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INDEFINITE BINARY QUADRATIC FORMS WITH
MARKOV RATIO EXCEEDING 9

WILLIAM C. JAGY AND IRVING KAPLANSKY

To the memory of Reinhold Baer

Reinhold Baer’s visits to the University of Chicago were memorable events.
His enthusiasm was infectious, his wide knowledge of so many things was fully
appreciated, and his lectures were inspiring. It is perhaps not widely known
that his influence on John Thompson was crucial in John’s student years.
I have vivid memories of the fine times I had with him, his charming wife
Marianna, and their son Klaus, a distinguished Egyptologist on the Chicago
faculty.

This paper is not directly connected with any of the areas in which he
worked (perhaps not all readers will be aware that his early work was in the
field of topology). However, Markov chose the Mathematische Annalen for his
ground breaking papers, and I think the German mathematical community
appreciated the importance of these papers. The enthusiasm that Frobenius
showed was impressive. So I believe that Reinhold would have thought it
appropriate for this paper to be dedicated to him. I. K.

1. Introduction

A binary quadratic form is an expression of the form px2 + qxy + ry2.
The variables x and y are to run over all integral values. In the literature
the coefficients p, q, r are often allowed to be any real numbers, but we shall
restrict them also to be integral; as long as there remain lots of unanswered
questions in this case we are postponing the generalization.

The form is indefinite if it takes both positive and negative values. The
discriminant D is q2 − 4pr. As is customary, we exclude outright the case
where D is a square. In particular, p and r are not 0. Whenever we say
“form” we mean an indefinite binary quadratic form with discriminant not a
square.
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A major role will be played by a class of forms which we shall call R-
forms. (The “R” is intended to suggest “reduced”. We do not employ the
term “reduced” because it is already used in the literature in various senses.)
In an R-form the coefficient of y2 is negative and we choose to absorb the
sign in the notation. If ax2 + bxy − cy2 is an R-form (we abbreviate this to
a, b,−c) the elements a and c are positive, 0 ≤ b ≤ a, and a is the minimum
of |f(x, y)| , where (x, y) run over all pairs of integers other than (0, 0). If we
allow ourselves to use linear changes of variable with determinant 1 or −1 and
further allow ourselves to switch from f to −f, it is easy to see that any form
can be converted into an R-form.

A form is primitive if the GCD (greatest common divisor) of its coefficients
is 1. In many contexts one can assume that the forms under discussion are
primitive but this is sometimes undesirable. The result of multiplying a form
by a constant will be called a scaling of the form.

For an R-form a, b,−c the discriminant is D = b2 + 4ac. A key quantity is
D/a2. There seems to be no name for this in the literature. We propose the
designation Markov ratio. Note that it is invariant under scaling.

2. Markov’s results

In two fundamental papers [8], [9], Markov studied the case where the
Markov ratio is less than 9. A first remarkable result is that (for his forms)
D = 9a2 − 4. Even more remarkable is the following: there is a bijection
between these forms and the solutions (in positive integers) of the equation

x2 + y2 + z2 = 3xyz.(1)

We shall give a little detail, following the notation in [3, chapter II]. The
smallest solution of (1) is 1,1,1. Then come 2,1,1 and 5,2,1. From any solution
x, y, z of (1) one gets three solutions by replacing one of the variables. For
example, if the chosen variable is z, it is replaced by 3xy− z. In this way one
builds the Markov tree

1,1,1
2,1,1
5,2,1

13,5,1 29,5,2
34,13,1 194,13,5 433,29,5 169,29,2

...
...

...
...

(We are using the same notation for these triples and forms, but there should
be no confusion.) Put aside the two top triples. For those below, one of the
three replacements mentioned sends it to the triple above, and the other two
send it to the two triples below. In this way one gets all solutions of (1).

There is a way of passing from each of these triples to a related form. Let
the triple be m,m1,m2 with m the largest. We provisionally take k ≡ m2/m1
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(mod m). By interchanging m1 and m2 if necessary we arrange that 0 ≤ k ≤
m/2. Define l as (k2 + 1)/m (it is a fact that k2 + 1 is divisible by m). Then
the desired form is

m, 3m− 2k, l − 3k.(2)

We wish to switch to an R-form. The change of variables x→ x− y, y → y
accomplishes this and yields

m,m− 2k,−(2m+ k − l).(3)

For both (2) and (3) the GCD of the coefficients is 1 or 2.
Our statement of Markov’s theorem is as follows: any primitive R-form

with Markov ratio less than 9 is a scaling of one of the forms (3).
There are available at least six accounts of Markov’s theory: the original

Markov papers, the combination of Frobenius [6] (or [7]) and Remak [11],
Dickson [5, chapter VII], two expositions by Cassels ([2] and [3, chapter II]),
and Cusick and Flahive [4].

Before proceeding we make a general remark about forms with Markov
ratio exceeding 9. The situation is quite different. There are many such
forms and it does not look hopeful to classify them. In what follows we get
some information on some of them.

The literature on forms with Markov ratio above 9 is largely concerned
with gaps in possible values of the Markov ratio. Many interesting things
have been proved. The book [4] covers the state of the art as of 1989.

3. Enter the Fibonacci and Lucas numbers

Let us look at the farthest left “limb” of the Markov tree above; these
triples all end in 1. The first six are

1,1,1
2,1,1
5,2,1
13,5,1
34,13,1
89,34,1.

Anyone familiar with the Fibonacci numbers will instantly recognize them.
Let us recall the definition and notation: F1 = F2 = 1, and Fn = Fn−1+Fn−2.
Below we shall also need to go backwards to F0 = 0 and F−1 = 1. Also relevant
are the companion Lucas numbers Ln which satisfy the same recurrence but
start with L1 = 1, L2 = 3.

The triples listed above are Fn, Fn−2, 1 with n odd. We are slightly sur-
prised that, according to our search of the literature, this has apparently not
been mentioned in print.
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The corresponding forms in the versions (2) and (3) are

Fn, Ln,−Fn,(4)

and

Fn, Fn−3,−Ln.(5)

In both (4) and (5) the GCD of the coefficients is 1 for n prime to 3 and 2 if
3 divides n.

We plan to assign the notation Gn for the forms (5). The first six are:
G1 : 1, 1,−1
G2 : 1, 1,−3
G3 : 2, 0,−4
G4 : 3, 1,−7
G5 : 5, 1,−11
G6 : 8, 2,−18.

Of course the ones with odd subscripts (G1, G3, G5, . . .) are Markov forms and
have discriminant 9a2 − 4 (as always, we are using a for the first coefficient
of the form, in this case Fn). For even n, (G2, G4, G6, . . .), the discriminant
turns out to be 9a2 + 4. This is easily seen by using the version (4): the
discriminant is L2

n + 4F 2
n and this is 9F 2

n + 4(−1)n by the known identity
L2
n − 5F 2

n = 4(−1)n.
The following question needs to be addressed: for even n is the minimum

value of the form Gn equal to Fn (as it is for odd n)? We shall discuss this
below (Section 7). Once this is established, we see that the G2n’s furnish a
sequence of forms with Markov ratio approaching 9 from above.

4. Discriminant 9a2 + 4

It is natural to seek further examples with discriminant 9a2 + 4. A short
search conducted by hand found the first three of the Hn’s listed below. It was
then easy to guess a whole family. Define u0 = 0, u1 = 1, un = 6un−1 − un−2.
The u’s can also be described as the y’s in the solutions of the Pell equation
x2 − 2y2 = 1. Then take the forms un, un−1,−vn; here vn is determined
by the requirement that the discriminant is 9a2 + 4 and it turns out that
2vn = 5un − 3un−1. Here are the first six Hn’s:

H1 : 2, 0,−5
H2 : 12, 2,−27
H3 : 70, 12,−157
H4 : 408, 70,−915
H5 : 2378, 408,−5333
H6 : 13860, 2378,−31083.

Is un the minimum value assumed by Hn? As we did with G2n, we postpone
this to Section 7.
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Do we now have all R-forms with discriminant 9a2 + 4? This has been
verified for b ≤ 13, 000, 000. The computer program written for this purpose
changed each form to its equivalent Gauss-reduced form, as in [1, p. 21].

Since it is easy to see that b ≤ a/4 after a few small exceptions, this covers
a up to a = 52, 000, 000.

We repeat that, while discriminant 9a2 − 4 accounts for all forms with
Markov ratio less than 9, those with discriminant 9a2 + 4 are a tiny fraction
of the forms with Markov ratio larger than 9.

5. c versus 2a+ b and 2c versus 5a− 3b

For R-forms there are two inequalities for c. Each is valid with just one
exception. They appear as the initial steps in the proof of Lemma 13 in [3, p.
37]. For the reader’s convenience we repeat the proofs (Theorems 1 and 3) in
the notation of R-forms.

The cases of equality (Theorems 2 and 4) can be pinpointed. Possibly these
theorems will be useful in settling the question above concerning forms with
discriminant 9a2 + 4.

Theorem 1. Let f = a, b,−c be an R-form. Assume that f is not a
scaling of 1, 1,−1. Then c ≥ 2a+ b.

Proof. We have f(1, 1) = a + b − c. Since a is the minimum of f, either
a+ b− c ≥ a or a+ b− c ≤ −a. In the first case b ≥ c. Then b ≥ c ≥ a ≥ b, so
a = b = c. Hence the second case holds, i.e., a+b−c ≤ −a and c ≥ 2a+b. �

Theorem 2. Let f = a, b,−c be a primitive R-form satisfying c = 2a+ b.
Then f is one of the Gn’s (n ≥ 2), where, if n is a multiple of 3, we divide
Gn by 2.

Proof. It suffices to prove that a/b = Fn/Fn−3 for some n ≥ 2. For suppose
this is true. First assume n prime to 3. Then Fn and Fn−3 are relatively prime.
It follows that a = tFn, b = tFn−3 for some t. Then from c = 2a + b we get
c = t(2Fn+Fn−3). Now Ln = 2Fn+Fn−3 is a known identity. Hence c = tLn.
Since f is primitive, t = 1 and f = Gn. When n is divisible by 3, Fn and Fn−3

have GCD 2. Then a = tFn/2, b = tFn−3/2, c = tLn/2. Again t = 1 and f is
Gn divided by 2.

So we may assume that a/b is not equal to any Fn/Fn−3. We evaluate f
at x = Fn, y = −Fn−1 getting

aF 2
n − bFnFn−1 − cF 2

n−1.(6)

Replace c by 2a+ b. Then (6) becomes

a(F 2
n − 2F 2

n−1)− b(FnFn−1 + F 2
n−1).(7)
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Since a is the minimum of f we have that (7) ≥ a or (7) ≤ −a. The coefficient
of b in (7) simplifies to Fn−1Fn+1. In processing the coefficient of a we use the
following identities:

Fn+1 − 2Fn−1 = Fn−2,(8)

Fn−2Fn+2 − 2F 2
n−1 = Fn−4Fn+1,(9)

For n even, F 2
n + 1 = Fn−1Fn+1 and F 2

n − 1 = Fn−2Fn+2,(10)

For n odd, F 2
n + 1 = Fn−2Fn+2 and F 2

n − 1 = Fn−1Fn+1.(11)

Using (8)-(11) we find, after some computation:

For n even, (7) ≥ a implies aFn−4 ≥ bFn−1.(12)

For n odd, (7) ≥ a implies aFn−2 ≥ bFn+1.(13)

For n even, (7) ≤ −a implies aFn−2 ≤ bFn+1.(14)

For n odd, (7) ≤ −a implies aFn−4 ≤ bFn−1.(15)

We make an ascent, first for odd values of n, starting with n = 3. Then (15)
gives a ≤ b whence a = b and we have the forbidden a/b = F2/F−1. Note that
if (13) holds for n = m then (15) cannot hold for n = m + 2, for we would
have both inequalities and get a/b = Fm+1/Fm−2. Therefore (13) holds for
all odd n. For even n we start with n = 4. Since (12) gives b = 0, a trivial
case, we have (14) for n = 4. The ascent is now the same for even n as it was
for odd. The upshot is that we have (13) for all odd n and (14) for all even
n. In other words a/b lies above all members of the sequence

F4/F1, F6/F3, F8/F5, . . .

and below all members of the sequence

F5/F2, F7/F4, F9/F6, . . .

These two sequences have as common limit the cube of the golden ratio
(1 +

√
5)/2, an irrational number. But a/b is rational. This contradiction

completes the proof. �

Theorem 3. Let f = a, b,−c be an R-form. Assume that f is not a
scaling of 1, 0,−2. Then 2c ≥ 5a− 3b.

Proof. We have that f(3,−2) = 9a − 6b − 4c is either at least a or at
most −a. The second alternative gives the desired conclusion, so we need only
exclude the first. Thus we assume 9a−6b−4c ≥ a. The form 1, 1,−1 satisfies
2c ≥ 5a − 3b (even with equality) and so the conclusion of Theorem (1) is
available. We deduce

8a− 6b ≥ 4c ≥ 4(2a+ b) = 8a+ 4b(16)
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and −10b ≥ 0, b ≤ 0, b = 0. Thus the two extremes of (16) are equal and
there is equality throughout. Hence 8a = 4c, 2a = c, and f is a scaling of
1, 0,−2. �

In treating the case of equality in Theorem 3 we bring into play a second
limb of the Markov tree. This limb appears on the right in the display above
and consists of the triples that contain 2. Here are the usual first six, omitting
2,1,1 which does not quite fit:

5,2,1
29,5,2
169,29,2
985,169,2
5741,985,2
33461,5741,2.

We pass to the corresponding R-forms given by (3), labelling them with J ’s.
It works nicely to start with J1 = 1, 1,−1 and then label the subsequent forms
with J2, J3, . . .

J1 : 1, 1,−1
J2 : 5, 1,−11
J3 : 29, 5,−65
J4 : 169, 29,−379
J5 : 985, 169,−2209
J6 : 5741, 985,−12875.

The coefficients satisfy the same recurrence as occurs in theHn’s (tn = 6tn−1−
tn−2) and the relation 2c = 5a− 3b also holds for the coefficients.

Theorem 4. Let f = a, b,−c be a primitive R-form satisfying 2c = 5a−
3b. Then f is one of the Hn’s or one of the Jn’s .

Proof. The proof is similar to that of Theorem 2, but a different sequence
of test pairs x, y is required.

First we need some notation for 1, 5, 29, 169, . . . , the initial coefficients of
the Jn’s. We use r’s: r1 = 1, r2 = 5, etc. Next we observe that if a/b is
equal to some un+1/un or some rn+1/rn the proof is finished; the argument is
essentially the same as in the proof of Theorem 2. So we assume the contrary.

The pairs to be used are the solutions of the Pell equation x2−2y2 = 1 and
its negative version x2−2y2 = −1. Indeed, the u’s are the y’s for x2−2y2 = 1
(as noted above) and the r’s are the y’s for x2− 2y2 = −1. For the x’s we use
wn and pn. Thus we have:



312 WILLIAM C. JAGY AND IRVING KAPLANSKY

w2
n − 2u2

n = 1 p2
n − 2r2

n = −1

wn un pn rn
3 2 1 1
17 12 7 5
99 70 41 29
577 408 239 169
3363 2378 1393 985

It is routine to prove

2wn + 3un = un+1, 2pn + 3rn = pn+1.(17)

We have

f(wn, un) = aw2
n + bwnun − cu2

n.(18)

In (18) replace 2c by 5a− 3b, then use w2
n− 2u2

n = 1 and the first equation in
(17):

2f(wn, un) = a(2− u2
n) + bunun+1.(19)

We know that (19) is either ≥ 2a or ≤ −2a. In the first case we cancel 2a and
divide by un, getting

a/b ≤ un+1/un.

In the second case we use the identity

u2
n − 4 = un−1un+1

to get
a/b ≥ un/un−1.

In sum:

a/b ≥ un/un−1 or ≤ un+1/un.(20)

To start an ascent we look at the bottom case:

f(3, 2) = 9a+ 6b− 4c
= 9a+ 6b− 2(5a− 3b)
= −a+ 12b.

If this is ≤ −a we get the trivial case b = 0. So −a + 12b ≥ a, a/b ≤ 6.
Now (20) for n = 2 gives a/b ≥ 12/2 = 6 or a/b ≤ 70/12. But a/b = 6 is
excluded, so a/b ≤ 70/12. Hence a/b < each un/un−1. The same reasoning
works for the p’s and r’s. The identity r2

n + 4 = rn−1rn+1 is invoked at
the proper moment. The upshot is that a/b > each rn/rn−1. Now the
sequences un/un−1 and rn/rn−1 converge to the same limit, and that limit is
the irrational number 3+

√
8, the larger root of x2−6x+1 = 0. This concludes

the proof of Theorem 4. �
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6. Two trees of Markov type and two related families of forms

The first tree is attached to the equation x2 + y2 + z2 = 3xyz+ 2. The tree
starts with the solution 1, 1, 0 and grows to

1,1,0
3,1,1
8,3,1

21,8,1 71,8,3
55,21,1 503,21,8 . . . . . .

...
...

The procedure for passing from a triple to other triples is exactly the same as
in Markov’s case.

The left limb consists of triples Fn, Fn−2, 1 with n even. These have already
played a role in our paper. What about the rest of the tree? We have de-
tected a connection with binary quadratic forms only in the following triples:
descending from the Fibonacci limb to the right instead of to the left. This
gives the triples

71, 8,3
503, 21, 8
3464, 55, 21
23759, 144, 55
162863, 377, 144
. . .

A search was made for promising R-forms with these initial coefficients. The
result:

71, 23, -167
503, 125, -1133
3464, 824 , -7754
23759, 5615, -53135
162863, 38453, -364181
. . .

The initial coefficient is, of course, 3FnFn−2−1 (n even), starting with n = 6.
In due course the middle coefficient was identified as 3FnFn−5 − 1. The final
coefficient is determined by 2a+ b− c = −2.

Whether the initial coefficients are indeed the minima of their forms awaits
investigation. This has been verified up to n = 20.

The second tree is similar. The equation is x2 + y2 + z2 = 3xyz + 8, and
the triples start with 2, 2, 0.
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2,2,0
12,2,2
70,12,2

408,70,2 2518,70,12
2378,408,2 85678,408,72 . . . . . .

...
...

The left limb is familiar, needless to say. The same procedure was applied
and yielded

2518, 420, -5666
85678, 14688, -192164
2910670, 499380, -6527606
98877238, 169646640, -221746136
3358915558, 576298788, -7532840714
. . .

The first coefficient is 3unun−1−2 and the middle coefficient is 3unun−2. The
final coefficient is determined by 5a− 3b− 2c = −2.

Again the question as to whether the initial coefficients are minima for
their forms is left to the future. This was checked for the five forms listed
above.

7. Minima

For the forms G2n and Hn above we have proved that the first coefficient
is indeed the minimum. The details will appear in a second paper that we
have prepared, not intended at present for publication (copies are available
on request). Here we present a sketch.

With a form a, b,−c we associate the quadratic equation as2 + bs− c = 0.
It has two roots: a positive one and a negative one. It is crucial to find the
continued fraction expansion of the positive root. This was done as follows.
A program was written, based on the “mqa” method presented in [10, p. 358].
This was used to compute several special cases. Repeatedly a pattern was
detected. Then the correctness of the expansions thus guessed was verified.
The expansions are as follows:

G2n : [ 1, 2, 1, 1, . . . , 1, 1︸ ︷︷ ︸
2n−3

, 2, 2 ],

Hn : [ 1, 2, 2, 2, . . . , 2, 2︸ ︷︷ ︸
2n−3

, 1, 1, 2, 2 ].

With the continued fraction expansions at hand it is a standard matter to
identify the minima of the forms.
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8. Miscellaneous

8.1. Opposites and negatives. A form is ambiguous if it is equivalent
to its opposite (i.e., if it admits an automorphism of determinant −1). In
studying a form one usually wishes to know whether it is ambiguous and also
whether it is equivalent to its negative. As regards the G2n’s and the Hn’s the
answer is affirmative on both counts. The proof appears in the supplementary
document.

The G’s with odd subscripts are of course a special case of Markov’s forms.
It is standard that all of these are equivalent to their negatives. As regards
ambiguity the answer is no, except for the first two forms (proof in the sup-
plement). This result appears to be new.

8.2. A family based on the Fibonacci numbers. The family in ques-
tion is the set of all Fn, 0,−Fn+2. That the minimum is Fn is proved by the
method sketched in Section 7. It seems to be worth while to exhibit this
specially simple family.

These forms are visibly ambiguous. On the other hand Fn, 0,−Fn+2 is
equivalent to −Fn, 0, Fn+2 if and only if n is odd.

8.3. Other families. In various ways our investigation led to the discov-
ery of numerous other infinite families of probable R-forms—about thirty of
them. They are displayed, with comments, in the supplement.

Recall Markov’s forms written as R-forms (3):

m,m− 2k,−(2m+ k − l).

We were able to prove that the following are R-forms:

m2,m(m− 2k),−2−m(2m+ k − l).

The discriminant for the form beginning with m2 is D = 9m4 +4m2. The first
few are (1, 1,−3), (4, 0,−10), (25, 5,−57), (169, 39,−379), (841, 145,−1887).
The proof resembles [4, Theorem 2(ABC), pp. 20-22].

8.4. Two tables. We ran a program that compiled all primitive R-forms
that have discriminant ≤ 10176245 and Markov ratio above 9 and ≤ 13. There
are 750 of them. They are exhibited in two tables: by Markov ratio and by
discriminant.

The supplement contains a number of observations and speculations sug-
gested by the tables—details are available from the authors.

8.5. Equivalent R-forms. It is possible for two different R-forms to be
equivalent. In the tables just mentioned there is only one such pair:

375, 65,−841 and 375, 85,−839.

But we have several examples with larger discriminants and/or Markov ratios.
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