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LOWER BOUNDS FOR GENERALIZED UPCROSSINGS OF
ERGODIC AVERAGES

S. E. FERRANDO, P. J. CATUOGNO, AND A. L. GONZALEZ

Abstract. New lower bound inequalities are obtained for generalized
upcrossings of ergodic averages. The results and techniques are com-

pared with those of E. Bishop on upper bounds. Moreover, a connection
between these results and spatial oscillations is established.

1. Introduction

Upcrossing inequalities (u.i.) are a basic tool in studying ergodic averages.
In particular, they imply the ergodic theorem. E. Bishop [2][3] established
upper bounds for (generalized) upcrossings by using two different techniques
and in a more general setting than that of ergodic averages. We complement
these results by giving lower bounds for generalized upcrossings in the set-
ting of measure preserving transformations and Cesaro averages. The main
motivation for studying lower bounds is that they give information on the
number of spatial oscillations for the ergodic averages. Lower bounds, in the
form of reverse inequalities, have also been studied in [5], but from a different
perspective.

We now describe the main result in our paper which establishes a strik-
ingly tight inequality. (Precise definitions are given later in the paper.)
Let wη,α,n(x) denote the number of generalized upcrossings up to time n
with respect to a function f and a transformation τ . Setting wη,α(x) =
supn wη,α,n(x), a constructive result of Bishop implies (using classical argu-
ments) ∫

η wη,α(x)dµ(x) ≤
∫

(f − α)+dµ(x).

Under appropriate conditions, our Theorem 2 shows that∫
(f − α− η)+dµ(x) ≤

∫
η wη,α(x)dµ(x).
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We note the fact that our result, in contrast to Bishop’s theorem, requires
using the function wη,α(x); it is not possible to obtain a similar result using
the finite time quantity wη,α,n(x).

The paper is organized as follows. In Section 2 we introduce the main
definitions and proceed to prove the basic counting inequalities. We present
new results on lower bounds along with Bishop’s results on upper bounds (as
presented in [3]). This can be done with little extra effort and shows the
similarities and the differences between our arguments and those of Bishop.
Section 3 introduces the concepts and intermediate results needed to integrate
the pointwise inequalities from Section 2; our main result, Theorem 2, is
then proved. Section 4 draws connections between generalized upcrossings
and other measures of spatial oscillations. Furthermore, Proposition 2 gives
information on the pointwise asymptotics of generalized upcrossings. For
completeness, the brief Section 5 states the dual results for downcrossings.
Finally, the Appendix states, for the reader’s convenience, a known result
needed in the main body of the paper.

2. Pointwise inequalities for generalized upcrossings

We adopt the convention that pointwise inequalities not containing explicit
quantifiers referring to a point x are valid for all values of x for which the
quantities involved are defined. In our setting, this means almost everywhere
(a.e.) on the measure space.

Definition 1. Given an integer n ≥ 0, a sequence P = (s1, t1, . . . , sm, tm)
is called n-admissible if −1 ≤ s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sm < tm ≤ n. We
let |P | = m denote the size of P . The finite set of all n-admissible sequences
is denoted by Pn. We allow the empty sequence P = ∅ and define |P | = 0 in
this case.

Definition 2. Let a−1, a0, . . . , an and b−1, b0, . . . , bn be given real num-
bers. A sequence P = (u1, v1, . . . , uN , vN ) is called an n-crossing sequence if
it is an n-admissible sequence which satisfies

aui ≤ bvi , i = 1, . . . , N,
aui+1 ≤ bvi , i = 1, . . . , N − 1.

(1)

Thus, a crossing sequence is a special kind of admissible sequence. The finite
set of all n-crossing sequences is denoted by Pn0 .

For a nonempty admissible sequence P = (s1, t1, . . . , sm, tm) we define

(2) S(P ) =
|P |∑
i=1

(bti − asi) .
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If P is empty we define S(P ) = 0. We let Pn1 be the set of n-admissible
sequences P1 with S(P1) maximal in Pn (i.e., the maximum is taken over
Pn), and we let Pn2 be the set of sequences P2 in Pn1 with |P2| maximal in
Pn1 .

The next lemma is essentially contained in Lemma 6 of [3, pp. 234–235].
We have added material needed to prove lower bounds and we rewrote the
lemma to serve our needs.

Lemma 1. The following two statements hold for any n ≥ 0:
(i) Pn1 ⊆ Pn0 .
(ii) If P2 ∈ Pn2 , then

|P2| ≥ |P | for all P ∈ Pn0 .

Proof. (i) Let P1 = (s1, t1, . . . , sm, tm) belong to Pn1 . If P1 /∈ Pn0 , there
would exist i, 1 ≤ i ≤ m, such that asi > bti , or 1 ≤ i ≤ m − 1 such that
asi+1 > bti . Then, deleting (si, ti) or (ti, si+1) from P1 we would obtain an
n-admissible sequence Q with S(Q) > S(P1), contradicting the maximality of
S(P1). Thus Pn1 ⊆ Pn0 .

(ii) Let P2 = (s1, t1, . . . , sm, tm) belong to Pn2 and let P = (u1, v1, . . . ,
uN , vN ) ∈ Pn0 . It is not possible that there exists i ∈ {1, . . . , N − 1} and
j ∈ {1, . . . ,m} such that

(3) sj < vi ≤ ui+1 < tj ,

for otherwise (i.e., if (3) holds) P ′ = (s1, t1, . . . , sj , vi, ui+1, tj , . . . , sm, tm)
would be n-admissible with |P ′| = |P2|+ 1 and

S(P ′) =
j−1∑
k=1

(
btj − asj

)
+ bvi − asj + btj − aui+1 +

m∑
k=j+1

(
btj − asj

)
= S(P ) + bvi − aui+1 ≥ S(P ),

which contradicts the fact that P2 ∈ Pn2 .
For convenience set t0 = −1 and sm+1 = n. By a similar argument, we see

that it is also not possible that, for some i = 1, . . . , N and some j = 0, . . . ,m,

(4) tj ≤ ui < vi ≤ sj+1.

Let us note that ui < tm for all i = 1, . . . , N. Thus for each i = 1, . . . , N there
exists j = j(i) = 1, . . . ,m such that

ui ∈ [tj−1, tj).

Now if i1 < i2, we have tj(i1)−1 ≤ ui1 , and keeping in mind that (3) and (4)
do not hold, we conclude

sj(i1) < vi1 , and thus tj(i1) ≤ ui2 .
This shows that the map i→ j(i) is injective, so N ≤ m. �
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We specialize the general setting just introduced to the following situation:
For a given real-valued and measurable function f(x) and a measurable point
transformation τ on a measure space (X,F , µ) we let fj(x) = T jf(x) =
f(τ jx) (so that f0 = f). We define I = {A ∈ F : τ−1(A) = A} and
call a set A ∈ I an invariant subset. We use the notation Atf(x) = 1/(t +
1)
∑t
j=0 f(τ jx) and set A−1f(x) = 0 for all x. For real numbers α and η

(η > 0) and given x we specialize the fixed finite sequences {ai} and {bi} in
Definition 2 as follows:

bt = bt(x) = bt,η,α(x) =
t∑

j=0

(fj(x)− α− η) ,

as = as(x) = as,α(x) =
s∑
j=0

(fj(x)− α) .

Of course, in the expressions above, a sum over an empty set has the value 0.
We extend the notations introduced earlier in a natural way by making explicit
reference to the point x and possibly to other parameters. For example, if
P = (s1, t1, . . . , sm, tm) ∈ Pn we define S(P )(x) =

∑m
j=1

(
btj (x)− asj (x)

)
.

Then Pn1 (x, η, α) (or, more compactly, Pn1 (x)) is the set of elements P ∈ Pn
such that S(P )(x) is maximal. In particular, Pn0 specializes to Pn0 (x, η, α).
An element P of this set is called an n-generalized upcrossing sequence at x.
The reason for using the term generalized upcrossing instead of crossing is
given by Proposition 1 (see also the remarks preceding Corollary 1) and our
use of crossings in Section 5. We will omit some of the parameters (mainly α
and η) if this causes no confusion. We use the notation

(5) λη,α,n(x) = max
P∈Pn

S(P )(x) = S(P1)(x),

where P1 is any element in Pn1 (x).
In the remainder of this paper, except for Section 5, the above conventions

and assumptions will be used freely without explicit mention.

Definition 3. For a given integer n ≥ 0, we define the (maximal) number
of n-generalized upcrossings at x by

wη,α,n(x) = max{|P | : P is an n-generalized upcrossing sequence at x}.

Also, we define the number of generalized upcrossings at x by

wη,α(x) = lim
n→∞

wη,α,n(x).

Without further restrictions nothing prevents wη,α(x) from being infinite at
this moment. We use the word generalized to distinguish wη,α,n(x) from the
usual (geometric) upcrossings defined in Definition 4.

Lemma 1 implies the following corollary.
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Corollary 1.

(6) |P2| = wη,α,n(x) and λη,α,n(x) = S(P2)(x),

where P2 is any sequence in Pn2 (x).

The following lemma is key to the proof of the lower bounds in Theorem 2.

Lemma 2. For all n ≥ 1 the following holds:

(7) λη,α,n−1(τx)− λη,α,n(x) ≤ η wη,α,n−1(τx)− (f(x)− α− η)+.

Proof. Suppose P ′ = (s′1, t
′
1, . . . , s

′
m′ , t

′
m′) ∈ Pn−1 is nonempty, and let si =

s′i+1, ti = t′i+1 for i = 1, . . . ,m′. This defines P = (s1, t1, . . . , sm′ , tm′) ∈ Pn
with s1 ≥ 0. Then

(8) S(P ′)(τx)− η m′ = S(P )(x) ≤ λη,α,n(x)− (f(x)− α− η)+.

The equality in (8) can be checked directly. To prove the inequality in (8)
notice first that if (f(x)−α−η) ≤ 0 the inequality holds. On the other hand, if
(f(x)−α− η) ≥ 0, define Q = (s0 = −1, t0 = 0, s1, t1, . . . , sm′ , tm′) ∈ Pn and
notice that S(P )(x) = S(Q)(x)−(f(x)−α−η) ≤ λη,α,n(x)−(f(x)−α−η)+. In
the case when P ′ = ∅, equation (8) still holds since λη,α,n(x) ≥ (f(x)−α−η)+.
Therefore, since P ′ is an arbitrary element of Pn−1, evaluating (8) at P ′ ∈
Pn−1

2 (τx) and using (6) we obtain

(9) λη,α,n−1(τx)− λη,α,n(x) ≤ η wη,α,n−1(τx)− (f(x)− α− η)+,

which is valid for any n ≥ 1. �

The next result complements the previous lemma; it can be found, in a
more general setting, in [3].

Lemma 3.

(10) η wη,α,n(x) ≤ λη,α,n−1(τx)− λη,α,n(x) + (f(x)− α)+.

Proof. Let P = (s1, t1, . . . , sm, tm) ∈ Pn and define P ′ = (s′1, t
′
1, . . . ,

s′m′ , t
′
m′) ∈ Pn−1 as follows: If t1 > 0 and m ≥ 1, let t′i = ti − 1, s′i = si − 1

for i = 1, . . . ,m and m′ = m with the understanding that s′1 = −1 if s1 = −1.
If t1 = 0 and m ≥ 2, take m′ = m − 1 and t′i = ti+1 − 1, s′i = si+1 − 1 for
i = 1, . . . ,m′. In the case t1 = 0 and m = 1, take P ′ = ∅. We then obtain

S(P )(x) ≤ S(P ′)(τx) + (f(x)− α)+ − η m(11)

≤ λη,α,n−1(τx) + (f(x)− α)+ − η m.

Using Corollary 1, we complete the proof. �

Let χA(x) denote the characteristic function of a set A.
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Lemma 4. For all n ≥ 1 we have

(12) wη,α,n(x) ≤ wη,α,n−1(τx) + χ{f(x)−α≥η}(x) χ{f(τx)−α≤η}(x).

Proof. We start with the following

Observation. Let 0 ≤ u, v ≤ n be given integers. If bv,η(x) ≥ au(x),
then bv−1,η(τx) ≥ au−1(τx).

Let

P (x) = {−1 ≤ s1(x) < t1(x) ≤ s2(x) < · · · < tm(x) ≤ n} ∈ Pn0 (x, η)

with m = wη,α,n(x). (We will suppress the parameter x in ti(x) and si(x)
when convenient.) The above observation implies

(13) wη,α,n(x) ≤ wη,α,n−1(τx) + χ{s1(x)=−1}(x).

It follows from (13) that it is enough to consider the case when s1(x) = −1
in the rest of the proof. To simplify the notation let A = {f(x)−α ≥ η} and
B = {f(τx)− α < η}. We consider the following two cases:

Case (I): χB(x) = 0. In this case we have s2(x) ≥ 2, for otherwise we
obtain a contradiction with the upcrossing condition

−
s2∑
j=0

(f(τ jx)− α) +
t1∑
j=0

(f(τ jx)− α− η) ≥ 0.

The condition χB(x) = 0 and s2(x) ≥ 2 imply t1(x) ≥ 1. Define

P ′ = {−1 ≤ s′1 < t′1 < s′2 < · · · < t′m ≤ n− 1},

where t′i = ti − 1, s′i = si − 1 for i ≥ 2, s′1 = −1, and t′1 = t1 − 1 if∑t1−1
j=0 (f(τ j+1x)− α− η) ≥ 0, and t′1 = 0 otherwise. We claim that

(14) P ′ ∈ Pn−1
0 (τx, η).

This will prove (12).
If t′1 = t1 − 1, then, by the above observation and since P ∈ Pn0 (x, η), in

order to prove (14) we only need to show that bt′1,η(τx) ≥ 0. But this holds
by our choice of t′1. If t′1 = 0, then bt′1,η(τx) ≥ 0 follows from the assumption
χB(x) = 0. Moreover, by the above observation and since P ∈ Pn0 (x, η), it
remains to show that

−
s′2∑
j=0

(f(τ jx)− α) +
t′1∑
j=0

(f(τ jx)− α− η) ≥ 0.

This again follows from the observation, our choice of t′1, and the assumption
χB(x) = 0.
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Case (II): χB(x) = 1. By (13) it is enough to consider the case when
χA(x) = 0. Under this condition we have t1(x) ≥ 1. Hence we can define

P ′ = {−1 ≤ s′1 < t′1 < s′2 < · · · < t′m ≤ n− 1}
by t′i = ti − 1, s′i = si − 1 for i ≥ 2, s′1 = −1 and t′1 = t1 − 1. We claim
that P ′ ∈ Pn−1

0 (τx, η), which will complete the proof of (12). By the above
observation and the fact that s1 = −1, we only need to check that bt′1,η(τx) ≥
0. But since P ∈ Pn0 (x, η) we have

(15) 0 ≤ bt1,η(x) = bt′1,η(τx) + f(x)− α− η.
Hence bt′1,η(τx) ≥ 0 follows from the assumption χA(x) = 0. �

The following lemma complements Lemma 4.

Lemma 5. Let α and η be real numbers (η > 0). Then for all η′ ≤ η/2
and n ≥ 1 we have

(16) wη′,α,n(x) ≥ wη,α,n−1(τx) + χ{f(τx)−α≤−η′}(x) χ{f(x)−α≥η′}(x).

Proof. We start with the following

Observation. Let −1 ≤ u1 < v ≤ u2 be given integers. If bv,η(τx) ≥
au1(τx) and bv,η(τx) ≥ au2(τx), then, since η′ ≤ η/2, it follows that bv+1,η′(x)
≥ au1+1(x) and bv+1,η′(x) ≥ au2+1(x).

We may assume throughout the proof that wη,α,n−1(τx) ≥ 1. Then, by
Corollary 1, there exists a set

P = {−1 ≤ s1 < t1 ≤ · · · < tm ≤ n− 1} ∈ Pn−1
2 (τx, η),

with m = |P | = wη,α,n−1(τx). Also, by Lemma 1(i) we have P ∈ Pn−1
0 (τx, η).

Define
P ′ = {−1 < s′1 < t′1 ≤ · · · < t′m ≤ n}

by s′i = si + 1, t′i = ti + 1, i = 1, . . . ,m. The above observation implies
P ′ ∈ Pn0 (x, η′). Since |P ′| = m = wη,α,n−1(τx), it follows that wη′,α,n(x) ≥
wη,α,n−1(τx). Therefore, to establish (16) we may assume for the rest of the
proof that x satisfies (f(τx)− α) ≤ −η′ and (f(x)− α) ≥ η′. The inequality
(f(τx)− α) ≤ −η′ implies

(17) s1 ≥ 0 and −

 s1∑
j=0

(f(τ j+1x)− α)

 ≥ −(f(τx)− α) ≥ η′.

To prove (17), notice that the conditions s1 = −1 and f(τx)−α−η ≤ −η′−η <
0 contradict the fact that P ∈ Pn−1

1 (τx, η). Similarly, the inequality

−

 s1∑
j=0

(f(τ j+1x)− α)

 < −(f(τx)− α)
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is impossible when s1 = 0, and for the other possible values of s1 it contradicts
the fact that P ∈ Pn−1

1 (τx, η).
Define now

P ′′ = {s0 = −1 < t0 = 0 ≤ s′1 < t′1 ≤ · · · < t′m ≤ n}.
Notice that |P ′′| = |P ′| + 1 = wη,α,n−1(τx) + 1. Therefore, to finish the
proof we need to show that P ′′ ∈ Pn0 (x, η′). Since, as indicated earlier, P ′ ∈
Pn0 (x, η′), and f(x)− α− η′ ≥ 0, we only need to prove that

−

 s′1∑
j=0

(f(τ jx)− α)

+ f(x)− α− η′ ≥ 0.

But this follows from (17), since

η′ ≤ −

 s1∑
j=0

(f(τ j+1x)− α)

 = −

 s′1∑
j=0

(f(τ jx)− α)

+ f(x)− α. �

3. Integral inequalities for generalized upcrossings

The following upper bound can be found in [3].

Theorem 1. Assume that α and η (η > 0) are given real numbers, τ
is a measure preserving transformation, and A an invariant subset. Then,
if χA (f − α)+ ∈ L1, we have

(18)
∫
A

η wη,α(x) dµ(x) ≤
∫
A

(f(x)− α)+ dµ(x).

Proof. The result follows by integrating (10) (after multiplication with χA)
and noticing that under our hypothesis χA(x)λη,α,n(x) ∈ L1 for all n. �

Lemma 6. Assume that τ is a measure preserving transformation, f ∈
L1, and that real numbers α and η (η > 0) are given. Then for each x for
which (α+ η) > limn→∞An(f)(x) the following limit exists as a real number:

(19) lim
n→∞

λη,α,n(x).

Proof. Consider x such that (α + η) > limn→∞An(f)(x). We show first
that there are positive integers t1 > t0 such that

(20)
t∑

j=0

(f(τ jx)− α− η) < 0 for all t ≥ t0,

(21)
t∑

j=0

(f(τ jx)− α− η)−
s∑
j=0

(f(τ jx)− α) < 0 for all t > s ≥ t0,
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and

(22)
t∑

j=0

(f(τ jx)− α− η) ≤
t0∑
j=0

(f(τ jx)− α− η) for all t > t1.

Let g(x) := limn→∞An(f)(x). Take ε = min(η/2, (α+ η − g(x))/2) and
t0 such that |Atf(x)− g(x)| < ε for all t ≥ t0. Then

(23) Atf(x)− α− η < ε+ g(x)− α− η ≤ g(x)− α− η
2

< 0.

This proves (20).
Let now t > s ≥ t0. For convenience set η′ = (g(x) − α) and notice that

ε ≤ (η − η′)/2. We consider two cases: If η′ ≥ 0, then
t∑

j=0

(f(τ jx)− α− η)−
s∑
j=0

(f(τ jx)− α)(24)

< (t− s) (g(x)− α)− (t+ 1) η + (t+ s+ 2) ε

<
(η − η′)

2
(2 + 2t) + (t+ 1)(η′ − η) = 0.

If η′ < 0, then
t∑

j=0

(f(τ jx)− α− η)−
s∑
j=0

(f(τ jx)− α)(25)

< (t− s) (g(x)− α)− (t+ 1) η + (t+ s+ 2) ε

< 2(t+ 1)
η

2
− (t+ 1)η = 0.

Hence (21) is proven.
We now prove (22). Define t1 = 3 t0 and take t > t1 + 1. To simplify the

notation let y = At0f(x) − α − η and z = Atf(x) − α − η. Since t > t0 we
have |y − z| ≤ 2 ε, so

(26)
∣∣∣y
z

∣∣∣ ≤ 2 ε
|z|

+ 1.

Moreover, from |Atf(x)− g(x)| < ε we obtain |z| > − ε+ |g(x)− α− η| ≥ ε,
where the last inequality follows from our choice of ε. Hence (26) gives∣∣∣y

z

∣∣∣ ≤ 2 ε
|g(x)− α− η| − ε

+ 1 ≤ 3.

By (20) we have y < 0 and z < 0. Hence (t0 + 1) y ≥ (t+ 1) z, which is (22).
Equations (21) and (22) prove that λη,α,n−1(x) = λη,α,n(x) for all n > t1 + 1.
Hence (19) is proven. �

The following lower bound is our main result.
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Theorem 2. Assume that f ∈ L1 and that α and η (η > 0) are given real
numbers. Let τ be a measure preserving transformation and A an invariant
subset with µ(A) <∞. Then if (α+ η) > limn→∞Anf(x) on A,

(27)
∫
A

(f(x)− α− η)+ dµ(x) ≤
∫
A

η wη,α(x) dµ(x).

Proof. We use the notation gn(x) = (λη,α,n(x)− λη,α,n−1(x)) χA(x). One
can check that 0 ≤ gn(x) ≤ (f(τnx) − α − η)+ χA(x) ≤ Tn(f(x) − α −
η)+ χA(x). We show next that hn(x) = Tn(f(x) − α − η)+ χA(x) (with
h(x) = h0(x) = (f(x) − α − η)+ χA(x)) is a uniformly integrable sequence,
and therefore gn(x) is also uniformly integrable. Since there exists a constant
a > 0, independent of n, such that ||hn||1 ≤ a ||f ||1, to prove the uniform
integrability it is enough to verify that for all ε > 0 there exists a constant
Kε which satisfies

∫
X

(hn −Kε)+ dµ(x) < ε for all n. To this end, take ε > 0
and choose Kε such that

∫
X

(h− h ∧Kε) dµ(x) < ε. Then∫
X

(hn −Kε)+ dµ(x) =
∫
X

(hn − hn ∧Kε) dµ(x)(28)

=
∫
X

(Tnh− Tnh ∧Kε) dµ(x)

≤
∫
X

Tn(h− h ∧Kε) dµ(x)

=
∫
X

(h− h ∧Kε) dµ(x) < ε.

Multiply (7) by χA(x) and integrate to obtain∫
A

(f(x)− α− η)+ dµ(x) ≤
∫
A

wη,α,n−1(x) η dµ(x)(29)

+
∫
A

(λη,α,n(x)− λη,α,n−1(x)) dµ(x).

We now apply Theorem 5 of the Appendix to the uniformly integrable
sequence gn(x). Notice that, by Lemma 6, limn→∞ gn(x) = 0 a.e. on A, and
by Lebesgue’s monotone convergence theorem we have limn→∞

∫
A
wη,α,n−1(x)

=
∫
A
wη,α(x). Hence, taking the limit as n→∞ in (29) and using (50) gives

(27). �

Remark 1. The condition α + η > limn→∞Anf(x) seems to be needed
because we are dealing with upcrossings. It can be removed once we introduce
downcrossings as we will do in Section 5. In the case when τ is ergodic and
µ(X) <∞ the condition becomes (α+ η)µ(X) >

∫
X
f .
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4. Generalized upcrossings and spatial oscillations

In this section we discuss the geometric meaning of generalized upcrossings
and establish a connection with the usual (geometric) upcrossings and with
oscillations (or jumps).

Definition 4 (Upcrossings). Given a function f(x), an integer n ≥ 0,
real numbers α and η (η > 0) and x ∈ X, define

(30) Uη,α,n(x) = max{k : ζ = (ur, vr)r=1,...,k.},

where the sequence ζ satisfies

(31) −1 ≤ u1 < v1 < u2 < · · · < vk ≤ n,

and

(32) Aurf(x) ≤ α and Avrf(x) ≥ (α+ η)

for r = 1, . . . , k. The sequence ζ is called an n-upcrossing sequence at x
and the space of these sequences is denoted by Un0 (x, η, α). The function
Uη,α(x) = limn→∞ Uη,α,n(x) will be referred to as the number of upcrossings
through the interval [α, α+ η] (see [3]).

The following simple proposition serves as a key motivation for the study
of upper bounds for wη,α.

Proposition 1. We have Un0 (x, η, α) ⊆ Pn0 (x, η, α), and hence

(33) Uη,α,n(x) ≤ wη,α,n(x).

Notice that in general limη→0 Uη,α(x) < ∞, unless, for example, in the
ergodic case (and finite measure), α =

∫
f/µ(X). The following proposition

gives information on what happens to wη,α(x) as η → 0.

Proposition 2. Assume that τ is an ergodic transformation. For any p ≥
0 define the measurable sets Ap,∞ = {x | lim infη→0 η

p wη,α(x) =∞}. Then

(34) µ(Ap,∞) = µ(X) or µ(Ap,∞) = 0.

If, in addition, (f − α)+ ∈ L1, then for any p ≥ 1

(35) µ(Ap,∞) = 0.

Proof. Consider first the case p = 0. In this case, lim infη→0 wη,α(x) =
limη→0 wη,α(x). From Lemmas 4 and 5 it follows that τ−1A0,∞ = A0,∞.
Therefore (34) follows from the ergodicity of τ .

Now consider the case p > 0. For each integer M define the sets Ap,M =
{x | lim infη→0 η

p wη,α(x) > M}. From Lemmas 4 and 5 it follows that

(36) Ap,M ⊆ τ−1(Ap,M ) ⊆ Ap,M/2p .
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Notice that for any k, Ap,∞ =
⋂∞
M=k Ap,M . Hence (36) gives Ap,∞ ⊆

τ−1Ap,∞ ⊆ Ap,∞. This proves that Ap,∞ is an invariant subset. There-
fore (34) follows from the ergodicity of τ . To prove (35), we just need to
consider p = 1. Applying Fatou’s theorem to (18) and to the invariant set
A = A1,∞ in that equation, we obtain lim infη→∞ ηwη,α(x) <∞ a.e. Hence
µ(A1,∞) = 0. �

Remark 2. In view of the above proposition and Theorem 2 it is natural
to expect that under rather general conditions we have, in fact, µ(Ap,∞) =
µ(X) for 0 ≤ p < 1.

Definition 5 (Jumps). Given a function f(x), a fixed integer n ≥ 0, a
real number η > 0 and x ∈ X, define

Jη,n(x) = max{k : ξ = (tr)r=0,...,k},

where ξ satisfies
−1 ≤ t0 < t1 < t2 < · · · < tk ≤ n

and

(37) |Atr+1f(x)−Atrf(x)| ≥ η, for all r = 0, . . . , k − 1.

Also define
Jη(x) = sup{Jη,n(x) : n ≥ 0}.

The function Jη will be referred to as the number of η-jumps.

Taken together, the proof of item (3) in the next lemma and Proposition 1
give a rather complete picture of the geometric meaning of generalized up-
crossings.

Lemma 7. For given real numbers α and η (η > 0) and any integer n ≥ 0
we have:

(1) If P = (s1, t1, . . . , sm, tm) ∈ Pn0 (x), then ti < si+1 for i = 1, . . . ,m−1.
(2) wη,α,n+1(x) = wη,α,n(x) or wη,α,n+1(x) = wη,α,n(x) + 1.
(3) If P = (s1, t1, . . . , sm, tm) ∈ Pn0 (x) with m = wη,α,n(x), then there

exists a sequence −1 ≤ θ0 < θ1 < θ2 < · · · < θm ≤ tm such that

(38) |Aθi+1f(x)−Aθif(x)| ≥ η

2
for all i = 0, . . . ,m− 1.

Proof. (1) If there exists i such that ti = si+1 we have bti − asi+1 = −(ti +
1)η < 0.

(2) Suppose that wη,α,n+1(x) > wη,α,n(x). Let P = (s1, t1, . . . , sr, tr) ∈
Pn+1

2 (x). By Lemma 1 we have (s1, t1, . . . , sr−1, tr−1) ∈ Pn0 (x) and wη,α,n(x) ≥
r − 1.
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(3) We will prove the assertion by induction on n. By (2) we may assume
wη,α,n(x) = wη,α,n−1(x) + 1 = m. Let P = (s1, t1, . . . , sm, tm) ∈ Pn0 (x). This
implies

(39) bti(x)− asi(x) ≥ 0 for i = 1, . . . ,m

and

(40) bti(x)− asi+1(x) ≥ 0 for i = 1, . . . ,m− 1.

We first prove that Atm−1f(x)−Asmf(x) ≥ η or Atmf(x)−Asmf(x) ≥ η. To
this end we first assume that Asmf(x) > α and Atm−1f(x) − Asmf(x) < η.
In this case we have

0 > tm−1(Atm−1f(x)− α− η)− tm−1(Asmf(x)− α)(41)

≥ tm−1(Atm−1f(x)− α− η)− sm(Asmf(x)− α)

= btm−1(x)− asm(x),

which contradicts (40).
Now, assume that Asmf(x) ≤ α and Atmf(x)−Asmf(x) < η. Then

0 > tm(Atmf(x)− α− η)− tm(Asmf(x)− α)(42)

≥ tm(Atmf(x)− α− η)− sm(Asmf(x)− α)

= btm(x)− asm(x),

which contradicts (39).
Since (s1, t1, . . . , sm−1, tm−1) ∈ Pn−1

0 (x), by the inductive hypothesis there
exists a sequence −1 ≤ θ0 < θ1 < θ2 < · · · < θm−1 ≤ tm−1 such that (38)
holds. We now need to define θm. It suffices to consider the following two
cases:

(i) Atm−1f(x) − Asmf(x) ≥ η: If θm−1 = tm−1, we take θm = sm < tm.
Suppose therefore that θm−1 < tm−1. If |Atm−1f(x) − Aθm−1f(x)| < η/2, it
follows that |Aθm−1f(x) − Asmf(x)| ≥ η/2, so we can again take θm = sm.
Otherwise, if |Atm−1f(x)−Aθm−1f(x)| ≥ η/2, we take θm = tm−1.

(ii) Atmf(x) − Asmf(x) ≥ η: If |Atmf(x) − Aθm−1f(x)| < η/2, then
|Asmf(x) − Aθm−1f(x)| ≥ η/2, and since clearly θm−1 < sm, we can take
θm = sm < tm. If |Atmf(x)−Aθm−1f(x)| ≥ η/2, we take θm = tm. �

The following corollary, which follows from item (3) in Lemma 7, permits
us to transfer all of our lower bound inequalities for wη,α,n(x) to lower bound
inequalities for Jη,n(x). From the results in [4] one can expect that the in-
equalities obtained in this way will in general not be tight.

Corollary 2.

sup
α

(wη,α,0(x)) ≤ Jη,0(x),

sup
α

(wη,α,n(x)) ≤ Jη′,n(x) for all η′ ≤ η/2 and n ≥ 1.
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5. Integral inequalities for generalized downcrossings

Given our techniques, it is of interest to consider generalized downcross-
ings. These could easily be related to quantities introduced previously and to
geometric downcrossings, but we will not do so here.

For real numbers α and η (η > 0) and given x we specialize the sequences
{ai} and {bi} given in Definition 2 as follows:

bt = bdt (x) = bdt,α(x) = −
t∑

j=0

(fj(x)− α) ,

as = ads(x) = ads,η,α(x) = −
s∑
j=0

(fj(x)− α− η) .

The set Pn0 in Definition 2 specializes to the set of n-generalized downcrossing
sequences, denoted by Pnd,0(x, η, α).

For a nonempty admissible sequence P = (s1, t1, . . . , sm, tm), we define

(43) Sd(P )(x) =
|P |∑
i=1

(
bdti(x)− adsi(x)

)
.

We let Pnd,1(x) be the set of n-admissible sequences P with Sd(P )(x) maximal
in Pn, and Pnd,2(x) the set of sequences P in Pnd,1(x) with |P | maximal. As
we did for upcrossings, we introduce the following notation for generalized
downcrossings.

Definition 6. For a given integer n ≥ 0 we define

(44) λdη,α,n(x) = max
P∈Pn

Sd(P )(x) = Sd(P1)(x),

where P1 is any element in Pnd,1(x). The (maximal) number of n-generalized
downcrossings at x is given by
(45)
wdη,α,n(x) = max{|P | : P is an n-generalized downcrossing sequence at x}.

Also, we define the number of generalized downcrossings at x by

wdη,α(x) = lim
n→∞

wdη,α,n(x).

With the above definitions, Lemma 1 is immediately applicable. Results
analogous to Corollary 1 and to Lemmas 2 and 3 can be obtained for the
quantities defined above. Finally, we have the following dual theorems for
generalized downcrossings.

Theorem 3. Assume χA (α + η − f)+ ∈ L1, where A is an invariant
subset with respect to τ , a measure preserving transformation. If α and η
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(η > 0) are given real numbers, then

(46)
∫
A

η wdη,α(x) dµ(x) ≤
∫
A

(α+ η − f(x))+ dµ(x).

Theorem 4. Assume that f ∈ L1 and that α and η (η > 0) are given real
numbers. Let τ be a measure preserving transformation and A an invariant
subset with µ(A) <∞. Then if (α+ η) ≤ limn→∞Anf(x) on A,

(47)
∫
A

(α− f(x))+ dµ(x) ≤
∫
A

η wdη,α(x) dµ(x).

By combining the results for generalized downcrossings and upcrossings we
can remove the hypothesis on α. To this end define mη,α(x) = max(wdη,α(x),
wη,α(x)). To simplify the statement, we assume in the following corollary that
X has finite measure.

Corollary 3. Let f ∈ L1, µ(X) < ∞, and let α and η (η > 0) be real
numbers. If τ is a measure preserving transformation and A an invariant set,
then

(48) min
(∫

A

(f − α− η)+dµ(x),
∫
A

(α− f)+dµ(x)
)
≤
∫
A

η mη,αdµ(x).

Appendix: Background material

Here we mention a known result used in the paper. It is an extension of
Lebesgue’s dominated convergence theorem to the setting of uniformly inte-
grable functions.

Definition 7. A sequence of measurable functions gn in a finite measure
space (A,µ) is said to be uniformly integrable if

(49)
∫
{|gn|≥c}

|gn| dµ→ 0 as c → ∞, uniformly in n.

Theorem 5 ([1, p. 295]). In the above setting we have: If gn(x) → g(x)
a.e., then g is integrable and

(50)
∫
A

lim
n→∞

gn dµ = lim
n→∞

∫
A

gn dµ.
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