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VERTICES OF SELF-SIMILAR TILES

DA-WEN DENG AND SZE-MAN NGAI

Abstract. The set Vn of n-vertices of a tile T in Rd is the common

intersection of T with at least n of its neighbors in a tiling determined
by T . Motivated by the recent interest in the topological structure as

well as the associated canonical number systems of self-similar tiles,

we study the structure of Vn for general and strictly self-similar tiles.
We show that if T is a general self-similar tile in R2 whose interior

consists of finitely many components, then any tile in any self-similar
tiling generated by T has a finite number of vertices. This work is also
motivated by the efforts to understand the structure of the well-known

Lévy dragon. In the case T is a strictly self-similar tile or multitile in
R
d, we describe a method to compute the Hausdorff and box dimensions

of Vn. By applying this method, we obtain the dimensions of the set of
n-vertices of the Lévy dragon for all n ≥ 1.

1. Introduction

Let {fi}qi=1 be an iterated function system (IFS) of injective contractions
on Rd and let T be the unique attractor. That is, T is the unique nonempty
compact set satisfying

(1.1) T =
q⋃
i=1

fi(T ).

Throughout this paper we assume that {fi}qi=1 satisfies the open set con-
dition, i.e., there exists a nonempty bounded open set O such that

q⋃
i=1

fi(O) ⊆ O and fi(O) ∩ fj(O) = ∅ if i 6= j.

If T ◦, the interior of T , is nonempty, we call T a general self-similar tile.
It is known that Rd can be tiled by homeomorphic copies of T (see [NT2,
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Lemma 2.3]). If each fi is a contractive similitude, i.e., fi(x) = ρiRi(x) + bi,
where 0 < ρi < 1, Ri is orthogonal, and bi ∈ Rd, we say that T is a (strictly)
self-similar tile if T ◦ 6= ∅. If each of the fi in (1.1) is of the form

(1.2) fi(x) = A−1(x+ di),

where A is an integer expanding matrix (all eigenvalues have modulus > 1)
with |det(A)| = q and di ∈ Zd, then T is a called a self-affine tile if T ◦ 6= ∅.
D = {d1, . . . , dq} is called a digit set.

For any subset E ⊆ Rd, we denote by E◦, E, ∂E,Ec the interior, closure,
boundary, and complement of E, respectively. We denote the cardinality of a
set A by #A.

Let T be a general self-similar tile in Rd and let {Tk}∞k=0 be a self-similar
tiling of Rd defined by homeomorphic copies of T as described in [NT2, Lemma
2.3] and recalled in Section 2, with T0 := T . Ti is said to be a neighbor of T
if Ti 6= T and Ti ∩ T 6= ∅. For each positive integer n, define

Vn(Ti) := {x ∈ Ti : x lies in at least n neighbors of Ti}.

If Vn(Ti) is independent of Ti in the sense that all the Vn(Ti) can be obtained
from each other through a rigid motion, we denote it by Vn. We call each
x ∈ Vn an n-vertex of T . Note that V1 = ∂T . Also, Vn+1 ⊆ Vn for all n ≥ 1
and Vn = ∅ for all n sufficiently large.

This work is partly motivated by the recent interest in the topological struc-
ture of self-similar tiles as well as the canonical number systems associated
with the tiles. The topological structure of tiles has been studied extensively
recently; see [KL], [BW], [LRT], [NN], [LAT], [NT1], [NT2], [DPPS], [L]. In
particular, it is shown in [BW] and [L] that the set V2 plays a deterministic
role in the disk-likeness of certain self-affine tiles.

In the context of number representations, Vn is a subset of T consisting of
numbers with at least n + 1 different radix expansions. For self-affine tiles
arising from quadratic canonical number systems (CNS) with base −m + i,
this problem has been studied extensively, by Kátai and Szabó [KS], Gilbert
[G1], [G2], and Akiyama and Thuswaldner [AT1], [AT2], [AT3], [MTT], [ST],
[T], [L]. In [MTT], [ST], [T], the box dimension of the boundaries of such tiles
are calculated by explicitly finding covers of the boundary. For the Eisenstein
set, Benedek and Panzone [BP] computed the Hausdorff and box dimensions
of the set V1 and determined the sets Vn for n ≥ 2.

Motivated by the above investigations, we study the structure of Vn for
general self-similar tiles and self-affine tiles. Since V1, the boundary of T , has
been studied extensively, we will focus on the case n ≥ 2. We prove that if T
is a general self-similar tile in R2 whose interior T ◦ consists of finitely many
components, then in any self-similar tiling it generates, V2(Ti) is a finite set
for any tile Ti (see Theorem 2.1).
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In the case Vn is not finite, it is desirable to have a more general method for
computing its Hausdorff and box dimensions. In order to obtain the Hausdorff
dimension, we restrict our study to the class of strictly self-affine tiles or
multitiles. In the case the matrix A in (1.2) is conjugate to a similarity, we
describe an algorithm to compute the Hausdorff and box dimensions of the
sets Vn. This algorithm is an extension of the one used by Strichartz and
Wang to compute the boundary of self-affine tiles (see [SW]). It holds for
self-affine multitiles (see Section 3 for the definition) and thus it allows us to
study the set Vn for the interesting Lévy dragon. In fact, a main motivation
for formulating the above algorithm is the desire to understand the structure
of the Lévy dragon. For this dragon, the dimensions of V1, the boundary
of the dragon, were computed by Duvall and Keesling [DK], and Strichartz
and Wang [SW]. However, the structure of the dragon is still not completely
understood (see [BKS] and the discussion in Section 4). In this paper, we
obtain the dimensions of the sets Vn for all n ≥ 1. This result reveals the
complicated way the neighbors are intertwined in the Lévy dragon tiling of
the plane.

This paper is organized as follows. In Section 2, we consider the case T
is a connected general self-similar tile in R2 whose interior consists of finitely
many components and prove that for every tile Ti in any self-similar tiling
generated by T , V2(Ti) must be finite. In Section 3 we describe an algorithm
to compute the dimensions of the sets Vn for the class of self-affine tiles and
self-affine multitiles defined by an expansion matrix which is conjugate to a
similarity. We then apply the algorithm to study the Lévy dragon in Section
4.

2. Tiles in the plane with interiors having finitely many
components

In this section we consider self-similar tilings of the plane and prove a result
which only holds on R2. Let {fi}qi=1 be an IFS of injective contractions on
R

2 satisfying the open set condition. Let T be the attractor of the IFS and
assume that T ◦ 6= ∅. It is known that R2 can be tiled by homeomorphic
copies of T (see [NT2, Lemma 2.3]), the tiling being self-similar in the sense
that it is invariant with respect to blowing up at an interior point of T . The
tiling is not unique and T has finitely many neighbors. To see these, recall
the construction of the tiling. Let N be sufficiently large and α ∈ {1, . . . , q}N
so that fα(T ) ⊆ T ◦. Then

f−kα ◦ fβ(T ), β ∈ {1, . . . , q}Nk and k ∈ N,

forms a tiling of R2 which is invariant with respect to blowing up by f−1
α

at the fixed point of fα in T ◦. By choosing different α or N , we may get
non-congruent tilings. To see that a tile T1 in the tiling has finitely many
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neighbors, choose k so large that fkα(T1) ⊆ T ◦. Then T1 is in the interior of

f−kα (T ) =
⋃

β∈{1,...,q}Nk
f−kα ◦ fβ(T ),

which is a finite union of tiles. Hence T1 has finitely many neighbors.
In the case T is a self-affine tile, the above tilings reduce to the familiar

tilings obtained by translations of T .

(a) (b)

Figure 1. (a) The configuration can be completed to a tiling
of the plane by squares. It is a non self-similar tiling by a self-
similar tile. Notice that the largest tile has infinitely many
vertices. (b) A pattern that generates a self-similar tiling of
the plane with different numbers of vertices for different tiles
in the tiling.

Notice that there are tilings by self-similar tiles that are not self-similar. For
example, let T be the unit square. Border it by a queue of squares decreasing
in size, with total length less than one. Complete the configuration to a tiling
of R2 by squares (see Figure 1(a)). As T has infinitely many neighbors, this
tiling cannot be generated by the blow-up argument. Notice that V2(T ) is
infinite and Theorem 2.1 does not apply.

Notice that tiles in a self-similar tiling generated by self-similar tiles can
have different numbers of vertices. Consider a unit square divided into nine
squares, with the eight boundary squares each further divided into nine smaller
squares. Then this self-similar tile, with q = 73, generates self-similar tilings
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Figure 2. (a) Notations used in the proof of Theorem 2.1.
As α ⊆ ∂U , there are points of U on both sides of β1 ∪ β2 ∪
γ1∪γ2, contradicting that U is a component of T ◦. (b) Three
fat topological sine curve tiles reproduced from [NT2]. The
tile is not self-similar and its vertex set contains a line seg-
ment.

as above, with V2(Ti) equal to four for some Ti and twelve for others (see
Figure 1(b)).

Assume, in addition, that T ◦ has finitely many components. It is shown
in [NT2] that if U is a component of T ◦, then U , the closure of U , is locally
connected. This is established by showing that it has property S, and that
it is a finite union of connected sets of arbitrarily small diameter, the closure
of the components of the interior of the miniatures of T . It follows that
the boundary of every component of U

c
is a simple closed curve (see [W1]).

Moreover, there are finitely many such curves as U has at most finitely many
holes (see [NT2]). In particular, ∂U is locally connected and thus every point
on ∂U is accessible from all sides of U (see [W2, Theorem VI.4.2]).

We call a connected open subset of R2 a region.

Theorem 2.1. Let T be the attractor of an IFS of injective contractions
on R2 satisfying the open set condition. Suppose that the set T ◦ is nonempty
and consists of finitely many components. Then for each n ≥ 2 and for any
tile Ti in a self-similar tiling by homeomorphic copies of T as described above,
the set Vn(Ti) is finite.

Proof. It suffices to show that V2(T ) is finite. Let U be a component of
T ◦. Let α be the boundary of a component of U

c
. Then α is a simple closed

curve. It suffices to show that there are finitely many 2-vertices on α.
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Suppose that α contains infinitely many 2-vertices. As T has finitely many
neighbors, there is an interior component V of a neighbor T1 such that V
contains infinitely many distinct 2-vertices xn, n ∈ N. Let v ∈ V . By using
the local connectedness of ∂V and [W2, Theorem VI.4.2], we can construct
simple arcs βn joining v to xn such that βn \ {xn} ⊆ V , βn ∩ βm = {v} for
m 6= n. See Figure 2(a).

As xn ∈ V2(T ), the vertices xn also belong to some other neighbor(s) of T .
As the total number of interior components of the finitely many neighbors of
T is finite, there is one such component W of a neighbor of T , different from
T1, that contains infinitely many of the xn’s. Assume that xi ∈W , i = 1, 2, 3.
Let w ∈ W . Again, as ∂W is accessible from all sides [W2, Theorem VI.4.2],
there are arcs γi ∈W joining xi and w, with γi∩γj = {w} and γi \{xi} ⊆W .
The last condition implies that γi\{xi} cannot intersect α nor the βi’s. Hence
w and the γi’s cannot be on the same side of α as v and the βi’s. The region
on either side of the simple closed curve β1 ∪ β2 ∪ γ1 ∪ γ2 contains points
in α ⊆ ∂U and hence also points in U . Thus U is not connected. This
contradiction proves the theorem. �

We remark that local connectedness plays an important role in the proof
of Theorem 2.1. In fact, [NT2, Example 5.3] shows a tile and a tiling in
which the set V2(T ) contains a line segment (denoted by T1 in that paper)
(see Figure 2(b) above). The interior of the tile T is simply-connected, but T
is not self-similar and not locally connected.

For T ⊆ R2, if the interior of T consists of infinitely many components,
V2 can be complicated, even for strictly self-similar tiles. In fact, for the
Eisenstein set, V2 is countably infinite (see [BP]), and we will show in Section 4
that for the Lévy dragon the Hausdorff dimension of V2 is 1.7724755691 . . . .

Theorem 2.1 clearly fails in higher dimensions; the unit cube in R3 serves
as a counterexample.

3. Hausdorff dimension of Vn for self-affine tiles

Let A be a d×d integer expanding matrix with |detA| = q and let D ⊆ Zd
with #D = q be a digit set. Throughout this section we assume that D is a
complete set of coset representatives of Zd/AZd. Then it is well known that
the corresponding IFS in (1.2) satisfies the open set condition and the unique
compact set T satisfying

(3.1) A(T ) =
⋃
d∈D

(T + d) = T +D

has nonempty interior and is thus a self-affine tile (see [B], [LW]).
Let Vn be the set of n-vertices of T in a tiling of Rd. We will compute the

Hausdorff and box dimensions of Vn in the case A is conjugate to a similarity.
This is achieved by generalizing a method used by Strichartz and Wang [SW]
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to compute the dimensions of V1. We describe the method and refer the
reader to [SW] for more details. For E ⊆ Rd, let dimH(E), dimB(E), Hs(E)
denote the Hausdorff dimension, box dimension, and s-dimensional Hausdorff
measure of E, respectively.

We assume for simplicity that the Zd translates of T tile Rd. Let α0 := 0
and for α = (α1, . . . , αn) ∈ (Zd)n, let

(3.2) Tα = Tα1,...,αn :=
n⋂
k=0

(T + αk) and Fn := {α ∈ (Zd)n : Tα 6= ∅}.

Tα is the intersection of T with n of its neighboring tiles. It is clear that
Vn =

⋃
α∈Fn Tα.

The following proposition shows that Vn can be expressed as the attractor
of a graph-directed self-affine set (see [MW]).

Proposition 3.1. For each integer n ≥ 1, Vn is a graph-directed self-
affine set.

Proof. Using (3.1) and (3.2) we have, for each α ∈ Fn,

A(Tα) =
n⋂
k=0

(T +D +Aαk)

=
⋃

d0,d1,...,dn∈D

[
T ∩ (T + d1 − d0 +Aα1)

∩ · · · ∩ (T + dn − d0 +Aαn)
]

+ d0

=
⋃

d0,d1,...,dn∈D

Td1−d0+Aα1,...,dn−d0+Aαn + d0.

For any two elements α = (α1, . . . , αn) and β = (β1, . . . , βn) in Fn, define

C(α,β) :=
{
d = (d0, d1, . . . , dn) ∈ Dn+1 :

di − d0 +Aαi = βi for all i = 1, . . . , n
}
.

Then the above equality can be expressed as

Tα =
⋃

d0,d1,...,dn∈D

A−1 (Td1−d0+Aα1,...,dn−d0+Aαn + d0)(3.3)

=
⋃
β∈Fn

⋃
d∈C(α,β)

A−1(Tβ + d0).

Since Vn =
⋃
α∈Fn Tα, this proves the proposition. �
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Define

D1,α,β :=
{
d0 ∈ D : (d0, d1, . . . , dn) ∈ C(α,β)

}
,(3.4)

DN+1,α,β :=
⋃
γ∈Fn

(ADN,α,γ +D1,γ,β), for all N ≥ 1.

Then (3.3) can be written as

(3.5) Tα =
⋃
β∈Fn

A−1(Tβ +D1,α,β).

It follows by induction that for all N ≥ 1,

(3.6) Tα =
⋃
β∈Fn

A−N (Tβ +DN,α,β).

For α,β ∈ Fn, let Mα,β := #C(α,β) and let Mn be the weighted incidence
matrix (or substitution matrix) (Mα,β)α,β∈Fn .

Lemma 3.2. Suppose A is conjugate to a similarity with expansion ratio
r. Let ρn be the spectral radius of Mn. Then

dimH(Vn) ≤ dimB(Vn) ≤ log ρn
log r

.

Proof. Using the fact that D is a complete set of coset representatives of
Z
d/AZd, it can be verified directly that the sets on the right side of (3.4) are

disjoint. Let Nε(Tα) be the smallest number of cubes of side length ε needed
to cover Tα and choose δ > 0 so that any Tα can be covered by a single cube
of side length δ. Then from (3.6),

Nr−Nδ(Tα) ≤
∑
β

#DN,α,β =
∑
β

(MN
n )α,β.

Hence,

lim
N→∞

logNr−Nδ(Tα)
− log(r−Nδ)

≤ lim
N→∞

log
∑
β(MN

n )α,β
N log r − log δ

≤ log ρn
log r

.

Since Vn =
⋃
α∈Fn Tα, this proves the lemma. �

Theorem 3.3. Let T be a self-affine tile satisfying AT = T + D, where
A is a d × d integer expanding matrix and D ⊆ Zd, with #D = |detA|, is a
complete set of coset representatives of Zd/AZd. Suppose A is conjugate to a
similarity with expansion ratio r and the Zd translates of T tile Rd. Let ρn be
the spectral radius of Mn. Then

dimB(Vn) = dimH(Vn) =
log ρn
log r

.

Moreover, Hs(Vn) > 0, where s = dimH(Vn).
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Proof. The upper bound is established in Lemma 3.2. The lower bound
for the Hausdorff dimension can be obtained by using the method in [SW] as
follows. Decompose Mn into block upper triangular matrices with diagonal
blocks M (1)

n , . . . ,M
(k)
n being irreducible and with the spectral radius of M (1)

n

being ρn. Let F̂n be the set of indices corresponding to M (1)
n . Consider the

following sub-IFS of the one in (3.5):

(3.7) A(T̂α) =
⋃
β∈F̂n

(T̂β +D1,α,β), α ∈ F̂n.

Clearly, T̂α ⊂ Tα. Since
⋃
αD1,α,β ⊆ D, we can augment D1,α,β to D̃1,α,β so

that
⋃
α D̃1,α,β = D. Because M (1)

n is irreducible, the new IFS

A(T̃α) =
⋃
β∈F̂n

(T̃β + D̃1,α,β), α ∈ F̂n,

defines self-affine multitiles {T̃α} such that T̃ ◦α 6= ∅ (see [FW]). The family
{T̃ ◦α} are graph open set condition sets for the IFS (3.7) and hence by a result
of Mauldin and Williams in [MW],

dimH(T̂α) = s =
log ρn
log r

, and Hs(T̂α) > 0.

Since T̂α ⊆ Vn, we have completed the proof of the theorem. �

The number of types of sets Tα and thus the size of Mn can often be
reduced significantly by taking advantage of symmetry. We illustrate this and
Theorem 3.3 by a simple example. Let A = 2I, where I is the 3× 3 identity
matrix, and let

D =
{

(i, j, k) : i, j, k ∈ {0, 1}
}
⊆ Z3.

Then the attractor T is the unit cube in R3 with D being the set of its corners.
To compute the dimensions of V1, we ignore line and point intersections and
only consider neighbors of T that intersect T in one of its six faces. That is,
we can replace F1 by

F∗1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0), (0, 0,−1)}.

Furthermore, we notice that, by symmetry, all the intersections Tα, α ∈ F∗1
are equivalent through a rigid motion. Thus, there is only one type of sets
Tα. Upon an iteration of Tα by (3.3) or (3.5), we see that Tα is a union
of four shrunk copies of itself. Therefore #C(α,α) = 4 and thus ρ1 = 4.
Theorem 3.3 now implies that dimB(V1) = dimH(V1) = log 4/ log 2 = 2.

To compute the dimensions of V2, we ignore point intersections and let Tα
be the intersection of T with at least two of its neighbors. That is, Tα is
an edge of T . Again, all intersections are equivalent through a rigid motion.
Since Tα is the union of two shrunk copies of itself, ρ2 = #C(α,α) = 2
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and dimH(V2) = 1. Similarly, one can show that dimH(V3) = 1 and that
dimH(Vn) = 0 for n = 4, . . . , 7. (For n ≥ 8, Vn = ∅.)

Proposition 3.1 and Theorem 3.3 can be generalized to self-affine multitiles.
Suppose T1, . . . , T` are compact subsets of Rd, each with a nonempty interior,
that satisfy

ATj =
⋃̀
k=1

(Tk +Djk), 1 ≤ j ≤ `,

where Djk ⊆ Zd. We assume that the Zd translates of Tj , 1 ≤ j ≤ `, tile
R
d. It is proved in [FW] that under this assumption, Dk :=

⋃
j Djk is a

complete set of coset representatives, and the matrix (#Djk) is primitive. Let
T =

⋃`
j=1 Tj and let Vn be defined with respect to T as in Section 1.

For j = (j0, j1, . . . , jn) ∈ {1, . . . , `}n+1 and α = (α0, α1, . . . , αn) ∈ (Zd)n+1

with α0 := 0, define

T (j;α) :=
n⋂

m=0

(Tjm + αm)

and let

Fn :=
{

(j;α) : T (j;α) 6= ∅ and if j` = jm then α` 6= αm
}
.

Then

AT (j;α) =
n⋂

m=0

(ATjm +Aαm)

=
n⋂

m=0

( ⋃̀
km=1

(Tkm +Djmkm +Aαm)
)

=
n⋂

m=0

( ⋃̀
km=1

⋃
djmkm∈Djmkm

(Tkm + djmkm +Aαm)
)

=
⋃

k∈{1,...,s}n+1

⋃
d∈Dn

T (k;Aα+ d− dj0k0) + dj0k0 ,

where

k : = (k0, . . . , kn), d := (dj0k0 , . . . , djnkn),

α : = (α0, . . . , αn), Dn := Dj0k0 × · · · × Djnkn .

Thus, we get the analog of Proposition 3.1. The analog of Theorem 3.3 can
be obtained by using the same argument. We remark that the symmetry
argument also applies to multitiles.
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4. The Lévy dragon

The Lévy dragon (see Figure 3), introduced by Lévy in 1938 (see [Lé], [E]),
has been studied extensively, but is still not completely understood. Duvall
and Keesling [DK] and Strichartz and Wang [SW] computed the Hausdorff
dimension of the boundary (i.e., V1) of the dragon. Bailey, Kim and Strichartz
[BKS] showed that the interior of the dragon consists of at least 16 shapes, and
it remains an open question whether these are the only shapes. The authors
[NT2] proved that the closure of each component of the interior of the dragon
is a topological disk.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3. The Lévy dragon.

In this section, we will compute the Hausdorff dimension of the set of
n-vertices Vn for the Lévy dragon by using the method of Section 3. The
Lévy dragon will be denoted by T0 throughout this section. It is a strictly
self-similar tile defined by the similitudes

f1(x) =
1√
2
R
(π

4

)
x, f2(x) =

1√
2
R
(
−π

4

)
x +

1
2

[
1
1

]
,

where R(π/4) and R(−π/4) are the counterclockwise and clockwise rotations
by π/4, respectively. As is pointed out in [SW], T0 can be viewed as a part of
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a self-affine multitile consisting of 4 prototiles, T0, T1, T2, T3, where Tj is the
rotation of T0 through the angle jπ/2. Let A =

[
1 −1
1 1

]
. Then the Tj ’s satisfy

A(T0) =
(
T0 + (0, 1)

)
∪
(
T1 + (−1, 0)

)
,

A(T1) =
(
T1 + (−1, 1)

)
∪ T2,

A(T2) =
(
T2 + (−1, 0)) ∪

(
T3 + (0, 1)

)
,

A(T3) =
(
T0 + (−1, 1)

)
∪ T3.

To compute the dimensions of Vn, we need to first determine the set Fn. We
call each element of Fn a state. By symmetry, it suffices to consider the sub-
system of the graph-directed system determined by T0. We still denote the
set of all such states by Fn. As explained in [DK] and [SW], tiles in the tiling
can intersect only if their convex hulls intersect; moreover, the tiling by Z2

translates of T0, T1, T2, T3 can be visualized by considering the tiling by right
triangles obtained by drawing the diagonals of each square in the unit square
tiling.

For n = 2, we can represent each state in F2 by a triple of isosceles right
triangles, with each triangle defining a tile. The first two triangles denote
one of the 11 possible nontrivial intersections found in [SW]. The convex hull
of the tile defined by the third triangle must intersect the intersection of the
convex hulls of the tiles defined by the first two triangles. The states are
summarized in Figure 4. In each picture, the black triangles determine two
intersecting tiles found in [SW]. Each shaded triangle gives rise to a tile whose
convex hull intersects the common intersection of the convex hulls of the tiles
generated by the two black triangles. A triangle labeled L (resp., P ) generates
a tile whose convex hull intersects the tile generated by the black triangles
in possibly a line segment (resp., a point). States defining tiles with only
point intersections can be excluded from the set F2 in actual computation.
Similarly, we can determine all the possible states in Fn for n > 2.

Next, we determine the matrix Mn. Fix a state α ∈ Fn. Each triangle
defining α generates two smaller triangles, contracted by the factor 1/

√
2,

rotated by π/4 or −π/4, with hypotenuse lying on the right-angled side of
the larger triangle, and lying outside of the larger triangle. Pick one small
triangle generated by each triangle in α and form a state γ and call it a state
generated by α. If, upon an expansion by the factor

√
2, followed by a possible

rigid motion, γ equals some β ∈ Fn, then we add 1 to the (α,β)-entry of Mn.
Do this for all the states generated by α and each α ∈ Fn.

Lastly, the dimensions of the set Vn can be computed in terms of the
spectral radius ρn of Mn. For example, ρ2 is the largest real zero of an 18th
degree polynomial (see Table 1). Since ρ2 ≈ 1.8483497642 . . . , we have

dimH(V2) = dimB(V2) =
log ρ2

log
√

2
≈ 1.7724755691 . . . .
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Figure 4. Figure showing how all possible states in F2 are generated.

Table 1 summarizes the results on the dimensions of Vn for the Lévy dragon.
The result for n = 1 has been obtained in [DK] and [SW] and is included for
completeness. We conclude from the results in Table 1 that dimH(Vn) =
dimB(Vn) = 0 for all n ≥ 7.
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n ρn dimH(Vn), dimB(Vn) Factor of char. poly. determining ρn.

1 1.9547763991 . . . 1.9340071829 . . . x9 − 3x8 + 3x7 − 3x6 + 2x5 + 4x4

−8x3 + 8x2 − 16x+ 8

2 1.8483497642 . . . 1.7724755691 . . . x18 − 5x17 + 12x16 − 21x15 + 28x14−

25x13 + 8x12 + 19x11 − 53x10 + 90x9−

112x8 + 118x7 − 108x6 + 88x5

−48x4 + 16x3 + 8x2 − 32x+ 32

3 1.6423396218 . . . 1.4315049900 . . . x11 − 2x10 + 3x9 − 5x8 + 6x7 − 9x6

+10x5 − 14x4 + 12x3 − 14x2 + 8x− 8

4 1.4381104594 . . . 1.0483489832 . . . x14 − 2x10 − 5x6 − 6x4 − 4x2 − 8

5 1.3206389565 . . . 0.8024722174 . . . x8 − x7 + x6 − 2x5 + x4 − x3 + x2 − 2

6 21/4 0.5 x4 − 2

7 1 0 x− 1

Table 1. Dimensions of Vn for the Lévy dragon, together
with the spectral radius of the weighted incidence matrix
Mn and the factor of the characteristic polynomial of Mn

for which ρn is a maximal root.
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bres Bordeaux 12 (2000), 69–79. MR 1827838 (2002g:11013)

[BKS] S. Bailey, T. Kim, and R. S. Strichartz, Inside the Lévy dragon, Amer. Math.
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