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APPROXIMATIONS OF GENERALIZED
COHEN-MACAULAY MODULES

JURGEN HERZOG AND YUKIHIDE TAKAYAMA

ABSTRACT. It is shown that any generalized Cohen-Macaulay module
M can be approximated by a maximal generalized Cohen-Macaulay
module X up to a module of finite projective dimension, and such that
the local cohomology modules of M and X coincide for all cohomological
degrees different from the dimensions of the two modules. By a theorem
of Migliore there exist graded generalized Cohen-Macaulay rings which,
up to a shift, have predescribed local cohomology modules. Bounds for
this shift are given in terms of homological data.

Introduction

Let (R,m) be a Noetherian local ring of dimension n, and M a finitely
generated R-module. M is called a generalized CM-module if the ith local
cohomology HE (M) of M is of finite length for all i < dim M. We call M a
maximal generalized CM-module if dim M = n.

In this paper we show that if R is Gorenstein, then any generalized CM-
module R-module M of dimension d < n can be approximated by a maximal
generalized CM-module in way similar to the CM-approximations introduced
by Auslander and Buchweitz [3]. To be precise, we show in Theorem 1.1
that there exists an exact sequence 0 — Y — X — M — 0, where X
is a maximal generalized CM-module with H%(X) = 0, Y is of projective
dimension n—d—1, and where the epimorphism X — M induces isomorphisms
H!(X)— H (M) for i <n,i#d.

The result implies, in particular, that for any ideal I C R of codimen-
sion 2 for which R/I is a generalized CM-ring there exists an exact sequence
0—Y — X — I — 0, where Y is free, H?~}(X) = 0, and the induced ho-
momorphisms H (X) — H.'(R/I) are isomorphisms for i < n — 1. Such a
sequence for [ is called a Bourbaki sequence. Conversely, given a generalized
maximal CM-module X, constructions of Bourbaki sequences yield codimen-
sion 2 ideals I for which H{ (X) = Hi-Y(R/I) for i < n — 1. This technique
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has first been used by Evans and Griffith [6] to show that there exist codi-
mension 2 ideals I C S in a polynomial ring S such that S/T is generalized
CM with prescribed local cohomology.

For these constructions there is a graded analogue. In the graded situation
the following basic question arises: Let K be a field, S = K[z1,...,z,] a
polynomial ring, m = (z1,...,2,), 0 < d < n—1 an integer and My, ..., M4_1
graded S-modules of finite length. Does there exist a graded ideal I C S of
codimension n — d such that there exist graded isomorphisms H{ (S/I) = M;
fori=0,...,d—17

It has been shown [11] that there exists an integer co such that for all
¢ > ¢o there exists a graded ideal I with H. (S/I) = M;(—c). In Section 2,
under the assumption that K is an infinite field, we use arguments similar to
those of Migliore, Nagel and Peterson [12] and a general version of Bertini’s
theorem, due to Flenner [9], as well as some arguments on Hilbert functions,
to give formulas for this bound ¢y in terms of numerical data of the graded
resolutions of the M;. This bound is not sharp, but as we show in the last
section, it is sharp in codimension 2, if all but one M; vanish.

1. The approximation theorem

Let (R,m) be a local Cohen-Macaulay ring of dimension n, and let M
be a finitely generated R-module of dimension d. The module M is called
a generalized CM-module if HE (M) has finite length for all i # d. We say
that M has maximal dimension if dim M = n. The main purpose of this
section is to prove that if R is Gorenstein, then any generalized CM-module
of dimension d < n can be approximated by a maximal generalized CM-
module as described in the next theorem. A related result has been proved
by Amasaki in [2, Lemma 1.3].

THEOREM 1.1. Let (R,m) be a local Gorenstein ring, M a generalized
CM-module over R of dimension d < n. Then there exists an exact sequence

0 Y X —“4— M 0
with the following properties:
(a) (1) Hi(p): HL(X) — HL(M) is an isomorphism for i < n and
i #d;
(i) Hd(X) = 0.
(b) Y is a module of projective dimension n —d — 1.

Moreover, for any epimorphism ¢ : X — M satisfying (a), X is a mazimal
generalized CM-module.

The existence of a sequence 0 — Y — X — M — 0, where X is a
generalized CM-module, and Y has finite projective dimension, is guaranteed
by the approximation theorem [3] of Auslander and Buchweitz. For example,
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one could get such an exact sequence with X a maximal CM-module. However
our condition (a) excludes this case. Thus our approximation of M is not a
Cohen-Macaulay approximation in the sense of Auslander and Buchweitz.

In the course of the proof of Theorem 1.1 we shall need the following simple
lemma.

LEMMA 1.2. Let

d, dp_
G, ——— G, ot

da dy

Gy Gy 0

be a complex of mazimal CM-modules and with finite length homology. Then
for C; = Coker(d; 1) we have Hp(C;) =0 for all j with i < j < n.

- —_— G2

Proof. Let C; = Coker(d;+1), D; = Im(d;), K; = Ker(d;) and H; =

K;/D;;1. Then for i =1,...,r — 1 we have the following exact sequences:
(1) 0—H, —C; — D; — 0,
(2) 0_’Di+1 —>Ki—>Hi—>O,

Now (1) yields the isomorphisms HZ(C;) = Hi(D;) for j > 0, (2) the
isomorphisms Hf (Diy1) = Hi(K;) for j > 1, and (3) the isomorphisms
HI7(D;) = HL(K;) for j < n. The isomorphisms arising from (2) and (3)
imply H%(Di+1) = Hﬁfl(Di) for 1 < j < n, and thus the isomorphisms aris-
ing from (1) imply Hi (Cipq) = HLH(Cy) for 1 < j < n. Hence induction on
i proves the assertion. O

Proof of Theorem 1.1. Let t = depth M, set p = n — ¢ and let F,_; —
F,_9 — ... — Fy — M be the beginning of the minimal free resolution of M.
We put F,, = Ker(F,_1 — F,_2), and obtain the exact sequence

(4) 0—F —F 41— —Fh—F—M—Q0,

where Fj is free for i = 0,...,p — 1 and F}, is a maximal CM-module.

For an R-module W we set W* = Hompg(W, R) and WV = Homg(W, E),
where E is the injective hull of R/m. Then, dualizing (4) with respect to R,
we get the co-complex F* with F' = F for i = 0,...,p.

Let s =max{i:i <d, H.(M)#0},andset g=n—sand g=mn—d.

Since F}, is a maximal CM-module and R is a Gorenstein ring, it follows
that Ext’(F,, R) = 0 for i > 0, and hence H*(F*) = Ext:(M, R) for all i.
Thus by local duality we have H!(F*) = H2~*(M)", so that

-—»F;—>--~—>F;—>O7



1290 JURGEN HERZOG AND YUKIHIDE TAKAYAMA

has finite length homology in the range from ¢ to p, and is otherwise exact
except at cohomological degree g.

Now let C' = Ker(F; — F;,,), and let H, be a minimal free resolution of
C. Then we modify F* to obtain the co-complex

G.IO—>Hq_1—>"'—>H0—>E;—>"~—>F;—>O,

that is, we have G* = H,_1_; for i = 0,...,9 — 1, and G* = F; for i > g.
There is a homomorphism of co-complexes ¢*: F* — G*,

0 —— F} Fr,
‘| -]
0 —— Hy Hy
(6)
— F; Ff —— 0
<pgl sopl
— F F; —— 0,

where ¢' = id for i = ¢, ...,p. Dualizing this diagram with respect to R we
obtain the commutative diagram

0 F, .. F,
@pT @gT
0 F, F,
(7)
Fyos Fy —— 0
Wg—l/[ voT
H H | —— 0,
with ; = (¢*)* for i = 0,...,p, and where the lower row of the diagram is

the complex L, = (G*)*. We claim that L, is acyclic. In fact, H;(L,) = 0 for
1 > g, because in homological degree i > g the complexes L, and F, coincide.
Let D = Coker(F,_; — Fy). Then

Hg_l‘>'~'*>HO*>F;‘>'~'*>F;_1—>F;*>D*>O
is the beginning of a free resolution of D. It follows that H;(L,) = Ext?{i(D, R)

= HX ""Y(D)Y for 0 < i < g. By 1.2 we have Hi (D) = 0 for all j with
p—q < j<mn,and therefore H;(L,) =0 forall 0 < i <g.
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We now define a slightly modified complex L/ with Ly = Lo® Fo = Hy 1@
Fy, and L] = L; for i > 0. The chain map H; , =L} — Ly =H;  © Fy is
given by a — (91(a),0), where 0, is the chain map of L,. It is clear that L’
is again acyclic with Ho(L') = Ho(L.) ® Fp.

We define the complex homomorphism ¢/ : L) — F, as follows: (), Hr , =
vo, (¢0)m, = id, and ¢} = ¢; for all i > 0. Then ¢{: Ly — Fp is surjective
(and this is why we modified L,).

Set X = Ho(L'), and let ¢: X — M be the homomorphism induced by ¢’.
We claim that ¢: X — M has all the desired properties. In fact, since L’ is
acyclic with L] free fori = 0,...,p—1 and L;, = F), is a maximal CM-module,
it follows that Ext%(X,R) = H'((L')*) = H'((L.)*) = H*(G") for i > 0.
Hence Ext’ (X, R) = 0 for 0 < i < ¢; equivalently, H: (X) = 0 for s < i < n.
Therefore (a)(ii) is satisfied, and (a)(i) is also satisfied for s < ¢ < n since
Hi(M) =0 for s <i < nand i # d. Moreover, we deduce from diagram
(6) that Exts(¢, R): Exth(M,R) — Exts(X,R) is an isomorphism for all
i > q, which is equivalent to saying that HE (p): H.(X) — Hi (M) is an
isomorphism for ¢ < s. This proves assertion (a).

In order to prove (b) we form the mapping cone of C,(¢’) of ¢/ and get
the short exact sequence of complexes

0— F. — C.(¢)) — L[-1] —0,

where L’[—1] is the complex L’ shifted in homological degree by —1, that is,
(L'[-1]); = L;_, for all 4. Since F, and L’ are acyclic complexes it follows
that H;(C, (¢ )) =0 for ¢ > 1. Moreover, we get the exact sequence

(

0 — Hy(C.(¢.)) — Ho(L]) — Ho(F.) — Ho(C.(¢.)) — 0.

Notice that Ho(L)) — Ho(F,) = ¢: X — M. Hence H;(C(¢’)) =Y, and
Ho(C.(¢")) = 0, since ¢ is surjective. Let U, be the subcomplex of C’,( ")
with U; = Fy for i = 0,1, U; = 0 for ¢ > 1 and the identity as chain map
Uy — Up. Let C, = C.(¢))/U.. Then C; = L;—1 @ F; for i = 1,...p,
Cpt1 = Ly, and C, is acyclic with H1(C.) = Y. Recall that ¢, = id for
i=g,...,p, which implies that the subcomplex

Voi0— Ly, — L, 1®F,— - —Li®F; — Fg—0

is exact. It follows that the quotient complex C, = C., /V. is an acyclic complex
of free modules of length g — 1 with H; (C’) = Y. This implies that the
projective dimension of Y is < g — 1.

It remains to show that for an exact sequence 0 - Y — X — M — 0
satisfying condition (a) one has dim X = n. Suppose dimX < n. Then
dim X < d because H{ (X) =0 for i > d by (a)(i) and (ii). Then by the short
exact sequence we know that d = dim M < dim X < d, a contradiction. O

We denote by Q;(M) the ith syzygy module of M.
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COROLLARY 1.3. Let (R,m) be a local Gorenstein ring of dimension n,
and M a generalized CM-module over R of dimension d < n. Then for all
j < mn —d there exists an exact sequence

0 Y; X; — ;M) —0
with the following properties:
(a) (1) Hi(pj): HL(X;) — HL(Q;(M)) is an isomorphism fori < n—j
and i # d + j;
(i) HEH(X) = 0.
(b) Y; is a module of projective dimension <n—d—j —1.

Proof. We refer to the notation of Theorem 1.1. Let F, be the minimal
free resolution of M, and G, the minimal free resolution of Y. Then there is
a free resolution L, of X, not necessarily minimal, and an exact sequence of
complexes

0—G, —L,—F, —0
such that 0 — Ho(G,) — Ho(L,) — Hy(F,) — 0 is the exact sequence of 1.1.
For each j < n — d, this sequence of complexes induces an exact sequence
0—Q;(Y) — Q;(X) & H — Q;(M) — 0,
where H; is a suitable free R-module. This is our desired exact sequence with
}/}:Q](Y), and XJ:QJ(X)@HJ D
If we let M = R/I, where I is of codimension 2, then 1.3 implies:

COROLLARY 1.4. Let (R,m) be a local Gorenstein ring of dimension n,
I C R an ideal of codimension 2 such that R/I is a generalized Cohen-
Macaulay ring. Then there exists an exact sequence

0—Y — X —1T—0,
where Y is free, HX"Y(X) = 0, and the induced homomorphisms H (X) —
Hi(I) = HiZY(R/I) are isomorphisms for i <mn — 1.

There is also a converse to 1.4.

PROPOSITION 1.5.  Let (R, m) be a local Gorenstein ring, and let
0—Y —X—1—0

be a non-split exact sequence of R-modules, where Y is free, X is a generalized
mazimal CM-module and I is an ideal in R of codimension > 1. Then I is of
codimension 2 and R/I is a generalized CM.

Proof. Let dim R = n. Since Y is free it follows that HE (X) = HE (1) =
Hi7Y(R/I) for i <n—2. It follows that R/I is a generalized CM ring, because
dim(R/I) < n — 2, by assumption. Suppose dim(R/I) = d < n — 2. Then
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Extp(I, R) = Ext}(R/I,R) = 0, and hence Exty(I,Y) = 0 for any finitely
generated free R-module Y. This implies that there exists no non-split exact
sequence 0 - Y — X — I — 0, a contradiction. U

2. Graded generalized CM rings

Let K be an infinite field, S = K|[z1,...,x,] the polynomial ring over K
and m = (21,...,2,). For a graded module N = @,_, N; and a € Z, we
define the graded module N(a) to be given by N(a); = Nyy; for i € Z. In
[11, Proposition 1.2.8] the following is shown:

Let d be an integer with 1 < d < n — 1, and let My,...,My_1 be
graded S-modules of finite length. Then there exists an integer cg

such that for all ¢ > ¢, there exists an ideal I, C S of codimension
n — d such that HE (S/1.) = M;(—c) for i =0,...,d — 1.

(%)

Actually Proposition 1.2.8 in [11] is somewhat stronger than quoted in (x);
it also shows that there exists a smallest number ¢, satisfying the conditions
of ().

The proof of (x) is based on a result of Migliore, Nagel and Peterson [12],
where it is shown that for a suitable integer ¢ there exists I, C S of codimen-
sion n — d with H: (S/I.) = M;(—c) for i = 0,...,d — 1, and on results by
Bolondi and Migliore [4]. The proof of Migliore, Nagel and Peterson in [12]
generalizes a construction by Evans and Griffith [6], using Bourbaki sequences,
where a similar result was shown in codimension 2.

The purpose of this section is to describe a bound ¢y as described in (x)
in terms of the modules M;. We may assume that @, M; # 0. There exists
an integer m such that (z1,...,2,)"M; =0for i =0,...,d — 1. By a strong
version of Bertini’s theorem as it is proved by Flenner [9, Satz 5.4] we can find
a regular sequence f1,..., fn—d—2 € Spm41 such that R = S/(f1,..., fn—d—2)
is regular on the punctured spectrum. By Grothendieck’s theorem [8, Exposé
XI, Corollary 3.14], R is a factorial Gorenstein domain. In Flenner’s theorem,
which is much more general, it is required that char K = 0. But as Flenner
pointed out to us, for the existence of a regular sequence as above one only
needs that K is an infinite field. The argument is similar to that in the proof
of 9, Satz 4.1].

The M; may be viewed as R-modules since they are annihilated by fi,...,
Fr—d—z. We set M = @7 QF | (M,).

Note that for any finitely generated graded S-module N of Krull dimension
d, the Hilbert series Hy(t) of N is of the form

Qn(t)

Hy(t) = O

where Qn (t) € Z[t,t7!] and Qn (1) # 0.



1294 JURGEN HERZOG AND YUKIHIDE TAKAYAMA

Let a be the highest degree of a generator in a minimal set of generators of
M, and let r be the rank of M. With the notation introduced we then have:

THEOREM 2.1.  For a bound ¢y as in (x) we can choose
rQp(1) — Q) (1)
Qr(1)

with a ring R and a module M constructed as above.

co = + (r —1)a.

The proof of the theorem will depend on a slight refinement of arguments
used in [12] as well as on an observation on Hilbert functions.

Proof of (2.1). Note that

i 0 ifj<d+2andj#i+1
J R . ~ ) J J )
Hin (2542 (M2) _{ M;, ifj=i+1.

Thus it follows that HiF'(M) = M; for i = 0,...,d — 1. Let ai,...,a,_1
be any integers > a. Since M is torsion free and R is normal, it follows by
a theorem of Flenner [9, Satz 1.5] that there exists a free submodule Y =
@:;11 R(—a;) of M such that M/Y is a rank 1 torsion free module. In other
words, for all integers a; > a we can find a Bourbaki-sequence

0 — @ R(~a;) — M — Jo(c) — 0,

where J. C R is a graded ideal. Note that J. # 0, since by assumption at
least one of the M; is non-trivial. We may assume that codim J, > 1. In fact,
since R is factorial, J. = fJ, for some f € R and J of codimension 2, and we
may replace J. by J, if f is not a unit.
According to Proposition 2.2(a) below the shift ¢ can be any number greater
than or equal to
rQr(1) — @y (1)
Qr(1)
since the a; > a can be chosen arbitrarily.
Now let I. C S be the preimage of J.. Then S/I. = R/J., and hence
dim S/I. = dim R/J. = d, and the Bourbaki sequence implies that

HE(S/1.) = Hi(R}J.) = Mi(~0). 0

cop = + (r — 1)a,

PROPOSITION 2.2. Let R = S/J be a graded K-algebra. Consider the
ezact sequence of graded R-modules

0—F—M—I(c) — 0,

where F' is free, M = Q;41(N) is the (j + 1)th syzygy-module of a module N
of finite length, say,

0O—M-—F— - —F—N-—0
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with F; = @, R(—bir), and where I C R is a graded ideal of codimension 2.
Suppose r = rank M. Then:

(a) Let F =&, R(—a;). Then we have

Qe - Qu() | -,
a Qr(1) +; "
(b) rQr(1) — Q1) _ ]+1Z szk

Qr(1)

Proof. Let d = dim R. Since
0— F(—¢) — M(—¢) — I —0
is an exact sequence of modules which are all of dimension d, it follows that
(8) Qr(t) = (Qu(t) — Qr(t))t
Since I is of codimension 2, the exact sequence
0—I—R-—R/I—0
yields
(1= 1)?Qryi(t) = Qr(t) — Qr(t).
This implies Qr(1) = Q7(1) and Q’z(1) = Q7(1). Thus, by (8),
Qr(1) =Qs(1) =Qu(1) — Qr(1),
and
Qr(1) = Q1(1)=QN(1) - Qr(1) + (Qu(1) — Qr(1))c
Qu(1) = Qr(1) + Qr(1)e.

Therefore

_ Qr(1) + QR(1) — Q4 (1)
Qr(1) '

Since Qp(t) = QR()(ZT e ) we see that

Qr(1) = Qp(L)(r — 1) + Qr(1 <Z> .

Hence

_ mQR(1) — Q1) o
B Qr(1) +Z b

It remains to prove (b). Since dim N = 0, the exact sequence

0O—M—F— - —F—N-—0
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yields
Qut) =Qr;(t) — Qr;_, (t) +---

o (1 Qr () + (1) (L = 0)7QN ().

Therefore ‘
Qu(1) = (=1) i(—l)l 7 (1)

Since -

Qr,(t) = Qr(t) (Z tbm> :
we have '

QF, (1) = Qr(1) rank F; + Qr(1) <zk: bz‘k) .

Hence

Qhy(1) = Qr(1)(-1) Z(—l)irankFi

=0
+Qr(-1Y (1) bu
1=0 k
= Qr()r +Qr(1)(=1)? Y (<1 Y bu
=0 k

We conclude that

rQ(1) = Q1) s,
= (D)= b
1=0 k *

Qr(1)

as desired.

O

We conclude this section by computing the number ¢ in Proposition 2.2 in

some cases explicitly.

EXAMPLES 2.3. (a) Welet R =S = Klx1,...,2,], N = K, and M =
Q41(K). All generators of M are of degree j+ 1 because the Koszul complex
K, of the sequence z1,...,z, provides a minimal graded free S-resolution of
K. We also take a (general enough) free submodule F' = @:;11 R(—j—1) of

M, so that M/F is isomorphic to a codimension 2 ideal. Then we see that

Qut) = (-1 é(_m@ £,

3
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Therefore

r = rank M = Qu(1 ﬂzjj ():("‘,I).

=0

~.

We set

o, ) = Qi1 Z ()

An easy calculation shows that

a(n,j) + a(n— 1,7—-1)

I I
Qs
= 7
|
— =
< %
<
| — |
=z
. 3
+ ~_
I~ |
_—
G
N
—
+ ~_
—
3
I
— 3
\—/§|
S
—
~_
<

so that

o= (G20 (")

Therefore

(b) We let R = S/(f), where f is a quadratic form, N = K and M =
Q;41(K). Since R is a complete intersection, the Tate resolution provides
a minimal graded free resolution of K over R. It follows that K has linear
R-resolution and that the Poincaré series of K is given by

1+ (140"t [(ESn-1\,) (S
P(t):(lttl = ! Y_)t (Z( . >t> (Zt)

=0 1=0

Thus if we set a; = (":1) and denote by b; the ith Betti number of K, we get
b; = ZZ:O ay, for all 1 > 0.

The formulas in 2.2 (with F' = @:;11 R(—j — 1) a general enough graded
free submodule of M) imply that

—1)jzj:(—1)ibi and c¢=— JZJ: )eib; + (r — 1)(j + 1).
=0

=0
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From this it follows that

. ZJ/Q j—2k+2 2k+2 ((n2—kl) _ (272—711)) 1, if j is even,
G-1)/2 # ((2@11) - (n;kl)) —j—1, ifjisodd.

According to Theorem 2.1 for any number ¢’ greater than or equal to the
number computed in Examples (a), respectively (b), there exists a graded
codimension 2, respectively codimension 3, ideal I C S such that H&(S /I) =
K(—c'), and H.(S/I) =0 for i < dimS/I, i # j. The bounds given by 2.1
are not sharp in general, but as we shall see in the next section, the bounds
are sharp in codimension 2. 4

Other constructions of ideals I C S such that Hj(S/I) = K(—c), and
Hi(S/I)=0 for i < dimS/I, i # j, are given in [7] and [10].

3. Graded generalized CM rings of codimension 2

Let S = Klx1,...,zy] be the polynomial ring over an infinite field K and
m = (x1,...,T,). In this section we study the special case of generalized CM-
rings R = S/I of dimension n — 2 and depth ¢ < n — 2 for which H{ (R) =0
fori <n —2and i #t.

PROPOSITION 3.1. Let I C S be a graded ideal such that R = S/I is a
generalized CM-ring of codimension 2 and depth t. The following conditions

are equivalent:

-  J0, fori<n—2andi#t,
(a) Hy(R)= -
M, fori=t.

(b) There exists an exact sequence of graded modules
0 —F —Up(M)eoG— I —0,

where F' and G are graded free S-modules and Q441 (M) is the (t+1)th syzygy-
module of M over S.

Proof. Tt is obvious that (b)=-(a). For the converse implication we use
1.4, and thus it remains to show that if X is a graded S-module of maximal
dimension with the property that for some s with 0 < s <n — 1 one has

; 0, fori<mnandi#s
0 ~ ’ )
H‘“(X)_{ M, fori=s,
then X = Q,(M) ® G, where G is free.
Let
0—Fp 55— —F —F—X—0

be the minimal graded free S-resolution of X.
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Let N be an S-module. We set N* = Homg(N,S(—n)) and NV =
Homg(N, E), where E denotes the injective hull of K. Then we get the
exact sequence

(9) 0—X*—F —F — - —F__ — M —0,

since by local duality, MY = H§ (X)Y = Exts *(X, S(—n)).
If s = 1, then X* is free. Taking again the dual with respect to S(—n) we
obtain the exact sequence

0—F,_ 41— —F,—F—X"—M-—0,

from which we deduce the short exact sequence 0 — X — X** — M — 0.
This concludes the proof in the case s = 1.

Ifs>11let 00— Gs_1 — -+ - Gg — X* — 0 be the graded minimal
free resolution of X*. Composing it with (9) we obtain a graded minimal
free resolution of M. Dualizing this resolution with respect to S(—n) we
conclude that 0 — X** — Gy — - — Gi_; — M — 0 is exact, and
so X* = Oy(M) & G for some free S-module G. Since X is free on the
punctured spectrum and has depth s > 2, it follows that X = X**; see, for
example, [5, Proposition 1.4.1]. O

Notice that Proposition 3.1 also holds when we replace S by a Gorenstein
local ring (R, m).

Now we come to the main result of this section, which is a refinement of
Theorem 2.1 in the special case of codimension 2, where all but one M; vanish.

THEOREM 3.2. Let 0 <t < n — 2 be an integer, and let M be a graded
S-module of finite length. Let g1, - ,gm be a minimal set of homogeneous
generators of Quy1(M) with degg; = a; and ay < as < -+ < ay,. Then the
following holds:

(a) If I C S is an ideal of codimension 2 such that

i ~ ) 0 fori<n—2andi#t,
BSID = o, Joriot,

r—1
then ¢ > —Qq, (i (1) + 2221 ai, where r = rank Q1 (M).

(b) If all generators of Qu41(M) have the same degree a, then an ideal of
codimension 2 with local cohomology as in (a) exists, if and only if

c2 —QIQHI(M)(l) +(r—1a.

Proof. For the proof of (a) we use 3.1 according to which there exists a
short exact sequence 0 — Fy — Q1 (M(—c)) ® Gy — I — 0 of graded
modules with Fj and Gy free. Twisting this exact sequence with ¢, we get the
exact sequence

0 F -1 ouMaec —L— I(c) 0
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with the graded free modules F = Fy(c) and G = Go(c). Now 2.2(a) yields
that ¢ = _QIQtH(M)(l) - Q1) + Q%(1). Let gm1,---,Gm+s be a homoge-
neous basis of G with degg; = a; fori =m+1,...,m+s,and hy,..., hrys-1
a homogeneous basis of F' with degh; =b; fori=1,..., 74+ s— 1. Then

m-+s r4+s—1
(10) c=-Qb,.,anD)— > ai+ > b
i=m+1 i=1

Let m1: Qe 1(M) @ G — Q1 (M) and m2: Q41 (M) & G — G be the natural
projection maps, and ¢1: Q441(M) — Q1 (M)BG and t2: G — Qi (M) DG
the natural inclusion maps.

We may assume that (po¢1)(Q:41(M)) # 0 and (p o 12)(G) # 0. In fact,
suppose that (p o ¢t1)(Q41(M)) = 0. Then ¢;(Q41(M)) C Kerp = Imj.
Let Q' = j71(11(Q¢+1(M)). Then Q' C F and the composition ' C F —
Q:11(M) of the inclusion map with 7 o j is an isomorphism. This implies
that Q41 (M) is isomorphic to a direct summand of F', and hence free since it
is a graded module. This however is a contradiction, since depth ;41 (M) =
t+1<n.

Similarly, if (p o t2)(G) = 0, we conclude that F = H @ G for some free
module H, and we may replace the exact sequence 0 — F — Q1 (M) S G —
I(c) — 0 with the exact sequence 0 — H — Q;11(M) — I(c) — 0.

Now since (p o t1)(Q41(M)) # 0 and I(c) is a rank 1 module, it fol-
lows that I(c)/(pot1)(Q4+1(M)) is a torsion module. Hence, since I(c)/(p o
11)(Qu41(M)) =2 G/ Im(mz 0 j), it follows that rank(Im(mg 0 j)) = rank G = s.
Similarly it follows that rank(Im(7 o j)) = rank Q1 (M) = 7.

Next consider the map

r+s—1 r+s—1 r+s—1 1 r4+s—1—1

AN F— N\ @Quec) =z P AQam)e A (G).

i=0
We claim that A""*7'(j) composed with the natural projection map

r+s—1 r—1

N QM) e G) - N (Qua(M) @ \(G)

is not trivial. The claim will imply that the component of j(hi) A j(ha) A
AN G(hegso1) in AN (M) @ A°(G) s of the form 32, argr A gmi1 A
-+ A gm+s, where the sum is taken over all subsets I C {1,...,m} with r — 1
elements, where gy = g;, A=~ Ag;,_, for T ={iy, ... ir_1}, 0 <ip < -+ <
ir—1, and where at least one ajy # 0.

It follows that
r+s—1 r—1 m-+s
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for some subset {i1,...,4,—1} C {1,...,m}. By (10) this implies that

r—1 r—1
¢z _ngtJrl(M)(l) + Zaij =z _QIQtH(M)(l) + Z @i
=1

Jj=1

as desired.

In order to prove the claim, it suffices to show that the map in question
is not trivial after tensorizing it with the quotient field @ of S. Notice that
AN TN Q1 (M) ® G) @ Q is isomorphic to

(/\(QtH(M» 8 Q) ® ( INGE Q)
0 (7\ (Qa(M)) Q) 5 (f\(G) & Q) ,

since all other direct summands A’ (€41 (M))@A 7' 7(G) are torsion mod-
ules. Thus the claim will follow from Lemma 3.3 below.

(b) The ‘only if” part of statement (b) follows from (a). On the other hand,
the converse follows from Theorem 2.1. O

LEMMA 3.3. Let K be field, and U, V and W be K-vector spaces with
dimV =7, dimW = s and dimU =r+s—1, and let j: U — V& W be
an injective map such that myoj: U —V and g0 j: U — W are surjective,
where w1 and wo are the natural projections. Then for the induced map

r+s—1 r+s—1 r

A G A @ — Ao A e Avye Aw)

we have that py o N7 71(G) # 0 and py o N N(j) # 0, where p1 and ps
are the natural projections of \"(V)@ N° (W)@ A" (V)& \*(W) onto its
direct summands.

Proof. Suppose, for example, that poo A" 7*7'(j) = 0. Since mp0j: U — W
is surjective, we may choose bases u1, ..., ur+s—1 of U and w,, ..., wyys_1 of
W, such that j(u;)) =v; € Vfor i = 1,...,r — 1 and j(u;) = v; + w; with
v, €Viori=nr,...,r+s—1. Then

r+s—1
0 = (2o N G A Aurssi)
= (1;1/\-~-/\vr,1)®(w,«/\---/\wrﬂ,l).

This implies that v; A -+ Av,._1 = 0. So the vectors v1,...,v,._1 are linearly
dependent, a contradiction, since j is injective. O
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