
exp

(
−nfn

(
r

n

)
−ψr,n(θr,n)

)
.

By Lemma 5.9, for every δ̄ ∈ ]0, δ[, sufficiently large n and r ∈ {2, . . . , n1−δ},

Sr,n ≤ 1√
r
exp

(
−n

(
fn

(
r

n

)
+

δ̄

2

r

n
log(n)

))
.

Let us study the function f̄n(x) = fn(x) +
δ̄
2x log(n). By computations, we

obtain that f̄n(2/n) is equivalent to
δ̄
2n log(n) as n tends to +∞. The study

of fn made in the proof of Lemma 5.8 shows that, for sufficiently large values of

n, f̄n is greater than f̄n(2/n) in [2/n,1/2]. Let us introduce a real ¯̄δ such that

0< ¯̄δ < δ̄. We have shown that for n large enough and every r ∈ {2, . . . , n1−δ},
Sr,n ≤ 1√

r
n− ¯̄δ

2 and thus

n1−δ∑
r=2

Sr,n ≤ n1−δ− ¯̄δ
2 .

By taking δ = 3/4 and ¯̄δ = 2/3 for instance, we obtain that for sufficiently

large values of n, P (Bn) ≤ ne−
1
8n

1/4 log(n) + n− 1
12 . This ends the proof of

Theorem 5.6.
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Appendix

Lemma A.1. For a finite set E, let SE denote the set of permutations of E
and let S0

E consist of permutations of E without fixed point. For two integers
r ≥ 2 and 1≤ k ≤ r/2, let Pk(2, r) denote the partitions of {1, . . . , r} with k
blocks, each of them having at least two elements.

For a r× r matrix A and a real α, set

Per0α(A) =
∑

σ∈S0
{1,...,r}

αm(σ)A1,σ(1) · · ·Ar,σ(r),

where m(σ) denotes the number of cycles in a permutation σ (Per0α(A) in-
troduced in [9], p. 41, can also be defined as the α-permanent of A with the
diagonal elements of the matrix set to zero).

Another expression of Per0r(A) is

r/2∑
k=1

αk
∑

(π1,...,πk)∈Pk(2,r)

k∏
j=1

(
1

|πj |
∑

σ∈Sπj

Aσ(1),σ(2)Aσ(2),σ(3) · · ·Aσ(|πj |),σ(1)

)
.

Proof. For a finite set B, let Sc
B be the subset of SB which consists of

cycles of length |B|. The decomposition of permutations into disjoint cycles
entails that

Per0r(A) =

r/2∑
k=1

αk
∑

π=(π1,...,πk)∈Pk(2,r)

k∏
j=1

( ∑
σj∈Sc

πj

∏
u∈πj

Au,σj(u)

)
.

Therefore, it remains to prove that for every k ≥ 2

(A.1)
∑

σ∈Sc
{1,...,k}

k∏
u=1

Au,σ(u) =
1

k

∑
ν∈S{1,...,k}

Aν(1),ν(2)Aν(2),ν(3) · · ·Aν(k),ν(1).

Starting from a permutation ν ∈S{1,...,k}, we define a cycle of length k, F (ν)
such that

k∏
i=1

Ai,F (ν)(i) =Aν(1),ν(2)Aν(2),ν(3) · · ·Aν(k),ν(1)

by setting

F (ν)(u) =

{
ν(1) if ν−1(u) = k,

ν(ν−1(u) + 1) if ν−1(u)≤ k− 1.

Conversely, starting from a cycle σ of length k, we can construct exactly k
different permutations ν1, . . . , νk such that F (ν1) = · · ·= F (νk) = σ by setting

νi(j) =

{
i if j = 1,

σj−1(i) if j ∈ {2, . . . , k}.
This shows equality (A.1), completing the proof. �
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Lemma A.2. Let a < b be two reals. Let f be a real function of class C2 in
the interval ]a, b]. Assume that:

• limx→a+ f(x) = 0, f(b)> 0,
• limx→a+ f ′(x)< 0, f ′(b)≤ 0,
• f ′′ = 0 has at most two solutions in ]a, b].

Then for every c ∈ ]a, b] such that f(c)> 0, the minimum of f on the interval
[c, b] lies on c or b.

Proof. The assumptions on f ensure that the only possible configurations
are:

(i) there exists ρ ∈ ]a, b[ such that f is a decreasing function on ]a, ρ[ and an
increasing function on [ρ, b];

(ii) there exists two reals ρ− < ρ+ in ]a, b[ such that f is a decreasing function
on ]a, ρ−[, an increasing function on [ρ−, ρ+] and a decreasing function
on [ρ+, b].

Since limx→a+ f(x) = 0, for every x ∈ ]a, b[ such that f(x)> 0, we have in both
cases infu∈[x,b] f(u) =min(f(x), f(b)). �

Lemma A.3. Let a and b be two reals and let n be a positive integer. Let In
denote the identity matrix of size n and let Jn denote the n× n matrix with
all entries equal to one. The determinant of the matrix Mn = bJn + (a− b)In
is (a− b)n−1(a+ (n− 1)b).

Proof. First, det(M1) = a. Let n≥ 2. If we subtract the column n− 1 to
the column n and expand the determinant along the column n, we obtain:

det(Mn) = (a− b)det(Mn−1) + (a− b)det(Rn−1),

where Rn denotes the matrix defined by

Rn =

{
b if n= 1,

bJn +diag(a− b, . . . , a− b,0) if n≥ 2.

By applying the same transformations to Rn, we obtain

det(Rn) = (a− b)det(Rn−1) = (a− b)n−1b.

The expression of det(Mn) follows by induction on n. �
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