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CATEGORICAL QUOTIENTS OF CERTAIN ALGEBRAIC
GROUP ACTIONS

BY
A. FAUNTLEROY

Introduction

Let G be a connected algebraic group acting on a normal variety X. If
the stability group of each point of X is finite then Seshadri in [S] showed
that there exists a finite G-morphism p: Z — X such that the action of G
on Z is locally trivial and hence Z/G exists as an algebraic scheme over
k. In effect, a quotient of X by G exists up to a finite extension of X’'. We
use Seshadri covers in this paper to show that when G is unipotent and X
quasi-affine then a categorical quotient exists, provided that the action of
G is AQA (see Definition 1) in the following sense. There is a quasi-affine
variety Y and a surjective open morphism g: X — Y which is constant on
G orbits and which satisfies the following universal mapping property:

Given any morphism ¢ from X to a variety V which is constant on the
orbits of G, there exists a unique morphism ¢: ¥ — V such that ¢ o g
= ¢.

We also show that if X is normal and quasi-affine then there exists a
nonempty open set X** of ‘semi-stable’ points such that the action of G on
X* is AQA.

If G is not unipotent there are conditions under which a similar conclusion
holds (Theorem 3). In general quotients of quasi-affine varieties by con-
nected groups need not be quasi-affine so the hypothesis required are quite
strong (see, however, Remark 4 below).

We now fix our terminology. All schemes will be reduced algebraic -
schemes with k a fixed algebraically closed field. A variety is a separated
integral scheme. All algebraic groups are assumed to be affine. If X is an
irreducible scheme we identify I'(X, Ox) with the subring of everywhere
defined rational functions in k(X )—the function field of X. Unless otherwise
stated ‘‘point’’ will mean closed point.

Let X be an irreducible algebraic scheme over k. We say that X is almost
quasi affine if there exists a quasi-finite surjective morphism f: X — Y with
Y a quasi-affine variety.
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116 A. FAUNTLEROY

THEOREM 1. Let X be a normal irreducible algebraic scheme over k and
assume that X is almost quasi-affine. Then there exist a normal quasi-affine
variety Q and a birational surjective quasi-finite morphism q: X — Q
satisfying the following universal mapping property:

Given any morphism f from X to a variety V, there exists a unique
morphism g: Q — V such that

f
X-> V
N e
0

commutes. In particular, Q is unique up to isomorphism.

Proof. Letf: X — Y be a quasi-finite surjective morphism with Y quasi-
affine. Then k(X)/k(Y) is a finite algebraic extension so the normalization
Y of Y in k(X) is also quasi-affine. Now since f is surjective f, induces an
inclusion f,.: T'(Y, Oy) — I'(X, Oyx). Let R be a finitely generated k-subalgebra
of I'(Y, Oy) such that the canonical map ¥ — Spec R is an open immersion
(cf. [3, II. 5.1.9]). Let S be the integral closure of R in k(X). Then we have
a canonical open immersion Y — Spec S induced by the ring inclusion S
C I'(Y, Oy). Since X is normal, I'(X, Oy) is integrally closed so § C I'(X,
Ox) (via f,: R = I'(X, Oyx) S is the integral closure of f,.R in I'(X, Oyx)).
This gives a canonical map q: X — Spec S. Let Q denote the image of
X. If X, C X is an open affine subvariety, then go = q/X, induces a quasi-
finite morphism go: Xo — Q. Since this map is also birational, g, is an
open immersion of X, into Q. Applying this to a finite affine open cover
of X we conclude that g is an open surjective quasi-finite birational mor-
phism and that Q is open in Spec S hence quasi-affine.

Now suppose f: X — T is a morphism of X into a variety 7. Let
{X;: 1 < i < n} be an affine open cover of X. Consider the diagram

o=fxf
XXX—TXT

axq=1y
2
0xgQ
Since Q and T are separated, ¢ '(A(T)) and ¢~ '(A(Q)) are closed in X
x X. We claim ¢~ '(A(Q)) C ¢ (A(T)). Let
Q=¢"'(AT) and A = ¢y~ '(A(Q)).
Now {X; X Xj|l < i, j < n} is an affine open cover of X X X so
Q; = QN X; X X)) (respectively A; = ANX; X X)), 1 <i,j<n,

form an affine open cover of Q (respectively A). If the claim were false we
could find a regular function 4 on the affine variety X; X X; (for some pair
(i,/)) with h = O on Q; but & # O on A;. But y; = ¢ | X; X X;is an open
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immersion of X; X X;into Q X Q and its image clearly meets A(Q) which
is irreducible in Q X Q. Thus our assumption implies that 4 is a rational
function on Q, regular on ¥;({};) and ¥;{A;), which vanishes on the first
but not the second. However,

U5 '(AQ) = {(x, x') | glx = q(x') € q(X)) N q(X;)}
and this set clearly contains ® = {(x, x) | x € X; N X;} C Q. Thus,
P;(€;) D ¥;(0) N P(X;: X X)) D AQ) NPy (X; X X)) = P;(Ay).

Thus, A = O in y;(€);) but not on Y;(A;), a contradiction. This shows A;;
C Qforalli,jso A C Q.

Now define the function g: Q — T as follows: If p € Q then p € ¢(X))
for some i, so we put g(p) = fo q7'(p) where gq; is the isomorphism X;
— qX;) C 0. If p € q(X;) N g(X)), then the above claim shows that f o
q;'(p) = f°q;'(p) so g is well defined. This establishes the universal
mapping property. The uniqueness assertion follows by standard arguments
from this.

Remark 1. Of course if X happens to be separated then X is isomorphic

to Q.
We call the pair (Q, q) the quasi-affine cokernel of X.

We now apply the notion of almost quasi-affine variety to actions of
unipotent algebraic groups.

DeriNiTION 1. Let the connected unipotent group H act on the quasi-
affine variety X with only finite stability groups. We say that the action is
AQA (for almost quasi-affine) if there exists a Seshadri cover (Z, W, p) of
X such that W = Z/G is almost-quasi-affine.

TureorReEM 2. Let H be a connected unipotent group acting regularly on
a normal quasi-affine variety X. Suppose the action of H on X is AQA.
Then there exists a normal quasi-affine variety Y and a surjective open
morphism q: X — Y satisfying the following universal mapping property:

Given any variety Z and a morphism f: X — Z constant on the orbits
of H, there exists a unique morphism g: Y — Z such that

f

N T
Y

commutes. Moreover, if a geometric quotient Q of X modulo H exists and
is separated then the canonical morphism Y — Q is an isomorphism.
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Proof. Let (S, p) be a Seshadri cover of X and T = S/H with T almost
quasi-affine. Let Q(T) be the quasi-affine cokernel of T and let B be a
finitely generated normal k-subalgebra of I'(S, Os)” stable under the action
of I' = Aut k(S)/k(X) such that the canonical morphism Q(T) — Spec B
is an open immersion. Let R = B N k(X)”. Then R is a normal k-algebra
of finite type and B is integral over R. The image Y of Q(T) in Spec R is
therefore open hence quasi-affine. Now X is quasi-affine and X, Spec B
and Spec R are normal so R is a subring of I'(X, Ox)”. Let q: X — Spec R
be the canonical map. Since the diagram

P
S — X
I .
O(T) — Spec R

commutes, the image of g is Y. Moreover since p is a finite morphism it
is open. The morphism § — Q(7T) factors as S — T — Q(T), a composition
of open morphisms, so S — Q(T) is an open map. Finally, Q(T) — Y is
open so q: X — Y is an open map. The morphism q is clearly constant
on H-orbits.

Now let f: X — Z be a morphism into a variety Z constant on the orbits
of H. Then f o p is constant on the orbits of H in § so we get a morphism
g': T = S/H — Z such that

fop
N4
s
T

commutes (77 being the quotient map). By Theorem 1, g’ factors through
O(T). Replacing Z by the closure of f(X) if necessary we may assume
without loss of generality that f is dominant. Suppose Z is affine. Then
fk(Z) C k(X)¥ = k(Y). We now have a commutative diagram

omn -z
N
Y

where the dotted arrow is a priori just a rational map. Let A € k(Z) with
f«(\) regular at each point of O(T). We claim f,(\) is regular on Y. Suppose
not. Then since Y is normal there exists a discrete valuation ring 6 of k(Y)
having a center of codimension one on Y with f,A & 6. But Q(T) — Y is
quasi-finite and surjective and Q(T) is normal. Thus there exist a discrete
valuation ring 6’ of k&(Q(T)) having a center of codimension one on Q(T)
with 6’ > 0, i.e., 6 = 6’ N k(Y). But f,(A\) € ' N k(Y) a contradiction.
Hence f,\ is regular on Y whenever it is regular on Q(T). It follows that
f«k[Z] C T'(Y, Oy) and the rational map g is regular on Y. In the general
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case we may replace Z by an affine open cover {Z,} and consider

p(g~'(Z.)

where p: Q(T) — Y is the natural map (induced by R C B). Then g will
be regular on p(g~!(Z,)). Since the open sets p(g~'(Z,)) cover Y, g is
regular on all of Y. This establishes the universal mapping property.

Finally if Q = X /H exists (as a variety) then from the above construction
of Y, we see that the canonical map Y — Q is a quasi-finite birational
morphism so Y is an open subvariety of Q. Since gq: X — Y is constant
on orbits, ¥ — Q must also be surjective and hence an isomorphism. This
completes the proof of the theorem.

If X is a variety on which the algebraic group G acts and Y satisfies the
universal mapping property as above, i.e., is a categorial quotient for maps
X — V constant on G orbits with V a variety, then we will call Y a strict
categorical quotient.

Remarks 2. It may happen that X/H exists but is not separated (cf.
[5, Example 2]). In that case Y is the quasi-affine cokernel of X/H.

3. Theorem 2 shows that a categorical quotient of X by H exists in the
sense of [6] provided we restrict ourselves to the category of algebraic
varieties rather than the category of k-schemes.

We shall call a quasi-affine variety Y over k k-noetherian if I'(Y, Oy) is
finitely generated over k. This concept has been studied by several authors
[2], [4]1, [8]. We now give the generalization of Theorem 2 to arbitrary
connected groups.

THEOREM 3. Let G be a connected algebraic k-group and X a normal
quasi-affine variety on which G acts k-morphically. Let H be the (con-
nected) unipotent radical of G and put G' = G/H. Suppose the following
conditions hold:

(i) For each x in X, the stability group of x in G is finite.
(ii) The action of H on X is AQA and the categorical quotient Y of X is
k-noetherian.
(iii) T'(Y, Oy) is a unique factorization domain.
(iv) There are no nontrivial homomorphisms from G' to G,,.

Then the categorical quotient W of X by G exists and W is quasi-affine.
If the orbits of G on X are closed, the fibers of q: Y — W are connected,
and all have the same dimension, then W is the geometric quotient of Y
mod G.
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Proof. Let R = I'(Y, Oy). Then (ii) and (iii) imply that R is factorial
and of finite type as k-algebra. Since R = I'(X, Ox)", R is stable under the
natural action of G’, and X — Spec R is G equivariant and hence G’ acts
on Y. Let B = R°. Since the character group X(G) = morph(G, G,) is
trivial by (iv), B is also factorial (cf. [7, Corollary 7]). Let W be the image
of Y in Spec B under the canonical map g: Spec R — Spec B. By [6,
Theorem 1.1], g is universally open so g(Y) = W is open in Spec B hence
quasi-affine. Since B is integrally closed, W is normal. The map g makes
Spec B a universal categorical quotient of Spec R (cf. [6]) and thus W is
a categorical quotient of g~ '(W).

Now let f: X — Z be a morphism from Y into a variety Z which is
constant on G’ orbits. We must show f factors uniquely through a morphism
g: W — Z. It clearly suffices to show that for any affine open set Z, C
Z, f~'(Zy) = Y, — Z, factors through ¢(Y,) = W, C W. Indeed, if this
is shown then we can choose an affine open cover of Z, apply the result
to each open set in the cover and define the map g locally. Uniqueness of
g locally guarantees the resulting map will be well defined.

Now Y, is open in Y and R = I'(Y, Oy) is factorial. Thus I'(Y,, Oy,)
= R, for some G’-invariant function b. Since G’ is reductive, (R,)% is
finitely generated. If r/b is invariant then since R is factorial and X(G’)
= morph(G’, G,) = 1, r must be invariant (cf. [7] and [9]). Thus (R,)
= B,. Now clearly f k[Z,] C B, so fo = f/Y, factors through Spec B,
C Spec B, i.e.,

fo
Y. 0 Z()
™ /
Spec B,

commutes. Since 7(Y,) C W we get that f;, factors through 7(Y,). It follows
that go: W, = w(Yy) — Z, is unique and this proves that W is a categorical
quotient.

If the orbits of G on X are closed then (G - x) = G' - mw(x) is closed.
Thus the orbits of G’ on Y are closed. Now g: Y — W is a surjective open
map which sends closed G' invariant sets to closed subsets of W. Let O(y)
be an orbit and p = m(O(y)). Then g~ '(p) is connected and of dimension
K say. By the generic quotient theorem [10] there exist a nonempty open
affine subset Y, of Y such that Y,/G’ exists. Then k[Y,] = R, for some b

€ B and k[Y,/G'] = B[b™']. Thus Y,/G' can be identified with an open
subset of W via

Yy,— Spec B
N/
Spec B,

The stability groups of x € X being finite implies the stability group of y
= gq(x) is also finite and so K = dim G'. Thus each component of g~ '(p)



CATEGORICAL QUOTIENTS 121

is an irreducible closed G’ stable subvariety of Y of dimension less than
or equal to K. It follows that each component must be an orbit. Since
orbits are disjoint and ¢~ '(p) is connected, ¢~ '(p) must be a single orbit.
Thus g: Y — W is a surjective separable open orbit map. By [1, Proposition
6.6], W = Y mod G.

Remark 4. The hypothesis of the theorem may appear too strong but
in fact are crucial. For example let X = SL(n, k) and G a Borel subgroup
of X acting on X by right translation. Then H is the unipotent radical of
G. The quasi-affine variety Y is known to satisfy (i) and (ii). (If n = 2, Y
= A? — (0, 0).) The condition (iv) however does not hold since G’ is a
torus. Indeed, in this case X/G is the flag manifold of P"~! so Y/G' =
X/G is not quasi-affine.

The hypothesis given in the last assertion of the theorem are clearly
necessary for W to be the quotient of ¥ mod G'.

Let X be a normal quasi-affine variety on which the connected unipotent
group G acts. As usual we assume that the stability group of each point
in X is finite. Let B = I'(X, Oy) and A = B°. A point x in X will be called
semi-stable if dim ¢~ '(c(x)) = dim G where c: X — Spec A is the canonical
map. Let X** denote the set of semi-stable points of X.

Lemma 4. X* is open, non-empty and G-stable.

Proof. Let {A,} be a directed system of subalgebras of A with A as
limit and such that (i) each A, is a finitely generated k-subalgebra of A,
and (if) each A, is normal and has the same quotient field as A. The existence
of such a directed system follows from [3, II, 5.1.9] and [9]. Let r = dim G
and let ¢,: X — Spec A, be the canonical map. By [1; A.G. 10.1, 10.3]
the subset Y’ of Spec A, defined by

Y., = {y € Spec A,: dimc;'(y) =r + 1}

is a closed subset of Spec A,. Clearly c;'(Yy) = X’ is closed and G-
invariant in X; hence so is X" = N, X,. But x € X* if and only if

dim ¢ '"(c,(¥)) = r

for some a and hence for all B8 > a, dim ¢g ‘(c,,(x)) = r. Since X C X, for
B> a, X* = X — X" is nonempty, open and G-stable as claimed.

Remark. Let X" = X — X*. Then X" is closed in X so can be defined
by an ideal in B = I'(X, Oy). Replacing B by a suitable finitely generated
G-stable k-subalgebra we can assume X" is defined by a finite set of elements.
Also since X" = NX!, we can find a finite type k-algebra A, as in the proof
of the lemma such that X" = g;'(Y"). Then

X* = q;'(Spec A, — Y5).
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Evidently if A, C A’ C A with A’ of finite type over k then
q': X — Spec A’

has the same property as A,, that is, X" = ¢'~'(¥) for a suitable closed
subset Y of Spec A.

THEOREM 5. Let X be a normal quasi-affine variety on which the connected
unipotent group G acts. Assume that the stability group in G of each point
of x is finite. Then the action of G on X* is AQA. In particular, a strict
categorical quotient Q of X*° by G exists and is quasi-affine.

Proof. We may as well replace X by X** and so assume that X = X*.
Let (Z, W, p) be a Seshadri cover of X. We claim that W is almost-quasi-
affine. For this consider the commutative diagram

VA —p—>X
(*) al lc
14
W —— Spec A’

where A’ is a normal finite type k-algebra as in the remark above.

Let w € W and let T be a component of p~'(p(w)). Then ¢ (T) is a
G-stable closed subset of W each component of which has dimension
dim T + dim G since q is locally trivial. Let § C Z be one of these compo-
nents. Then dim p(S) = dim S. By our assumption,

dim ¢ '(c(x)) = dim G for each x € p(S).

Hence
dim c(p(S)) = dim p(S) — dim G = dim § — dim G.

But dim § = dim G + dim T; thus dim ¢p(§) = dim T. By (%), ¢(p(S)) =
p(q(S)) = pw), dim c(p(S)) = 0 and T consists of a finite set of points.
It follows that p is quasi-finite so W is almost quasi-affine.

A quasi-affine variety will be called quasi-factorial if I'(X, Oy) is a factorial
ring.

PrOPOSITION 6.  Let X be a quasi-factorial variety on which the connected
unipotent group G acts with only finite stability groups. Let Q be the strict
categorical quotient of X*° by G. Let U be a G-stable open set in G. If a
geometric quotient Y = U mod G exists (as an algebraic scheme) then
U C X*. If, further, Y is separated then the natural map Y — Q is an
open immersion.

Proof. Let Y = U mod G and Y, C Y be an open affine subset. Then
k[Y,] = Ala™"] by [7] or [9]. It follows that the natural map Y, — Spec A
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is an open immersion. It is then clear that for g: U — Y the quotient map,
'@ =c'»)NU forally€E Y,.

But ¢~ '(Yy) = U, C U is G-stable. If x € U, then a(x) # 0 and the natural
map U, — Spec A factors as

Uy—— Spec A

N 7
Spec Ala™']

and the fibers of ¢/U, are then clearly of the correct dimension so U, C
X*. Since Y is covered by open affines and the inverse images of these
under g cover U, U C X* as claimed.

The canonical map Y — Spec A is quasi-finite because Y can be covered
by finitely many open affines and c restricted to each of these is an open
immersion. By the Main Theorem, if Y is separated then ¢ is an open
immersion and Y is quasi-affine.

It is not hard to show that if a unipotent group acts on the normal quasi-
affine X and the action is AQA then X = X*. We end with two examples
to show the limitations of Proposition 6. Let G, act on affine 3-space by

t-(x,y,2)=G+ty+ #/Dz,y + tz,2)

(take k = C). Then X = A® — {(1, 0, 0)} is quasi-factorial, the action of
G.on X is AQA but no geometric quotient exists by [5, Example 2].

The second example is obtained by letting G, act on 4-space with coordinates
w, x, ¥, z. The action on x, y, z is the same as above and

w(t p) = w(p) + tx(p) + (*/2)y(p) + (£*/6)z(p).

Then using the computations given in [3; 3.1 and remark on p. 204] it can
be seen that A* — {fixed points} does not consist of semi-stable points;
there are fibers of dimension two. For this case X*/G, is a universal
geometric quotient.
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