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HOMOLOGY OF PRECROSSED MODULES

DANIEL ARIAS, MANUEL LADRA, AND ALFREDO R-GRANDJEÁN†

Abstract. We prove that the category of precrossed modules is an

algebraic category, and we develop a cotriple (co)homology theory for
precrossed modules which generalizes the Eilenberg-MacLane theory of

(co)homology groups. We study the relationship of this theory with the

(co)homology of crossed modules.

1. Introduction

From a certain point of view precrossed modules are generalizations of
groups and they form a model of homotopy type in dimensions 1 and 2 for
connected CW-complexes. The precrossed modules of nilpotence class 2 play
an essential role in Baues’ algebraic models of homotopy 3-types [3].

Conduché and Ellis [7] defined the first and second homology group of
a precrossed P -module, and Inassaridze and Khmaladze [11] extended this
theory by defining all homology groups modulo an integer q for a precrossed
P -module in terms of nonabelian derived functors. Here P is a fixed action
group.

In this paper we develop the basic elements to define cotriple homology
and cohomology theories in the whole category of precrossed modules.

We start with the observation that the category of precrossed modules is
an algebraic category; that is, there exists a tripleable forgetful functor from
this category to the category of sets. The (co)homology theory for precrossed
modules is therefore a particularization of the general theory of Barr and
Beck [1].

We study this cotriple (co)homology theory and, in particular, the relation-
ship between this theory and other classical or new (co)homology theories.
We will show that this theory generalizes the Eilenberg-MacLane theory of
(co)homology groups if we regard a group G as a precrossed module (1, G, i)

Received September 14, 2001; received in final form December 11, 2001.
2000 Mathematics Subject Classification. Primary 18G60, 18G30. Secondary 20J05.
Work partially supported by PGIDT01PXI20702PR and by MCYT, project BFM2000-

0523, Spain.
†R.-Grandjean passed away on May 2, 2002.

c©2002 University of Illinois

739



740 DANIEL ARIAS, MANUEL LADRA, AND ALFREDO R-GRANDJEÁN

or (G, 1, 1). We also show that, in the particular case of a crossed module
(T,G, ∂), we obtain the low dimensional homology for crossed modules of
Gilbert [9], and their generalizations in every dimension. Finally, we relate
the theory to the CCG-(co)homology of crossed modules of Carrasco, Cegarra
and R.-Grandjeán [5] through a long exact sequence connecting both theories.

We begin in Section 2 by recalling some standard results on the category
of precrossed modules. Next, we show that this category is algebraic, and we
generalize a result from [5] about tripleability for crossed modules. This leads
to the notions of free and projective precrossed modules.

In Section 3 we define the cotriple (co)homology theory for precrossed mod-
ules, and we establish its basic properties.

Finally, in Section 4 we consider relationships with the other (co)homology
theories described above.

2. Precrossed modules are an algebraic category

A precrossed module (M,P, µ) is a group homomorphism µ : M −→ P
together with an action of P on M , denoted by pm for p ∈ P and m ∈ M ,
which satisfies µ(pm) = pµ(m)p−1 for all p ∈ P and m ∈ M . If, in addition,
µ verifies Peiffer’s identity µ(m)m′ = mm′m−1 for all m,m′ ∈M , (M,P, µ) is
a said to be a crossed module.

Examples.

(i) Let N be a normal subgroup of G. The inclusion homomorphism
i : N −→ G with the action gn = gng−1, g ∈ G, n ∈ N , is a crossed
module. In particular, (G,G, Id) and (1, G, i) are crossed modules.

(ii) If A is an ordinary ZG-module, then (A,G, 0) is a crossed module.
(iii) Let P , G be groups with P acting on G non-trivially, or G a non-

abelian group. Then (GoP, P, π) is a precrossed module, but not a
crossed module, where GoP is the semidirect product of G and P , π
is the natural surjective homomorphism of GoP on P and the action
of P on GoP is p

′
(g, p) = (p

′
g, p

′
p). In particular, if G is a non-abelian

group, (G, 1, 1) is a precrossed module, but not a crossed module.

A precrossed module morphism (Φ,Ψ): (M1, P1, µ1) −→ (M2, P2, µ2) is a
pair of group homomorphisms Φ: M1 −→ M2 and Ψ: P1 −→ P2 such that
Ψ ◦ µ1 = µ2 ◦ Φ and Φ(pm) = Ψ(p)Φ(m) for all p ∈ P1 and m ∈M1.

We denote the category of precrossed modules by PCM.
A morphism (Φ,Ψ) in PCM is said to be injective (resp. surjective) if both

Φ and Ψ are injective (resp. surjective) group homomorphisms.
A precrossed submodule (N,Q, µ′) of a precrossed module (M,P, µ) is a

precrossed module such that N and Q are subgroups of M and P , respectively,
the action of Q on N is induced by that of P on M , and µ|N = µ′. A
submodule is said to be a normal precrossed submodule if, in addition, N and
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Q are normal subgroups in M and P , respectively, and if, for all p ∈ P , q ∈ Q,
m ∈M and n ∈ N , pn ∈ N and qmm−1 ∈ N .

If (N,Q, µ) is a normal precrossed submodule of (M,P, µ), we define the
quotient precrossed module (M,P, µ)�(N,Q, µ) as (M/N,P/Q, µ), where the
homomorphism µ is induced by µ and P/Q acts on M/N by pQmN = (pm)N
for p ∈ P and m ∈M .

We call the Peiffer subgroup 〈M,M〉 of a precrossed module (M,P, µ)
the subgroup of M generated by the Peiffer elements m1m2m

−1
1

µ(m1)m−1
2 ,

m1,m2 ∈M . The Peiffer subgroup is a normal subgroup of M , and the quo-
tient precrossed module (M,P, µ)�(〈M,M〉, 1, 1) is a crossed module called
the Peiffer abelianisation of (M,P, µ).

The kernel of a precrossed module morphism (Φ,Ψ): (M1, P1, µ1) −→
(M2, P2, µ2) is the normal precrossed submodule (Ker Φ,Ker Ψ, µ1) of (M1, P1,
µ1). Its image is the precrossed submodule (Im Φ, Im Ψ, µ2) of (M2, P2, µ2).

If two precrossed modules (M1, P1, µ1) and (M2, P2, µ2) are given, their
product is the precrossed module (M1 ×M2, P1 × P2, µ1 × µ2), with P1 × P2

acting on M1 ×M2 by (p1,p2)(m1,m2) = (p1m1,
p2m2) for p1 ∈ P1, p2 ∈ P2,

m1 ∈M1, and m2 ∈M2.
We next introduce analogues of some basic concepts from group theory,

such as the centre or commutator groups, in the category of precrossed mod-
ules.

We call the centre Z(M,P, µ) of a precrossed module (M,P, µ) the normal
precrossed submodule (Inv(M) ∩ Z(M),StP (M) ∩ Z(P ), µ), where StP (M)
denotes the group {p ∈ P | pm = m for all m ∈ M}, Inv(M) = {m ∈ M |
µ(m) ∈ StP (M) and pm = m for all p ∈ P} and Z(M) and Z(P ) denote
the centres of M and P , respectively. Using the same argument as in [13],
one can show that Z(M,P, µ) is the maximal central precrossed submodule
of (M,P, µ). Hence Z(M,P, µ) coincides with the categorical notion of centre
developed by Huq [10].

A precrossed module (M,P, µ) is said to be abelian if it satisfies (M,P, µ) =
Z(M,P, µ), or, equivalently, ifM and P are abelian groups and P acts trivially
on M . The variety of abelian precrossed modules APCM coincides with
that of abelian crossed modules. We can identify it with the category of
homomorphisms of abelian groups, which is equivalent to the category of

right modules over the ring of matrices
(
Z 0
Z Z

)
(see [5]).

If (N,Q, µ) is a normal precrossed submodule of (M,P, µ), we define the
commutator precrossed submodule [(N,Q, µ), (M,P, µ)] of (N,Q, µ) and
(M,P, µ) as the normal precrossed submodule ([N,M ][Q,M ][P,N ], [P,Q], µ)
of (M,P, µ), where [P,N ] denotes the normal subgroup of M generated by
the elements {pnn−1 | p ∈ P, n ∈ N}, [Q,M ] denotes the normal subgroup
of M generated by the elements {qmm−1 | q ∈ Q,m ∈ M}, and [N,M ] and
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[P,Q] denote the usual commutator subgroups of N with M and P with Q,
respectively.

In particular, the commutator precrossed submodule [(M,P, µ), (M,P, µ)] of
a precrossed module (M,P, µ) is the normal precrossed submodule
([M,M ][P,M ], [P, P ], µ) of (M,P, µ). It is the smallest precrossed module
of (M,P, µ) for which the quotient is an abelian precrossed module.

To prove the tripleability of PCM over Set we will use the following crite-
rion, due to Linton [8]; for background on tripleability we refer to [2].

Theorem 2.1. A functor U : D −→ Set is tripleable if and only if U has
a left adjoint and the following three conditions are satisfied:

(a) D has kernel pairs and coequalizers.
(b) p : Y −→ Z is a coequalizer ⇐⇒ Up : UY −→ UZ is a coequalizer.

(c) X
s

⇒
t
Y is a kernel pair ⇐⇒ UX

Us

⇒
Ut
UY is a kernel pair, where p, s

and t denote morphisms in D.

We will apply this criterion to the forgetful functor U : PCM −→ Set ,
U(M,P, µ) = M × P , which assigns to each precrossed module (M,P, µ) the
cartesian product of the underlying sets M and P .

Proposition 2.2. The functor U : PCM −→ Set has a left adjoint.

Proof. It is known (see [12]) that the forgetful functor

U1 : PCM −→ Grp ↓ Grp, U1(M,P, µ) = µ

has a left adjoint by the functor

F1 : Grp ↓ Grp −→ PCM, F1(G λ−→ H) = (G,H, 〈λ, Id〉|G),

where
G = Ker(G ∗H 〈0,Id〉−→ H), 〈λ, Id〉 : G ∗H −→ H,

and H acts on G by conjugation. On the other hand, the functor

U2 : Grp ↓ Grp −→ Grp, U2(G λ−→ H) = G×H
has a left adjoint by the functor F2 : Grp −→ Grp ↓ Grp, which takes a group
G into F2(G) = (G i1−→ G ∗G), the first inclusion in the coproduct.

We denote by U3 : Grp −→ Set the usual forgetful functor and by F3 :
Set −→ Grp its left adjoint, the free group functor.

Composing these three adjunctions,

Set
F3

�
U3

Grp
F2

�
U2

Grp ↓ Grp
F1

�
U1

PCM,

we see that U = U3 ◦ U2 ◦ U1 : PCM −→ Set is right adjoint to the functor

F = F1 ◦ F2 ◦ F3 : Set −→ PCM, F(X) = (F , F ∗ F, 〈i1, Id〉|F ),
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where F = F3(X) is the free group over X,

F = Ker(F ∗ (F ∗ F )
〈0,Id〉−→ F ∗ F ), 〈i1, Id〉 : F ∗ (F ∗ F ) −→ F ∗ F,

and F ∗ F acts on F by conjugation. �

Theorem 2.3. The functor U : PCM −→ Set is tripleable.

Proof. We check that the conditions of Theorem 2.1 are satisfied:
(a) PCM has kernel pairs. It is easy to check that the kernel pair of a pre-

crossed module morphism (M1, P1, µ1) −→ (M2, P2, µ2) is the precrossed sub-
module (M1 ×

M2

M1, P1×
P2

P1, µ1×µ1) of the product (M1, P1, µ1)×(M1, P1, µ1),

with the projections to the first and second components given by

(M1 ×
M2

M1, P1 ×
P2

P1, µ1 × µ1)
(π1
M ,π

1
P )

⇒
(π2
M ,π

2
P )

(M1, P1, µ1).

PCM has coequalizers. Given a pair of morphisms

(M1, P1, µ1)
(ΦM ,ΦP )

⇒
(ΨM ,ΨP )

(M2, P2, µ2),

consider the least normal precrossed submodule (N,Q, µ2) of (M2, P2, µ2) such
that the canonical projection

(πN , πQ) : (M2, P2, µ2) −→ (M2, P2, µ2)�(N,Q, µ2)

satisfies (πN , πQ) ◦ (ΦM ,ΦP ) = (πN , πQ) ◦ (ΨM ,ΨP ). Such a submodule
exists since the intersection (defined in the obvious way) of normal precrossed
submodules satisfying the above condition is a normal precrossed submodule
that also satisfies this condition. It is also clear that (πN , πQ) is the coequalizer
of (ΦM ,ΦP ) and (ΨM ,ΨP ).

(b) U preserves and reflects coequalizers because both in PCM and in
Set the coequalizers are surjective morphisms (a surjective precrossed module
morphism is the coequalizer of its kernel inclusion and the zero map).

(c) U preserves kernel pairs because it has a left adjoint. To see that U
reflects kernel pairs, first note that by a congruence on a precrossed mod-
ule (M,P, µ) we mean a precrossed submodule (R,C, µ × µ) of the product
precrossed module (M,P, µ) × (M,P, µ) = (M ×M,P × P, µ × µ) such that
both R ⊂ M ×M and C ⊂ P × P are equivalence relations. As in groups,
giving a congruence (R,C, µ×µ) on a precrossed module (M,P, µ) is equiva-
lent to giving a normal precrossed submodule (NR, QC , µ) C (M,P, µ), where
NR = {m ∈M | (1,m) ∈ R} and QC = {p ∈ P | (1, p) ∈ C}. In fact,

(R,C, µ× µ)
(π1
M ,π

1
P )

⇒
(π2
M ,π

2
P )

(M,P, µ)
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is the kernel pair of the quotient

(M,P, µ) −→ (M,P, µ)�(NR, QC , µ).

Take a pair

(M1, P1, µ1)
(ΦM ,ΦP )

⇒
(ΨM ,ΨP )

(M2, P2, µ2)

of precrossed module morphisms which is a kernel pair in Set . This implies
that

(ΦM × ΦP )× (ΨM ×ΨP ) : M1 × P1 −→ (M2 × P2)× (M2 × P2)

is injective, and its image is an equivalence relation on the group M2 × P2.
Thus

(ΦM ,ΦP )× (ΨM ,ΨP ) : (M1, P1, µ1) −→ (M2, P2, µ2)× (M2, P2, µ2)

is an injective morphism that establishes a precrossed module isomorphism
between (M1, P1, µ1) and its image, denoted by (R,C, µ2 × µ2). It is clear
that (R,C, µ2 × µ2) is a congruence on (M2, P2, µ2). We therefore have the
following commutative diagram:

(M1, P1, µ1)
(ΦM ,ΦP )

⇒
(ΨM ,ΨP )

(M2, P2, µ2)

↘ (π1
M ,π

1
P ) � (π2

M ,π
2
P )

(R,C, µ2 × µ2)

This yields the result. �

Observe that every Birkhoff subvariety of PCM (which is closed under
subobjects, quotients and products) is also closed under the operations of
taking kernel pairs and coequalizers, and by Theorem 2.1 is therefore also
algebraic. As a corollary, we obtain the following result from [5]:

Corollary 2.4. The category of crossed modules CM is tripleable over
Set, via the forgetful functor ν : CM −→ Set, ν(T,G, ∂) = T ×G.

The existence of a good pair of adjoint functors between PCM and Set
will allow us to establish some useful facts on free and projective precrossed
modules.

Recall that an object P in a category is said to be projective if for ev-
ery regular epimorphism (i.e., a coequalizer) p : A � B, p∗ : Hom(P,A) −→
Hom(P,B) is a surjective map. A category is said to have enough projective
objects if for each object Y there exists a regular epimorphism P � Y with
P a projective object (that is, a projective presentation of Y ).

As was shown in Theorem 2.3, regular epimorphisms in PCM are just sur-
jective morphisms. Thus, for each set X, the free precrossed module (relative
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to U) F(X) is a projective precrossed module, and every precrossed module
(M,P, µ) has a projective presentation through the counit of the adjunction
FU(M,P, µ)� (M,P, µ).

There are more projective objects in PCM. In the following proposition
we give a family of projective objects with some members not isomorphic to
any value of F .

Proposition 2.5. Let P and Q be free groups. Then the precrossed mod-

ule (P , P ∗Q, 〈iP , Id〉|P ) is projective, where P = Ker(P ∗ (P ∗Q)
〈0,Id〉−→ P ∗Q),

〈iP , Id〉 : P ∗ (P ∗Q) −→ P ∗Q, and P ∗Q acts on P by conjugation.

Proof. The inclusion in the coproduct iP : P � P ∗Q is a projective object
in the category of group homomorphisms Grp ↓ Grp. Take

α = (α1, α2) : (P iP−→ P ∗Q) −→ (G′ λ′−→ H ′),

β = (β1, β2) : (G λ−→ H) −→ (G′ λ′−→ H ′),

which are morphisms in Grp ↓ Grp, with β1 and β2 surjective homomorphisms.
Since P and Q are free groups, there exist ε : P −→ G and φ′′ : Q −→ H such
that β1 ◦ ε = α1 and β2 ◦ φ′′ = α2 ◦ iQ. Also, φ′ = λ ◦ ε and φ′′ induce

φ : P ∗ Q −→ H such that β2 ◦ φ = α2. Finally, the pair (ε, φ) : (P iP−→
P ∗ Q) −→ (G λ−→ H) is a morphism in Grp ↓ Grp, because φ ◦ iP = λ ◦ ε,
and we have α = β ◦ (ε, φ).

Since the forgetful functor U1 : PCM −→ Grp ↓ Grp (see Theorem 2.3)
preserves surjective morphisms, its left adjoint F1 : Grp ↓ Grp −→ PCM
preserves projective objects, and so F1(P iP−→ P ∗Q) is a projective precrossed
module. �

Note that free crossed modules relative to ν : CM −→ Set (see [5]) are
obtained from free precrossed modules (relative to U : PCM −→ Set), which
yields its Peiffer abelianisation. Similarly, if we take the quotient of a pro-
jective precrossed module by its Peiffer subgroup, we get a projective crossed
module.

A non-zero free precrossed module (F , F ∗ F, 〈i1, Id〉|F ) is never a crossed
module. In fact, any projective precrossed module in the family described
in Proposition 2.5, i.e., (P , P ∗ Q, 〈iP , Id〉|P ) with P 6= 0, is not a crossed
module. To see this, take a non-trivial element p ∈ P ; then it is clear that
〈iP ,Id〉(p)p 6= ppp−1 = p.

Observe that every projective precrossed module (M,P, µ) is a retract of a
free precrossed module, and so M and P are free groups.
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3. Cotriple (co)homology of precrossed modules

In this section we particularize to our context the cotriple (co)homology
of Barr and Beck [1]. Before introducing homology and cohomology theories
for precrossed modules, we study the category of abelian group objects in the
category of precrossed modules.

The category of abelian group objects in a category plays a fundamental
role in the description of the homology and the cohomology of the category.
It was shown in [5] that the abelian group objects in the category CM are just
the abelian crossed modules (i.e., those which coincide with its centre), as the
abelian group objects in the category Grp are simply the abelian groups.

Proposition 3.1. The forgetful functor J : APCM −→ PCM is a full
and faithful embedding whose replete image consists of abelian precrossed mod-
ules.

Proof. The proof is analogous to that given in [5] for the case of crossed
modules; it suffices to replace CM by PCM. �

The inclusion J of the variety APCM in PCM has a left adjoint (the re-
flector) ab : PCM −→ APCM called the abelianisation functor, which assigns
to a precrossed module (M,P, µ) the abelian precrossed module (M,P, µ)ab =
(M/[M,M ][P,M ], P/[P, P ], µ).

The functors F : Set −→ PCM and U : PCM −→ Set described in Section
2 induce a free cotriple (C, δ, ε) in PCM, with C = F ◦ U : PCM −→ PCM,
δ : C ⇒ IdPCM the counit of the adjunction and ε : C ⇒ C2 the comulti-
plication. Every precrossed module (M,P, µ) has a standard free simplicial
resolution C·(M,P, µ) −→ (M,P, µ), where C·(M,P, µ) is the simplicial pre-
crossed module with the n-dimensional object Cn(M,P, µ) = Cn+1(M,P, µ),
for n ≥ 0, and with face and degeneracy operators

di = Cn−iδCi(M,P, µ) : Cn(M,P, µ) −→ Cn−1(M,P, µ), 0 ≤ i ≤ n,

si = Cn−iεCi(M,P, µ) : Cn(M,P, µ) −→ Cn+1(M,P, µ), 0 ≤ i ≤ n.
Applying the abelianisation functor ab : PCM −→ APCM, we obtain an

augmented simplicial complex of abelian precrossed modules

(C·(M,P, µ))ab � (M,P, µ)ab.

If we take the alternating sum of the abelianised face operators we get the
chain complex of abelian precrossed modules

. . . (Cn(M,P, µ))ab

∂n−→ (Cn−1(M,P, µ))ab · · ·
∂1−→ (C(M,P, µ))ab −→ 0

whose homology provides the homology groups of the precrossed module
(M,P, µ):

Hn(M,P, µ) = Hn−1((C·(M,P, µ))ab , ∂∗), n ≥ 1.
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On the other hand, if (A,B, f) is an abelian precrossed module, applying
the functor HomPCM(−, (A,B, f)) to C·(M,P, µ), we obtain an augmented
simplicial complex of abelian groups

HomPCM((M,P, µ), (A,B, f))� HomPCM(C·(M,P, µ), (A,B, f))

and the chain complex of abelian groups

0 −→ HomPCM(C(M,P, µ), (A,B, f)) ∂1

−→ · · ·

· · · −→ HomPCM(Cn(M,P, µ), (A,B, f)) ∂n−→
∂n−→ HomPCM(Cn+1(M,P, µ), (A,B, f)) · · ·

We define the cohomology groups of (M,P, µ) with coefficients in (A,B, f)
for n ≥ 1 by

Hn((M,P, µ), (A,B, f)) = Hn−1(HomPCM(C·(M,P, µ), (A,B, f)), ∂∗)

= Hn−1(HomPCM((C·(M,P, µ))ab , (A,B, f)), ∂∗).

Note that the homology groups of a precrossed module are actually abelian
group objects in PCM.

Proposition 3.2.

(i) Hn(−) : PCM −→ APCM and Hn(−,−) : PCMop×APCM −→ Ab
are functors for each n ≥ 1.

(ii) For every precrossed module (M,P, µ) and all abelian precrossed mod-
ules (A,B, f),

H1(M,P, µ) = (M,P, µ)ab,

H1((M,P, µ), (A,B, f)) = HomPCM((M,P, µ), (A,B, f))

= HomPCM((M,P, µ)ab, (A,B, f)).

(iii) If (M,P, µ) is a projective precrossed module, then

Hn(M,P, µ) = 0 = Hn((M,P, µ), (A,B, f))

for each abelian precrossed module (A,B, f) and n ≥ 2.
(iv) If 0 −→ (A1, B1, f1) −→ (A,B, f) −→ (A2, B2, f2) −→ 0 is exact,

then there exists a long exact sequence in cohomology:

. . . −→ Hn((M,P, µ), (A1, B1, f1)) −→ Hn((M,P, µ), (A,B, f))

−→ Hn((M,P, µ), (A2, B2, f2)) −→ Hn+1((M,P, µ), (A1, B1, f1)) . . .

Remark 1. An alternative way for computing the (co)homology consists
of replacing the standard free simplicial resolution by a projective simplicial
resolution (see [1]), that is, an augmented simplicial complex of precrossed
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modules (M·, P·, µ·) −→ (M,P, µ), where (Mn, Pn, µn) is a projective pre-
crossed module for each n ≥ 0, and the simplicial set

U(M·, P·, µ·) = M· × P· −→ U(M,P, µ) = M × P

has a contraction.
It was shown in [1] that

Hn(M,P, µ) = Hn−1((M·, P·, µ·)ab, ∂∗)

and

Hn((M,P, µ), (A,B, f)) = Hn−1(HomPCM((M·, P·, µ·), (A,B, f)), ∂∗)

for each abelian precrossed module (A,B, f) and all n ≥ 1.
Observe that U(M·, P·, µ·) −→ U(M,P, µ) is obviously a Kan complex,

so U(M·, P·, µ·) −→ U(M,P, µ) has a contraction if and only if M· −→ M
and P· −→ P are both weak equivalences, i.e., if the homotopy groups verify
πi(M·) = 0 = πi(P·) for i ≥ 1, and π0(M·) = M , π0(P·) = P .

4. Connection to other (co)homology theories

We begin with a theorem which shows the main connection between our
(co)homology theory for precrossed modules and the Eilenberg-MacLane the-
ory of (co)homology groups.

Denote by Hn(G) = Hn(G,Z) the nth integral homology group of a group
G, and by Hn(G,A) the nth cohomology group of a group G with coefficients
in an abelian group A (considered as a trivial G-module).

The category of groups may be regarded as a subcategory of the category
of precrossed modules, with the inclusion given by the functor i : Grp −→
PCM, i(G) = (1, G, i). The functor i has a right adjoint k : PCM −→ Grp,
k(M,P, µ) = P .

Another common way of thinking of a group as a precrossed module is
through the functor ε : Grp −→ PCM, ε(G) = (G,G, id), where G acts on
itself by conjugation. The functor ε has as left adjoint the functor k.

Theorem 4.1.

(i) For every group G and every abelian precrossed module (A,B, f),

Hn(iG) ∼= iHn(G), Hn(iG, (A,B, f)) ∼= Hn(G,B), n ≥ 1.

(ii) For every precrossed module (M,P, µ) and all n ≥ 1,

kHn(M,P, µ) ∼= Hn(P ).

(iii) For every precrossed module (M,P, µ), every abelian group A, and all
n ≥ 1,

Hn((M,P, µ), εA) ∼= Hn(P,A).
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Proof. As was shown in [1], Eilenberg-MacLane (co)homology groups can
be computed through free simplicial resolutions. That is, given a group G,
if F· � G is an augmented simplicial group such that Fn is a free group for
every n ≥ 0, πi(F·) = 0 for i > 0, and π0(F·) = G, then

Hn(G) ∼= Hn−1((F·)ab, ∂∗),

Hn(G,A) ∼= Hn−1(HomGrp((F·), A), ∂∗)

for every abelian group A and every n ≥ 1, where the differential is taken to
be the alternating sum of the abelianised face operators.

To prove (i) take a free simplicial resolution F· � G of the group G. By
Proposition 2.5, the augmented simplicial precrossed module iF· � iG is a
projective simplicial resolution of the precrossed module iG. Thus,

Hn(iG) ∼= Hn−1((iF·)ab) ∼= Hn−1(i(F·ab))
∼= iHn−1((F·)ab) ∼= iHn(G), n ≥ 1,

Hn(iG, (A,B, f)) ∼= Hn−1(HomPCM((iF·), (A,B, f)))
∼= Hn−1(HomGrp(F·, k(A,B, f))) ∼= Hn−1(HomGrp(F·, B))
∼= Hn(G,B), n ≥ 1.

Here we used the fact that i preserves kernels and cokernels and commutes
with the abelianisation functors (i.e., i ◦ ab = ab ◦i).

Now we prove (ii) and (iii). Recall that, as shown at the end of last section,
for every precrossed module (M,P, µ) the simplicial group k(C·(M,P, µ)) is
a free simplicial resolution of the group P . Thus

kHn(M,P, µ) = kHn−1(C·(M,P, µ)ab) ∼= Hn−1(k(C·(M,P, µ))ab)
∼= Hn(P ), n ≥ 1,

since k ◦ ab = ab ◦k. Similarly, for every abelian group A we have

Hn((M,P, µ), εA) = Hn−1(HomPCM(C·(M,P, µ), εA))
∼= Hn−1(HomGrp(kC·(M,P, µ), A))
∼= Hn(P,A), n ≥ 1. �

In [9], Gilbert introduced two invariants H1(T,G, ∂) and H2(T,G, ∂) for
every crossed module (T,G, ∂), using the equivalence between the category
of crossed modules and the category of group objects in the category of
groupoids.

For each crossed module (T,G, ∂), Gilbert’s homology groups are the abelian
crossed modules

H1(T,G, ∂) = (T/ [G,T ] , G/ [G,G] , ∂),

H2(T,G, ∂) = (Σ,H2(G), σ∗|Σ),
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where Σ = Ker(τ∗), and τ∗ and σ∗ are the homomorphisms induced in homol-
ogy by the group homomorphisms

τ : ToG −→ G, τ(t, g) = g,

σ : ToG −→ G, σ(t, g) = ∂(t)g,

and ToG denotes the semidirect product of G acting on T .

Theorem 4.2. If (T,G, ∂) is a crossed module, then

H1(T,G, ∂) ∼= H1(T,G, ∂) and H2(T,G, ∂) ∼= H2(T,G, ∂).

Proof. The first relation is clear because for each crossed module (T,G, ∂)
we have [T, T ] = [∂(T ), T ] ⊂ [G,T ].

To prove the second relation note that if (F , F ∗ F, 〈i1, Id〉|F ) is a free pre-
crossed module then Fo(F ∗F ) is a free group since the short exact sequence

F � F ∗ (F ∗ F )
〈0,Id〉
� F ∗ F

is split, and the action induced by F ∗ F on F coincides with the action in
the free precrossed module.

Thus, if C·(T,G, ∂) = (M·, P·, µ·)� (T,G, ∂) is the standard free simplicial
resolution of (T,G, ∂), then M·oP· � ToG is a free simplicial resolution of
the group ToG since its underlying augmented simplicial set coincides with
U(M·, P·, µ·) −→ U(M,P, µ).

Let us take the group homomorphisms τn : MnoPn −→ Pn, τn(m, p) = p,
and σn : MnoPn −→ Pn, σn(m, p) = µn(m)p. It is easy to see that σ· and τ·
are morphisms of augmented simplicial groups

M·oP· � ToG
σ· � τ· σ � τ
P· � G

If we set
H2(T,G, ∂) = (Σ,H2(G), (σ1)∗|Σ),

then
H2(ToG) = H1((M·oP·)ab), and Σ = Ker((τ1)∗),

where
(τ1)∗, (σ1)∗ : H1((M·oP·)ab) −→ H1((P·)ab))

are induced in homology by (τ1)ab and (σ1)ab.
Since every epimorphism MnoPn

τn
� Pn is split, the short exact sequence

of simplicial abelian precrossed modules

Ker(τ·)ab � (M·oP·)ab

(τ·)ab

� (P·)ab
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is a weakly split sequence and the associated long exact sequence in homology
provides the isomorphism

Hn(Ker(τ·)ab) ∼= Ker((τ·)∗ : Hn((M·oP·)ab) −→ Hn((P·)ab)).

It is easy to prove that [MnoPn,MnoPn] = [Mn,Mn][Pn,Mn]o[Pn, Pn],
so

(τn)ab : Mn/[Mn,Mn][Pn,Mn]× Pn/[Pn, Pn] −→ Pn/[Pn, Pn]
is the projection to the second component, and we have a simplicial abelian
group morphism

(1)
Ker(τ·)ab −→ Ker(τab)

(σ·)ab ↓ ↓ σab

(G·)ab −→ Gab

In homology, between the first two homology groups we obtain the abelian
group homomorphism H2(T,G, ∂).

Now observe that (σ·)ab|Ker(τ·)ab
= (µ·)ab and σab|Ker(τab) = ∂ab. It fol-

lows that the complex (1) is the abelianisation of the standard free simplicial
resolution of (T,G, ∂), and so its first homology is also H2(T,G, ∂). �

Recall that the category of precrossed modules is equivalent to the category
of simplicial groups of length 1 (pre-cat1-groups in the notation of [4]), that
is, a precrossed module (M,P, µ) is equivalent to the simplicial group

i
x

MoP
τ
⇒
σ

P ,

where τ(m, p) = p and σ(m, p) = µ(m)p.
Following the proof of Theorem 4.2 and replacing the crossed module

(T,G, ∂) by a precrossed module (M,P, µ), we deduce:

Theorem 4.3. The nth homology group of a precrossed module (M,P, µ)
is Hn(M,P, µ) = (Σn,Hn(P ), σ∗), where Σn = Ker(τ∗) and

τ∗, σ∗ : Hn(MoP ) −→ Hn(P )

are the group homomorphisms induced in homology by τ and σ.

Corollary 4.4. If we regard a group G as the precrossed module (G, 1, 1),
then Hn(G, 1, 1) = (Hn(G), 1, 1).

Example. Let G be a group regarded as the precrossed module (G,G, Id).
Then σ and τ composed with the isomorphism G × G → GoG given by
(g1, g2) 7→ (g1g

−1
2 , g2) become the projections fromG×G toG. Thus Künneth’

formula in the homology of groups and Theorem 4.3 yield

H2(G,G, Id) = (H2(G)⊕ (H1(G)⊗H1(G)),H2(G), σ∗),



752 DANIEL ARIAS, MANUEL LADRA, AND ALFREDO R-GRANDJEÁN

with σ∗ acting as the identity on H2(G), and as zero on H1(G)⊗H1(G).
The category of crossed modules CM is a Birkhoff variety of PCM. It

is well known that the inclusion I : CM −→ PCM has as left adjoint P :
PCM −→ CM, the Peiffer abelianisation which assigns to each precrossed
module (M,P, µ) the quotient (M/〈M,M〉, P, µ).

Consider the composition of adjunctions

Set
F
�
U
PCM

P
�
I
CM.

The tripleable forgetful functors U and UI provide the free cotriples (C, δ, ε)
in PCM and (C, δ, ε) in CM. (The latter cotriple is the one obtained in [5].)

To relate our (co)homology theory of precrossed modules to the CCG -
(co)homology theory of crossed modules we define natural transformations

rn : CnI ⇒ IC
n

inductively by rn+1 = rnC ◦ Cnr1 for every n ≥ 1, where r1 is the natural
transformation which sends each crossed module (T,G, ∂) to the canonical
projection C(T,G, ∂)� PC(T,G, ∂) = C(T,G, ∂).

Lemma 4.5. The transformations rn commute with the face operators of
the standard free resolutions C·(T,G, ∂) and C ·(T,G, ∂); that is, rn ◦ δi =
δi ◦ rn+1, where δi = Cn−iδCi and δi = C

n−i
δC

i
.

Proof. The proof is an easy calculation, given in [6] in a more general
context. �

Thus, for every crossed module (T,G, ∂) we have the following surjective
morphism of resolutions:

. . . Cn(T,G, ∂) . . . C2(T,G, ∂)
δ1
⇒
δ0

C(T,G, ∂)
δ
� (T,G, ∂)

rn ↓ r2 ↓ r1 ↓ q

. . . C
n
(T,G, ∂) . . . C

2
(T,G, ∂)

δ1

⇒
δ0

C(T,G, ∂)
δ
� (T,G, ∂)

In the next theorem we denote the nth CCG-homology group of the crossed
module (T,G, ∂) by HCCG

n (T,G, ∂) and the nth CCG-cohomology group of
the crossed module (T,G, ∂) with coefficients in an abelian precrossed module
(A,B, f) by Hn

CCG((T,G, ∂), (A,B, f)).

Theorem 4.6. Let (T,G, ∂) be a crossed module and let (A,B, f) be an
abelian precrossed module.
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(i) We have

H1(T,G, ∂) = HCCG
1 (T,G, ∂),

H1((T,G, ∂), (A,B, f)) = H1
CCG((T,G, ∂), (A,B, f)).

(ii) There exists a long exact sequence of abelian precrossed modules in
homology

. . .HCCG
n (T,G, ∂) −→ Hn−2(Ker(r·)ab) −→ Hn−1(T,G, ∂)

−→ HCCG
n−1 (T,G, ∂) −→ . . . −→ H1(Ker(r·)ab)

−→ H2(T,G, ∂) −→ HCCG
2 (T,G, ∂) −→ 0.

(iii) There exists a long exact sequence of abelian precrossed modules in
cohomology

0 −→ H2
CCG((T,G, ∂), (A,B, f)) −→ H2((T,G, ∂), (A,B, f))

−→ H1(Coker(HomPCM(r·, (A,B, f)))) . . .Hn
CCG((T,G, ∂), (A,B, f))

−→ Hn((T,G, ∂), (A,B, f)) −→ Hn−1(Coker(HomPCM (r·, (A,B, f))))

−→ Hn+1
CCG((T,G, ∂), (A,B, f)) −→ . . .

Proof. Assertion (i) is clear since

HCCG
1 (T,G, ∂) = (T,G, ∂)ab

and
H1
CCG((T,G, ∂), (A,B, f)) = HomPCM((T,G, ∂), (A,B, f)).

To prove (ii) note that there exists a surjective morphism of complexes

. . . Cn(T,G, ∂)ab . . . C2(T,G, ∂)ab
∂2−→ C(T,G, ∂)ab −→ 0

(rn)ab ↓ (r2)ab ↓ (r1)ab ↓
. . . C

n
(T,G, ∂)ab . . . C

2
(T,G, ∂)ab

∂2−→ C(T,G, ∂)ab −→ 0

and that (r1)ab is the identity map because the abelianisation (as crossed
module) of the Peiffer abelianisation of a precrossed module is exactly the
abelianisation of the precrossed module. Hence the sequence follows from the
long exact sequence in homology associated with the short exact sequence of
complexes

Ker(r·)ab � C·(T,G, ∂)ab

(r·)ab

� C ·(T,G, ∂)ab

Part (iii) follows similarly, using

HomPCM(C(T,G, ∂), (A,B, f)) = HomPCM((C(T,G, ∂))ab, (A,B, f))

= HomPCM(C(T,G, ∂), (A,B, f)). �

Remark 2. For n ≥ 2, we have

Hn(G,G, Id) 6= HCCG
n (G,G, Id) = (Hn(G),Hn(G), Id).
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Remark 3. The above results and Theorem 4.3 show that the low-di-
mensional homology given by Gilbert [9] is not one of crossed modules, but
of precrossed modules.
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