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CONTRACTIVE AND COMPLETELY CONTRACTIVE
HOMOMORPHISMS OF PLANAR ALGEBRAS

TIRTHANKAR BHATTACHARYYA AND GADADHAR MISRA

Abstract. We consider contractive homomorphisms of a planar alge-
bra A(Ω) over a finitely connected bounded domain Ω ⊆ C and ask if

they are necessarily completely contractive. We show that a homomor-
phism ρ : A(Ω) → B(H) for which dim(A(Ω)/ ker ρ) = 2 is the direct
integral of homomorphisms ρT induced by operators on two-dimensional
Hilbert spaces via a suitable functional calculus ρT : f 7→ f(T ), f ∈
A(Ω). It is well known that contractive homomorphisms ρT induced

by a linear transformation T : C2 → C
2 are necessarily completely con-

tractive. Consequently, using Arveson’s dilation theorem for completely
contractive homomorphisms, one concludes that such a homomorphism

ρT possesses a dilation. In this paper, we construct this dilation explic-
itly. In view of recent examples discovered by Dritschel and McCullough,

we know that not all contractive homomorphisms ρT are completely

contractive even if T is a linear transformation on a finite-dimensional
Hilbert space. We show that one may be able to produce an example

of a contractive homomorphism ρT of A(Ω) which is not completely
contractive if an operator space which is naturally associated with the

problem is not the MAX space. Finally, within a certain special class

of contractive homomorphisms ρT of the planar algebra A(Ω), we con-
struct a dilation.

1. Introduction

All our Hilbert spaces are over complex numbers and are assumed to be
separable. Let T ∈ B(H), the algebra of bounded operators on H. The
operator T induces a homomorphism ρT : p 7→ p(T ), where p is a polynomial.
Equip the polynomial ring with the supremum norm on the unit disc, that is,
‖p‖ = sup{|p(z)| : z ∈ D}. A well-known inequality due to von Neumann (cf.
[18]) asserts that ρT is contractive, that is, ‖ρT ‖ ≤ 1, if and only if the operator
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T is a contraction. Thus in this case, contractivity of the homomorphism ρT is
equivalent to the operator T being a contraction. As is well known, Sz.-Nagy
[24] showed that a contraction T on a Hilbert space H dilates to a unitary
operator U on a Hilbert space K containing H, that is, Pp(U)h = p(T )h for
all h ∈ H and any polynomial p, where P : K → H is the projection of K onto
H. The unitary operator U has a continuous functional calculus and hence
induces a ∗-homomorphism ϕU : C(σ(U)) → B(K). It is easy to check that
P [(ϕU )|A(D)(f)]|H = ρT (f), for f in A(D), where A(D) is the closure of the
polynomials with respect to the supremum norm on the disc D.

Let Ω be a finitely connected bounded domain in C. We make the standing
assumption that the boundary of Ω is the disjoint union of simple analytic
closed curves. Let T be a bounded linear operator on the Hilbert spaceH with
spectrum σ(T ) ⊆ Ω. Given a rational function r = p/q with no poles in the
spectrum σ(T ), there is the natural functional calculus r(T ) = p(T )q(T )−1.
Thus T induces a unital homomorphism ρT = r(T ) on the algebra of rational
functions Rat(Ω) with poles off Ω. Let A(Ω) be the closure of Rat(Ω) with
respect to the norm ‖r‖ := sup{|r(z)‖ : z ∈ Ω}. Since functions holomorphic
in a neighborhood of Ω̄ can be approximated by rational functions with poles
off Ω̄, it follows that they belong to A(Ω).

The homomorphism ρT is said to be dilatable if there exists a normal op-
erator N on a Hilbert space K ⊇ H with σ(N) ⊆ ∂Ω̄ such that the induced
homomorphism ϕN : C(σ(N)) → B(K), via the functional calculus for the
normal operator N , satisfies the relation

(1.1) P (ϕN )|A(Ω)(f)h = ρT (f)h,

for h in H and f in A(Ω). Here P : K → H is the projection of K onto H.
The observations about the disk prompt two basic questions:

(i) When is ρT contractive?
(ii) Do contractive homomorphisms ρT necessarily dilate?

For the disc algebra, the answer to the first question is given by von Neumann’s
inequality while the answer to the second question is affirmative by Sz.-Nagy’s
dilation theorem. If the domain Ω is simply connected these questions can be
reduced to that of the disc (cf. [23]).

If the domain Ω is the annulus, while no satisfactory answer to the first
question is known, the answer to the second question was shown to be affir-
mative by Agler (cf. [4]).

If ρT : A(Ω)→M2 is a homomorphism induced by an operator T : C2 →
C

2 then it is possible to obtain a characterization of contractivity and then
use it to show that the second question has an affirmative answer. We do
this in Section 3.2. In Section 2, we show that a larger class of contractive
homomorphisms, we call them contractive homomorphisms of rank 2, dilate.
This is done by proving that the rank 2 homomorphisms are direct integrals
of homomorphisms induced by two-dimensional operators.
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Arveson (cf. [5] and [6]) has shown that the existence of a dilation of a
contractive homomorphism ρ of the algebra A(Ω) is equivalent to complete
contractivity of the homomorphism ρ. We recall some of these notions in
greater detail in Section 4. We then show how one may proceed to possibly
construct an example of a contractive homomorphism of the algebra A(Ω)
which does not dilate.

In the final section of the paper, we obtain a general criterion for contrac-
tivity. This involves a factorization of a certain positive definite kernel. More
importantly, we outline a scheme for constructing the dilation of a homomor-
phism ρT : A(Ω)→Mn induced by an operator T with distinct eigenvalues.
This scheme is a generalization of the construction of the dilation in Section
3.2.

2. Homomorphisms of rank two

A homomorphism ρ : A(Ω) → B(H) is said to be of rank n if it has the
property dim (A(Ω)/ ker ρ) = n. In this section, we shall begin construc-
tion of dilation for homomorphisms of rank 2. Nakazi and Takahashi showed
that contractive homomorphisms ρ : A(Ω) → B(H) of rank 2 are completely
contractive for any uniform sub-algebra of the algebra of continuous func-
tions C(Ω̄) (see [17]). We would like to mention here that a generalization of
this result was obtained by Meyer in Theorem 4.1 of [12]. He showed that
given a commutative unital closed subalgebra A of B(K) (for some Hilbert
space K) and a positive integer d, any d−1 contractive unital homomorphism
ρ : A →Md is completely contractive. In what follows, we construct explicit
dilations for homomorphisms from A(Ω) to B(H) of rank two.

We first show that any homomorphism ρ of rank 2 is the direct integral
of homomorphisms of the form ρT as defined in the introduction, where T ∈
M2. The existence of dilation of a contractive homomorphism ρT induced
by a two-dimensional operator T is established in [13] by showing that the
homomorphism ρT must be completely contractive. It then follows that every
contractive homomorphism ρ of rank 2 must be completely contractive. This
implies by Arveson’s theorem that they possess a dilation. However, it is not
always easy to construct the dilation whose existence is guaranteed by the
theorem of Arveson. In this case, we shall explicitly construct the dilation of
a homomorphism of rank 2. This is achieved by constructing the dilation of a
contractive homomorphism of the form ρT for a two-dimensional operator T .

Lemma 1. If ρT : A(Ω)→ B(L) is a homomorphism of rank two, then up
to unitary equivalence, the Hilbert space L is a direct integral

L =
∫ ⊕

Λ

Lλdν(λ) ,
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where each Lλ is two-dimensional. In this decomposition, the operator T is
of the form

T =
∫ ⊕

Λ

(
z1(λ) c(λ)

0 z2(λ)

)
dν(λ).

Proof. To begin with, it is easy to see (see Lemma 1 of [17]) that L is a
direct sum of two Hilbert spacesH and K and the operator T : H⊕K → H⊕K
is of the form(

z1IH C
0 z2IK

)
, with z1, z2 ∈ Ω or

(
zIH C

0 zIK

)
, with z ∈ Ω,

where C is a bounded operator from K to H. Now if we put K0 = (kerC)⊥,
K1 = kerC, H0 = Ran C and H1 = (Ran C)⊥, then with respect to the
decomposition K = K0 ⊕K1 and H = H0 ⊕H1 we have

C =
(
C̃ 0
0 0

)
where the operator C̃ is from K0 to H0. The polar decomposition of C̃ then
yields C̃ = V P , where the operator V is unitary and P is positive. We apply
the spectral theorem to the positive operator P and conclude that there exists
a unitary operator Γ :

∫ ⊕
Λ
Hλdν(λ)→ K0 which intertwines the multiplication

operator M on the Hilbert space
∫ ⊕

Λ
Hλdν(λ) and P .

Now notice that the operator T : H⊕K → H⊕K can be rewritten as
z1IH1 0 C̃K0→H0 0

0 z1IH0 0 0
0 0 z2IK0 0
0 0 0 z2IK1

 .

Interchanging the third and the second column and then the second and third
row, which can be effected by a unitary operator, we see that the operator
T is unitarily equivalent to the direct sum of a diagonal operator D and an
operator T̃ of the form (

z1IH0 C̃K0→H0

0 z2IK0

)
,

where C̃ has dense range. It is clear that if we conjugate the operator T̃ by
the operator IH0 ⊕ UH0→K0 , where U is any unitary operator identifying H0

and K0, then we obtain a unitarily equivalent copy of T̃ (again, denoted by
T̃ ), which is of the form(

z1IH0 C̃K0→H0UH0→K0

0 z2IH0

)
.

Now, if we apply the polar decomposition to C̃ then we see that the off
diagonal entry is a positive operator on H0. One then sees that T̃ is unitarily
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equivalent to (
z1I∫⊕

Λ Hλdν(λ) M

0 z2I∫⊕
Λ Hλdν(λ)

)
via conjugation using the operator Γ⊕Γ. We need to conjugate this operator
one more time using the unitary W that identifies

∫ ⊕
Λ
Hλdν(λ)⊕

∫ ⊕
Λ
Hλdν(λ)

and
∫ ⊕

Λ
Hλ ⊕ Hλdν(λ), where W (s1 ⊕ s2)(λ) = s1(λ) ⊕ s2(λ) for s1⊕2 ∈∫ ⊕

Λ
Hλdν(λ). It is easy to calculate WT̃W ∗ and verify the claim. �

In view of the above lemma, it is now enough to consider dilations of
homomorphisms ρT where T is a linear transformation on C2.

3. Dilations and Abrahamse-Nevanlinna-Pick interpolation

3.1. Consider any reproducing kernel Hilbert space HK of holomorphic
functions on Ω with K : Ω × Ω → C as the kernel. Assume that the mul-
tiplication operator M by the independent variable z is bounded. Then
M∗(K(·, z)) = z̄K(·, z) and it is clear by differentiation that M∗∂̄zK(·, z) =
K(·, z) + z̄∂̄zK(·, z).

The matrix representation of the operator M∗ restricted to the subspaceM
spanned by the two vectors K(·, z1) and K(·, z2) has two distinct eigenvalues
z̄1 and z̄2. Similarly, the operator M∗ restricted to the subspaceN spanned by
the two vectors K(·, z) and ∂̄zK(·, z) has only one eigenvalue z̄ of multiplicity
2. In the lemma below, we identify certain 2-dimensional subspaces of HK ⊕
HK which are invariant under the multiplication operator M∗ and then find
out the form of the matrix. The reproducing kernel K satisfies

K(z1, z2) = 〈K(·, z2),K(·, z1)〉, z1, z2 ∈ Ω,(3.1a)

(∂zK)(z, u) = 〈K(·, u), ∂̄zK(·, z)〉, u, z ∈ Ω.(3.1b)

Using (3.1) and applying the Gram-Schmidt orthogonalization process to the
set {K(·, z1),K(·, z2)}, we get the orthonormal pair of vectors

e(z1) =
K(·, z1)

K(z1, z1)1/2

and

f(z1, z2) =
K(z1, z1)K(·, z2)−K(z2, z2)K(·, z1)

K(z1, z1)1/2 (K(z1, z1)K(z2, z2)− |K(z1, z2)|2)1/2
.

Now for any µ ∈ D̄, the pair of vectors

h1(z1, z2) =

(
0

e(z1)

)
and h2(z1, z2) =

(
(1− |µ|2)1/2e(z2)

µf(z1, z2)

)
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are orthonormal in HK ⊕HK . Similarly, orthonormalizing the pair of vectors
{K(·, z), ∂̄zK(·, z)}, using (3.1b), we see that the pair {e(z), f(z)}, where

e(z) =
K(·, z)

K(z, z)1/2

and

f(z) =
K(z, z)∂̄zK(·, z)− 〈∂̄zK(·, z),K(·, z)〉K(·, z)

K(z, z)1/2
(
K(z, z) ‖∂̄zK(·, z)‖2 − |〈∂̄zK(·, z),K(·, z)〉|2

)1/2
are orthonormal. Now, for any λ ∈ D̄,

k1(z) =

(
0

e(z)

)
and k2(z) =

(
(1− |λ|2)1/2e(z)

λf(z)

)
form a set of two orthonormal vectors in HK ⊕HK .

Note that from the definition of M∗ it follows that M∗e(z1) = z̄1e(z1) for
all z1 ∈ Ω. Therefore we have (M∗ ⊕M∗)h1(z1, z2) = z̄1h1(z1, z2). Now,

M∗f(z1, z2) =
K(z1, z1)z̄2Kα(·, z2)−K(z2, z2)z̄1K(·, z1)

K(z1, z1)1/2(K(z1, z1)K(z2, z2)− |K(z1, z2)|2)1/2

= z̄2f(z1, z2) +
(z̄2 − z̄1)K(z1, z2)

(K(z1, z1)K(z2, z2)− |K(z1, z2)|2)1/2
e(z1).

It follows that M is invariant under M∗ ⊕M∗. In particular, we have

(M∗ ⊕M∗)h2(z1, z2) =
(

(1− |µ|2)1/2M∗e(z2)
µM∗f(z1, z2)

)
=

(
(1− |µ|2)1/2z̄2e(z2)

µ
(
z̄2f(z1, z2) + (z̄2−z̄1)K(z1,z2)

(K(z1,z1)K(z2,z2)−|K(z1,z2)|2)1/2 e(z1)
))

= z̄2

(
(1− |µ|2)1/2e(z2)

µf(z1, z2)

)
+

(
0

µ (z̄2−z̄1)K(z1,z2)
(K(z1,z1)K(z2,z2)−|K(z1,z2)|2)1/2 e(z1)

)

= z̄2h2(z1, z2) + µ
(z̄2 − z̄1)|K(z1, z2)|

(K(z1, z1)K(z2, z2)− |K(z1, z2)|2)1/2
h1(z1, z2),

where we have absorbed the argument of K(z1, z2) in µ.
Now recall that (M∗ − z̄)K(·, z) = 0. Differentiating with respect to z̄, we

obtain M∗∂̄zK(·, z) = K(·, z) + z̄∂̄zK(·, z). Thus the subspace N spanned by
the vectors k1(z), k2(z) is invariant under M∗. A little more computation,
similar to the one above, gives us the matrix representation of the restriction
of the operator M∗ ⊕M∗ to the subspace N .

So, we have proved the following lemma.

Lemma 2. The two-dimensional spaceM spanned by the vectors h1(z1, z2)
and h2(z1, z2) is an invariant subspace for the operator M∗ ⊕M∗ on HK ⊕
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HK and the restriction of this operator to the subspace M has the matrix
representation z̄1

µ(z̄2−z̄1)|K(z1,z2)|
(K(z1,z1)K(z2,z2)−|K(z1,z2)|2)1/2

0 z̄2

 .

Similarly, the two-dimensional space N spanned by the two vectors k1(z), k2(z)
is an invariant subspace for the operator M∗⊕M∗ on H⊕H and the restriction
of this operator to the subspace N has the matrix representationz̄ λK(z,z)

(K(z,z)‖∂̄zK(·,z)‖2−|〈∂̄zK(·,z),K(·,z)〉|2)1/2

0 z̄

 .

Let µ, λ be a pair of complex numbers and fix a pair of 2× 2 matrices As
and Bt defined by

(3.2) As =
(

z1 0
sµ(z1 − z2) z2

)
, z1, z2 ∈ Ω and Bt =

(
z 0
tλ z

)
, z ∈ Ω,

where s, t are a pair of positive real numbers. Let

sK =
|K(z1, z2)|

(K(z1, z1)K(z2, z2)− |K(z1, z2)|2)1/2
,(3.3a)

tK =
K(z, z)

(K(z, z)‖∂̄zK(·, z)‖2 − |〈∂̄zK(·, z),K(·, z)〉|2)1/2
.(3.3b)

It follows from the lemma that the matrix As (respectively, Bt) is the com-
pression of the operator M ⊕M on the Hilbert space HK ⊕HK to the two-
dimensional subspaces M (respectively, N ) if and only if s = sK and |µ| ≤ 1
(respectively, t = tK and |λ| ≤ 1).

A natural family of Hilbert spaces H2
α(Ω) consisting of modulus automor-

phic holomorphic functions on Ω was studied in the paper [2]. This family is
indexed by α ∈ Tm, where m is the number of bounded connected compo-
nents in C \Ω and T is the unit circle. Each H2

α(Ω) has a reproducing kernel
Kα(z, w). It was shown in [2] that every pure subnormal operator with spec-
trum Ω̄ and the spectrum of the normal extension contained in ∂Ω̄ is unitarily
equivalent to M on one of these Hilbert spaces.

In the following subsection, we will show that any contractive homomor-
phism of the algebra Rat(Ω) is of the form ρAs or ρBt with K = Kα and
|µ| ≤ 1 and |λ| ≤ 1, respectively. Since the operator M ⊕M is subnormal, we
will have exhibited the dilation.

3.2. Construction of dilations. The generalization of the Nevanlinna-
Pick theorem due to Abrahamse states that given n points w1, w2, . . . , wn in
the open unit disk, there is a holomorphic function f : Ω→ C with f(zi) = wi
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for i = 1, 2, . . . , n if and only if the matrix

(3.4) M(w,α) def= (((1− wiw̄j)Kα(zi, zj)))

is positive semidefinite. A deep result due to Widom (cf. [11, page 140])
shows that the map α 7→ Kα(z, w) is continuous for any fixed pair (z, w) in
Ω× Ω.

In what follows, we shall first show that a homomorphism ρ : Rat(Ω)→M2

is contractive if and only if it is of the form ρAs or ρBt with |µ| ≤ 1 and |λ| ≤ 1,
respectively and

(3.5a) s = sΩ(z1, z2) := sup
{
|r(z1)|2 : r ∈ Rat(Ω), ‖r‖ ≤ 1 and r(z2) = 0

}
for any fixed but arbitrary pair z1, z2 ∈ Ω, and

(3.5b) t = tΩ(z) := sup {|r′(z)| : r ∈ Rat(Ω), ‖r‖ ≤ 1 and r(z) = 0}
for z ∈ Ω.

We wish to point out that the extremal quantities sΩ(z1, z2) and tΩ(z)
would remain the same even if we were to replace the space Rat(Ω) by the
holomorphic function on Ω. The solution to the first extremal problem, with
holomorphic functions in place of Rat(Ω), exists by a normal family argu-
ment. Let F : Ω → D be a holomorphic function with F (z2) = 0 and
F (z2) = a, where we have set a = sΩ(z1, z2), temporarily. It then follows that
M((0, a),α) must be non-negative definite for all α ∈ Tm. Consequently, we
have

det
(
Kα(z1, z1) Kα(z1, z2)
Kα(z2, z1) (1− a2)Kα(z2, z2)

)
≥ 0

for all α ∈ Tm. This condition is equivalent to requiring

|a|2 ≤ 1− |Kα(z1, z2)|2

Kα(z1, z1)Kα(z2, z2)
(3.6)

≤ 1− sup
{

|Kα(z1, z2)|2

Kα(z1, z1)Kα(z2, z2)
: α ∈ Tm

}
.

As we have pointed out earlier, since α → Kα(zi, zj) is continuous for any
pair of fixed indices i and j, there exists a single α0 depending only on z1, z2

for which the supremum in the above inequality is attained. For this choice
of α0 and a, clearly the determinant of M((0, a),α0) is zero. It follows from
[11, Theorem 4.4, p. 135] that the solution is unique and hence is a Blaschke
product [11, Theorem 4.1, p. 130].

Similarly, the solution to the second extremal problem, with holomorphic
functions in place of Rat(Ω), is a function which is holomorphic in a neigh-
borhood of Ω̄ [11, Theorem 1.6, p. 114]. Hence it is the limit of functions
from Rat(Ω). The following Lemma first appeared as [13, Remark 2, p. 308].

Lemma 3. The homomorphism ρAs is contractive if and only if ‖r(As)‖ ≤
1 for all r in Rat(Ω) with ‖r‖ ≤ 1 and r(z1) = 0.
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The homomorphism ρBt is contractive if and only if ‖r(Bt)‖ ≤ 1 for all r
in Rat(Ω) with ‖r‖ ≤ 1 and r(z) = 0.

Proof. The two proofs are similar, so we shall prove only (1). Suppose r(A)
is a contraction for all r ∈ Rat(Ω) with ‖r‖ ≤ 1 and r(z1) = 0. We have to
prove that r(A) is a contraction for all r ∈ Rat(Ω) with ‖r‖ ≤ 1. For any such
rational function r, let r(z) = u. Put ϕu(z) = z−u

1−uz and ψ(z) = ϕu(r(z)).
Then ψ is in Rat(Ω), ‖ψ‖ ≤ 1 and ψ(z) = 0. By hypothesis, ψ(A) is a
contraction. Now note that ϕ−1

u (z) = z+u
1+uz . Since ϕ−1

u maps D into D, by
von Neumann’s inequality, ‖r(A)‖ = ‖ϕ−1

u ψ(A)‖ ≤ 1. �

This lemma makes it somewhat simple to derive the contractivity condi-
tions for the homomorphisms induced by As and Bt.

Lemma 4. The homomorphism ρAs is contractive if and only if

s2 = sΩ(z1, z2)−1 − 1 and |µ| ≤ 1.

Similarly, the homomorphism ρBt is contractive if and only if

t = tΩ(z)−1 and |λ| ≤ 1.

Proof. First, using the functional calculus for As, we see that

r

(
z1 0

sµ(z1 − z2) z2

)
=
(

r(z1) 0
sµ(r(z1)− r(z2)) r(z2)

)
=
(
r(z1) 0
sµr(z1) 0

)
,

assuming r(z2) = 0. Therefore, contractivity of ρAs would imply

s2|µ|2 + 1 ≤
(
sup

{
|r(z2)|2 : r ∈ Rat(Ω), ‖r‖ ≤ 1 and r(z2) = 0

})−1

= sΩ(z1, z2)−1.

Or, equivalently, if we put s = sΩ(z1, z2)−1 − 1, then we must have |µ| ≤ 1.
Now an application of Lemma 3 completes the proof.

To obtain the contractivity condition for ρBt , using the functional calculus,
we see that

r

(
z 0
tλ z

)
=
(

r(z) 0
tλr′(z) r(z)

)
=
(

0 0
aλr′(z) 0

)
assuming r(z) = 0. Therefore, contractivity of ρBt would imply that

t|λ| ≤ (sup {|r′(w)| : r ∈ Rat(Ω), ‖r‖ ≤ 1 and r(w) = 0})−1 = tΩ(z)−1.

Or equivalently, if we put t = tΩ(z)−1, then we must have |λ| ≤ 1. �

We now have enough material to construct the dilation for a homomorphism
ρT : A(Ω)→M2. In this case, T is a 2× 2 matrix with spectrum in Ω. Since
we can apply a unitary conjugation to make T upper-triangular, it is enough
to exhibit the dilation for the two matrices T = As and T = Bt.
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3.3. Dilation for As. Recall that there exists an α0 depending only on
z1 and z2 such that detM((0, a),α0) = 0. For now, set α0 = α. Let the
subspace M of H2

α ⊕H2
α be as in the first part of Lemma 2. For brevity, let

m2 = 1− |Kα(z1, z2)|2

Kα(z1, z1)Kα(z2, z2)
> 0.

Then

detM((0,m),α) =
(
Kα(z1, z1) Kα(z1, z2)
Kα(z2, z1) (1−m2)Kα(z2, z2)

)
= 0

by the definition of m. As we have pointed out earlier, there is a holomorphic
function f : Ω → D such that f(z1) = 0 and f(z2) = m. Moreover, if g is
any holomorphic function from Ω to D such that g(z1) = 0, then the matrix
M((0, g(z2)),α) is positive semidefinite, which implies that

|g(z2)|2 ≤ 1− |Kα(z1, z2)|2

Kα(z1, z1)Kα(z2, z2)
.

Thus

m = sup
{
|g(z2)| : g is a holomorphic function

from Ω to D and g(z1) = 0}.

Hence

sΩ(z1, z2)−1 − 1 =
1
m2
− 1 =

|Kα(z1, z2)|2

Kα(z1, z1)Kα(z2, z2)− |Kα(z1, z2)|2
= s2

K .

So by the first part of Lemma 2, we have that the restriction of the operator
M∗⊕M∗ to the subspaceM in the orthonormal basis {h1(z1, z2), h2(z1, z2)}
has the matrix representation A∗s with s2 = sΩ(z1, z2)−1−1 whenever |µ| ≤ 1.

3.4. Having constructed the dilation, it is natural to calculate the char-
acteristic function, in the sense of Sz.-Nagy and Foias, when Ω = D. In this
case, the general form of the matrix T discussed above is

(3.7) T :=
(

z1 0
µ(1− |z1|2)1/2(1− |z2|2)1/2 z2

)
,

where z1 and z2 are two points in the open unit disk D and µ ∈ C, |µ| ≤ 1.
We are using the explicit value of sD(z1, z2) for the unit disc.

Lemma 5. For i = 1, 2, let ϕi(z) = (z − zi)/(1− ziz). The characteristic
function of T is

θT (z) =
(

(1− |µ|2)1/2ϕ2(z) −µ
µ̄ϕ1(z)ϕ2(z) (1− |µ|2)1/2ϕ1(z)

)
.
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Proof. Recall thatM is the subspace spanned by the orthonormal vectors
h1(z1, z2) and h2(z1, z2). Since the compression of M ⊕M to the co-invariant
subspace M is T , by Beurling-Lax-Halmos theorem, we need to only find up
to unitary coincidence (see [25], page 192, for definitions) the inner function
whose range is M⊥. So let

(
f
g

)
be a vector in the orthogonal complement

of M. The condition of orthogonality to h1 implies that g(z1) = 0, which
is equivalent to g = ϕ1ξ for arbitrary ξ ∈ H2(D). Now the orthogonality
condition to h2 implies that (1−|µ|2)1/2f(z2)+µξ(z2) = 0, which is the same
as

(3.8) (1− |µ|2)1/2ϕ1(z2)f(z2) + µg(z2) = 0.

This implies that there is an η1 ∈ H2(D) such that

(1− |µ|2)1/2f + µg′ = ϕ2η1.

It is obvious that, conversely, if
(
f
g

)
is a function from H2(D)⊕H2(D) such that

g is in range of ϕ and satisfies (3.8), then it is in the orthogonal complement
of M.

Now let η2 = (1− |µ|2)1/2ξ − µ̄f. Then

θ

(
η1

η2

)
=
(

(1− |µ|2)1/2ϕ2η1 − µη2

µ̄ϕ1ϕ2η1 + (1− |µ|2)1/2ϕ1η2

)
=
(
f
g

)
.

Thus if
(
f
g

)
satisfies (3.8), then it is in the range of θ. Conversely, it is easy to

see that any element in the range of θ will satisfy (3.8). Thus the orthogonal
complement of M in H is the range of θ. So θ is the characteristic function
of the given matrix. �

We would like to remark here that for z1 = z2 the characteristic function
θT (u) for T :=

(
z 0

λ(1−|z|2) z

)
, |λ| ≤ 1, can be obtained directly from the

definition in case z = 0. A little computation, using the transformation rule
for the characteristic function under a biholomorphic automorphism of the
unit disk [25, pp. 239–240], produces the formula

θT (u) =
(

(1− |λ|2)1/2ϕ(u) λ
λ̄ϕ2(u) (1− |λ|2)1/2ϕ(u)

)
, u ∈ D

in the general case.



1192 TIRTHANKAR BHATTACHARYYA AND GADADHAR MISRA

Let Tµ be the matrix defined in (3.7). Note that if Tµ′ and Tµ are two such
matrices with |µ′| = |µ|, then

θTµ′ (z) =
(

(1− |µ′|2)1/2ϕ2 −µ′
µ̄′ϕ1ϕ2 (1− |µ′|2)1/2ϕ1

)
=
(

(1− |µ|2)1/2ϕ2 −eiψµ
e−iψµ̄ϕ1ϕ2 (1− |µ|2)1/2ϕ1

)
for some ψ ∈ [0, 2π]

=
(
eiψ/2 0

0 eiψ/2

)(
(1− |µ|2)1/2ϕ2 −µ

µ̄ϕ1ϕ2 (1− |µ|2)1/2ϕ1

)(
eiψ/2 0

0 eiψ/2

)
=
(
eiψ/2 0

0 eiψ/2

)
θTµ(z)

(
eiψ/2 0

0 eiψ/2

)
,

and hence their characteristic functions coincide. So they are unitarily equiv-
alent. Conversely, if Tµ′ and Tµ are unitarily equivalent, then their charac-
teristic functions coincide and hence the singular values of the characteristic
functions are same. Note that when z1 6= z2, we have

θTµ′ (z1)θTµ′ (z1)∗ =
(

(1− |µ′|2)|ω|2 + |µ′|2 0
0 0

)
for some ω ∈ C (independent of µ′). When z1 = z2, then

θTµ′ (z1)θTµ′ (z1)∗ =
(

0 |µ′|2
0 0

)
.

In either case, coincidence of θTµ′ and θTµ means that |µ′| = |µ|. Thus using
the explicit characteristic function we have proved the following.

Theorem 6. Two matrices Tµ′ and Tµ as defined in (3.7) are unitarily
equivalent if and only if |µ′| = |µ|.

3.5. Dilation for Bt. We now shift our attention to the construction of
dilation when the homomorphism ρT is induced by a 2×2 matrix T with equal
eigenvalues. So σ(T ) = {z}. The domain Ω has its associated Szego kernel,
which is denoted by K̂Ω(z, w). Recall that a generalization due to Ahlfors to
multiply connected domains of the Schwarz lemma says that

tΩ(z) := (sup {|r′(z)| : r ∈ Rat(Ω), ‖r‖ ≤ 1 and r(z) = 0})−1 = K̂Ω(z, z)−1.

Let ∂Ω be the topological boundary of Ω and let |dν| be the arc-length measure
on ∂Ω. Consider the measure dm = |K̂Ω(ν, z)|2|dν|, and let the associated
Hardy space H2(Ω, dm) be denoted by H. The measure dm is mutually abso-
lutely continuous with respect to the arc-length measure. Thus the evaluation
functionals on H are bounded and hence H possesses a reproducing kernel K.
Then it is known that K satisfies the property

K̂Ω(z, z)−1 =
K(z, z)

(K(z, z)‖∂z̄K(·, z)‖2 − |〈∂z̄K(·, z),K(·, z)〉|2)1/2
= tK ;
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see [13, Theorem 2.2]. Now a (subnormal) dilation for Bt :=
(

z 0
λtΩ(z) z

)
,

where |λ| ≤ 1, is the operator M ⊕M on the Hilbert space H ⊕ H. This is
easily verified since the restriction of M∗⊕M∗ to the subspace N , which was
described in the second part of Lemma 2, is B∗t .

Remark 7. If we choose |µ| = 1 then A∗s is the restriction of M∗ to the
two-dimensional subspace spanned by the vectors Kα(·, z1) and Kα(·, z2) in
the Hardy space H2

α(Ω) by our construction. Except in this case, the dila-
tion of the homomorphism ρAs we have constructed is a minimal subnormal
dilation. (This dilation then may be extended to a minimal normal dilation.)
While it is known that a minimal dilation is not unique when Ω is finitely
connected, our construction gives a measure of this non-uniqueness. More
explicitly, for each α0 ∈ Tm for which

sup
{

|Kα(z1, z2)|2

Kα(z1, z1)Kα(z2, z2)
: α ∈ Tm

}
=

|Kα0(z1, z2)|2

Kα0(z1, z1)Kα0(z2, z2)
,

the matrix representation of the operator M∗ ⊕ M∗ restricted to the 2-
dimensional subspace M of the Hilbert space H2

α0
⊕H2

α0
equals As.

4. The operator space

The problem that we are considering naturally gives rise to an operator
space structure. In this section, we show that. We begin by recalling basic
definitions.

A vector space X is called an operator space if for each k ∈ N there are
norms ‖ · ‖k on X ⊗Mk satisfying:

(1) Whenever A = ((aij)) ∈ Mk, ((xij)) ∈ X ⊗Mk and B = ((bij)) ∈
Mk, then

‖A · ((xij)) ·B‖k ≤ ‖A‖‖((xij))‖k‖B‖

where

A · ((xij)) ·B =

((
m∑
p=1

k∑
l=1

aipxplblj

))
∈ X ⊗Mk

and ‖A‖ and ‖B‖ are operator norms on Mk = B(Ck).
(2) For all positive integersm, k and for all R ∈ X⊗Mk and S ∈ X⊗Mm,

we have ∥∥∥(R 0
0 S

)∥∥∥
m+k

= max{‖R‖m, ‖S‖k}.

Two such operator spaces (X, ‖ · ‖X,k) and (Y, ‖ · ‖Y,k) are said to be
completely isometric if there is a linear bijection τ : X → Y such that
τ ⊗ Ik : (X, ‖ · ‖X,k)→ (Y, ‖ · ‖Y,k) is an isometry for every k ∈ N.

Let X be an operator space and let ρ : X → B(H) be a linear map, whereH
is a Hilbert space. If for each k ∈ N the map ρ⊗ Ik : (X, ‖ · ‖k)→ B(H⊗Mk)
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is contractive then ρ is said to be completely contractive. Let H be finite-
dimensional, let T ∈ B(H), let X = A(Ω) and let ρ = ρT be as defined earlier.
We assume that the eigenvalues z1, z2, . . . , zn of T are distinct.

To begin with, we introduce a notation. We denote by Ikz the subset of
C
n ⊗Mk defined as

Ikz = {(R(z1), R(z2), . . . , R(zn)) : R ∈ A(Ω)⊗Mk and ‖R‖ ≤ 1},

where ‖R‖ = supz∈Ω ‖R(z)‖. When k = 1, we denote it by Iz rather than I1
z .

Lemma 8. The set Iz defined above is a compact set.

Proof. Clearly, Iz is a subset of D̄n. So it is enough to show that Iz is a
closed set. Recall from Section 3 that the generalization of the Nevanlinna-
Pick theorem due to Abrahamse states that given n points w1, w2, . . . , wn in
the open unit disk, there is a holomorphic function f : Ω→ C with f(zi) = wi
for i = 1, 2, . . . , n if and only if the matrix

(4.1) M(w,α) def= (((1− wiw̄j)Kα(zi, zj)))

is positive semidefinite for all α ∈ Tm. So

Iz =
{

(w1, w2, . . . , wn) ∈ Dn : the matrix M(w,α)

is positive semidefinite for all α ∈ Tm
}

= {(w1, w2, . . . , wn) ∈ Dn : λmin(M(w,α)) ≥ 0 for all α ∈ Tn}

=
⋂
α∈Tm

{(w1, w2, . . . , wn) ∈ D̄n : λmin(M(w,α)) ≥ 0}

=
⋂
α∈Tm

(λmin(M(w,α)))−1 ([0,∞)) ,

where λmin(A) for a hermitian matrix A denotes its smallest eigenvalue. It is
a continuous function on the set of hermitian matrices (see, for example, [7,
Corollary III.2.6]). Thus w → λmin(M(w,α)) is a continuous function on Cn.
Since an arbitrary intersection of closed sets is closed, Iz is a closed set. �

It is easy to see that the set Ikz is convex and balanced, so it is the closed
unit ball of some norm on Cn ⊗ Mk. The sets of the form Ikz were first
studied, in the case k = 1, by Cole and Wermer [8]. The sets Ikz are examples
of matricially hyperconvex sets studied by Paulsen in [21]. Paulsen points out
that the sequence of sets Ikz ⊆ Cn⊗Mk determines an operator space structure
on Cm, that is, the set Ikz determines a norm ‖ · ‖z,k in Cn ⊗Mk such that
Ikz is the closed unit ball in this norm and the sequence {Cn ⊗Mk, ‖ · ‖z,k}
satisfies the conditions (1) and (2) above. We denote this operator space
by HCΩ,z(Cn). Paulsen also notes that this operator space is completely
isometric to a quotient of a function algebra. Indeed, it is not difficult to see
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that HCΩ,z(Cn) is completely isometrically isomorphic to the quotient of the
operator algebra A(Ω) by Z, where

Z = {f ∈ A(Ω) : f(z1) = f(z2) = · · · = f(zn) = 0}.
If k = 1, we will write ‖ · ‖z rather than ‖ · ‖z,1.

Lemma 9. There are n matrices V1, V2, . . . , Vn ∈ Mn such that the map
ρT ⊗ Ik : A(Ω)⊗Mk →Mn ⊗Mk is of the form

(ρT ⊗ Ik)R = V1 ⊗R(z1) + V2 ⊗R(z2) + · · ·+ Vn ⊗R(zn)

for any R ∈ A(Ω) ⊗Mk and any k ∈ N. The matrices Vi depend on the set
{z1, z2, . . . , zn}.

Proof. If F and G are two elements of A(Ω)⊗Mk which agree on the set
{z1, z2, . . . , zn}, then define H ∈ A(Ω)⊗Mk by H = F −G. Then H vanishes
at the points z1, z2, . . . zn and hence H(z) = (z − z1)(z − z2) . . . (z − zn)W (z)
for some W in A(Ω)⊗Mk. By the functional calculus,

(ρT ⊗ Ik)H = (T − z1)(T − z2) . . . (T − zn)W (T ).

Note that (z − z1)(z − z2) . . . (z − zn) is the characteristic polynomial of T
and by Cayley-Hamilton theorem, (T − z1)(T − z2) . . . (T − zn) = 0. Thus
(ρT ⊗ Ik)H = 0. So if F,G ∈ A(Ω)⊗Mk are such that F (zi) = G(zi) for all
i = 1, 2, . . . , n, then (ρT ⊗ Ik)F = (ρT ⊗ Ik)G. Now define V1, V2, . . . , Vn by

Vi = ρT

(
(z − z1) . . . (z − zi−1)(z − zi+1) . . . (z − zn)

(zi − z1) . . . (zi − zi−1)(zi − zi+1) . . . (zi − zn)

)
for i = 1, 2, . . . , n. Given R ∈ A(Ω)⊗Mk, it agrees with the function

R̃(z) =
n∑
i=1

(z − z1) . . . (z − zi−1)(z − zi+1) . . . (z − zn)
(zi − z1) . . . (zi − zi−1)(zi − zi+1) . . . (zi − zn)

R(zi)

on the set {z1, z2, . . . , zn} and hence

(ρT ⊗ Ik)R = (ρT ⊗ Ik)R̃

=
n∑
i=1

ρT

(
(z − z1) . . . (z − zi−1)(z − zi+1) . . . (z − zn)

(zi − z1) . . . (zi − zi−1)(zi − zi+1) . . . (zi − zn)

)
⊗R(zi)

=
n∑
i=1

Vi ⊗R(zi)

completing the proof of the lemma. �

The referee points out that V 2
i = Vi, 1 ≤ i ≤ n, and V1 + · · ·+ Vn = In. In

particular, V1, . . . , Vn of the preceding lemma cannot be arbitrary.
At this point, we note that A(Ω) being a closed sub-algebra of the com-

mutative C∗-algebra of all continuous functions on the boundary of Ω in-
herits a natural operator space structure, denoted by MIN(A(Ω)). Recall
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that a celebrated theorem of Arveson says that a contractive homomorphism
ρT : A(Ω) → L(H) dilates if and only if it is completely contractive when
A(Ω) is equipped with the MIN operator space structure. The contractivity
and complete contractivity of the homomorphism ρT amount to, respectively,

(4.2) sup
{
‖w1V1 + · · ·+ wnVn‖ : w = (w1, . . . , wn) ∈ Iz

}
≤ 1,

where ‖ · ‖ is the operator norm on Mn, and
(4.3)

sup

{
‖

n∑
i=1

Vi ⊗Wi‖ : Wi ∈Mk andW = (W1, . . . ,Wn) ∈ Ikz for k ≥ 1

}
≤ 1,

where ‖ · ‖ is the operator norm on Mn ⊗Mk. Now, we state the following
theorem whose proof is evident from the discussion above.

Theorem 10. The contractive homomorphism ρT : A(Ω)→Mn is com-
pletely contractive with respect to the MIN operator space structure on A(Ω)
if and only if the contractive linear map LT : (Cn, ‖ · ‖z) → Mn defined by
LT (w) = w1V1 +w2V2 + · · ·+wnVn is completely contractive on the operator
space HCΩ,z(Cn).

The theorem above brings us to our concluding remarks of this section.
Given a Banach space, there are two extremal operator space structures on it,
denoted by MAX(X) and MIN(X). We refer the reader to [20] for definitions
and basic details. However, this theorem shows that if HCΩ,z(Cn) is com-
pletely isometric to MAX(Cn, ‖ · ‖z), then every contractive homomorphism
ρT of the algebra A(Ω), induced by an n-dimensional linear transformation
T with distinct eigenvalues in Ω, will necessarily dilate. This gives rise to
the question of determining when HCΩ,z(Cn) is the same as MAX(Cn, ‖ · ‖z),
which is an interesting question in its own right.

In [20], Paulsen related a problem similar to the one that we are considering
to certain questions in the setting of operator spaces and thereby solved it.
For n ≥ 1, let G be a closed unit ball in Cn corresponding to a norm ‖ · ‖G
on Cn. Let A(G) denote the closure of polynomials in C(G), the algebra of
all continuous functions on G equipped with the sup norm. He showed that
if MIN(Cn, ‖ · ‖G) is not completely isometric to MAX(Cn, ‖ · ‖G), then there
exists a unital contractive homomorphism ρ : A(G)→ B(H), for some Hilbert
space H, which is not completely contractive. Paulsen proved the remarkable
result that for n ≥ 5,

(4.4) MIN(Cn, ‖ · ‖G) is not completely isometric to MAX(Cn, ‖ · ‖G),

for any closed unit ball G. For n = 2 and G = D
2, Ando’s theorem implies

that MIN(C2, ‖ · ‖D2) is completely isometric to MAX(C2, ‖ · ‖D2). The fact
that (4.4) holds for n ≥ 3 and any closed unit ball G is pointed out in [22,
Exercise 3.7].



CONTRACTIVE AND COMPLETELY CONTRACTIVE HOMOMORPHISMS 1197

In the same spirit, a similar question about a class of homomorphisms, first
introduced by Parrott [19] (see also [14], [15] and [16]), led Paulsen to define a
natural operator space, which he called COT. Let G be a unit ball and let w
be a point in the interior of G. Let X be the Banach space X = (Cn, ‖ ·‖G,w),
where ‖ · ‖G,w is the Caratheodory norm of G at the point w. The question of
whether COTw(X) is completely isometric to MIN(X∗) for w ∈ G was first
raised in [20]. Paulsen showed that the answer is affirmative when w = 0.
Later in an unpublished note, it was shown by Dash [9] that COTw(G) and
MIN(X∗) are not necessarily completely isometric. The question of deciding
whether a contractive homomorphism ρT : A(Ω) → B(H) is completely con-
tractive or not is similar in nature. It amounts to deciding if HCΩ,z(Cn) is
completely isometric to MIN(Cn, ‖ · ‖z) or MAX(Cn, ‖ · ‖z). It is likely that
the operator space HCΩ,z(Cn) is completely isometric to MIN(Cn, ‖ · ‖z) for
every n ≥ 3. We pose this as an open problem whose solution defies us at the
moment.

5. A factorization condition

Let T be a linear transformation on an n-dimensional Hilbert space V with
distinct eigenvalues z1, z2, . . . , zn in Ω. Let v1, v2, . . . , vn be the n linearly
independent eigenvectors of T ∗. If σ = {z1, z2, . . . , zn}, then define a positive
definite function K : σ × σ → C by setting

(5.1)
((
K(zj , zi)

))n
i,j

:=
((
〈vi, vj〉

))n
i,j=1

.

As before, let ρT : A(Ω)→ L(V ) be the homomorphism induced by T . Sup-
pose there exists a dilation of the homomorphism ρT . Then it follows from [1,
Theorem 2] that there is a flat unitary vector bundle E of rank n (see [2] for
definitions and complete results on the model theory in multiply connected
domains) such that ρT (f) is the compression of the subnormal operator Mf

on the Hardy space H2
E(Ω) to a semi-invariant subspace in it. Consequently,

for some choice of a flat unitary vector bundle E , the homomorphism

(5.2) ρM : A(Ω)→ B(H2
E(Ω))

dilates ρT . The homomorphism ρM is induced by the multiplication operator
M on H2

E(Ω), which is subnormal. Thus the homomorphism ρN : C(∂Ω) →
B(H) induced by the normal extension N on the Hilbert space H ⊇ H2

E(Ω) of
the operator M is a dilation of the homomorphism ρT in the sense of (1.1).
The multiplication operator M on H2

E is called a bundle shift. We recall [2,
Theorem 3] that dim ker(M − z)∗ = n. Let KEz (i), i = 1, 2, . . . , n, be a basis
(not necessarily orthogonal) of ker(M − z)∗. We set

(5.3) KE(zj , zi) :=
((
〈KEzi(`),K

E
zj (p)〉

))n
`,p=1

, for 1 ≤ i, j ≤ n.
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If ρT dilates, then the linear transformation T can be realized as the com-
pression of the operator M on H2

E(Ω) to an n-dimensional co-invariant sub-
space, say M ⊆ H2

E(Ω). The subspace M must consist of eigenvectors of the
bundle shift M . Let xi, 1 ≤ i ≤ n, be a set of n vectors in Cn and

M =

{
n∑
`=1

xi(`)KEzi(`) : 1 ≤ i ≤ n

}
.

The map which sends vi to
∑n
`=1 xi(`)K

E
zi(`), 1 ≤ i ≤ n, intertwines T ∗ and

the restriction of M∗ to M. For this map to be an isometry as well, we must
have

(5.4) 〈vi, vj〉 = 〈KE(zj , zi)xi, xj〉, xi ∈ Cn, 1 ≤ i, j ≤ n.
Conversely, if there is a flat unitary vector bundle E and n vectors x1, . . . , xn
in Cn satisfying (5.4), then ρT obviously dilates. So we have proved the
following theorem.

Theorem 11. The homomorphism ρT is dilatable in the sense of (1.1) if
and only if the kernel K, as defined in (5.1), can be written as

K(zj , zi) = 〈KE(zj , zi)xi, xj〉, for some choice of x1, . . . , xn ∈ Cn,
and some choice of a flat unitary vector bundle E of rank n.

It is interesting to see how contractivity of ρT is related to the above
theorem. Note that ρT is contractive if and only if ‖f(T )∗‖ ≤ ‖f‖ by the
definition of ρT . Since T ∗vi = z̄ivi, we note that f(T )∗vi = f(zi)vi, for
1 ≤ i ≤ n and f ∈ Rat(Ω). It then follows that

‖ρT (f)∗‖2 = sup

{
‖f(T )∗

(
n∑
i=1

αivi

)
‖2 : α1, α2, . . . , αn ∈ C

}

= sup

{
‖

n∑
i=1

αif(zi)vi‖2 : α1, α2, . . . , αn ∈ C

}

= sup


n∑

i,j=1

αiᾱjf(zi)f(zj)〈vi, vj〉 : α1, α2, . . . , αn ∈ C

 .

Therefore, ‖f(T )∗‖ ≤ ‖f‖ if and only if
n∑

i,j=1

αiᾱjf(zi)f(zj)〈vi, vj〉 ≤
n∑

i,j=1

αiᾱj〈vi, vj〉,

for all α1, α2, . . . , αn ∈ C and all f ∈ Rat(Ω) with ‖f‖ ≤ 1. Thus contractivity
of ρT is equivalent to non-negative definiteness of the matrix

(5.5)
((

(1− f(zi)f(zj))K(zj , zi)
))n
i,j=0

,
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for all f ∈ Rat(Ω), ‖f‖ ≤ 1. If ρT is dilatable then the theorem above tells
us that
(5.6)((

(1− f(zi)f(zj))K(zj , zi)
))n
i,j=0

=
((

(1− f(zi)f(zj))〈KE(zj , zi)xi, xj〉
))n
i,j=0

.

The last matrix is non-negative definite because M on H2
E(Ω) induces a con-

tractive homomorphism. We therefore see, in this concrete fashion, that if the
homomorphism ρT were dilatable then it would be contractive.

The interesting point to note here is that our construction of the dilation
of ρT when T is a 2 × 2 matrix proves that the general dilation in that case
is of the form H2

α(Ω)⊗ C2.
Suppose that the homomorphism ρT admits a dilation of the form

(5.7) ρM⊗I : A(Ω)→ B(H2
α(Ω)⊗ Cn)

for some α ∈ Tm, that is, the multiplication operator M ⊗ I on H2
α(Ω)⊗Cn

is a dilation of T . Since the eigenvectors {v1, v2, . . . , vn} for T ∗ span V and
the set of eigenvectors of M∗ ⊗ I : H2

α(Ω) ⊗ Cn → H2
α(Ω) ⊗ Cn at zi is the

set of vectors {Kα(·, zi) ⊗ aj : aj ∈ Cn, 1 ≤ j ≤ n} for 1 ≤ i ≤ n, it follows
that any map Γ : V → H2

α(Ω) that intertwines T ∗ and M∗ must be defined
by Γ(vi) = Kα(·, zi)⊗ ai for some choice of a set of n vectors a1, a2, . . . , an in
C
n. Now Γ is isometric if and only if

(5.8)
((
K(zj , zi)

))
=
((
〈vi, vj〉

))
=
((
Kα(zj , zi)〈ai, aj〉

))
.

Clearly, this means that
((
K(zj , zi)

))
admits

((
Kα(zj , zi)

))
as a factor in the

sense that
((
K(zj , zi)

))
is the Schur product of

((
Kα(zj , zi)

))
and a positive

definite matrix, namely, the matrix A =
((
〈ai, aj〉

))
.

Conversely, the contractivity assumption on ρT does not necessarily guar-
antee that Kα is a factor of K. However, if we make this stronger assump-
tion, that is, we assume there exists a positive definite matrix A such that((
K(zj , zi)

))
=
((
Kα(zj , zi)aij

))
, where A =

((
aij
))

. Since A is positive, it fol-
lows that A =

((
〈ai, aj〉

))
for some set of n vectors a1, . . . , an in Cn. Therefore

if we define the map Γ : V → H2
α(Ω) ⊗ Cn to be Γ(vi) = Kα(·, zi) ⊗ ai for

1 ≤ i ≤ n then Γ is clearly unitary and is an intertwiner between T and M∗.
Thus the theorem above has the following corollary:

Corollary 12. The homomorphism ρT is dilatable to a homomorphism
ρ̃ of the form (5.7) if the kernel K, as defined in (5.1), is the Schur product
of a positive definite matrix A and the restriction of Kα to the set σ × σ for
some α ∈ Tm.
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