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ON HERZ’S PROJECTION THEOREM

ANTOINE DERIGHETTI

ABSTRACT. Let G be alocally compact group and H a discrete amenable
subgroup. We prove the existence of a contractive projection Q of
CV,(G) onto CV,(H) such that supp Q(T") C suppT.

1. Introduction

Let G be alocally compact group and 1 < p < oo. We denote by cv,(G) the
norm closure in C'V,(G) of the set of all convolution operators with compact
support. In [4, Corollaire 2] C. Herz proved, for G amenable and H a closed
normal subgroup of G, the existence of a contractive projection of cv,(G) onto
cvp(H). In [1] we were able to deal with non-amenable groups G, but we had
to impose strong conditions on H, such as normality in G or compactness
of H or G € [SIN]y. The example {({ %) |n € Z} in GL(2,R) was out of
reach!

The main result of this work is the following theorem: Suppose that G
is an arbitrary locally compact group and H a discrete amenable subgroup.
Then there is a contractive projection Q of CV,(G) onto CV,(H) such that
supp Q(T') C supp T for every T € CV,(G).

2. Preliminaries

The case H = G of the following result is due to V. Losert and H. Rindler
[6, Theorem 3].

PROPOSITION 2.1. Let G be a locally compact group and H a closed sub-
group of G. Suppose that H is amenable. For every compact subset K of
H, for every open neighborhood U of e in G and for every € > 0 there is
k € Cgy(G) with Ni(k) = 1, suppk C U and Ny(s-1ksAg(s) — k) < € for
se K.
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Proof. Let U; be a compact neighborhood of e in G contained in U. There
is f € Cgy(H) with Ni(f) =1 and Ny(4-1f — f) < € for every s € K. There
is an open neighborhood V of e such that hVh~! C U, for every h € supp f.
Let g € C’&)(G) with Ni(g) = 1 and suppg C V. We define, for z € G,

= [;; f(h)g(h~'xzh)dh. Then suppk C Uy and

/Gk(x)dx:/Hf(h)(/Gg(h‘lxh)AG(h)da:>dh:1.

For s € K we have

/ k(s txs)Ag(s) — k(z)|dx
G

/(/ [F(s7 ) = F(W)]g(h™ " ah) Ag(h)d )dz
GO >|(/ S )t

_lelf f) O

LEMMA 2.2. Let G be a locally compact non-compact unimodular group,
H a closed amenable subgroup of G, K a compact subset of H, € € (0,00),
0 € (0,00) and U a neighborhood of e in G. Then there is an mg-integrable
subset V of G and an mpg-integrable subset N of H such that

(i) V=v-1
(i) V C U,
(i) ma(V) > 0,
(iv) NCK,
(v) mu(N) <3,
(vi) for every x € K\ N we have N1(ly — 1 y5-1) <& mag(V).

Proof. We suppose my(K) > 0. Let
oe
de +3mpy(K)’
A slight modification of Proposition 2.1 implies the existence of f € Cfy(G)
with f = f, supp f C U, Ni(f) =1 and Nyi(,-1fz — f) < n for every z € K.
We can find
(1) N eN,
(2) mg-integrable subsets Aj,..., Ay of G,
(3) A,y s AN € (0,00),
such that Ay C --- C A1, mg(4An) >0, A;l =Ajforevery1 <j <N,
S
2

J=1 a(4;

’]’7:

<f
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and
Ny
N1 f— J 1AJ <n
- Snta)
Let
N
A
k= J
;mG(AJ) A
Consider | = k/N; (k). For every x € K we have
2N1(k— )+ Ni(f — o1 fz) _ 3n oe
Ni(l — p-1l; = .
W= ele) < Ty ST mu(E)

For z € G we have

N ’
A
Ni(l = yily) = I Ni(1a, —lyp e
0= ) = 2 oy M~ L)
with X; = \;/N1(k) for 1 < j < N. We obtain
N )
I Ny(1g, —1pa.p-1) |dh < e
/K(jz:;mc(flj) 1 = T l)>
and therefore
N Al‘
J Ni(la. — 1pa. p-1)dh < be.
> ot [ Mala, =t

Consequently there is 1 < j < N such that
/ Ni(1a;, = Lha,n-1)
K ma(4;)
Let A= A;. We have A= A", ACU. Let finally
Ni(1a — Lhan-1) > s}
ma(A)
Then N is a closed subset of H contained in K, and we have
Ni(1g — 1pan- Ni(1qa —1p45-
N me(A) K ma(A)
This implies mpy(N) < 6. For x € K \ N we get indeed

Ni(1a—1,4,-1)
mea(A)

dh < de.

N:{h|heK,

< €. O

REMARK 2.3. There are similarities between this proof and the method
used by W. R. Emerson and F. P. Greenleaf to show that amenability implies
Folner’s condition (see [2, p. 374] or [7, p. 63]).
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PROPOSITION 2.4. Let G be a locally compact, non-compact, non-discrete
unimodular group, H a discrete amenable subgroup of G, F a finite subset
of H, ¢ € (0,00) and U a neighborhood of e in G. Then there is an open
neighborhood V' of e in G such that V is relatively compact, V.C U, V1=V
and N1(ly — 1,y ,-1) <& mg(V) for every xz € F.

Proof. Let U; be an open relatively compact neighborhood of e in G with
Ul_1 =U; and U; C U. According to the Lemma 2.2 there are sets A C U;
and N C F such that A is mg-integrable, A= = A, mg(A) > 0, my(N) < 1,
and such that for every x € F'\ N the inequality N1(14—1,4,-1) < §mg(A)is
satisfied. With mp denoting the counting measure of H, we have mpg(N) =0
and therefore N = ). Let B = AU {e}. Since the group G is non-discrete,
we have mg({e}) = 0 and therefore mg(B) = mg(A). We also have B C Uy
and B~! = B. For z € F we have

Ni(lp = lape—1) _ Ni(la = loas1)
ma(B) - ma(A)

There is an open set W of G such that B C W and mg(W) — mg(B) <
£mg(A). Consider now the set V=W NW~='NU;. For x € F we can write
Ni(ly = lavet) _ 2N1(1V —1p) n Ni(lp — lups—1)
ma(V)) ~ ma(B)) ma(B))

‘We have

Ni(ly —15) = ma(V) —ma(B) < img(A).

Hence we obtain, for every z € F,

Nl(]-V - 1:rVw*1)
me(V)

<e. O

PROPOSITION 2.5. Let G be a non-discrete, non-compact locally compact
unimodular group, H a discrete amenable subgroup, U a neighborhood of e in
G, K a compact subset of G and € € (0,00). Then there is an open relatively
compact neighborhood V of e in G, with V' =V, V Cc U and

/ 1y (z) — lym(x)|de < e mag(V).
K

Proof. We suppose that e € K. There is a compact neighborhood Uy of
e in G with Uy' = Uy, Up C U and (Up)?> NH = {e}. Let Fy = (KU U
UoK)NH. Then Fj is a finite non-empty set. By Lemma 2.2 there is an open
neighborhood V of e in G such that V =V =1, V C U, and

e mg(V)

Ni(1ly — 1 -
1( \%4 zVx 1)< mH(-F())
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for every = € Fy. Consider
I={heH| VRNK #0or htVNK #0}.

Then I € Fo, KNVH = ||,., K0 (Vh) and K 0 HK = | |,_; K 0 (AV).
Consequently
Igllve —lav| < Z Lglvn — Lnv|
hel

and therefore

/G1K(x)\1VH(z)_1HV( |dx</ <Z1K Mlva(z —1hv(x)|>da:

hel
= Z/ 1K ‘IVh — 1hV |dl’ < Z/ |1Vh — 1hV( |d$
hel hel
[L|ema (V)

ZZNl(lv—thh—1)< 0

hel m (Fo)

COROLLARY 2.6. Let G be a non-discrete, non-compact locally compact
unimodular group, H a discrete amenable subgroup, U a neighborhood of e
in G, K a compact subset of G and € € (0,00). Then there is a relatively
compact open neighborhood V of e in G, with V"1 =V, V Cc U and

/K Ngv(z) = lve(z)|dr <& mg/up(wV)),

where w is the canonical map of G onto G/H, myg the counting measure of
H, mq a left invariant measure on G and mq g the corresponding measure
on G/H.

Proof. Let K{ be a compact neighborhood of e in G and fy € Cgy(G) with
fo(xz) =1 on Ky. By Proposition 2.5 there is an open neighborhood V of e in
Gwith V1=V, V c KoNnU and

/ Ngv(z) — lve(r)|de < e mg(V)
K

sup{(Tu fo)(#) | # € G/H}

The inequality 1y < 1y g fo implies

mG(V)g/G/ Lo (/ folah) dh)d:c

< mg/r(W(V))sup{(Tu fo)(@) | & € G/H}. U

LEMMA 2.7. Let G be a locally compact group and H a closed subgroup
of G and suppose that Ag(h) = Ag(h) for h € H. Let 1 < p < 00, p €
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Coo(H,C), k € Cyo(G,C) and U be a relatively compact open neighborhood of
e in G. Then the following inequality holds:
No((¢ 5 k) Vo) < mayu (@)Y P Np(p) (1T (RDIAE 1 Te (KD

Proof. (1) Ni((¢ *u k)lun) < ma/a(w(U)) Ni(e) [(Th (k)|
We have

< [ @M [Tk o
G/H

2) [ *u k)1l < ll@lloo 1T (1R])lloo-
For every x € G, we have

Lon (@) (e + B)(@)| < ‘ / w(h)k(hlmdh'

<lplle [ V@ Bldh < Dl 1T
(3) It suffices to prove that for every step function f € LE(H) with Ny(f)
=1 one has

Np((f #1 k) lum) < (maya @O | Ta (KD IXZP 1 Ta(RDIL

We will show that for every step function g € E%C’,(G) with N, (g) = 1 one has

’/Gf*H k(@) Lun (2)g(@)de| < (meym(w@) I Ta (k)P |1 Ta (R

There exist m € N, a1, ..., a,, € C, and disjoint integrable subsets F, ..., E,,
of H with f =377, a;lp, and a1 ...an, # 0. Let

B={z€C|0<Rez<1}.

For every z € B, let f(.) denote the step function Z;nzl |aj|(1’z)pe“91 g,
where a; = |aj|emj with 0 < 9; < 27 for 1 < j < m. Similarly, for the step
function g = Y., bj1p, with disjoint integrable subsets F1, ..., F, of G and
by...b, #0, define gi,) = S, [by|372P eilp,.

For any step function ¢ € LL(H) and z € B set

1UH(§0*H]€)
(ma/m(w(U)))t==

T,p=
For z € B let

F(z) = /G (T2 fio) @) gy (@) e
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Then F' is continuous on B, analytic on the interior of B and bounded on B.
In fact, we have on B

1
)l < min{mG/H( w(

G/H)) 1}ZZmax{|aJ|P 1}max{|bl|P 1}

j=11=1
: /GlEj s k(z)lymg(x)lp (z)d|.
For y € R we have |F(iy)| < N1(fey)) |9¢iy)lloe With
Lun ()| (fiy) *u k)(2))] N1 (i) | T (|5
Ny (o) = N 4 <
1(fw)) /G ’mg/H(w(H))l_w‘ 7S me/u(w(U))

according to (1). But Ni(fiy)) = Np(f)? = 1 and |g(y)le0 = 1, and conse-
quently |F(iy)| < [[Te (|k]) -

For y € R we also have
IF(1+iy)| < |1 Ty lloo N1(g(1+iy))
with (| T(14iy)llee = [1ua (f144y) *12 k) |leo- Using (2) we get
1Tt viny oo < 1L f i) lloo 1 Tar (-] lloo-
The relations || f(14iy)|lec = 1 and N1(g(144y)) = Np (9)?" then imply |F(1 +
)| < 1 Ta (koo
By the Phragmén-Lindel6f maximum principle, for every t € (0,1) we
have |F(t)| < |Ta(|kDII5" 1Ta (k)] We conclude from fi_q/p) = f,
da-1/p) = 9 and
1\ _ Jolua()(f +m k) (2)g(x)dx
Fll1—--)= i .
p (ma/m(w(U)))H/P

3. A projection theorem for cv,

O

We use the notations and results of [1].

ProprosITION 3.1.  Let G be a non-discrete, non-compact locally compact
unimodular group, H a discrete amenable subgroup, U a neighborhood of e
in G, e € (0,0), m € N, p € (1,00), and let m sequences (r SLJ))” 1, =
1,....,m, of LE(H) and m sequences (s 55))” LJ=1...,m, of Eg (H) be
given. Suppose that > Np(h(lj))Np/( ,(f)) < 0o for every 1 < j <m. Then
there exist k,1 € Cy(G) such that suppk C U, suppl C U, |[Aru| < 1 and
for every 1<j<m

Ak l j)]v [857?)]>L€(H),L§/(H) - <S[r7(1j)]7 [Sglj)DLg(H),Lgl(H)

<eliISll»
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for every S € CV,(H) *.

Proof. We suppose that ¢ < 1. For every 1 < j < m there are sequences
()51, (05)32, of Coo(H,C) such that

. . €
Ny(r§) — o) <

320 (L4 Ny (s7))

and
€

Ny (59— 69) < ,
P ( ) 3.2n+1(1 —|—Np(?”$3)))

for every n € N.

For every 1 < 7 < m and n € N we have
. . 1 2 . .
Np(‘sz]))Np’ (%(f)) < 9.92n+2 + 3. ont1 + Np(rv(zj))Np’ (ngj))

and therefore > 7 Np(gog))Np/(w%j)) < oo. Consequently there is N € N
such that

e e} ] . e
Y. NNy () <
n=14+N

for every 1 < j < m.

Let Uy be a compact neighborhood of e in G with UO_1 = Uy and Uy C
U. According to Lemma 1 of [1] there is k&' € C{,(G) with suppk’ C Uy,
(supp k") N H = {e}, D ey k' (h) =1,and 3,y k’(:ﬂh) <1 for.all x€QG.

For every n € N and 1 < 5 < m we have <p7(f) = ResH(gagf) xp k') and

) Resg ( () xp k).
Let
€
5253 (14 N, () + N, (087)
There is a relatively compact open neighborhood U; of e in G such that for
1<n<N,1<j<mand x € U; we have

Np (09 1 K)ot — (05 %1 K )1r) < €1

0<€1<min{ 1§n§N,1§j§m}.

and
Np (0 551 K oo — (W #15 K ) ) < e1.
This implies
No((0) *1 K)ot = 0)) < e

and
Ny (09 s K)o ip = ) < &1

IFor f € FC, where F is a set, [f] denotes the set all g € FC with g = f a.e.
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Let A be an open neighborhood of e in G with A C U;. Using a Bruhat
function for H, G (as in [1, p. 1430]), we obtain forevery 1 <n < N,1 < j<m
and S € CV,(H) the following inequality:

(@(S)Lan (e 1 k)] a6 #11 K)oy 1o ()
mG/H(w(A))

— (ST [ ,
(Slen”] [vw ]>Lg(H),Lg )
< IS1llper (1 + Np(0$)) + Ny ().

Let K be a finite subset of H containing supp @53 ) and supp ng ) for 1 <n<
N and 1< j7 < m. Then supp(apﬁlj) xg k') C KU and supp(z/z%j) xg k') C KUy
for1<n <N and 1< j < m.

Let

p
0<52<min{< ) °1 @ ),
278 (14 il b K loo) (14 N (7))

p
€1
<2n+3(1 [0 o K loo) (1 + Np(so%’»)

Corollary 2.6 implies the existence of an open neighborhood U, of e in G with
Uyt =Us, Uy C Uy and

1§n§N,1§j§m}.

/ Nau, () — ly,a(z)|de < o ma/u(w(Uz)).
KU

1) For1<n<N,1<j<mand S € CV,(H) we have
J P

() v (8 i ), Lo B 211 W) 1 ) 1

meu((w(U2))
(W(S) Lvarr (0 w11 K] Loarr (B 511 K] Loy 1
B ma (@ (U2))
<ot

We first show that

Ny (Lo, (0 *1 K))
mea/u((w(Uz))/P

< Np(‘ﬂgj))
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We have indeed

/ Lo (@)[(09) + K () Pde = / L (@) (K #1 (69)) (@) Pde
G

G

-/ 1w(U2>(5v)< [ Iy (sosf‘))vxwhnpdh)dx,
G/H H

and for every z € G we have

/H (K (PN (h)Pdh < Ny(o)P.

We claim that

No (L, = luyn) (05 54 1)) e
meyn (@ (U2)) V7 2143 (1 4 N, (%))

Since supp(z/),(f) xp k') C KUy we have
Ny ((Lav, = Luam) (W) 51 k)P

- / a0 () — Loyt () |09 gy K)(2) P
KUy

< Y wgr K1 / L0, () — Loy () dx

Uo
<[99 K% €2 mayn(w(U2)).
Similarly,

Ny((Lrv, = Lugn) (@) #1 K')) €1
ma,u((w(Ua))/P 2743 (1 4+ N,y (v$))

Lemma 2.7 implies

Ny (Lot (07 %5 k')
ma,u((w(Us)) /7"

But | Tx(k)||eo <1 and | Ts(E)||ee < 1. This justifies Step (1).
(2) Let

< Ny (W T (I N T (R 1P

k= (1HU2k/)V
meu((w(Us))'/P
and
" __ (1HU2k,)V
-~ mayu((W(U2)V/P"

Then N, (Ty (k")) < 1, Ny (T (")) < 1 and
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<Ak”,l”( (S))[‘Pg)], [wg)]>L€(H)7LE'(H) - <S[<p£LJ)]a W)gzj)DLg(H)’Lg'(H)

for every 1 < j <m, S € CV,(H).

We have N, (Ty (K"))? = / (Ty (K"))Pdst, but
G/H

Ty (k) (w(z)) = “<U2 7 3" K (ha ).

ma/m(( heH

Hence N,(Ty (k")) < 1. Similarly we obtain N, (T (l")) <1
For 1 <n < N we get, using (1),

<Ak”,l" (Z(S))[(p%l)]a [wr(zj)DLg(H)’LP/( H) - <S[(pgtj)]7 [ng)DLg(H),Lg/(H)‘

. (4) ’ (4) ’
H|S|H <Z(S)[1U2H(§DTL *pg k )]a [1U2H(wn xg k )]>Lg(G),Lg/(G)
- 2“2 P ma/u((w(U2))
_ (4) () ,
(STe) W) 1oy
g
< 2 Sl

The estimate

Z <Ak:”,l” (Z(S))[(pg)} [w’gj)DLg(H),Lé/(H) - <S[ (j)] [,(/J(])DLP( ),Lg/(H)‘
n=14+N
> . . 2e
<28l D Noled)Np () < SISl
n=1+N

gives (2).

(3) Let

0<€3<min{ = c %) ) llgjgm}
26(1+ 32021 Np(wil )Ny (1i”))

and let f,g € Cfy(G/H) with

N L) )
N”<f mey(w(Us) /7)) =
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and

L)
N, — 2 < .
"(9 mc/Hw(Uz))l/p') =

Then, setting & = f o wk', 1"

= g o wk', we have k", 1" € CiH(@),
Np(Tu (k")) <1+es, Ny(Tu(l")) <1

+ €3 and
Z Ak’” l’” )[ %j)]’ [wf(zj)]>L€(H)7Lg/(H) - <S[90£l:j)}’ [1/)£Lj)]>Lg(H)7LE/(H)
< TellSll
ST

for every 1 < j <m, S € CV,(H).
We finally set k = k"' /(14+¢e3) and | = I""/(14+¢e3). Then ||Ag;l <
Np(TH(k)) Np(Tu(l)) <1, suppk C U, supp! C U and

Akl (])]7 [w'glj)DLg(H)#Lg(H) - <S[ (j)] [w(])DL;}( ),Lg/(H)'
3 e|||su|p_
- 3
Consequently,
Z <Ak,l(i(s))[r7(zj)]7 [Sglj)])Lg(H)}Lg(H) - (S[rv(zj)]v [Sg)DLﬁ(H),Lg(H)‘
n=1 -

<ellSllp- O
We can now state our main result.

THEOREM 3.2. Let G be a locally compact group and H a discrete amenable
subgroup. Then there is a linear contraction Q from L(L{(G)) into L(LE(H))
such that

(1) Q(T) € CV,(H) for every T € CV,(G),
(2) supp Q(T') Csupp T for every T € CV,(G),
(3) Q(i(S)) =S for every S € CV,(H).

Proof. Theorem 3 of [1] permits us to assume that G is non-compact, non-
discrete and unimodular. The preceding proposition then allows us to repeat
step by step the proof of Theorem 3 of [1]. O

COROLLARY 3.3. Let G be a locally compact group and H a discrete

amenable subgroup. Then there is a contractive projection of cv,(G) onto
cvp(H).
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Proof. Let Q be the map of Theorem 3.2. Claim (2) of this result implies
that Q(T') € cv,(H) for T € cv,(G). Let S € cv,(H). Then i(S) € cv,(G)
and consequently Q(i(S)) = S. O

COROLLARY 3.4. Let G be a locally compact group and H a discrete
amenable subgroup. Then, via i, the Banach algebra cv,(H) is isometrically
isomorphic to {T | T € cv,(G),suppT C H}.

Proof. We have i(cv,(H)) C cvp(G). Let T € cv,(G) with suppT C H.
There is S € CV,(H) with ¢(S) = T. Let Q be the projection of Theorem
3.2. We then have Q(T') € cv,(H) and therefore S € cv,(H). O

REMARKS 3.5. (1) For G abelian, the Banach algebra cvy(G) is canonically
isomorphic to C? (é) In this case, for an arbitrary closed subgroup of G and
p = 2, Corollary 3.4 is due to H. Reiter [8, Theorem 2].

(2) If G is an amenable group and H an arbitrary closed subgroup, Corol-
lary 3.4 also holds. Indeed, let T € cv,(G) with suppT C H. By the Cohen-
Hewitt factorization theorem, there exist v € A,(G), R € CV,(G) and a
sequence (u,)52; of A,(G) such that T' = uR and lim, . |||R — u,T||, =
0. There is also S € CV,(H) with #(S) = T. For m,n € N we have
llwmT — unT ||, = | Resp (umS) — Resg (un,S)|||p. There exists S € CV,(H)
with lim,, . ||| Resg (u,, S) — 5’|l = 0. We then have T'= uR = i(Resy uS’),
but Resy uS’ € cv,(H).

(3) In the case when p = 2 and H is a discrete amenable subgroup of G.2
Corollary 3.4 is precisely part (ii) of Lemma 3.2 of [5].

(4) In Corollaries 3.3 and 3.4 it is possible to replace cv, by the norm
closure in £(LP) of the finitely supported convolution operators. This Banach
algebra was considered by E. Granirer [3].
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