
Illinois Journal of Mathematics
Volume 47, Number 3, Fall 2003, Pages 847–866
S 0019-2082

COMPLETE SPACELIKE HYPERSURFACES WITH
CONSTANT MEAN CURVATURE IN THE DE SITTER

SPACE: A GAP THEOREM

ALDIR BRASIL JR., A. GERVASIO COLARES, AND OSCAR PALMAS

Abstract. Let Mn be a complete spacelike hypersurface with constant

mean curvature H in the de Sitter space Sn+1
1 . We use the operator

φ = A−HI, where A is the second fundamental form ofM , and the roots
B−H ≤ B+

H of a certain second order polynomial, to prove that either

|φ|2 ≡ 0 and M is totally umbilical, or B−H ≤
√

sup |φ|2 ≤ B+
H . For the

case H ≥ 2
√
n− 1/n we prove the following results: for every number

B in the interval [max{0, B−H}, B
+
H ] there is an example of a complete

spacelike hypersurface such that
√

sup |φ|2 = B; if
√

sup |φ|2 = B−H
is attained at some point, then the corresponding M is a hyperbolic
cylinder. We characterize the hyperbolic cylinders as the only com-

plete spacelike hypersurfaces in Sn+1
1 with constant mean curvature,

non-negative Ricci curvature and having at least two ends. We also

characterize all complete spacelike hypersurfaces of constant mean cur-

vature with two distinct principal curvatures as rotation hypersurfaces
or generalized hyperbolic cylinders.

1. Introduction and statement of results

Let Rn+2
1 be the (n+ 2)-dimensional Euclidean space with the Lorentzian

metric 〈 , 〉 given by

(1) 〈p, q〉 = −p0q0 + p1q1 + · · ·+ pn+1qn+1.

We define the de Sitter space by

Sn+1
1 = {p ∈ Rn+2

1 | 〈p, p〉 = 1}.
Then Sn+1

1 is a Lorentz manifold with constant sectional curvature 1. A hy-
persurface Mn immersed in Sn+1

1 is said to be spacelike if the metric induced
in Mn by the immersion in Sn+1

1 is Riemannian. There are many interesting
results in the study of spacelike hypersurfaces with constant mean curvature

Received August 27, 2002; received in final form December 10, 2002.

2000 Mathematics Subject Classification. 53A10, 53C42, 53C50.
The third author was partially supported by DGAPA-UNAM, México, and
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H. To begin with, complete hypersurfaces in the de Sitter space have been
characterized by Q. M. Cheng [9] under the hypothesis that the mean curva-
ture and the scalar curvature are linearly related. L. J. Aĺıas, A. Romero and
M. Sánchez [4] studied complete constant mean curvature spacelike hyper-
surfaces in connection with Bernstein-type problems. J. L. Barbosa and V.
Oliker [6] proved the stability of a complete constant mean curvature spacelike
hypersurface provided it is compact or satisfies H2 ≥ 1 or H2 < 4(n− 1)/n2.

The study of this kind of hypersurface was inspired, in particular, by a
conjecture posed by A. J. Goddard [12], stating that every complete spacelike
hypersurface with constant mean curvature in Sn+1

1 must be totally umbilical.
The first result in this direction was obtained by J. Ramanathan [25] in 1987.
He showed that if the constant mean curvature H of a complete spacelike
hypersurface in S3

1 satisfies H2 < 1, then the surface is totally umbilical. In-
dependently, and still in 1987, K. Akutagawa [2] proved Goddard’s conjecture
for the case H2 < 1 if n = 2 and for the case H2 < 4(n− 1)/n2 if n > 2. On
the other hand, S. Montiel [15] proved the conjecture for the compact case.
It turned out that the general conjecture was false, as shown by the existence
of the so-called hyperbolic cylinders, which are defined and described at the
end of Section 2.

We will restrict ourselves to complete spacelike hypersurfaces having non-
zero constant mean curvature because the maximal hypersurfaces in the de
Sitter space are totally geodesic (see [18]).

Given a spacelike hypersurface Mn with constant mean curvature H, for
each p ∈Mn we define φ : TpM → TpM by

〈φX, Y 〉 = 〈AX,Y 〉 −H〈X,Y 〉,

where A is the operator associated to the second fundamental form of M . We
observe that for non-zero constant mean curvature hypersurfaces the norm |φ|
of the operator φ plays a role analogous to that of |A| in the case of minimal
hypersurfaces, as shown by Chern, do Carmo and Kobayashi [10].

The operator φ proved to be useful in the study of hypersurfaces with
constant mean curvature in the Riemannian ambient; for example, H. Alen-
car and M. do Carmo [3] proved a gap theorem for compact hypersurfaces
with constant mean curvature in spheres, characterizing the H(r)-torus by a
pinching condition on |φ|2, as follows:

Theorem 1.1 (Alencar, do Carmo [3]). Let Mn be a compact orientable
hypersurface immersed in Sn+1 with constant mean curvature H > 0. Suppose
|φ|2 ≤ BH for each p ∈M , where BH is the square of the positive root of the
polynomial

PH(x) = x2 +
n(n− 2)H√
n(n− 1)

x− n(1−H2).

Then,
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(i) |φ|2 ≡ 0 and M is totally umbilical; or
(ii) M is the H(r)-torus Sn−1(r)× S1(

√
1− r2), where r2 < (n− 1)/n.

(See also [26] for a generalization to higher codimension.)
Regarding the Lorentzian setting, U. H. Ki, H. J. Kim, and H. Nakagawa

[13] used a Lorentzian version of the polynomial PH to find a sharp upper
bound for |φ|. They showed that a complete spacelike hypersurface in Sn+1

1

with constant mean curvature H ≥ 2
√
n− 1/n such that |φ| is constant and

equal to that upper bound must be a hyperbolic cylinder.
In this paper we extend some of the results given above by means of a

detailed study of the polynomial PH . In our first theorem, we use PH to give
a lower bound for |φ|. For completeness, we include also the upper bounds
proved in [2], [13] and [25].

Theorem 1.2. Let Mn be a complete spacelike hypersurface immersed in
Sn+1

1 , n ≥ 3, with constant mean curvature H > 0. Then sup |φ|2 <∞ and

(1) either |φ| ≡ 0 and M is totally umbilical; or
(2) B−H ≤

√
sup |φ|2 ≤ B+

H , where B−H ≤ B+
H are the roots of the polyno-

mial

(2) PH(x) = x2 − n(n− 2)H√
n(n− 1)

x+ n(1−H2).

As we will show later in this paper, the polynomial PH has real roots if and
only if H ≥ 2

√
n− 1/n. As a consequence of Theorem 1.2, there are no com-

plete spacelike hypersurfaces with constant mean curvature H ≥ 2
√
n− 1/n

such that 0 <
√

sup |φ|2 < B−H , yielding a gap between the umbilical hyper-
surfaces (|φ| ≡ 0) and the hypersurfaces with

√
sup |φ|2 = B−H .

We must mention the recent work [27] by Y. J. Suh, Y. S. Choi and H. Y.
Yang, who proved independently from us the inequality B−H ≤

√
sup |φ|2 ≤

B+
H . (They studied a more general situation than ours and the notations differ

significantly, but see equation (6.8) in the cited reference.) In that work,
the authors used this inequality only to characterize the totally umbilical
hypersurfaces. Apparently, the authors were not aware of the existence of
results characterizing the hyperbolic cylinders which satisfy

√
sup |φ|2 ≡ B±H .

For the case H ≥ 2
√
n− 1/n we also show that there is no gap between

the roots of PH , that is, we prove that for every number B in the interval
[max{0, B−H}, B

+
H ] there is a complete spacelike hypersurface with constant

mean curvature H such that
√

sup |φ|2 = B. These examples constitute a
class of new rotation hypersurfaces with constant mean curvature in Sn+1

1 . In
fact, we prove the following theorem.
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Theorem 1.3. Given an integer n ≥ 3 and a number H such that H ≥
2
√
n− 1/n, let B−H ≤ B+

H be the roots of the polynomial PH in equation (2).
Then:

(1) For any value B in the interval [max{0, B−H}, B
+
H ] there is a complete

spacelike hypersurface in Sn+1
1 with constant mean curvature H and√

sup |φ|2 = B.
(2) If, in addition, H 6= 2

√
n− 1/n, there exists a complete spacelike hy-

persurface in Sn+1
1 with constant mean curvature H and

√
sup |φ|2 =

B+
H which is not a hyperbolic cylinder.

We also give some characterizations of the hyperbolic cylinders mentioned
above. We generalize a result proved by Montiel [16] as follows.

Proposition 1.1. Let Mn be a complete spacelike hypersurface immersed
in Sn+1

1 , n ≥ 3, with constant mean curvature H such that 2
√
n− 1/n ≤ H <

1, and √
sup |φ|2 = B−H .

This supremum is attained if and only if M is isometric to the hyperbolic
cylinder

H1(sinh r)× Sn−1(cosh r).

In the same paper, Montiel [16] characterized the hyperbolic cylinders as
the only complete (non-compact) hypersurfaces in Sn+1

1 with constant mean
curvature H = 2

√
n− 1/n and having at least two ends. In the middle of

the proof of this result he showed that the Ricci curvature of M is non-
negative. In the following result we prove that among constant mean curvature
hypersurfaces, these two properties, the non-negativity of the Ricci curvature
and the existence of at least two ends, characterize all hyperbolic cylinders.

Theorem 1.4. Let M be a complete spacelike hypersurface immersed in
Sn+1

1 , n ≥ 3, with constant mean curvature. Then Ric ≥ 0 and M has at
least two ends if and only if M is a hyperbolic cylinder.

As our examples have two distinct principal curvatures at each point, to
close this paper we prove some results on complete hypersurfaces with this
property. In fact, we prove the following characterization of such hypersur-
faces.

Proposition 1.2. Let M be a complete spacelike hypersurface in Sn+1
1

with constant mean curvature and two distinct principal curvatures with con-
stant multiplicities k and n− k. Then the following statements are true:

(1) If k = 1 or k = n− 1, then M is a rotation hypersurface.
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(2) If 1 < k < (n− 1), then M is isometric to

Hk(sinh r)× Sn−k(cosh r).

Our results may be interpreted as follows: We associate to each complete
spacelike hypersurface Mn with constant mean curvature H the coordinate
pair (H,

√
sup |φ|2) in the first quadrant of a 2-plane, thus obtaining Figure

1. Results by Akutagawa [2], Ramanathan [25], Nishikawa [18], Ki, Kim and
Nakagawa [13] and our Theorem 1.2 imply that there is no complete spacelike
hypersurface such that the corresponding point (H,

√
sup |φ|2) lies to the left

1

H1

empty

new
rotation
hypersurfaces

hypersurfaces
umbilic

x
(cylinders)

x

x

 

φ 2

+c

c−

n

2
n n 1<k< n

2

H xS

1<k<

H S

H S

H S

n
2

n
2

2

sup

n−

n−

<k<n−

k

k

n−

n−

n−

n−

2

k

k

1

n− k(n− )k1

k2
n

1

1

1

Figure 1. The plane
(
H,
√

sup |φ|2
)

. The positive H-axis rep-

resents the totally umbilical hypersurfaces. Hyperbolic cylinders

have their data represented on the solid curve C = C− ∪C+. Re-

sults in [2], [13], [18], [25] and our Theorem 1.2 together imply that

the points of the region to the left of C (marked “empty”) are not

associated to any complete spacelike hypersurface with constant

mean curvature. For the case H ≥ 2
√
n− 1/n, Theorem 1.3 gives

a complete spacelike hypersurface corresponding to an arbitrary

point to the right of C, and also a hypersurface corresponding to a

point on C+ which is not a hyperbolic cylinder. We also depict the

curves corresponding to the hypersurfaces isometric to Hk×Sn−k

characterized in Proposition 1.2.
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of the curve C shown, thus yielding a gap. Theorem 1.3 gives, for each point
(H,

√
sup |φ|2) to the right of the curve C, a complete spacelike hypersur-

face corresponding to such a point. Theorem 1.4 characterizes the complete
spacelike hypersurfaces with H constant, non negative Ricci curvature and
having at least two ends as hyperbolic cylinders, so that the corresponding
point (H,

√
sup |φ|2) is on the curve C.

2. Preliminaries

Let Mn be an n-dimensional, complete manifold, immersed into the (n+1)-
dimensional de Sitter space Sn+1

1 . We say that Mn is a spacelike hypersurface
if the semi-Riemannian metric of Sn+1

1 induces a Riemannian metric on Mn.
If N is a timelike unit vector field everywhere normal to M , then we denote

by A the operator associated to the second fundamental form corresponding
to the choice of N ; by ki, i = 1, . . . , n, the eigenvalues of A (or equivalently,
the principal curvatures of M); and by H = (1/n)trA the mean curvature of
M . If R is the curvature tensor of M , we have the classical Gauss equation

R(u, v)w = 〈v, w〉u− 〈u,w〉v − 〈Av,w〉Au+ 〈Au,w〉Av,

so that the Ricci curvature tensor Ric on M is given by

(3) Ric(u, v) = (n− 1)〈u, v〉 − nH〈Au, v〉+ 〈A2u, v〉.

We will use the following Simons type formula (for a proof, see [16]):

(4)
1
2

∆|A|2 = |∇A|2 + ntrA2 − n2H2 − nHtrA3 + (trA2)2.

Introducing the operator φ given by

(5) 〈φX, Y 〉 = 〈AX,Y 〉 −H〈X,Y 〉,

it is easy to see that φ is traceless, that the eigenvalues of φ are of the form
µi = κi −H, and that

|φ|2 =
∑
i

µ2
i =

1
2n

∑
(κi − κj)2.

Note that |φ|2 ≡ 0 if and only if Mn is totally umbilical.
Substituting φ in (4), we obtain the Lorentzian version of Simons’ formula

(also deduced in [16]):

(6)
1
2

∆|φ|2 = |∇φ|2 + (|φ|2)2 − nHtr φ3 + n(1−H2)|φ|2.

We recall the standard examples of spacelike hypersurfaces with constant
mean curvature in Sn+1

1 (see [15] for details). First we have the totally um-
bilical hypersurfaces given by

Mn = {p ∈ Sn+1
1 | 〈p, a〉 = τ},
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where a ∈ Rn+2
1 , |a|2 = ρ = 1, 0,−1 and τ2 > ρ. Their corresponding mean

curvatures H satisfy

H2 =
τ2

τ2 − ρ
.

Mn is isometric to a hyperbolic space, a Euclidean space or a sphere, if ρ = 1, 0
or −1, respectively. Also, we can prove that |φ|2 ≡ 0. Umbilicity implies that
every direction is principal, with eigenvalue H, so that equation (3) gives the
following expression for the Ricci curvature of M (we may take |u| = 1):

Ric(u) = (n− 1)〈u, u〉 − nH〈Au, u〉+ 〈A2u, u〉
= (n− 1)(1−H2).

The other well-known complete spacelike hypersurfaces with constant mean
curvature are given by

Mn = {p ∈ Sn+1
1 | p2

k+1 + · · ·+ p2
n+1 = cosh2 r},

with r ∈ R and 1 ≤ k ≤ n. One can prove that M is isometric to the
Riemannian product Hk(sinh r)×Sn−k(cosh r) of a k-dimensional hyperbolic
space and an (n−k)-dimensional sphere of radii sinh r and cosh r, respectively.
M has k principal curvatures equal to coth r and (n− k) principal curvatures
equal to tanh r, so the mean curvature is given by

(7) nH = k coth r + (n− k) tanh r.

Multiplying by coth r and solving the resulting equation for coth r, we have

(8) coth r =
nH ±

√
n2H2 − 4k(n− k)

2k
.

In this case,

|φ|2 =
k(n− k)

n
(coth r − tanh r)2.

Using (7) and (8), we may express |φ|2 as a function of H, namely,

(9) |φ|2 =
n

4k(n− k)

(
(n− 2k)H ±

√
n2H2 − 4k(n− k)

)2

.

To calculate the Ricci curvature of M , note that if u is an eigenvector of A
with principal curvature coth r, then (3) and (7) imply that

Ric(u) = (n− 1)〈u, u〉 − nH〈Au, u〉+ 〈A2u, u〉

= (k − 1)(1− coth2 r).

Note that Ric(u) = 0 if and only if k = 1, and that otherwise Ric(u) < 0.
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On the other hand, if v is an eigenvector with principal curvature tanh r,
we use (7) again to get

Ric(v) = (n− 1)〈v, v〉 − nH〈Av, v〉+ 〈A2v, v〉

= (n− k − 1)(1− tanh2 r).

Note that Ric(v) ≥ 0 if n− k ≥ 1.
The case k = 1 is the most important one for our purposes; in this

case the hypersurface M is isometric to a Riemannian product H1(sinh r) ×
Sn−1(cosh r) and is called a hyperbolic cylinder.

3. The gap theorem

In (2) we introduced the polynomial

PH(x) = x2 − n(n− 2)H√
n(n− 1)

x+ n(1−H2).

By taking x = |φ|, where φ is defined in (5), we will show that PH(|φ|) = 0
if the hypersurface is the hyperbolic cylinder with constant mean curvature
H ≥ 2

√
n− 1/n; this fact justifies the study of such a polynomial, which we

carry out below.
First we recall the classic lemma due to M. Okumura [20], completed with

the equality case proved in [3] by Alencar and do Carmo.

Lemma 3.1. Let µi, i = 1, . . . , n, be real numbers, with
∑
µi = 0 and∑

µ2
i = β2 ≥ 0. Then

(10) − n− 2√
n(n− 1)

β3 ≤
∑

µ3
i ≤

n− 2√
n(n− 1)

β3,

and equality holds if and only if either (n− 1) of the numbers µi are equal to
β/
√

(n− 1)/n or (n− 1) of the numbers µi are equal to −β/
√

(n− 1)/n.

The polynomial PH arises analytically in the following lemma, whose proof
uses Simons’ formula (6).

Lemma 3.2. Let Mn be a complete spacelike hypersurface immersed in
Sn+1

1 , n ≥ 3, with constant mean curvature H. Then

(11)
1
2

∆|φ|2 ≥ |φ|2PH(|φ|),

where PH is given in (2).

Proof. By Simons’ formula (6),

1
2

∆|φ|2 = |∇φ|2 + (|φ|2)2 − nHtr φ3 + n(1−H2)|φ|2.
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Using the fact that |∇φ|2 ≥ 0 and Lemma 3.1, we get

1
2

∆|φ|2 ≥ (|φ|2)2 − nHtr φ3 + n(1−H2)|φ|2

≥ |φ|2
(
|φ|2 − n(n− 2)H√

n(n− 1)
|φ|+ n(1−H2)

)
,

= |φ|2PH(|φ|),

where equality holds in the first line if and only if |∇φ| = 0. �

We state without proof some elementary properties of PH .

Lemma 3.3. If PH is the polynomial defined in (2), then:

(1) If H2 < 4(n− 1)/n2, then PH(x) > 0 for any x ∈ R.
(2) If H2 = 4(n− 1)/n2, we may write H = 2

√
n− 1/n; the (double)

root of PH is

BH =
n(n− 2)

2
√
n(n− 1)

H =
n− 2√
n
,

so that PH(x) = (x− (n− 2)/
√
n)2 ≥ 0 for all x ∈ R.

(3) If H2 > 4(n− 1)/n2, then PH has two real roots B−H and B+
H given

by

(12) B±H =
√

n

4(n− 1)

(
(n− 2)H ±

√
n2H2 − 4(n− 1)

)
.

B+
H is always positive; on the other hand, B−H > 0 if and only if

(n− 2)H −
√
n2H2 − 4(n− 1)) > 0,

which holds if and only if 4(n− 1)/n2 ≤ H2 < 1. Similarly, B−H = 0
if and only if H2 = 1 and B−H < 0 if and only if H2 > 1.

Now it is easy to conclude that PH(|φ|) = 0 for the constant value |φ| ≡
B±H (equation (9) for k = 1) corresponding to the hyperbolic cylinder with
constant mean curvature H ≥ 2

√
n− 1/n.

For the proof of Theorem 1.2, we will also use the following principle due
to H. Omori [21] and S. T. Yau [28].

Theorem 3.1. Let Mn be an n-dimensional, complete Riemannian man-
ifold whose Ricci curvature is bounded from below. Let f be a C2 function,
bounded from above on M . Then for each ε > 0 there exists a point pε ∈ M
such that

sup f − ε < f(pε) ≤ sup f, |∇f(pε)| < ε, ∆f(pε) < ε.



856 ALDIR BRASIL JR., A. GERVASIO COLARES, AND OSCAR PALMAS

Proof of Theorem 1.2. The Gauss equation implies

Ric ≥ (n− 1)− n2H2

4
,

Thus, if H < 2
√
n− 1/n then Ric ≥ δ > 0. By Bonnet-Myers’ theorem M is

compact. As H is constant, Montiel’s theorem [15] implies that M is totally
umbilical and so |φ|2 ≡ 0.

If H ≥ 2
√
n− 1/n, then we can use Theorem 1 in [13], which implies

(stated in our terminology) that |φ|2 is bounded from above. As the Ricci
curvature is still bounded from below, we may apply Theorem 3.1 to this
function |φ|2, obtaining a sequence {pk} of points in M such that

lim
k→∞

|φ|2(pk) = sup |φ|2, |∇|φ|2(pk)| < 1
k
, ∆|φ|2(pk) <

1
k
.

Substituting this in (11), we obtain
1
2k

>
1
2

∆|φ|2(pk) ≥ |φ|2(pk)PH(|φ|)(pk),

Taking the limit as k →∞, it follows that

(13) sup |φ|2 · PH
(√

sup |φ|2
)
≤ 0.

As H ≥ 2
√
n− 1/n, we know that PH has two (not necessarily distinct) real

roots. Suppose that the second conclusion in Theorem 1.2 does not hold, i.e.,
that √

sup |φ|2 < B−H or
√

sup |φ|2 > B+
H .

Then PH(
√

sup |φ|2) is strictly positive, which implies that the left hand side
of (13) is non-negative. This implies that sup |φ|2 = 0, that is, |φ|2 ≡ 0, and
thus that Mn is totally umbilical, proving the theorem. �

Remark 3.1. As noted before, the inequality B−H ≤
√

sup |φ|2 ≤ B+
H was

proved by Suh, Choi and Yang [27], independently from us.

4. Complete hypersurfaces with B−H ≤
√

sup |φ|2 ≤ B+
H

In this section we show that the bounds in Theorem 1.2 are sharp by ex-
hibiting a family of complete hypersurfaces in Sn+1

1 with constant mean cur-
vature H ≥ 2

√
n− 1/n and

√
sup |φ|2 = B, for any B ∈ [max{0, B−H}, B

+
H ].

First we define a rotation hypersurface in Sn+1
1 , following M. do Carmo and

M. Dajczer [11], and H. Mori [17]. Recall that an orthogonal transformation on
Rn+2

1 is a linear map preserving the metric; these orthogonal transformations
induce all isometries of Sn+1

1 .
Let P k be a k-dimensional vector subspace of Rn+2

1 . We say that P k is
Lorentzian (resp. Riemannian, degenerate) if the restriction of the metric to
P k is a Lorentzian (resp. Riemannian, degenerate) metric. We denote by



COMPLETE SPACELIKE HYPERSURFACES 857

O(P k) the set of orthogonal transformations of Rn+2
1 with positive determi-

nant that leave P k pointwise fixed.
Choose P 2, P 3 such that P 2 ⊂ P 3, and a regular, spacelike curve C in

Sn+1
1 ∩ (P 3−P 2), parametrized by arc length. The orbit of C under O(P 2) is

called the spherical (resp. hyperbolic, parabolic) spacelike rotation hypersur-
face M in Sn+1

1 generated by C, whenever P 2 is Lorentzian (resp. Riemann-
ian, degenerate).

In fact, we only need the spherical case here. As the metric in Rn+2
1 is

given by (1), the canonical basis e0, . . . , en, en+1 satisfies

〈ei, ej〉 = εiδij ,

where ε0 = −1, and εi = 1 otherwise. Take P 2 as the plane spanned by
e0 and e1, P 3 as the plane spanned by e0, e1, e2, and let (y0(s), y1(s), y(s))
be the arc length parametrization of the curve C. With these choices, a
typical parametrization of a rotation hypersurface M is given by (see [17], for
example)

(y0(s), y1(s), y(s)Φ(u1, . . . , un−1)).

Here Φ is an orthogonal parametrization of the unit sphere in the vector
subspace spanned by e2, . . . , en+1 and y0(s) and y1(s) can be calculated in
terms of y(s) as

y0 =
√
y2 − 1 coshϕ,

y1 =
√
y2 − 1 sinhϕ,

as long as y > 1, where ϕ is given by

ϕ =
∫ s

0

√
y′2 + y2 − 1
y2 − 1

ds.

The case 0 < y < 1 can be treated similarly, but will not be needed here.
We use the above parametrization to calculate the principal curvatures of M ,
namely,

κi =

√
y′2 + y2 − 1

y
, i = 1, . . . , n− 1,

κn =
y′′ + y√

y′2 + y2 − 1
,

The mean curvature of M is given by

(14) nH =
∑

i=1,...,n

κi = (n− 1)

√
y′2 + y2 − 1

y
+

y′′ + y√
y′2 + y2 − 1

.
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This second order differential equation has a first integral (see [11], [14] and
[23] for a detailed study), namely,

(15) G(y, y′) = yn−1
(√

y′2 + y2 − 1−Hy
)
.

By arguments similar to those given in the cited references it can be shown
that the level curves of G are associated to spacelike rotation hypersurfaces.
For our purposes, it suffices to analyze the level curves of G contained in the
set

{(y, y′) | y > 0, y′2 + y2 − 1 ≥ 0, G(y, y′) ≥ 0}.
For example, observe that a level curve G = 0 (y 6= 0) is associated to an
umbilical hypersurface, since

κi =

√
y′2 + y2 − 1

y
=
Hy

y
= H,

where we have used that
√
y′2 + y2 − 1−Hy = 0. Thus,

κn = nH − (n− 1)κi = H

and the hypersurface is umbilical. Recall that in this case we have |φ|2 ≡ 0
for the operator φ defined in (5).

Of particular importance are the critical points of G, given by the following
lemma.

Lemma 4.1. Let H ≥ 0 and G(y, y′) the function defined in (15). Then:
(1) If 0 ≤ H < 2

√
n− 1/n, G has no critical points.

(2) If H = 2
√
n− 1/n, G has only one critical point of degenerate type.

(3) If 2
√
n− 1/n < H < 1, G has two distinct critical points.

(4) If H ≥ 1, G has only one critical point.

Proof. The critical points of G are located along the y′-axis and also at the
y-axis if they satisfy the equation

y2 − nHy
√
y2 − 1 + (n− 1)(y2 − 1) = 0.

To obtain explicit values of y, we make the substitution y = cosh r and divide
the resulting expression by sinh2 r, obtaining

coth2 r − nH coth r + (n− 1) = 0.

Solving this equation for coth r, we get

coth r =
nH ±

√
n2H2 − 4(n− 1)

2
.

We recover y as

y = cosh r =
coth r√

coth2 r − 1
.
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Using the above expression for coth r, we obtain

(16) y =
nH ±

√
n2H2 − 4(n− 1)√(

nH ±
√
n2H2 − 4(n− 1)

)2

− 4

.

The lemma follows easily from this last equation. �

These critical points correspond exactly to the hyperbolic cylinders. If we
take y = cosh r as before, it is easily seen that the principal curvatures of such
a cylinder are

κi =

√
y2 − 1
y

=
1

coth r
=

2
nH ±

√
n2H2 − 4(n− 1)

for i = 1, . . . , n− 1, and

κn =
y√
y2 − 1

= coth r =
nH ±

√
n2H2 − 4(n− 1)

2
.

As calculated in (9) (at the end of Section 2), |φ|2 is given by

|φ|2 =
n

4(n− 1)

(
(n− 2)H ±

√
n2H2 − 4(n− 1)

)2

,

which coincides with the expression for (B±H)2 given in (12).
The nature of the critical points may be determined by an analysis of the

Hessian of G. A straightforward calculation shows that, if H = 2
√
n− 1/n,

the only critical point of G is of degenerate type. An equally straightforward
(but long) calculation and subsequent analysis of the Hessian show also:

(1) When 2
√
n− 1/n < H < 1, the critical point with smallest y-coor-

dinate is a saddle point, while the other is a center. The expression
(16) for y shows that the center goes to infinity when H → 1−.

(2) If H ≥ 1, we have only one critical point of saddle type.
The above remarks on the nature of the critical points confirm that the

level curves of G in the case when H ≥ 2
√
n− 1/n are given as shown in

Figure 2 below.

Proof of Theorem 1.3. If H = 2
√
n− 1/n, we have only one complete rota-

tion hypersurface, namely the hyperbolic cylinder given by Montiel [16]. On
the other hand, if 2

√
n− 1/n < H < 1, there is a family of closed curves

surrounding the critical points of center type, as shown in Figure 2(b). This
family represents a class of complete spacelike rotation hypersurfaces. We will
study the behaviour of |φ|2 in this setting.

Fix a level curve of G, in order to study |φ|2 for a fixed hypersurface, say

G(y, y′) = yn−1
(√

y′2 + y2 − 1−Hy
)
≡ K.
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Then

|φ|2 =
1

2n

∑
l,m

(κl − κm)2

=
n− 1
n

(κ1 − (nH − (n− 1)κ1))2

= n(n− 1)

(√
y′2 + y2 − 1

y
−H

)2

= n(n− 1)

(√
y′2 + y2 − 1−Hy

y

)2

= n(n− 1)
(
K

yn

)2

.

c

-1

0

1

d

-1

0

1

a

-1

0

1

b

-1

0

1

Figure 2. Level curves of G for different values of H. (a) H =

2
√
n− 1/n, with a degenerate critical point; (b) 2

√
n− 1/n <

H < 1, with two critical points, one saddle point and one center;

(c) H = 1; and (d) H > 1. In each of the last two cases there is

only one critical point of saddle type. Note also the level curves

passing through the saddle points, which are used in the second

part of Theorem 1.3.
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This shows that, for a given level curve, |φ|2 is a decreasing function of y,
so that sup |φ|2 is attained at the left-most point of the chosen curve. We
denote this point by (y0, 0). Note that for the family of closed curves we are
interested in, y0 can vary only between the y-coordinates of the critical points
of G. Evaluating |φ|2 at these points (so that we now move from one level
curve to another), we have

|φ|2(y0, 0) = n(n− 1)

(√
y2

0 − 1−Hy0

y0

)2

= n(n− 1)

(√
1− 1

y2
0

−H

)2

.

The continuity of |φ|2 guarantees that this function attains every number
between its extreme values, namely, B−H and B+

H . Consequently, for every H
with 2

√
n− 1/n ≤ H < 1 and every B ∈ [B−H , B

+
H ] there is a complete rotation

hypersurface of spherical type, constant mean curvature H and
√

sup |φ|2 =
B, thus proving the first part of Theorem 1.3 for 2

√
n− 1/n ≤ H < 1.

In the case H ≥ 1 the analysis is quite similar, except that in this case
we analyze a family of open curves intersecting the y-axis to the right of the
critical point (see (c) and (d) in Figure 2).

To prove the second part of the theorem, suppose first that 2
√
n− 1/n <

H < 1; we will use a subset of the level curve passing through the saddle
point (y1, 0), namely the subset of the level curve totally contained in the
region y > y1 (see (b) in Figure 2). We shall prove that this subset represents
the complete hypersurface we are seeking by showing that the corresponding
function y = y(t) is defined on (−∞,∞).

If K := G(y1, 0), then our curve is given by G(y, y′) = K, y > y1. Suppose
first that y′ > 0. Equation (15) implies

y′(t) = F (y(t)) =

√
K2 + 2KHyn + (H2 − 1)y2n + y2(n−1)

yn−1
.

Integrating from t to a fixed value t0, we have

t− t0 =
∫ t

t0

y′

F (y(t))
dt =

∫ y

y0

dy

F (y)
,

where y(t0) = y0. As F is continuous and F (y1) = 0, the last integral diverges
when y → y1. This means that t assumes every positive value. To prove that
t assumes also every negative value we proceed similarly, analyzing the part
of the curve below the y-axis, i.e., y′ < 0. We obtain in this way a complete
rotation hypersurface which satisfies

√
sup |φ|2 = B+

H . As the principal cur-
vatures are not constant, this hypersurface is different from the hyperbolic
cylinder.



862 ALDIR BRASIL JR., A. GERVASIO COLARES, AND OSCAR PALMAS

If H ≥ 1 we use one of the two connected components of the subset of the
level curve totally contained in the region y > y1 (see (c) and (d) in Figure
2). As the analysis is similar to that above, we omit this part and conclude
the proof of Theorem 1.3. �

5. Characterization theorems

In this section we extend some results given in [16] for the case H =
2
√
n− 1/n to the case of any value of H satisfying 2

√
n− 1/n ≤ H < 1.

Proof of Proposition 1.1. By Lemma 3.2,
1
2

∆|φ|2 ≥ |φ|2PH(|φ|).

As
√

sup |φ|2 = B−H , we have B−H ≥ 0 and hence |φ| ≤ B−H , so that each
value |φ| lies to the left of the least root of PH . Since the graph of PH is a
parabola opening upwards, we have PH(|φ|) ≥ 0 for each |φ|. This fact and the
above inequality imply ∆|φ|2 ≥ 0, i.e, |φ|2 is subharmonic. By hypothesis,
sup |φ|2 is attained at some point of M , so we may apply the maximum
principle (see, for example, [24, p. 53]) to show that |φ|2 is constant and
hence |φ| ≡ B−H . The proof now follows an argument similar to that given
in [13] in the case |φ| ≡ B+

H , which we present here for completeness. Using
again Lemma 3.2, we obtain

0 =
1
2

∆|φ|2 ≥ |φ|2PH(|φ|) = (B−H)2PH(B−H) = 0,

so that equality holds in Lemma 3.1. By the equality case in that lemma,
(n− 1) of the numbers ki −H are equal to

|φ|√
n(n− 1)

=
B−H√
n(n− 1)

,

or equal to the negative of this last expression. This means that the hyper-
surface M has (n − 1) principal curvatures that are equal and constant. As
nH =

∑
ki and H is constant, the other principal curvature is constant as

well, so M is isoparametric. The congruence theorem in [1] shows that M is
isometric to a hyperbolic cylinder H1(sinh r)× Sn−1(cosh r). �

Before proceeding to prove Theorem 1.4 we state an auxiliary lemma proved
in [5].

Lemma 5.1. Let V be a real vector space of dimension n ≥ 2 with an inner
product 〈 , 〉, A : V → V a symmetric linear map, H given by trA = nH and
|φ|2 = trA2−nH2. If λ1 ≥ λ2 ≥ · · ·λn are the eigenvalues of A, then for any
unitary vector v ∈ V we have

〈A2v, v〉 ≤ n− 1
n
|φ|2 + 2H〈Av, v〉 −H2.



COMPLETE SPACELIKE HYPERSURFACES 863

If n ≥ 3 and equality holds for some unitary vector v, then Av = λjv, where
j is such that |λj − H| = max |λi −H|. Also, λk = λl for all k, l 6= j, and
Aw = λkw, k 6= j, for any w orthogonal to v.

Proof of Theorem 1.4. As Ric ≥ 0 and M has at least two ends, we may
apply the Cheeger-Gromoll Splitting Theorem [8] to conclude that M is iso-
metric to a Riemannian product N × R. This fact implies the existence of
a direction determined by a unitary vector field u so that Ric(u) = 0. As
Ric attains its extrema at the principal directions, Au = λu and equation (3)
imply

0 = Ric(u) = (n− 1)〈u, u〉 − nH〈Au, u〉+ 〈A2u, u〉
= (n− 1)− nHλ+ λ2.

This means that

λ = λ± =
nH ±

√
n2H2 − 4(n− 1)

2
.

The continuity of u implies that λ is constant on M , and we must analyze
two cases, λ = λ+ and λ = λ−.

Suppose first that λ = λ+. We test the corresponding unitary eigenvector
u in Lemma 5.1:

λ2
+ = 〈A2u, u〉 ≤ n− 1

n
|φ|2 + 2H〈Au, u〉 −H2

≤ n− 1
n

(B+
H)2 + 2Hλ+ −H2

= λ2
+,

where the second inequality is a consequence of Theorem 1.2. We are now in
a position to apply the equality case of Lemma 5.1 to conclude that M has
(n− 1) principal curvatures equal to, say, µ. In fact, as (n− 1)µ+ λ+ = nH,
µ is given by

µ =
nH +

√
n2H2 − 4(n− 1)
2(n− 1)

.

Then M is isoparametric and its eigenvalues have multiplicities 1 and n− 1.
By the congruence theorem in [1], M is isometric to a hyperbolic cylinder
H1(sinh r)× Sn−1(cosh r).

Suppose now that λ = λ−. We estimate |φ|2, expressed as

|φ|2 =
n∑
i=2

κ2
i + (λ2

− − nH2),

subject to the constraint
n∑
i=2

κi = nH − λ− =
nH +

√
n2H2 − 4(n− 1)

2
.
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The Lagrange multiplier method assures us that the extrema of |φ|2 are at-
tained when κ2 = · · · = κn = µ; in that case,

µ =
nH − λ−
n− 1

=
nH +

√
n2H2 − 4(n− 1)
2(n− 1)

,

so that

|φ|2 ≤ (n− 1)

(
nH +

√
n2H2 − 4(n− 1)
2(n− 1)

)2

+

(
nH −

√
n2H2 − 4(n− 1)

2

)2

− nH2

=
n

4(n− 1)

(
nH +

√
(n− 2)2H2 − 4(n− 1)

)2

= (B−H)2.

We now test the corresponding eigenvector v in Lemma 5.1. We have

λ2
− = 〈A2u, u〉 ≤ n− 1

n
|φ|2 + 2H〈Au, u〉 −H2

≤ n− 1
n

(B−H)2 + 2Hλ− −H2

= λ2
−,

and the conclusion follows as in the case λ = λ+ by using the equality case of
Lemma 5.1 and the congruence theorem in [1]. �

6. Hypersurfaces with two distinct principal curvatures

K. Nomizu [19] classified the isoparametric hypersurfaces in the de Sitter
space. More precisely, he proved that these hypersurfaces are totally umbilical
or have two distinct principal curvatures with multiplicities k and n − k.
It is natural then to study the spacelike hypersurfaces with constant mean
curvature H 6= 0 and two distinct principal curvatures. The first examples of
this type were described by Montiel [15]. Now we characterize a hypersurface
with constant mean curvature and two distinct principal curvatures in Sn+1

1

(Proposition 1.2), adapting a result originally due to Otsuki [22].

Proposition 6.1. Let Mn be a spacelike hypersurface in Sn+1
1 such that

the multiplicities of the principal curvatures are constant. Then the distri-
bution Dλ of the space of principal vectors corresponding to each principal
curvature λ is completely integrable. In particular, if the multiplicity of a
principal curvature is greater than 1, then this principal curvature is constant
on each integral submanifold of the corresponding distribution of the space of
the principal vectors.
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The proof of this proposition uses an argument similar to that given in [7,
p. 139], for Riemannian space forms and thus will be omitted.

We are now in a position to prove our characterization result.

Proof of Proposition 1.2. In the case k = 1, we have κ2 = · · · = κn = κ,
with κ = f(κ1). By adapting the proof of Theorem 4.2 in [11, p. 701], we
see that Mn is a rotation hypersurface. Suppose now that 1 < k < n − 1
and let λ and µ be the principal curvatures of multiplicities k and n − k,
respectively. We may choose a local basis E1, . . . , Ek, Ek+1, . . . , En such that
Ei ∈ Dλ, 1 ≤ i ≤ k, and Ej ∈ Dµ, k+ 1 ≤ j ≤ n. By Proposition 6.1 we have
Ei(λ) = 0 for 1 ≤ i ≤ k. As

kλ+ (n− k)µ = nH,

we have (n− k)Ei(µ) = 0 for 1 ≤ i ≤ k. Using Proposition 6.1 again, we get
Ej(µ) = 0 for k + 1 ≤ j ≤ n as well, so that µ is constant on M . Similarly,
we obtain that λ is constant on M and then that Mn is isoparametric. By
the congruence theorem in [1], it follows that M is isometric to Hk(sinh r)×
Sn−k(cosh r). �

Added in proof. Professor Q. M. Cheng called our attention to his arti-
cle Complete spacelike hypersurfaces of a de Sitter space with constant mean
curvature, Tsukuba J. Math. 14 (1990), 353–370, where he proved part of
our Proposition 1.2.
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