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QUASIHYPERBOLIC BOUNDARY CONDITION:
COMPACTNESS OF THE INNER BOUNDARY

PÄIVI LAMMI

Abstract. We prove that if a metric space satisfies a suitable
growth condition in the quasihyperbolic metric and the Gehring–
Hayman theorem in the original metric, then the inner boundary

of the space is homeomorphic to the Gromov boundary. Thus,
the inner boundary is compact.

1. Introduction

Let (Ω, d) and (Ω′, d′) be metric spaces. Recall that a homeomorphism
f : Ω → Ω′ is quasisymmetric, or η-quasisymmetric, if there is a homeomor-
phism η : [0, ∞) → [0, ∞) such that

d′(f(x), f(y))
d′(f(x), f(z))

≤ η

(
d(x, y)
d(x, z)

)

for all triples of distinct points x, y, z in X . Bonk, Heinonen and Koskela
proved in [3, Theorem 1.11] that a bounded domain in R

n is uniform if and
only if it is Gromov hyperbolic in the quasihyperbolic metric and its Euclidean
boundary is quasisymmetric to the Gromov boundary, see Section 2 for defi-
nitions. It is also well known that in a bounded uniform domain Ω ⊂ R

n the
quasihyperbolic metric k satisfies a logarithmic growth condition

(1.1) k(w,x) ≤ C log
(

d(w)
d(x)

)
+ C ′,

where w is a fixed base point in Ω and constants C ≥ 1 and C ′ < ∞ depend
on the constant of uniformity and the diameter of the domain (cf. [8]). Here
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d(x) is an abbreviation for the Euclidean distance from the point x to the
boundary ∂Ω.

However, this growth condition (1.1) does not necessarily guarantee that
the boundaries are quasisymmetric. Let us construct a simply connected
planar domain Ω for which the quasihyperbolic metric satisfies the growth
condition (1.1), but the inner boundary ∂IΩ in the Euclidean length metric
is not quasisymmetric to the Gromov boundary ∂GΩ. To construct Ω, we
“weld” the sequence of squares Qj = (aj − lj , aj) × (1, lj), where aj = 1 − 2−j

and lj = 2−j , j = 0,1,2, . . . , to the square (−1,1)2 via the intervals (aj −
lj/2 − l2j , aj − lj/2 + l2j ) × {1}, j = 2,3,4, . . . . Let the origin be the base
point. The quasihyperbolic metric k satisfies the condition (1.1), but taking
two boundary points from the “throat” of the small square and the third
from the top middle of the same square shows that the Gromov boundary
cannot be quasisymmetric to ∂IΩ. Nevertheless, the inner boundary ∂IΩ is
homeomorphic to the Gromov boundary ∂GΩ, see [2] and [13].

Moreover, not every growth condition guarantees that the boundaries can
be identified even as sets. For example, let

Ω =
{
(x, y) ∈ R

2 : x ≥ −1, |y| < exp{−x}
}

and let the origin be the base point. Now the quasihyperbolic metric k satisfies
the growth condition

(1.2) k(0, z) ≤ C
d(0)
d(z)

+ C

for some C ≥ 1, but the the ray [0, ∞) cannot be identified with any point in
∂Ω.

Thus in order that the inner boundary and the Gromov boundary be home-
omorphic, we need a condition stronger than (1.2). Suppose we are given the
growth condition

(1.3) k(w,x) ≤ φ

(
d(w)
d(x)

)
,

where φ : (0, ∞) → (0, ∞) is an increasing function and w is a fixed base point
in a metric space (Ω, d). It is more convenient to write

(1.4) d(x) ≤ d(w)
φ−1(k(w,x))

and let us assume, motivated by [10], that the function φ satisfies

(1.5)
∞∑

j=1

1
φ−1(j)

< ∞.

Condition (1.5) is sufficient for the inner boundary and the Gromov boundary
to be homeomorphic in a rather general setting. This is the content of our
main theorem.
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Theorem 1.1. Let (Ω, d) be a locally compact and non-complete quasi-
convex space. Assume that (Ω, k) is Gromov hyperbolic and that the Gehring–
Hayman theorem holds in (Ω, d). Let w ∈ Ω be a base point and suppose
that the quasihyperbolic metric k satisfies (1.3) and (1.5). Under these as-
sumptions, the identification map id : ∂GΩ → ∂dΩ is a homeomorphism and
moreover, ∂dΩ is compact.

It is natural to assume that the Gehring–Hayman theorem holds in (Ω, d)
because Balogh and Buckley proved in [1] that a bounded domain in R

n

equipped with the Euclidean length metric satisfies the Gehring–Hayman the-
orem if the domain is Gromov hyperbolic in the quasihyperbolic metric.

The conclusion of Theorem 1.1 appears to follow from previously known
results only when Ω ⊂ R

n is a quasiconformally equivalent to a bounded uni-
form domain. In this case, (1.3) and (1.5) imply that ∂dΩ is homeomorphic
to the boundary of the uniform domain by results of Koskela and Nieminen
[12] and Koskela, Onninen and Tyson [13]. Moreover, ∂dΩ is homeomorphic
to the Gromov boundary ∂GΩ by Bonk, Heinonen and Koskela [3].

Our proof of Theorem 1.1 borrows some ideas from [10], but our arguments
are necessarily very different.

2. Definitions

Let (Ω, d) be a metric space. The boundary ∂dΩ of Ω is ∂dΩ = Ω \ Ω, where
Ω is the metric completion of Ω. By a curve we mean a continuous mapping
γ : I → Ω from an interval I ⊂ R to Ω. We also denote the image set of γ by γ.
For I = [a, b] the length, �d(γ), of γ with respect to the metric d is defined as

�d(γ) = sup
m−1∑
i=0

d
(
γ(ti), γ(ti+1)

)
,

where the supremum is taken over all partitions a = t0 < t1 < · · · < tm = b of
the interval [a, b]. If �d(γ) < ∞, then γ is said to be a rectifiable curve. When
the parameter interval is open or half-open, we set

�d(γ) = sup �d(γ|[c,d]),

where supremum is taken over all compact subintervals [c, d]. If γ : [a, b) → Ω
is rectifiable, then there is a continuous extension γ : [a, b] → Ω, and γ has a
terminal endpoint γ(b) := limt↗b γ(t) ∈ Ω.

The metric d is called a quasi-convex metric and the metric space (Ω, d) a
quasi-convex space if there is a constant A ≥ 1 such that every pair of points
x, y ∈ Ω can be joined with a curve γ which satisfies

(2.1) �d(γ) ≤ Ad(x, y).

Added to this, a locally compact and non-complete quasi-convex space (Ω, d)
is called a uniform space if there is a constant B ≥ 1 such that for every pair
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of points x, y ∈ Ω the curve γ in the previous condition (2.1) satisfies also the
twisted cone condition—that is, for every a ∈ γ

(2.2) min
{
�d

(
γ(x,a)

)
, �d

(
γ(a, y)

)}
≤ B distd(a, ∂dΩ),

where γ(x,a) is the subcurve of γ from x to a and γ(a, y) is the rest of the
curve.

If for every x, y ∈ Ω it holds that

(2.3) d(x, y) = �d(x, y) := inf �d(γ),

where the infimum is taken over all curves joining points x and y, then the
metric d = �d is a length metric and the space (Ω, d) is a length space. If
d(x, y) = �d(γ) for some curve γ joining points x, y ∈ Ω, then γ is said to be a
geodesic. If every pair of points in Ω can be joined with a geodesic, then Ω is
called a geodesic space.

For a rectifiable curve γ : [a, b] → Ω we define the arc length s : [a, b] →
[0, ∞) along γ by

s(t) = �d(γ|[a,t]).
It is not hard to see that for every rectifiable curve γ it holds that

�d(γ) =
∫

γ

ds =
∫ b

a

ds(t).

Let (Ω, d) be a geodesic metric space and let δ ≥ 0. Denote by [x, y]
any geodesic joining two points x and y in Ω. If for all triples of geodesics
[x, y], [y, z], [z,x] in Ω every point in [x, y] is within distance δ from [y, z] ∪ [z,x],
the space Ω is called δ-hyperbolic. In other words, it means that geodesic tri-
angles in Ω are δ-thin. Moreover, we say that a space is Gromov hyperbolic if
it is δ-hyperbolic for some δ. All Gromov hyperbolic spaces in this paper are
assumed to be unbounded.

A geodesic ray in Ω is an isometric image in Ω of the interval [0, ∞),
and two rays are equivalent if their Hausdorff distance is finite. That is,
both rays have finite neighbourhoods such that one ray is contained in the
neighbourhood of the other ray. The Gromov boundary ∂GΩ of a proper
(closed balls are compact) geodesic Gromov hyperbolic space Ω is defined to
be the set of equivalence classes of geodesic rays. We say that a geodesic ray
ends at ξ ∈ ∂GΩ if it represents the point ξ. For each x ∈ Ω and ξ ∈ ∂GΩ there
is a geodesic ray [x, ξ] issuing from x and ending at ξ. Similarly, for every
pair of points ξ, η ∈ ∂GΩ there is a geodesic line [ξ, η] from ξ to η which is an
isometric image of (−∞, ∞) ending at ξ and η in the obvious sense. See [5,
§III.H, Lemma 3.1 and Lemma 3.2].

Alternatively, the Gromov boundary of a proper geodesic Gromov hyper-
bolic space (Ω, d) can be defined as the set of equivalence classes of sequences
(xn) ⊂ Ω which tend to infinity in the sense that

lim
n,m→∞

(xn|xm)w = ∞,
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where

(2.4) (x|y)w =
1
2
{
d(w,x) + d(w,y) − d(x, y)

}
is the Gromov product between points x, y ∈ Ω with respect to a base point
w ∈ Ω. Two sequences (xn), (yn) ⊂ Ω, tending to infinity, are equivalent if

lim
n→∞

(xn|yn)w = ∞.

The Gromov product (2.4) extends to the Gromov boundary ∂GΩ in a natural
way. From the geometric point of view, the Gromov product has the following
property:

(2.5)
∣∣(x|y)w − distd

(
w, [x, y]

)∣∣ ≤ 8δ

for any pair of points x, y ∈ Ω ∪ ∂GΩ and any geodesic [x, y] between the
points. See [6] for more detailed definitions of Gromov boundaries.

The Gromov boundary ∂GΩ does not, in general, posses a preferred metric.
However, there is a collection of distance functions

(2.6) ρw,ε(ξ, η) = exp
{

−ε(ξ|η)w

}
, ξ, η ∈ ∂GΩ,

where ε > 0 and w ∈ Ω is a base point. Although, the function in (2.6) does
not necessarily satisfy the triangle inequality, and further, does not necessarily
define a metric, there is ε(δ) > 0 such that for 0 < ε < ε(δ) one finds a metric
dw,ε in ∂GΩ satisfying

(2.7)
1
2
ρw,ε(ξ, η) ≤ dw,ε(ξ, η) ≤ ρw,ε(ξ, η)

for ξ, η ∈ ∂GΩ. By combining (2.5), (2.6) and (2.7), we obtain
1

C(δ)
exp

{
−εdistd

(
w, [ξ, η]

)}
≤ dw,ε(ξ, η)(2.8)

≤ C(δ) exp
{

−εdistd

(
w, [ξ, η]

)}
,

whenever 0 < ε < ε(δ) and ξ, η ∈ ∂GΩ. The Gromov boundary equipped with
this metric dw,ε is compact. For more details, see [3], [4] and [9].

Assume that (Ω, d) is a locally compact, rectifiably connected, and non-
complete metric space. Then the boundary ∂dΩ is nonempty and for z ∈ Ω
we denote

d(z) = distd(z, ∂dΩ) = inf
{
d(z,x) : x ∈ ∂dΩ

}
.

Next we define the quasihyperbolic metric k in Ω by introducing the length
element

ds

d(z)
.

Thus for x, y ∈ Ω,

(2.9) k(x, y) = inf
∫

γ

ds

d(z)
=

∫ b

a

ds(t)
d(γ(t))

,
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where the infimum is taken over all rectifiable curves γ joining points x and y.
Bonk, Heinonen and Koskela proved in [3, Proposition 2.8] that if the iden-
tity map (Ω, d) → (Ω, �d) is a homeomorphism, then it is a homeomorphism
(Ω, d) → (Ω, k) and (Ω, k) is complete. Furthermore, as a complete locally
compact length space (Ω, k) is geodesic and proper (cf. [5, §I.3]). See [1] for a
geometric characterisation of Gromov hyperbolicity of (Ω, k) in R

n.
From now on, we denote by [x, y] a quasihyperbolic geodesic joining points

x and y in Ω. By [x, y](t) we mean the image of t ∈ [0, k(x, y)] ⊂ R in the
quasihyperbolic geodesic [x, y], where [x, y] : [0, k(x, y)] → Ω is a mapping
parametrized by the arc length with respect to the metric k.

There are also two elementary inequalities, valid for all x, y ∈ Ω:∣∣∣∣log
d(x)
d(y)

∣∣∣∣ ≤ k(x, y),(2.10)

log
(

1 +
d(x, y)

min{d(x), d(y)}

)
≤ k(x, y).(2.11)

From inequality (2.11) it immediately follows that if a sequence (xj) ⊂ Ω
satisfies k(xj , xj+1) ≤ 1, then
(2.12) d(xj , xj+1) ≤ 2d(xj).

When we say that the Gehring–Hayman theorem holds in (Ω, d), we mean
that there is a constant C ≥ 1 such that for every pair of points x, y ∈ (Ω, d),
(2.13) �d

(
[x, y]

)
≤ C�d(γ),

where γ is any other curve in Ω joining points x and y (cf. [7], [11]).

3. Proof of the theorem

Let us first show that from the growth condition (1.3) and (1.5) it follows
that the metric space (Ω, d) is bounded. It suffices to prove that for some
M > 0 it holds that d(w,x) ≤ M for every x ∈ Ω. Let x ∈ Ω. If k(w,x) < 1,
then the claim is obvious. Suppose that k(w,x) ≥ 1. Let (xj) ⊂ Ω be a
sequence such that k(w,xj) = j for each j ∈ N and x1, . . . , x[k(w,x)] ∈ [w,x],
where [k(w,x)] is the integer part of the quasihyperbolic distance from w
to x. Then by (2.12) and (1.5) we obtain

d(w,x) ≤ d(w,x1) +
[k(w,x)]−1∑

j=1

d(xj , xj+1) + d(x[k(w,x)], x)[−1pt]

≤ 2d(w) + 2
∞∑

j=1

d(xj)[−1pt]

≤ 2d(w) + 2d(w)
∞∑

j=1

1
φ−1(j)

=: M.

Thus, the constant M depends only on the base point w.
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Let us start to prove the theorem, step by step. The first step is to prove
that an identification map id : ∂GΩ → ∂dΩ exists and it is well defined. Let
ξ ∈ ∂GΩ. There is a geodesic ray [w, ξ] which represents the point ξ. To show
that [w, ξ] ends at some point ξ′ ∈ ∂dΩ, and thus it represents some point
ξ′ in the boundary ∂dΩ, we show that �d([w, ξ]) < ∞. Let (xj) ⊂ [w, ξ] be
a sequence such that k(w,xj) = j for each j ∈ N. Now, from the Gehring–
Hayman theorem, quasi-convexity, and inequalities (2.12) and (1.5) it follows
that

�d

(
[w, ξ]

)
= �d

(
[w,x1]

)
+

∞∑
j=1

�d

(
[xj , xj+1]

)

≤ CAd(w,x1) + CA

∞∑
j=1

d(xj , xj+1)

≤ 2CAd(w) + 2CA

∞∑
j=1

d(xj)

≤ 2CAd(w) + 2CAd(w)
∞∑

j=1

1
φ−1(j)

< ∞.

Hence, the geodesic ray [w, ξ] ends in the sense of the metric d, and an endpoint
ξ′ exists which clearly has to be on the boundary ∂dΩ.

Let [y, ξ] be another geodesic ray which represents the point ξ ∈ ∂GΩ. Even
though the starting point y ∈ Ω may differ from the base point w ∈ Ω, the
ray still represents some point in ∂dΩ. Indeed, take a sequence (xj) ⊂ [y, ξ]
such that k(y,xj) = j. Now k(w,xj) ≥ k(y,xj) − k(y,w) and thus, when j >
k(y,w),

d(xj) ≤ d(w)
φ−1(k(w,xj))

≤ d(w)
φ−1(j − k(w,y))

.

Moreover, because (Ω, d) is bounded, quasi-convex and the Gehring–Hayman
theorem holds, for j > k(y,w) it is true that

�d

(
[y, ξ]

)
= �d

(
[y,xj ]

)
+

∞∑
l=j

�d

(
[xl, xl+1]

)

≤ CAd(y,xj) + CA

∞∑
l=j

d(xl, xl+1)

≤ CAM + 2CAd(w)
∞∑
l=j

1
φ−1(l − k(w,y))

< ∞.

In the quasihyperbolic sense, geodesic rays [w, ξ] and [y, ξ] are equivalent
which means, by definition, that their Hausdorff distance is finite. Let us
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show that there is a constant M > 0 such that

(3.1) sup
{
k
(
[w, ξ](t), [y, ξ](t)

)
: t ≥ 0

}
≤ M < ∞.

The proof is adapted from the book [9, §7, Proposition 2]. Let N > 0 be
the Hausdorff distance between geodesics. For t ≥ 0 let st ≥ 0 be such that
k([y, ξ](t), [w, ξ](st)) < N . By the triangle inequality we obtain that, for each
t ≥ 0,

(3.2) k
(
[w, ξ](s0), [w, ξ](st)

)
= |s0 − st| ≤ t + 2N

and

(3.3) k
(
[w, ξ](s0), [w, ξ](st)

)
= |s0 − st| ≥ t − 2N.

Thus inequalities (3.2) and (3.3) together yield

|st − t| ≤ s0 + 2N,

from which by the triangle inequality we obtain that

k
(
[y, ξ](t), [w, ξ](t)

)
≤ N + |st − t| ≤ 3N + s0 =: M.

From the basic estimate (2.11) and from (3.1) we obtain that, for each
t ≥ 0,

log
(

1 +
d([w, ξ](t), [y, ξ](t))

min{d([w, ξ](t)), d([y, ξ](t))}

)
≤ k

(
[w, ξ](t), [y, ξ](t)

)
≤ M

and further, for each t ≥ 0,
d([w, ξ](t), [y, ξ](t))

min{d([w, ξ](t)), d([y, ξ](t))} ≤ eM − 1.

Because both rays have an endpoint on the boundary ∂dΩ, both d([w, ξ](t)) ↘
0 and d([y, ξ](t)) ↘ 0, when t → ∞. Then also d([w, ξ](t), [y, ξ](t)) ↘ 0. Hence,
in the sense of the metric d, the curve [y, ξ] also ends at the point ξ′ ∈ ∂dΩ
and the identification map is well defined.

The next step is to show that the identification map is injective. Let ξ 
= η
be points on ∂GΩ. Then there is a geodesic line [ξ, η] ⊂ Ω and also unique
identification points ξ′ and η′ on the boundary ∂dΩ. The Gehring–Hayman
theorem gives us that

�d

(
[ξ, η]

)
≤ C�d(γ)

for any other curve γ joining points ξ′ and η′. Thus, if it were true that
ξ′ = η′, then because the metric d is a quasi-convex metric, it would hold that
�d([ξ, η]) = 0. Furthermore, this implies that ξ = η, which is a contradiction.

The hard part is to prove that the identification map id : ∂GΩ → ∂dΩ is
surjective. We have to show that for every ξ′ ∈ ∂dΩ there exists an identifica-
tion point ξ ∈ ∂GΩ, and thus there exists a quasihyperbolic geodesic ray [w, ξ]
that ends at ξ′ in the sense of d. Let ξ′ ∈ ∂dΩ. In the metric d, there is a
rectifiable curve γ joining points w and ξ′. Let (xj) ⊂ γ be a sequence which
converges to the point ξ′. Because (Ω, k) is geodesic, for each j ∈ N there is a
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quasihyperbolic geodesic [w,xj ]. By using the Arzela–Ascoli theorem and the
properness of (Ω, k) we find a subsequence of ([w,xj ])j , still denoted the same,
which converges uniformly on compacta to a geodesic ray [w,η]. It remains
to show that [w,η] is the ray [w, ξ] we were looking for. We know that the ray
[w,η] ends in the sense of the metric d at some point η′ ∈ ∂dΩ and we need
to show that η′ = ξ′. In other words, it remains to show that d(ξ′, [w,η]) = 0.

To show that d(ξ′, [w,η]) = 0, we prove that for every j ∈ N the sequence
of quasihyperbolic geodesics ([xj , xj+p])p has a subsequence that converges
to a quasihyperbolic ray [xj , η]. Because (xj) is a Cauchy sequence in the
metric d, we obtain by using this subsequence, denoted the same, with the
Gehring–Hayman theorem and quasi-convexity that for every ε > 0 there is
Nε ∈ N such that

�d

(
[xj , xj+p]

)
≤ CAd(xj , xj+p) < CAε

for all p ≥ 1, when j ≥ Nε. And furthermore,

�d

(
[xj , η]

)
≤ CAε,

when j > Nε. Then we conclude that

d
(
ξ′, [w,η]

)
≤ d

(
ξ′, η′) ≤ d

(
ξ′, xj

)
+ d

(
xj , η

′)
≤ d

(
ξ′, xj

)
+ �d

(
[xj , η]

)
≤ ε + CAε,

when j > Nε, and therefore η′ = ξ′.
Thus, let j ∈ N. Again, by using Arzela–Ascoli theorem and the properness

of (Ω, k), we find a subsequence of ([xj , xj+p])p, still denoted the same, that
converges uniformly on compacta to a geodesic ray [xj , ηj ]. Let us show that
ηj = η. It suffices to prove that for some M > 0,

(3.4) k
(
[w,η](t), [xj , ηj ](t)

)
≤ M for every t ≥ 0.

Let us parametrize our quasihyperbolic geodesics [x, y] in the following, nat-
ural way: [x, y] : [0, ∞) → (Ω, k) such that [x, y](t) is isometric, when t ≤
k(x, y), and [x, y](t) = y, when t > k(x, y). Let ε > 0 and let t ≥ 0. Because
the sequence ([w,xn])n converges uniformly on compacta, there is N1 ∈ N such
that

(3.5) k
(
[w,xn](t), [w,η](t)

)
< ε, when n > N1.

Furthermore, the sequence ([xj , xn])n>j converges uniformly on compacta and
therefore there is N2 ∈ N such that

(3.6) k
(
[xj , xn](t), [xj , ηj ](t)

)
< ε, when n > N2.

If we can prove that there is a constant M ′ > 0 such that for each n > j it
holds that

(3.7) k
(
[w,xn](t), [xj , xn](t)

)
≤ M ′,
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then choosing N := max{N1,N2}, letting n > N , and using inequalities (3.5),
(3.6) and (3.7) we obtain the desired result (3.4):

k
(
[w,η](t), [xj , ηj ](t)

)
≤ 2ε + k

(
[w,xn](t), [xj , xn](t)

)
≤ 2ε + M ′ =: M < ∞.

Let us prove inequality (3.7). Let n > j. The metric space (Ω, k) is Gromov
hyperbolic, and thus there is some δ ≥ 0 such that each triangle is δ-thin. If
distk([w,xn](t), [w,xj ]) ≤ δ and distk([xj , xn](t), [w,xj ]) ≤ δ, then

k
(
[w,xn](t), [xj , xn](t)

)
≤ 2δ + k(w,xj),

and we may choose M ′ = 2δ + k(w,xj). Otherwise, we have u ∈ [xj , xn] such
that k([w,xn](t), u) ≤ δ, or v ∈ [w,xn] such that k([xj , xn](t), v) ≤ δ. Let us
consider the first case, the second case can be handled by similar calcula-
tions.

Because of the parametrization of geodesics we have that

t + k
(
[w,xn](t), xn

)
= k(w,xn) ≤ k(w,xj) + k(xj , xn)

≤ k(w,xj) + t + k
(
[xj , xn](t), xn

)
.

We have same kind of inequalities for k(xj , xn), and therefore∣∣k(
[w,xn](t), xn

)
− k

(
[xj , xn](t), xn

)∣∣ ≤ k(w,xj).

Similarly, we conclude that∣∣k(u,xn) − k
(
[w,xn](t), xn

)∣∣ ≤ δ.

Thus, (3.7) follows from these inequalities:

k
(
[w,xn](t), [xj , xn](t)

)
≤ δ + k

(
u, [xj , xn](t)

)
= δ +

∣∣k(u,xn) − k
(
[xj , xn](t), xn

)∣∣
≤ 2δ + k(w,xj).

The penultimate step is to show that the identification map id : ∂GΩ → ∂dΩ
is continuous. Let ε > 0 and ξ ∈ ∂GΩ. Thus, we have to find δε > 0 such
that

(3.8) d
(
ξ′, η′) < ε, when η ∈ ∂GΩ and dw,ε̃(ξ, η) < δε.

Because of the second inequality in (2.8) it suffices to prove that there is a
constant δε > 0 such that

(3.9) d
(
ξ′, η′) < ε, when η ∈ ∂GΩ and exp

{
−ε̃distk

(
w, [ξ, η]

)}
< δε.

Here 0 < ε̃ < ε̃(δ), and δ ≥ 0 is the constant from the δ-hyperbolicity. Because
of the properness of (Ω, k) for each η ∈ ∂GΩ, η 
= ξ, there is wη ∈ [ξ, η] such
that

(3.10) distk

(
w, [ξ, η]

)
= k(w,wη).
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Thus, it actually suffices to prove that there is a constant δε > 0 such that

max
{
�d

(
[wη, ξ]

)
, �d

(
[wη, η]

)}
< ε when η ∈ ∂GΩ and(3.11)

k(w,wη) > − log δε

ε̃
.

We may assume that �d([wη, ξ]) ≥ �d([wη, η]). Let xj ∈ [wη, ξ] be such that
k(wη, xj) = j for each j ∈ N. Let us first show that for each j ∈ N there is
pj ∈ [w,xj ] such that

(3.12) k(wη, pj) ≤ 2δ + 1.

If k(wη,w) ≤ 2δ + 1, then the claim is clear. Let us assume that k(wη,w) >
2δ + 1, and pick z ∈ [w,wη] so that

k(wη, z) = δ + 1 = distk

(
z, [ξ, η]

)
.

From the δ-hyperbolicity of (Ω, k) it follows that distk(z, [w,xj ]) ≤ δ for each
j ∈ N. Hence for every j ∈ N there is pj ∈ [w,xj ] which satisfies k(z, pj) ≤ δ.
Therefore for every j ∈ N,

k(wη, pj) ≤ k(wη, z) + k(z, pj) ≤ 2δ + 1

and we have the desired inequality (3.12). Furthermore, we estimate that for
each j ∈ N

k(w,wη) + j = k(w,wη) + k(wη, xj)(3.13)
≥ k(w,xj) = k(w,pj) + k(pj , xj)

≥
(
k(w,wη) − k(wη, pj)

)
+

(
k(wη, xj) − k(wη, pj)

)
≥ k(w,wη) + j − 4δ − 2.

Hence by the Gehring–Hayman theorem, quasi-convexity, inequality (2.12),
the growth condition (1.5) and inequality (3.13) we obtain that

�d

(
[wη, ξ]

)
= �d

(
[wη, x1]

)
+

∞∑
j=1

�d

(
[xj , xj+1]

)

≤ CAd(wη, x1) + CA

∞∑
j=1

d(xj , xj+1)

≤ 2CAd(wη) + 2CA

∞∑
j=1

d(xj)

≤ 2CA
d(w)

φ−1(k(w,wη))
+ 2CA

∞∑
j=1

d(w)
φ−1(k(w,xj))

≤ 2CA
d(w)

φ−1(k(w,wη))
+ 2CA

∞∑
j=1

d(w)
φ−1(k(w,wη) + j − 4δ − 2)

< ε,
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when k(w,wη) is sufficiently large. We conclude that the identification map
is continuous, even uniformly continuous.

The last step is to prove that also the inverse of the identification map,
id−1 : ∂dΩ → ∂GΩ, is continuous. Let ε > 0 and ξ′ ∈ ∂dΩ. Let for every
η ∈ ∂GΩ wη ∈ [ξ, η] be the point such that distk(w, [ξ, η]) = k(w,wη). When ξ′

and η′ are sufficiently close to each other, we may assume that d(w) ≥ d(wη).
Then we obtain by using the basic estimate (2.10), the Gehring–Hayman
theorem and quasi-convexity that

dw,ε̃(ξ, η) ≤ C(δ) exp
{

−ε̃k(w,wη)
}

≤ C(δ)
(

d(wη)
d(w)

)ε̃

≤ C(δ)
(

d(wη, ξ′)
d(w)

)ε̃

≤ C(δ)
(

�d([ξ, η])
d(w)

)ε̃

≤ C(δ)
(

CAd(ξ′, η′)
d(w)

)ε̃

< ε,

when η′ ∈ ∂dΩ and d(ξ′, η′) ≤ ( ε
C(δ) )

1/ε̃ d(w)
CA =: δε.
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