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RATIONAL POINCARI DUALITY SPACES

BY

JAMES STASHEFF

Manifolds play a particularly important role in topology. From the point
of view of algebraic topology, their distinguishing feature is the Poincar6
duality which exists in their homology and cohomology. Historically, Poin-
car6 first observed the duality in terms of a dual cell decomposition which
means that duality occurred at the chain level.
From the point of view of rational homotopy theory, simply connected

spaces are equivalent to simply connected c.d.g.a.’s (commutative differ-
ential graded algebras). The role of manifold is then played by a c.d.g.a.
which satisfies Poincar6 duality at the rational cohomology level. Surpris-
ingly, this turns out to imply an approximate chain level duality strong
enough to yield higher order implications, e.g., in terms of Massey products.
For example, one of the simplest manifolds with non-trivial Massey prod-
ucts is the homogeneous space Sp(5)/SU(5). As first computed by Borel
[2], Sp(5)/SU(5) has rational cohomology algebra generated by classes x
//6, y H10, a H21, b H25 with the only non-trivial products being
xb ay , the fundamental class. From Borel’s calculations, it is easy
to observe that a (x, x, y) and b (x, y, y), ordinary 3-fold Massey
products. Another manifold with the same cohomology algebra is

(S6 x S25) # (S10 x S21),
the connected sum. Here both (x, x, y) and (x, y, y) 0. It turns out that
Poincar6 duality guarantees that (x, x, y) and (x, y, y) are simultaneously
both zero or both non-zero. This aspect of Poincar6 duality is part of the
fall-out of the main topic of this paper: The classification of rational Poincar6
duality spaces.
For general rational spaces, one approach to classification is given by

the obstruction theory of Halperin-Stasheff and the machinery of Schles-
singer-Stasheff On a more elementary level, a variety of authors and tech-
niques have shown, for example, that a cohomology algebra H is repre-
sented by a unique rational homotopy type if/Y 0 for 0 < < k and
> 3k 2. However, Tim Miller [4] proved that if H was a Poincar6 duality
algebra, then// 0 for 0 < < k and > 4k 2 still guaranteed uniqueness
of the rational homotopy type. J. Neisendorfer then asked if many of the
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results of Schlessinger and Stasheff on shallow spaces might not similarly
be extended for Poincar6 duality algebras. The following deeper result is
in fact true:

THEOREM 1. Let H be a Poincar duality algebra of top dimension N
and H O. Let X be a simply connected rational space with H(X) H
except HV(X) O. If Y X U ev with H(Y) H, then the rational
homotopy type of Y is unique. In other words, the rational homotopy type
of a simply connected Poincar duality space Y X t.J ev is determined
by X.

In particular, the attaching map for eN can be given in a particularly
simple form, reflecting precisely the duality in H, namely as a linear com-
bination of ordinary (non-iterated) Whitehead products with respect to some
basis of zr.(X) () Q.
The proofs are carried out not in terms of spaces and classifying maps,

but rather in the equivalent rational homotopy category of d.g.l.’s (differ-
ential graded Lie algebras). Much of rational homotopy theory has followed
Sullivan’s [8] emphasis on c.d.g.a.’s which correspond to spaces via the
Sullivan-de Rham rational forms A*(X) on a space X. Quillen’s original
approach to rational homotopy theory emphasizes differential graded Lie
algebras in another way. With d 0, the rational homotopy groups zr,(tX)
() Q form a graded Lie algebra under Samelson product. Moreover [6, p.
226] produces a non-trivial differential graded Lie algebra Lx which not only
gives H(Lx) 7r.(fX) () Q as graded Lie algebra under Samelson product,
but also faithfully records the rational homotopy type of X. A simplistic
way of characterizing such an Lx for nice X is as follows" There is a
standard construction such that for any d.g.l. L, we have (L) as a
c.d.g.a, and for Lx, we have (Lx) - A*(X) as a model for X.

(For ordinary Lie algebras L, the construction (L) is the standard com-
plex of alternating forms used to define the Lie algebra cohomology.)

The model (X). Thanks to Baues and Lemaire, we now have a par-
ticularly simple model of Lx as follows: For a commutative graded algebra
H of finite type, we refer to the dual as the homology coalgebra and denote
it by H,. The underlying Lie algebra of (X) is the free graded Lie algebra
[6, p. 13] L(H) on the desuspension s-1H, of the reduced homology (s- H,)n

(H,),+,.
In fact, L(H) is bigraded, using bracket length as the second gradation.

A typical bihomogeneous element of (X) will be an iterated bracket

[xi], [xi, x], [xi, [x, Xk]], etc.,

where x is a homogeneous element of H,. If x has degree n, then [xi]
has degree ni 1, [xi, xj] has degree ni + nj 2, etc. The differential d
on (X) can be written as d d + d2 + where d increases bracket
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length by i. In particular, dl: [H, -- [H,, H, is dual to the multiplication
H t) H -- H. If d d, then (X) (H,), Quillen’s functor applied
to the coalgebra H, [6].
That H satisfies Poincar6 duality is reflected in the differential of the

fundamental class, /x H/v. If (x, / is a basis for H,, then dl[/x]
1/2[x,b] and the b are a dual basis for H,, henceforth denoted x’. In
particular, we can choose a basis for H, in dimensions less than or equal
to N/2 and then complete this to a basis for all of H, by using the cor-
responding duals in dimensions >N/2. Thus we have two bases {x,/x) and
(x’,/x) which, except possibly in dimension N/2 if N is even, are rein-
dexings of each other.
We will take advantage of Poincar6 duality by manipulating the x of low

dimension and letting Poincar6 duality do or verify the rest for us.
On the face of it, d[/z] could be non-zero, but we will show there is a

choice of basis of (X) so that di[/z] 0 for > 1 (Theorem 2).
On other generators, di may well be non-zero. Because dl plays a very

different role from the other d, we will denote d by and let p dE
+ da / (The letter p reflects the point of view from which p is regarded
as a perturbation of d [3] and [7].) The relation dE 0 can be written as
( + p)2 0. By considering the second grading, this implies 0 and
Od2 + dE0 0. Once we have d(/x) 0 for 1, this implies

d20(/x) 0 or [dEXj, Xf +- [xj, dEXf 0

which is the first piece of the higher order duality claimed. In particular,
this explains why (x, x, y) and (x, y, y) are both zero or both non-zero if

H H(Sp(5)/SU(5)) H(S6 S25 # S $2).

We hope that the results together with their proofs will provide a more
"geometric" insight into the algebraic Poincar6 duality of rational homotopy
theory. If so, we owe a debt of gratitude to the referee who reminded us
that an excess of elegance may run counter to insight.

The main theorem recast. The main theorem can now be recast in the
following form. Corresponding to a decomposition Y X es, we have
a map of d.g.l.’s (X) (Y) and in fact (Y) can be described as
(X)[/x]. (Here we have abused the usual notation for adjoining a variable
to carry it over to the Lie algebra setting. Since (X) is free on the x,
(Y) is just the free Lie algebra on {x,/x}.)

THEOREM 1’. Given cofibrations Y,. X t.J eN, and an isomorphism
H((YI)) H((Y2)) which restricts to the identity on H((X)), there is
an automorphism d of (X) which extends to an isomorphism

(Y) (Y:)

taking
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Proof. We will in fact construct an automorphism 4 of the form
1 + tO 1 + tkl + q2 + where qg increases bracket length by and is non-
zero only above the middle dimension.
Let L (Y). Under the given isomorphism of H(L) with H(L2), the

d parts of the differentials for L and L2 agree. We therefore write those
differentials as + p and + p2 and will consider the difference p
P2 Pl.

First, consider the terms of bracket length 3. In terms of our basis
{x/}, we can write

(P2 pl)/t/, Z[Xi, ri] q- terms of greater bracket length

where r; is a linear combination of two-fold brackets. In fact, and this is
key, by judicious use of the Jacobi identity, we can assume ri 0 unless
xg has degree (in H.) < N/2. Now define ql(x’) r for all i, so qhx 0
if deg xg < N/2 and qx’ 0 if deg xg > N/2. Thus we have

(1 + q,)(0 + p,)(/x)= (1 + I//1)(Z[xi, x])+Pl(IX)+qlP(tx)
+ + +

0/. -t- (P2 --P)bI, + pl(/) + q/lPl(/.),

but qhp(tz) has bracket length at least 4.
Thus we are able to proceed by induction. Assume qj has been con-

structed for j < n. Write the terms of length n + 2 in

(P2 (1 + q/1 q- -t- q/n-1)Pl)

as

where s is now a linear combination of brackets of length n + 1 and define

qJn(X Si

Of course we need th to be a chain map on all of (H), not just on
This is a little more subtle. Again consider terms of length 3. We need to
show

(1 + b)(0 + p)(x) (0 + p2)(1 +

modulo terms of length greater than 3. For the terms of length 2, we have

while for the terms of length 3, we need to verify

plX + llllOXi p2x " OlO1X.
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Since (H) is free, we can look instead at

[x,, px’] + [x, (Oq tk)x] where q q.

Applying (1 + q) to c32]d, 0, We have, in length 4,

[,ox,, xf] + [ox, ,xl + [,x,, ox] + Ix,, x] o.
Since dim x N/2, qx 0 and q3x 0 so we have

[Ox,, q,x,*] + Ix,, ox.*,] o.
On the other hand from (O + pi)E(/j,) 0 in length 4 we have, with
p P2 Pl,

[px, x’] + [x, px] + [ox, r] + [x, Or] 0;

but p is non-zero only on/x. Since qx’ r by construction, we deduce

[xi, px’] + [xi, qOx{] + [xi, 3qx’] 0

as desired.

Finally, we wish to show that the top cell is attached in a particularly
nice way.

THEOREM 2. If Y is a simple connected rational space such that H
H(Y) satisfies Poincar4 duality, then there is a Lie algebra model Ge(H)
with

d) [x,, x;];

there are no terms of higher order. Equivalently Y X U eN where eN is
attached by ordinary Whitehead products (not iterated) with respect to
some basis of zr,(x) () Q.

Proof. We know there is a model (H) (L(H), O + p). We will in
fact construct a new perturbation q such that q(/x) 0 and a map of d.g.l.’s

(L(H), 0 + q) (L(H), O + p)

of the form 1 + q + q + 1//2 if- where qq increases bracket length
byj.

Again let O(/x) 1/2E[xi, x’] display a dual basis for H as in Theorem 1.
Define

by

(1 + )= + ’L(H)-- L(H)

p(g) [x,,
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Define the derivation qn L(H) --> L(H) increasing bracket length by n by
n-1

qn(x Pn(Xi*) + (Pj-j _jq2)(x)

with P =-ql 0. It is then trivial to check that

(1 + )(0 + q) (0 + p)(1 / )
on all x and

(1 + )(0 + q)(/) (1 + )(0/) (0 + p)(/)

by construction.
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