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A COHOMOLOGICAL LOWER BOUND FOR THE
TRANSVERSE LS CATEGORY OF A FOLIATED MANIFOLD

E. MACÍAS-VIRGÓS

Abstract. Let F be a compact Hausdorff foliation on a compact
manifold. Let E>0,•

2 =
⊕

{Ep,q
2 : p > 0, q ≥ 0} be the subalgebra

of cohomology classes with positive transverse degree in the E2

term of the spectral sequence of the foliation. We prove that

the saturated transverse Lusternik–Schnirelmann category of F
is bounded below by the length of the cup product in E>0,•

2 .
Other cohomological bounds are discussed.

1. Introduction

The transverse Lusternik–Schnirelmann category cat∩| (M, F ) of a foliated
manifold (M, F ) was introduced in H. Colman’s thesis [4], [8]. This notion
(and the analogous one of saturated transverse category) has been studied by
several authors in the last years [5], [6], [13], [14], [16], [25].

In [4], [8], a lower bound for cat∩| (M, F ) was given (see Theorem 3.1 below).
It is related to the length of the cup product in the basic cohomology of the
foliation and generalizes the corresponding classical result for the LS category
of a manifold [15].

We shall prove in Theorem 4.1 that another lower bound for the transverse
category is the length of the cup product in the De Rham cohomology of the
ambient manifold for degrees greater than the dimension d = dim F of the
foliation, that is, l.c.p.H>d(M) ≤ cat∩| (M, F ).

For compact Hausdorff foliations, we introduce a new lower bound for the
saturated transverse LS category cats

∩| (M, F ), in terms of the spectral sequence
of the foliation (Theorem 6.1). Explicitly, let Ep,q

r , 0 ≤ p ≤ codim F , 0 ≤ q ≤
dim F , be the de Rham spectral sequence of the foliated manifold (M, F ),
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and let E>0,•
2 =

⊕
p>0,q≥0 Ep,q

2 be the subalgebra of cohomology classes with
positive transverse degree in the term E2. Then the saturated transverse LS
category of (M, F ) is bounded below by the length of the cup product in
E>0,•

2 .
The interest of this result is that the E2 terms of the spectral sequence of

a Riemannian foliation on a compact manifold are known to be finite dimen-
sional [2], [10], [21], [22].

During the preparation of this manuscript, S. Hurder informed the author
that he and H. Colman had found independently analogous results for the tan-
gential LS category of a foliation (for the E1 term) [7], thus improving known
results from H. Colman and the author [9] and from W. Singhof and E. Vogt
[23]. As a matter of fact, the corresponding lower bound for the tangential
category of any foliation follows easily from our constructions (Theorem 8.1).

2. Transverse LS category

Let (M, F ) be a C ∞ foliated manifold. An open subset U ⊂ M is said
to be transversely categorical if the inclusion factors through some leaf L up
to a foliated homotopy. That is, when we consider the induced foliation FU

on U , there exists a leaf L and a C ∞ homotopy H : U × R → M such that:
each Ht : U → M sends leaves into leaves; H0 is the inclusion U ⊂ M ; and
H1(U) ⊂ L.

Definition 2.1. The transverse LS category cat∩| (M, F ) of the foliation
is the least integer k ≥ 0 such that M can be covered by k + 1 transversely
categorical open sets.

If such a covering does not exist, we put cat∩| (M, F ) = ∞. Notice that since
adapted charts are categorical, we have cat∩| (M, F ) < ∞ when the manifold
M is compact.

Remark 2.2. In the original paper [8], the definition above corresponds
to cat +1, but presently we follow the more extended convention that con-
tractible spaces have null LS category. Coherently, we take the length of the
cup product (shortly l.c.p.) of an algebra to be the maximum k ≥ 0 for which
there exists some product a1 · · · ak �= 0 (k = 0 means that all products are
null).

3. Basic cohomology

The following cohomological lower bound for cat∩| (M, F ) involving the ba-
sic cohomology of the foliation was given in [8].

Recall that the basic cohomology Hb = H(M, F ) is defined by means of
the complex Ωb = Ω(M, F ) of basic forms, that is differential forms ω ∈ Ω(M)
such that iXω = 0 = iX dω for any vector field X tangent to the foliation.
Then the inclusion Ωb ⊂ Ω(M) induces a morphism π∗ : Hb → H(M), which
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in general is not injective. Let π∗H>0
b be the image of the basic cohomology

in positive degrees.

Theorem 3.1 ([8]). For any foliated manifold, the transverse LS category
is bounded below by the length of the cup product in π∗H>0

b .

Proof. The argument is standard, but we include it for later use. Let
U ⊂ M be a transversely categorical open set. Since two homotopic maps
(by a foliated homotopy) induce the same morphism in basic cohomology, the
induced map H>0

b (M) → H>0
b (U) is null because H>0

b (L) = 0 for any leaf L.
Hence, the map H>0

b (M,U) → H>0
b (M) in the long exact sequence (for basic

cohomology) of the pair (M,U) is surjective. Now, let k = cat∩| (M, F ) and
let U0, . . . ,Uk be k + 1 transversely categorical open subsets covering M . If
ω0, . . . , ωk are basic cohomology classes of positive degrees, then each ωi can
be lifted to some ξi ∈ Hb(M,Ui), and

π∗ξ0 ∪ · · · ∪ π∗ξk ∈ H(M,U0 ∪ · · · ∪ Uk) = H(M,M) = 0,

hence π∗(ω0 ∪ · · · ∪ ωk) = 0. �

It should be noted that in general it is not possible to define a cup product
in the relative basic cohomology, due to the lack of adequate partitions of
unity. So we cannot use the length of the basic cohomology as a (better)
lower bound for the transverse category. However, this can be done for a
particular class of foliations (compact Hausdorff foliations), and the saturated
transverse LS category, as we shall prove in Theorem 6.1.

4. New lower bounds

Another lower bound for cat∩| (M, F ) is almost immediate from the defini-
tions. It was suggested by the analogous result from W. Singhof and E. Vogt
for the tangential category of a foliation [23] and was the motivational idea
for the present paper.

Let H>d(M) be the de Rham cohomology of the ambient manifold in de-
grees greater than the dimension of the foliation. Clearly, for a transversely
categorical open set U the map H>d(M) → H>d(U) induced by the inclusion
is the zero map, because it factors through H>d(L) = 0, d = dimL. Then the
standard argument (this time for de Rham cohomology of M ) applies, and
we have proved the following theorem.

Theorem 4.1. The transverse LS category of a foliation is bounded below
by the length of the cup product in H>d(M), for d = dim F .

When comparing the latter result with Theorem 3.1, one realizes that both
bounds can be explained in terms of the (de Rham) spectral sequence Ep,q

r ⇒
H(M) of the foliation.



18 E. MACÍAS-VIRGÓS

5. The spectral sequence of a foliated manifold

This is a very well-known algebraic tool which has been extensively studied;
we refer the reader, for instance, to [18], [19], [21], [24] among many others.
When the foliation is defined by a fibre bundle, one obtains Serre’s spectral
sequence, written for the de Rham cohomology as in [12].

5.1. Basic notions. Let us recall some basic notions. For a comprehensive
introduction to spectral sequences, see [17]. Let Ω(M) be the de Rham com-
plex of the ambient manifold M . We define a decreasing filtration F pΩr(M),
0 ≤ p ≤ r, of Ωr(M), 0 ≤ r ≤ dimM , by the condition: ω ∈ F pΩr if and only
if iX0 · · · iXr−pω = 0 whenever the vector fields X0, . . . ,Xr−p are tangent to
the foliation.

Put Ep,q
0 = F pΩp+q/F p+1Ωp+q . Then the exterior differential d induces,

for each 0 ≤ p ≤ codim F , a differential dp,q
0 : Ep,q

0 → Ep,q+1
0 , 0 ≤ q ≤ dim F ,

whose cohomology groups are denoted by Ep,q
1 .

Often we denote Ωp,q = Ep,q
0 . By taking any distribution N complementary

to the foliation, we have TM = T F ⊕ N , so Ω(M) = ΓΛ(T ∗M) is isomorphic
to ΓΛ(N ∗) ⊗ ΓΛ(T ∗ F ), hence Ωp,q ∼= ΓΛp(N ∗) ⊗ ΓΛq(T ∗ F ). We shall use the
well known fact that if ω ∈ Ωp,q then dω ∈ Ωp+q+1(M) decomposes (because
d2 = 0) in three parts [dω]p+1,q + [dω]p,q+1 + [dω]p+2,q−1.

Now, the exterior differential induces morphisms d1 : Ep,q
1 → Ep+1,q

1 such
that (d1)2 = 0, and we denote by Ep,q

2 = Hp(E•,q
1 , d1) its cohomology groups.

The group Hp
b of basic cohomology corresponds to the term Ep,0

2 .
These are the first steps in order to define morphisms dp,q

r : Ep,q
r →

Ep+r,q−r+1
r , r ≥ 0, and a spectral sequence Er+1 = H(Er, dr) which converges

to the de Rham cohomology H(M) of the ambient manifold in a finite number
of steps.

We shall also need the well known fact that the exterior product of differen-
tial forms induces a well defined cup product in each term Er of the spectral se-
quence, which is compatible with the bigraduation. Moreover, the morphisms
dr satisfy the usual derivation formula dr(α ∪ β) = drα ∪ β + (−1)αα ∪ drβ.

5.2. Foliated homotopy. The following result appeared in J. A. Álvarez
López’s thesis [1].

Lemma 5.1. Let f : (M, F ) → (M ′, F ′) be a foliated (i.e., sending leaves
into leaves) C ∞ map between foliated manifolds. Then:
(1) The induced cohomology morphism f ∗ : H(M ′) → H(M) preserves the

filtration and hence it maps Ep,q
r (M ′) into Ep,q

r (M), 0 ≤ r, for all p, q;
(2) If g is another map which is homotopic to f by a foliated homotopy, then

f ∗ = g∗ on each Ep,q
2 .

Proof. Part (1) is clear because Xx ∈ TxF , x ∈ M , implies f∗x(Xx) ∈
Tf(x)F ′.
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For part (2), we can suppose M ′ = M × R, endowed with the foliation
L × {t}, L ∈ F , and f = i0, g = i1, where it(x) = (x, t). The maps i0, i1 are ho-
motopic by the foliated homotopy it. Hence, the morphisms i∗

0, i
∗
1 : Ωr(M ′) →

Ωr(M) are algebraically homotopic by the application H : Ωr+1(M ′) →
Ωr(M) given by Hω =

∫ 1

0
i∂tω dt. It induces an algebraic homotopy

Ep+1,q
1 (M ′) → Ep,q

1 (M), p+ q = r, between i∗
0, i

∗
1 at the level E1, hence i∗

0 = i∗
1

at the level E2. �

6. Compact Hausdorff foliations

A foliation F on the compact manifold M is said to be compact Hausdorff
if every leaf is compact and the space of leaves is Hausdorff [11]. Several
interesting results and computations of the saturated transverse LS category
cats

∩| (M, F ) in this setting have been obtained by H. Colman, S. Hurder and
P. G. Walczak [6], [14]. Recall that cats

∩| (M, F ) is defined [8] by considering
transversely categorical open sets which are saturated (i.e., a union of leaves).

We have the following result.

Theorem 6.1. Let F be a compact Hausdorff foliation on the manifold
M . Let E>0,•

2 =
⊕

p>0,q≥0 Ep,q
2 be the subalgebra of classes in the E2 term

of the spectral sequence with positive transverse degree. Then l.c.p.E>0,•
2 ≤

cats
∩| (M, F ).

Proof. We present here the guidelines of the proof. The details are rather
technical (although not sophisticated), so we have moved them to Section 7.

First, since there are partitions of unity which are constant along the leaves,
we have a Mayer–Vietoris sequence for saturated open sets, which is excessive
in the E1 level. Hence, it is possible to define a cup product in the relative
E2 terms of the spectral sequence. Finally, part (2) of Lemma 5.1 allows us
to apply the standard cohomology argument cited in Theorem 3.1 because
Ep,q

2 (L) = 0 for p > 0 and any leaf L. �

Remark 6.2 (Fiber bundles). Our computation has an application to the
classical LS category of a manifold. Let F → E → B be a smooth locally trivial
fiber bundle with connected fibers, Ep,q

r the corresponding spectral sequence
[12], hence Ep,q

2 = Hp(B; Hq(F )). The (classical) Lusternik–Schnirelmann
category catB of the base equals cats

∩| (M, F ) for the foliation F in E de-
fined by the fibers [8], hence it is bounded below by the length of the cup
product in Ep>0,•

2 =
⊕

p>0,q≥0 Ep,q
2 . (However, since we are working with

real coefficients, this bound is possibly not better than the usual lower bound
l.c.p.H>0(B) ≤ catB.)
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7. Relative cup product

In this section, we develop the technical details in the proof of Theorem 6.1.
Probably many of them are folk, as we follow the ideas of the book of Bott–Tu
[3]. Since the proof is rather lengthly, I have tried to write it in such a way
that it becomes accessible to nonspecialists.

The crucial point is the Mayer–Vietoris argument for the E1 term in Propo-
sition 7.1. In fact, for E0 it is known (see Munkres’s book [20]) that a cup
product in the relative cohomology groups of a topological space can be de-
fined for any excisive pair.

7.1. Preliminaries. It is an exercise to prove that for a compact Hausdorff
foliation there exist partitions of unity which are constant along the leaves,
for any finite covering by saturated open sets.

Let W be a saturated open set. Since the inclusion W ⊂ M is a foliated
map, we have induced morphisms (iW )∗

r : (Er(M), dr) → (Er(W ), dr) between
the spectral sequences. Often we denote (iW )∗

rω simply by i∗ω or ωW when
there is no risk of confusion.

7.2. Relative cohomology. Let us define

Ep,q
1 (M,W ) = Ep,q

1 (M) ⊕ Ep−1,q
1 (W )

endowed with the differential δ = δ1 : Ep,q
1 (M,W ) → Ep+1,q

1 (M,W ) given by

δ(μ,ω) =
(
d1μ, i∗

1μ − d1ω
)
.

Since δ2 = 0, we can define Ep,q
2 (M,W ) := Hp(E•,q

1 (M,W ), δ), and we have
a long exact sequence in cohomology,

· · · → Ep−1,q
2 (W ) → Ep,q

2 (M,W ) → Ep,q
2 (M) → Ep,q

2 (W ) → · · · ,

induced by the (obvious) short exact sequence of complexes

0 →
(
E• −1,q

1 (W ), −d1

)
→

(
E•,q

1 (M,W ), δ
)

→
(
E•,q

1 (M), d1

)
→ 0.

It is clear that this construction could already be done at the E0 level.

7.3. Connecting morphism. Let us denote Ωp,q = Ep,q
0 . Let U,V ⊂ M

be saturated open sets, and {ϕU , ϕV } a smooth partition of unity on U ∪
V subordinated to the open covering {U,V }. If the functions ϕU , ϕV are
constant along the leaves, then dϕU , dϕV ∈ Ω1,0. The connecting morphism

Δ : Ωp,q(U ∩ V ) → Ωp+1,q(U ∪ V )

is defined by

Δ(ω) =

{
dϕV ∧ ω on U,

−dϕU ∧ ω on V.
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This is well defined (we invite the reader to check it). Moreover it is a mor-
phism of complexes Δ : (Ωp,•, d0) → (Ωp+1,•, −d0) because for ω ∈ Ωp,q we
have (for instance on U )

d0Δ(ω) =
[
dΔ(ω)

]p+1,q+1 =
[
d(dϕV ∧ ω)

]p+1,q+1

= [−dϕV ∧ dω]p+1,q+1 = −dϕV ∧ [dω]p,q+1

= −dϕV ∧ d0ω = −Δd0ω,

and analogously on V . Then, since Ep,q
1 = Hq(Ωp,•, d0), we have induced

morphisms

(7.1) Δ : Ep,q
1 (U ∩ V ) → Ep+1,q

1 (U ∪ V ).

7.4. Mayer–Vietoris sequence. Now we consider the Mayer–Vietoris se-
quence

(7.2) 0 → Ep,q
1 (U ∪ V ) i→ Ep,q

1 (U) ⊕ Ep,q
1 (V ) π→ Ep,q

1 (U ∩ V ) → 0

defined in the usual way, that is

i(ξ) =
(
(iU )∗

1(ξ), (iV )∗
1(ξ)

)
and

π(α,β) = (iU ∩V )∗
1(α) − (iU ∩V )∗

1(β).
Due to the existence of basic partitions of unity we have the following

lemma.

Lemma 7.1. The Mayer–Vietoris sequence (7.2) is exact.

Proof. Let

0 →
(
Ωp,•(U ∪ V ), d0

) i→
(
Ωp,•(U), d0

)
⊕

(
Ωp,•(V ), d0

)
(7.3)

π→
(
Ωp,•(U ∩ V ), d0

)
→ 0

be the usual Mayer–Vietoris short exact sequence for the ambient manifold,
restricted to a fixed transverse degree p. The positive fact is that the usual
section of π given by S(ω) = (ϕV ω, −ϕUω) is in our setting a morphism of
complexes, because our partitions of unity are constant along the leaves, that
is, dϕU , dϕV ∈ Ω1,0. In fact, for ω ∈ Ωp,q(U ∩ V ) we have

dS(ω) =
(
d0(ϕV ω), −d0(ϕUω)

)
=

([
d(ϕV ω)

]p,q+1
, −

[
d(ϕUω)

]p,q+1)
=

(
[dϕV ∧ ω + ϕV ∧ dω]p,q+1, −[dϕU ∧ ω + ϕU ∧ dω]p,q+1

)
=

(
ϕV ∧ [dω]p,q+1, −ϕU ∧ [dω]p,q+1

)
= S

(
[dω]p,q+1

)
= Sd0(ω).

Then the long exact sequence associated to (7.3) splits, and gives the short
exact sequence (7.2), because Ep,q

1 = Hq(Ωp,•, d0). �
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Notice that the morphism Δ explicitly defined in (7.1) induces in fact the
connecting morphism of the long exact sequence associated to (7.2). Moreover,
the section S at the E0 level induces a section (also denoted S) such that
πS = id in the E1 sequence (7.2). However, S is not yet a morphism of
complexes, and the default

(7.4) Δ = dS − Sd

is just the connecting morphism defined above, as the reader can check.
On the other hand, the section S on the right side of the sequence (7.2)

induces another section J = id − Sπ for the left side, that is

J : Ep,q
1 (U) ⊕ Ep,q

1 (V ) → Ep,q
1 (U ∪ V )

such that Ji = id. It is an exercise to prove that

(7.5) dJ − Jd = −Δπ.

7.5. Cup product in relative cohomology. Now we define a product
(compatible with the absolute cup product)

(7.6) ∪ : Ep,q
2 (M,U) ⊗ Er,s

2 (M,V ) → Ep+r,q+s
2 (M,U ∪ V )

in the E2 term of the spectral sequence. It will be induced by a product in
the relative E1 level (defined in Section 7.2), that is

∪ : Ep,q
1 (M,U) ⊗ Er,s

1 (M,V ) → Ep+r,q+s
1 (M,U ∪ V ).

This latter product is given by

(7.7) (μ,α) ∪ (ν,β) = (μ ∪ ν, ξ),

where ξ ∈ Ep+r−1,q+s
1 (U ∪ V ) is explicitly written as

(7.8) ξ = J
(
α ∪ νU , (−1)μμV ∪ β

)
+ (−1)rΔ(αU ∩V ∪ βU ∩V ).

Here, for the differential form μ of bidegree (p, q), the notation (−1)μ means
(−1)p. On the other hand,

Δ : Ep−1+r−1,q+s
1 (U ∩ V ) → Ep+r−1,q+s

1 (U ∪ V )

is the connecting morphism defined in (7.1), and

J : Ep+r−1,q+s
1 (U) ⊕ Ep+r−1,q+s

1 (V ) → Ep+r−1,q+s
1 (U ∪ V )

is the left section J considered in equation (7.5). When there is no risk
of confusion, we shall understand that the classes μ,β, ν, β are adequately
restricted, so we should simply write

ξ = J
(
α ∪ ν, (−1)μμ ∪ β

)
+ (−1)rΔ(α ∪ β).

Next we prove the following proposition.
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Proposition 7.2. The product (7.8) induces a well defined product in the
E2 terms.

Proof. Although it is possible to check that by hand, we shall present a
more elaborate proof, which has the advantage of being valid for any level Er

where the key ingredients Δ, J will be defined.
Since the map (7.6) has the form

Hp
(
E•,q

1 , d1

)
⊗ Hr

(
E•,s

1 , d1

)
→ Hp+r

(
E•,q+s

1 , d1

)
,

what we need is a map

Hp+r
(
E•,q

1 ⊗ E•,s
1

)
→ Hp+r

(
E•,q+s

1

)
,

so we must only check that the morphism

∪ : E•,q
1 (M,U) ⊗ E•,s

1 (M,V ) → E•,q+s
1 (M,U ∪ V )

given in (7.7) commutes with the differentials, where as usual the left complex
is endowed with the differential d(A ⊗ B) = d1A ⊗ B + (−1)AA ⊗ d1B.

Then we have

δ
(
(μ,α) ∪ (ν,β)

)
= δ

((
μ ∪ ν,J

(
α ∪ ν, (−1)μμ ∪ β

)
+ (−1)μΔ(α ∪ β)

))
=

(
d1(μ ∪ ν), μ ∪ ν − d1J

(
α ∪ ν, (−1)μμ ∪ β

)
− (−1)μd1Δ(α ∪ β)

)
.

Now by using that J(μ ∪ ν,μ ∪ ν) = μ ∪ ν, that d1J = Jd1 − Δπ and that
d1Δ = −Δd1, we have that the first coordinate is (we write d = d1)

(7.9) dμ ∪ ν + (−1)μμ ∪ dν

while the second is

J(μ ∪ ν,μ ∪ ν) − Jd
(
α ∪ ν, (−1)μμ ∪ β

)
+ Δπ

(
α ∪ ν, (−1)μμ ∪ β

)
+ (−1)μΔd(α ∪ β)

= J
(
μ ∪ ν − d(α ∪ ν), μ ∪ ν − (−1)μd(μ ∪ β)

)
+ Δπ

(
α ∪ ν, (−1)μμ ∪ β

)
+ (−1)μΔ

(
dα ∪ β + (−1)αα ∪ dβ

)
,

that is

J
(
μ ∪ ν − dα ∪ ν − (−1)αα ∪ dν,μ ∪ ν − (−1)μdμ ∪ β − μ ∪ dβ

)
(7.10)

+ Δπ
(
α ∪ ν, (−1)μμ ∪ β

)
+ (−1)μΔ

(
dα ∪ β + (−1)αα ∪ dβ

)
.

On the other hand, d((μ,α) ⊗ (ν,β)) equals

d(μ,α) ∪ (ν,β) + (−1)μ(μ,α) ∪ d(ν,β)
= (dμ,μ − dα) ∪ (ν,β) + (−1)μ(μ,α) ∪ (dν, ν − dβ)

=
(
dμ ∪ ν,J

(
(μ − dα) ∪ ν, (−1)dμdμ ∪ β

)
+ (−1)dμΔ

(
(μ − dα) ∪ β

))
+ (−1)μ

(
μ ∪ dν,J

(
α ∪ dν, (−1)μμ ∪ (ν − dβ)

)
+ (−1)μΔ

(
α ∪ (ν − dβ)

))
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whose first coordinate equals (7.9), while the second is

J
(
μ ∪ ν − dα ∪ ν + (−1)μα ∪ dν, (−1)dμdμ ∪ β + μ ∪ ν − μ ∪ dβ

)
+ Δ

(
(−1)dμμ ∪ β − (−1)dμdα ∪ β + α ∪ ν − α ∪ dβ

)
,

which equals (7.10), because (−1)μ = (−1)α+1 and (−1)dμ = (−1)μ+1, and we
have done (!). �

Remark. We have only used the Künneth morphism

H(EU ) ⊗ H(EV ) → H(EU ⊗ EV ),

but in fact it is an isomorphism because the relative groups E2(M,W ) are
finite dimensional for compact Hausdorff foliations on a compact manifold.

8. Tangential LS category

The following result is an easy consequence of our computation in Section 7.
It has been found independently by S. Hurder and H. Colman [7].

Theorem 8.1. Let (M, F ) be any foliated manifold. Then the tangential
LS category is bounded below by the length of the cup product in E•,>0

1 =⊕
p≥0,q>0 Ep,q

1 , the subalgebra of E1 of cohomology classes with positive tan-
gential degree.

Proof. Roughly speaking, the tangential LS category [9] is defined by means
of open sets which deform to a transversal along the leaves. As it is well known
[1], this kind of integrable homotopy is an invariant of the E1 term of the spec-
tral sequence (compare with our Lemma 5.1), hence the inclusion of a tan-
gentially categorical open set vanishes in cohomology for positive tangential
degrees.

But on the other hand, the Mayer–Vietoris sequence is always exact in
the E0 term, so it is possible to define the relative E1 cohomology, and the
standard argument applies. �
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