CATEGORICAL QUOTIENTS OF CERTAIN ALGEBRAIC GROUP ACTIONS

BY

A. FAUNTLEROY

Introduction

Let G be a connected algebraic group acting on a normal variety X. If the stability group of each point of X is finite then Seshadri in [S] showed that there exists a finite G-morphism $p: Z \to X$ such that the action of G on Z is locally trivial and hence Z/G exists as an algebraic scheme over k. In effect, a quotient of X by G exists up to a finite extension of X'. We use Seshadri covers in this paper to show that when G is unipotent and X quasi-affine then a categorical quotient exists, provided that the action of G is AQA (see Definition 1) in the following sense. There is a quasi-affine variety Y and a surjective open morphism $q: X \to Y$ which is constant on G orbits and which satisfies the following universal mapping property:

Given any morphism ϕ from X to a variety V which is constant on the orbits of G, there exists a unique morphism $\psi \colon Y \to V$ such that $\psi \circ q = \phi$.

We also show that if X is normal and quasi-affine then there exists a nonempty open set X^{ss} of 'semi-stable' points such that the action of G on X^{ss} is AQA.

If G is not unipotent there are conditions under which a similar conclusion holds (Theorem 3). In general quotients of quasi-affine varieties by connected groups need not be quasi-affine so the hypothesis required are quite strong (see, however, Remark 4 below).

We now fix our terminology. All schemes will be reduced algebraic k-schemes with k a fixed algebraically closed field. A variety is a separated integral scheme. All algebraic groups are assumed to be affine. If X is an irreducible scheme we identify $\Gamma(X, O_X)$ with the subring of everywhere defined rational functions in k(X)—the function field of X. Unless otherwise stated "point" will mean closed point.

Let X be an irreducible algebraic scheme over k. We say that X is almost quasi affine if there exists a quasi-finite surjective morphism $f: X \to Y$ with Y a quasi-affine variety.

Received February 23, 1981.

THEOREM 1. Let X be a normal irreducible algebraic scheme over k and assume that X is almost quasi-affine. Then there exist a normal quasi-affine variety Q and a birational surjective quasi-finite morphism $q: X \to Q$ satisfying the following universal mapping property:

Given any morphism f from X to a variety V, there exists a unique morphism $g: Q \to V$ such that

$$X \xrightarrow{f} V$$

$$Q \xrightarrow{\nearrow_g} Q$$

commutes. In particular, Q is unique up to isomorphism.

Proof. Let $f: X \to Y$ be a quasi-finite surjective morphism with Y quasi-affine. Then k(X)/k(Y) is a finite algebraic extension so the normalization \overline{Y} of Y in k(X) is also quasi-affine. Now since f is surjective f_* induces an inclusion $f_*: \Gamma(Y, O_Y) \to \Gamma(X, O_X)$. Let R be a finitely generated k-subalgebra of $\Gamma(Y, O_Y)$ such that the canonical map $Y \to \operatorname{Spec} R$ is an open immersion (cf. [3, II. 5.1.9]). Let S be the integral closure of R in k(X). Then we have a canonical open immersion $\overline{Y} \to \operatorname{Spec} S$ induced by the ring inclusion $S \subset \Gamma(\overline{Y}, O_Y)$. Since X is normal, $\Gamma(X, O_X)$ is integrally closed so $S \subset \Gamma(X, O_X)$ (via $f_*: R \to \Gamma(X, O_X)$ S is the integral closure of f_*R in $\Gamma(X, O_X)$). This gives a canonical map $g: X \to \operatorname{Spec} S$. Let Q denote the image of X. If $X_O \subset X$ is an open affine subvariety, then $q_O = q/X_O$ induces a quasifinite morphism $q_O: X_O \to Q$. Since this map is also birational, q_O is an open immersion of X_O into Q. Applying this to a finite affine open cover of X we conclude that Q is an open surjective quasi-finite birational morphism and that Q is open in $\operatorname{Spec} S$ hence quasi-affine.

Now suppose $f: X \to T$ is a morphism of X into a variety T. Let $\{X_i: 1 \le i \le n\}$ be an affine open cover of X. Consider the diagram

$$X \times X \xrightarrow{\phi = f \times f} T \times T$$

$$\downarrow \qquad \qquad \downarrow$$

$$Q \times Q$$

Since Q and T are separated, $\phi^{-1}(\Delta(T))$ and $\psi^{-1}(\Delta(Q))$ are closed in $X \times X$. We claim $\psi^{-1}(\Delta(Q)) \subset \phi^{-1}(\Delta(T))$. Let

$$\Omega = \phi^{-1}(\Delta(T))$$
 and $\Lambda = \psi^{-1}(\Delta(Q))$.

Now $\{X_i \times X_j | 1 \le i, j \le n\}$ is an affine open cover of $X \times X$ so

$$\Omega_{ij} = \Omega \cap (X_i \times X_j)$$
 (respectively $\Lambda_{ij} = \Lambda \cap (X_i \times X_j)$), $1 \le i, j \le n$,

form an affine open cover of Ω (respectively Λ). If the claim were false we could find a regular function h on the affine variety $X_i \times X_j$ (for some pair (i, j)) with $h \equiv O$ on Ω_{ij} but $h \not\equiv O$ on Λ_{ij} . But $\psi_{ij} = \psi \mid X_i \times X_j$ is an open

immersion of $X_i \times X_j$ into $Q \times Q$ and its image clearly meets $\Delta(Q)$ which is irreducible in $Q \times Q$. Thus our assumption implies that h is a rational function on Q, regular on $\psi_{ij}(\Omega_{ij})$ and $\psi_{ij}(\Lambda_{ij})$, which vanishes on the first but not the second. However,

$$\psi_{ii}^{-1}(\Delta Q) = \{(x, x') \mid q(x = q(x') \in q(X_i) \cap q(X_i))\}$$

and this set clearly contains $\Theta = \{(x, x) \mid x \in X_i \cap X_j\} \subset \Omega_{ij}$. Thus,

$$\psi_{ij}(\Omega_{ij})\supset \overline{\psi_{ij}(\Theta)}\cap \psi_{ij}(X_i\times X_j)\supset \Delta(Q)\cap \psi_{ij}(X_i\times X_j)=\psi_{ij}(\Lambda_{ij}).$$

Thus, $h \equiv O$ in $\psi_{ij}(\Omega_{ij})$ but not on $\psi_{ij}(\Lambda_i)$, a contradiction. This shows $\Lambda_{ij} \subset \Omega_{ij}$ for all i, j so $\Lambda \subset \Omega$.

Now define the function $g: Q \to T$ as follows: If $p \in Q$ then $p \in q(X_i)$ for some i, so we put $g(p) = f \circ q_i^{-1}(p)$ where q_i is the isomorphism $X_i \to q(X_i) \subset Q$. If $p \in q(X_i) \cap q(X_j)$, then the above claim shows that $f \circ q_i^{-1}(p) = f \circ q_j^{-1}(p)$ so g is well defined. This establishes the universal mapping property. The uniqueness assertion follows by standard arguments from this.

Remark 1. Of course if X happens to be separated then X is isomorphic to Q.

We call the pair (Q, q) the quasi-affine cokernel of X.

We now apply the notion of almost quasi-affine variety to actions of unipotent algebraic groups.

DEFINITION 1. Let the connected unipotent group H act on the quasi-affine variety X with only finite stability groups. We say that the action is AQA (for almost quasi-affine) if there exists a Seshadri cover (Z, W, p) of X such that W = Z/G is almost-quasi-affine.

THEOREM 2. Let H be a connected unipotent group acting regularly on a normal quasi-affine variety X. Suppose the action of H on X is AQA. Then there exists a normal quasi-affine variety Y and a surjective open morphism $q: X \to Y$ satisfying the following universal mapping property:

Given any variety Z and a morphism $f: X \to Z$ constant on the orbits of H, there exists a unique morphism $g: Y \to Z$ such that

$$X \xrightarrow{f} Z$$

$${}_{q} \searrow \nearrow_{g}$$

$$Y$$

commutes. Moreover, if a geometric quotient Q of X modulo H exists and is separated then the canonical morphism $Y \to Q$ is an isomorphism.

Proof. Let (S, p) be a Seshadri cover of X and T = S/H with T almost quasi-affine. Let Q(T) be the quasi-affine cokernel of T and let B be a finitely generated normal k-subalgebra of $\Gamma(S, O_S)^H$ stable under the action of $\Gamma = \operatorname{Aut} k(S)/k(X)$ such that the canonical morphism $Q(T) \to \operatorname{Spec} B$ is an open immersion. Let $R = B \cap k(X)^H$. Then R is a normal k-algebra of finite type and B is integral over R. The image Y of Q(T) in $\operatorname{Spec} R$ is therefore open hence quasi-affine. Now X is quasi-affine and X, $\operatorname{Spec} B$ and $\operatorname{Spec} R$ are normal so R is a subring of $\Gamma(X, O_X)^H$. Let $q: X \to \operatorname{Spec} R$ be the canonical map. Since the diagram

$$\begin{array}{ccc} S & \stackrel{\nu}{\longrightarrow} & X \\ \downarrow & & \downarrow q \\ Q(T) & \longrightarrow & \operatorname{Spec} R \end{array}$$

commutes, the image of q is Y. Moreover since p is a finite morphism it is open. The morphism $S \to Q(T)$ factors as $S \to T \to Q(T)$, a composition of open morphisms, so $S \to Q(T)$ is an open map. Finally, $Q(T) \to Y$ is open so $q: X \to Y$ is an open map. The morphism q is clearly constant on H-orbits.

Now let $f: X \to Z$ be a morphism into a variety Z constant on the orbits of H. Then $f \circ p$ is constant on the orbits of H in S so we get a morphism $g': T = S/H \to Z$ such that

$$S \xrightarrow{f \circ p} Z$$

$$\pi \searrow \nearrow_{g'}$$

$$T$$

commutes (π being the quotient map). By Theorem 1, g' factors through Q(T). Replacing Z by the closure of f(X) if necessary we may assume without loss of generality that f is dominant. Suppose Z is affine. Then $f_*k(Z) \subset k(X)^H = k(Y)$. We now have a commutative diagram

$$Q(T) \xrightarrow{g'} Z$$

$$\searrow X$$

$$Y$$

where the dotted arrow is a priori just a rational map. Let $\lambda \in k(Z)$ with $f_*(\lambda)$ regular at each point of Q(T). We claim $f_*(\lambda)$ is regular on Y. Suppose not. Then since Y is normal there exists a discrete valuation ring θ of k(Y) having a center of codimension one on Y with $f_*\lambda \notin \theta$. But $Q(T) \to Y$ is quasi-finite and surjective and Q(T) is normal. Thus there exist a discrete valuation ring θ' of k(Q(T)) having a center of codimension one on Q(T) with $\theta' > \theta$, i.e., $\theta = \theta' \cap k(Y)$. But $f_*(\lambda) \in \theta' \cap k(Y)$ a contradiction. Hence $f_*\lambda$ is regular on Y whenever it is regular on Q(T). It follows that $f_*k[Z] \subset \Gamma(Y, O_Y)$ and the rational map g is regular on Y. In the general

case we may replace Z by an affine open cover $\{Z_{\alpha}\}$ and consider

where $p: Q(T) \to Y$ is the natural map (induced by $R \subset B$). Then g will be regular on $p(g^{-1}(Z_{\alpha}))$. Since the open sets $p(g^{-1}(Z_{\alpha}))$ cover Y, g is regular on all of Y. This establishes the universal mapping property.

Finally if Q = X/H exists (as a variety) then from the above construction of Y, we see that the canonical map $Y \to Q$ is a quasi-finite birational morphism so Y is an open subvariety of Q. Since $q: X \to Y$ is constant on orbits, $Y \to Q$ must also be surjective and hence an isomorphism. This completes the proof of the theorem.

If X is a variety on which the algebraic group G acts and Y satisfies the universal mapping property as above, i.e., is a categorial quotient for maps $X \to V$ constant on G orbits with V a variety, then we will call Y a strict categorical quotient.

Remarks 2. It may happen that X/H exists but is not separated (cf. [5, Example 2]). In that case Y is the quasi-affine cokernel of X/H.

3. Theorem 2 shows that a categorical quotient of X by H exists in the sense of [6] provided we restrict ourselves to the category of algebraic varieties rather than the category of k-schemes.

We shall call a quasi-affine variety Y over k k-noetherian if $\Gamma(Y, O_Y)$ is finitely generated over k. This concept has been studied by several authors [2], [4], [8]. We now give the generalization of Theorem 2 to arbitrary connected groups.

Theorem 3. Let G be a connected algebraic k-group and X a normal quasi-affine variety on which G acts k-morphically. Let H be the (connected) unipotent radical of G and put G' = G/H. Suppose the following conditions hold:

- (i) For each x in X, the stability group of x in G is finite.
- (ii) The action of H on X is AQA and the categorical quotient Y of X is k-noetherian.
- (iii) $\Gamma(Y, O_Y)$ is a unique factorization domain.
- (iv) There are no nontrivial homomorphisms from G' to G_m .

Then the categorical quotient W of X by G exists and W is quasi-affine. If the orbits of G on X are closed, the fibers of $q: Y \to W$ are connected, and all have the same dimension, then W is the geometric quotient of Y mod G.

Proof. Let $R = \Gamma(Y, O_Y)$. Then (ii) and (iii) imply that R is factorial and of finite type as k-algebra. Since $R = \Gamma(X, O_X)^H$, R is stable under the natural action of G', and $X \to \operatorname{Spec} R$ is G equivariant and hence G' acts on Y. Let $B = R^G$. Since the character group $X(G) = \operatorname{morph}(G, G_m)$ is trivial by (iv), B is also factorial (cf. [7, Corollary 7]). Let W be the image of Y in Spec B under the canonical map q: Spec $R \to \operatorname{Spec} B$. By [6, Theorem 1.1], q is universally open so q(Y) = W is open in Spec B hence quasi-affine. Since B is integrally closed, W is normal. The map q makes Spec B a universal categorical quotient of Spec R (cf. [6]) and thus W is a categorical quotient of $q^{-1}(W)$.

Now let $f: X \to Z$ be a morphism from Y into a variety Z which is constant on G' orbits. We must show f factors uniquely through a morphism $g: W \to Z$. It clearly suffices to show that for any affine open set $Z_0 \subset Z$, $f^{-1}(Z_0) = Y_0 \to Z_0$ factors through $q(Y_0) = W_0 \subset W$. Indeed, if this is shown then we can choose an affine open cover of Z, apply the result to each open set in the cover and define the map g locally. Uniqueness of g locally guarantees the resulting map will be well defined.

Now Y_0 is open in Y and $R = \Gamma(Y, O_Y)$ is factorial. Thus $\Gamma(Y_0, O_{Y_0}) = R_b$ for some G'-invariant function b. Since G' is reductive, $(R_b)^{G'}$ is finitely generated. If r/b is invariant then since R is factorial and $X(G') = \text{morph}(G', G_m) = 1$, r must be invariant (cf. [7] and [9]). Thus $(R_b)^{G'} = B_b$. Now clearly $f_*k[Z_0] \subset B_b$ so $f_0 = f/Y_0$ factors through Spec $B_b \subset \text{Spec } B$, i.e.,

$$Y_0 \xrightarrow{f_0} Z_0$$

$$\pi \searrow \nearrow$$

$$\text{Spec } B_b$$

commutes. Since $\pi(Y_0) \subset W$ we get that f_0 factors through $\pi(Y_0)$. It follows that $g_0: W_0 = \pi(Y_0) \to Z_0$ is unique and this proves that W is a categorical quotient.

If the orbits of G on X are closed then $\pi(G \cdot x) = G' \cdot \pi(x)$ is closed. Thus the orbits of G' on Y are closed. Now $q: Y \to W$ is a surjective open map which sends closed G' invariant sets to closed subsets of W. Let O(y) be an orbit and $p = \pi(O(y))$. Then $q^{-1}(p)$ is connected and of dimension K say. By the generic quotient theorem [10] there exist a nonempty open affine subset Y_0 of Y such that Y_0/G' exists. Then $k[Y_0] = R_b$ for some $b \in B$ and $k[Y_0/G'] = B[b^{-1}]$. Thus Y_0/G' can be identified with an open subset of W via

$$Y_0 \longrightarrow \operatorname{Spec} B$$

$$\searrow \nearrow$$

$$\operatorname{Spec} B_b$$

The stability groups of $x \in X$ being finite implies the stability group of y = q(x) is also finite and so $K = \dim G'$. Thus each component of $q^{-1}(p)$

is an irreducible closed G' stable subvariety of Y of dimension less than or equal to K. It follows that each component must be an orbit. Since orbits are disjoint and $q^{-1}(p)$ is connected, $q^{-1}(p)$ must be a single orbit. Thus $q: Y \to W$ is a surjective separable open orbit map. By [1, Proposition 6.6], $W = Y \mod G$.

Remark 4. The hypothesis of the theorem may appear too strong but in fact are crucial. For example let X = SL(n, k) and G a Borel subgroup of X acting on X by right translation. Then H is the unipotent radical of G. The quasi-affine variety Y is known to satisfy (i) and (ii). (If n = 2, $Y \cong A^2 - (0, 0)$.) The condition (iv) however does not hold since G' is a torus. Indeed, in this case X/G is the flag manifold of \mathbf{P}^{n-1} so $Y/G' \cong X/G$ is not quasi-affine.

The hypothesis given in the last assertion of the theorem are clearly necessary for W to be the quotient of $Y \mod G'$.

Let X be a normal quasi-affine variety on which the connected unipotent group G acts. As usual we assume that the stability group of each point in X is finite. Let $B = \Gamma(X, O_X)$ and $A = B^G$. A point x in X will be called semi-stable if dim $c^{-1}(c(x)) = \dim G$ where $c: X \to \operatorname{Spec} A$ is the canonical map. Let X^{ss} denote the set of semi-stable points of X.

LEMMA 4. X^{ss} is open, non-empty and G-stable.

Proof. Let $\{A_{\alpha}\}$ be a directed system of subalgebras of A with A as limit and such that (i) each A_{α} is a finitely generated k-subalgebra of A, and (ii) each A_{α} is normal and has the same quotient field as A. The existence of such a directed system follows from [3, II, 5.1.9] and [9]. Let $r = \dim G$ and let c_{α} : $X \to \operatorname{Spec} A_{\alpha}$ be the canonical map. By [1; A.G. 10.1, 10.3] the subset Y'_{α} of $\operatorname{Spec} A_{\alpha}$ defined by

$$Y'_{\alpha} = \{ y \in \operatorname{Spec} A_{\alpha} : \dim c_{\alpha}^{-1}(y) \ge r + 1 \}$$

is a closed subset of Spec A_{α} . Clearly $c_{\alpha}^{-1}(Y_{\alpha}^{1}) = X_{\alpha}^{r}$ is closed and G-invariant in X; hence so is $X^{r} = \bigcap_{\alpha} X_{\alpha}^{r}$. But $x \in X^{ss}$ if and only if

$$\dim c_{\alpha}^{-1}(c_{\alpha}(x)) = r$$

for some α and hence for all $\beta > \alpha$, dim $c_{\beta}^{-1}(c_{\beta}(x)) = r$. Since $X_{\beta}^{r} \subset X_{\alpha}^{r}$ for $\beta > \alpha$, $X^{ss} = X - X^{r}$ is nonempty, open and G-stable as claimed.

Remark. Let $X^r = X - X^{ss}$. Then X^r is closed in X so can be defined by an ideal in $B = \Gamma(X, O_X)$. Replacing B by a suitable finitely generated G-stable k-subalgebra we can assume X^r is defined by a finite set of elements. Also since $X^r = \bigcap X^r_{\alpha}$ we can find a finite type k-algebra A_{α} as in the proof of the lemma such that $X^r = q_{\alpha}^{-1}(Y^r)$. Then

$$X^{ss} = q_{\alpha}^{-1}(\operatorname{Spec} A_{\alpha} - Y_{\alpha}^{r}).$$

Evidently if $A_{\alpha} \subset A' \subset A$ with A' of finite type over k then

$$q': X \to \operatorname{Spec} A'$$

has the same property as A_{α} , that is, $X^{r} = q^{r-1}(Y)$ for a suitable closed subset Y of Spec A.

Theorem 5. Let X be a normal quasi-affine variety on which the connected unipotent group G acts. Assume that the stability group in G of each point of x is finite. Then the action of G on X^{ss} is AQA. In particular, a strict categorical quotient Q of X^{ss} by G exists and is quasi-affine.

Proof. We may as well replace X by X^{ss} and so assume that $X = X^{ss}$. Let (Z, W, p) be a Seshadri cover of X. We claim that W is almost-quasi-affine. For this consider the commutative diagram

$$\begin{array}{ccc}
Z & \xrightarrow{p} X \\
q \downarrow & \downarrow c \\
W & \xrightarrow{p} \operatorname{Spec} A'
\end{array}$$

where A' is a normal finite type k-algebra as in the remark above.

Let $w \in W$ and let T be a component of $p^{-1}(p(w))$. Then $q^{-1}(T)$ is a G-stable closed subset of W each component of which has dimension $\dim T + \dim G$ since q is locally trivial. Let $S \subset Z$ be one of these components. Then $\dim p(S) = \dim S$. By our assumption,

$$\dim c^{-1}(c(x)) = \dim G$$
 for each $x \in p(S)$.

Hence

$$\dim c(p(S)) = \dim p(S) - \dim G = \dim S - \dim G.$$

But dim $S = \dim G + \dim T$; thus dim $cp(S) = \dim T$. By (*), c(p(S)) = p(q(S)) = p(w), dim c(p(S)) = 0 and T consists of a finite set of points. It follows that p is quasi-finite so W is almost quasi-affine.

A quasi-affine variety will be called quasi-factorial if $\Gamma(X, O_X)$ is a factorial ring.

PROPOSITION 6. Let X be a quasi-factorial variety on which the connected unipotent group G acts with only finite stability groups. Let Q be the strict categorical quotient of X^{ss} by G. Let U be a G-stable open set in G. If a geometric quotient $Y = U \mod G$ exists (as an algebraic scheme) then $U \subset X^{ss}$. If, further, Y is separated then the natural map $Y \to Q$ is an open immersion.

Proof. Let $Y = U \mod G$ and $Y_0 \subset Y$ be an open affine subset. Then $k[Y_0] = A[a^{-1}]$ by [7] or [9]. It follows that the natural map $Y_0 \to \operatorname{Spec} A$

is an open immersion. It is then clear that for $q: U \rightarrow Y$ the quotient map,

$$q^{-1}(y) = c^{-1}(y) \cap U$$
 for all $y \in Y_0$.

But $q^{-1}(Y_0) = U_0 \subset U$ is G-stable. If $x \in U_0$ then $a(x) \neq 0$ and the natural map $U_0 \to \operatorname{Spec} A$ factors as

$$U_0 \xrightarrow{\longrightarrow} Spec A$$

$$\searrow \nearrow$$

$$Spec A[a^{-1}]$$

and the fibers of c/U_0 are then clearly of the correct dimension so $U_0 \subset X^{ss}$. Since Y is covered by open affines and the inverse images of these under q cover U, $U \subset X^{ss}$ as claimed.

The canonical map $Y \to \operatorname{Spec} A$ is quasi-finite because Y can be covered by finitely many open affines and c restricted to each of these is an open immersion. By the Main Theorem, if Y is separated then c is an open immersion and Y is quasi-affine.

It is not hard to show that if a unipotent group acts on the normal quasiaffine X and the action is AQA then $X = X^{ss}$. We end with two examples to show the limitations of Proposition 6. Let G_a act on affine 3-space by

$$t \cdot (x, y, z) = (x + ty + (t^2/2)z, y + tz, z)$$

(take $k = \mathbb{C}$). Then $X = A^3 - \{(1, 0, 0)\}$ is quasi-factorial, the action of G_{α} on X is AQA but no geometric quotient exists by [5, Example 2].

The second example is obtained by letting G_{α} act on 4-space with coordinates w, x, y, z. The action on x, y, z is the same as above and

$$w(t p) = w(p) + tx(p) + (t^{2}/2)y(p) + (t^{3}/6)z(p).$$

Then using the computations given in [3; 3.1 and remark on p. 204] it can be seen that A^4 – {fixed points} does not consist of semi-stable points; there are fibers of dimension two. For this case X^{ss}/G_a is a universal geometric quotient.

REFERENCES

- 1. A. Borel, Linear algebraic groups, Benjamin, New York, 1969.
- 2. A. Constantinescu, Open embeddings of algebraic varieties in schemes and applications, Intitutul National Pentra Creatie Stiintifica si Tehnica, No. 30, Bucharest, 1979.
- 3. A. FAUNTLEROY, *Linear G_a-actions*, J. Pure and Applied Algebra, vol. 9 (1977), pp. 195-206.
- Stable base loci of representations of algebraic groups, Michigan J. Math., to appear.
- A. FAUNTLEROY, and A. MAGID, Proper G_a-actions, Duke J. Math, vol. 43 (1976), pp. 723-729.
- 6. D. Mumford, Geometric invariant theory, Springer-Verlag, Berlin 1965.

- 7. A. Magid, Finite generation of class groups of rings of invariants, Proc. Amer. Math. Soc., vol. 60 (1976), 47-48.
- 8. M. NAGATA, Lectures on the fourteenth problem of Hilbert, Tata Institute, Bombay, 1965.
- 9. M. ROSENLICHT, On quotient varieties and the affine embedding of certain homogeneous spaces, Trans. Amer. Math. Soc., vol. 101 (1961), 211-221.
- 10. ——, A remark on quotient spaces, An. Acad. Bras. Ci., vol. 35 (1963), 25-28.
- 11. C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann of Math., vol. 95 (1972), pp. 511-566.

University of Illinois Urbana, Illinois