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BILIPSCHITZ GROUP ACTIONS AND HOMOGENEOUS
JORDAN CURVES

DAVID A. HERRON AND VOLKER MAYER

ABSTRACT. We analyze bilipschitz group actions on Jordan curves and present a list of alternative de-
scriptions for bilipschitz homogeneous bounded turning Jordan curves in doubling metric spaces.

1. Introduction
Recall that a map f between metric spaces is bilipschitz provided
K=yl <If) = fOI <K ix =yl forallx,y;

we abbreviate this by the phrase ‘f is K-BL’. We say that G is a bilipschitz group
acting on a Jordan curve I' if G is a uniformly bilipschitz group of orientation pre-
serving self-homeomorphisms of I'. In this situation there is no harm in assuming
that G is closed with respect to the topology of local uniform convergence. Our first
result asserts that such groups have a simple algebraic structure.

THEOREM A. Let I" be a Jordan curve in any metric space. Suppose G is a
bilipschitz group acting on I'. Then either G is cyclic (hence finite in the case of a
compact curve) or G is a one-parameter group.

A metric space X is bilipschitz homogeneous if there is a family of uniformly
bilipschitz self-homeomorphisms of X which acts transitively on X; i.e., there is a
constant K such that for each pair of points x, y € X there exists a K-bilipschitz
f: X — X with f(x) = y. A natural class of mappings associated with such spaces
are the quasihomogeneous, or QH, embeddings #: X — Y which satisfy

lhx —hyl _ (x|
=n
|hu — hv| |lu — v
for distinct points x, y, u, v; here n: [0, +00) — [0, +00) is a homeomorphism,
and we abbreviate this by saying that 4 is n-QH. For example, if hi: X — Y

is n-quasihomogeneous and X is K-bilipschitz homogeneous, then A (X) is n(K)-
bilipschitz homogeneous.
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Our interest here lies in the case where X = I' is a Jordan curve in some ambient
doubling metric space. Bilipschitz homogeneous curves, especially in R", have been
considered in [GH;], [M], and recently by Chris Bishop [B]. Standard examples in
the plane include all chordarc curves; however, in contrast with the quasiconformal
case, (Erkama [E] established that the curves homogeneous with respect to global
quasiconformal maps are precisely the quasicircles), Tukia [T] showed that there are
fractal bilipschitz homogeneous curves, e.g., the von Koch snowflake. Other fractal
examples are the so called quasi-self-similar circles like Julia sets of polynomials
p(z) = 2%+ ¢ with ¢ near 0 and limit sets of certain Kleinian groups. These examples
all share a common property: to wit, each has a parametrization {r (a homeomorphism
from either 8! or R to the curve) which satisfies | (t) — ¥ (s)]® =~ |s — t| where & is
the Hausdorff dimension of the image curve.

Clearly, quasihomogeneous maps of S! or R need not satisfy such a Holder con-
dition. On the other hand, it is easy to see, by conjugating either rotations of S! or
translations of R, that any curve which admits a quasihomogeneous parametrization
is bilipschitz homogeneous. In fact, if a Jordan curve has a VWQH parametrization,
then it is bilipschitz homogeneous with respect to a one-parameter group (cf. [GH»,
4.1,4.3]); Section 2 contains basic definitions, terminology and notation. Thus a fun-
damental question is whether or not every bilipschitz homogeneous curve admits a
VWQH (or WQH or QH) parametrization. A partial answer is given by the following
easy consequence of Theorem A.

THEOREM B. A Jordan curve I" in any metric space is bilipschitz homogeneous
with respect to a group G if and only if ' has a VWQH parametrization, which

conjugates G to an isometry group (rotations of S' when T is compact and translations
of R otherwise).

We pause here to raise this question: Does bilipschitz homogeneity imply bilip-
schitz homogeneity with respect to a group? Note that for a Jordan curve this is
equivalent to asking whether or not bilipschitz homogeneity guarantees the existence
of a VWQH parametrization. We do not know of an example where there is bilip-
schitz homogeneity but not with respect to a group; in fact for plane Jordan curves
bilipschitz homogeneity always implies bilipschitz homogeneity with respect to a
group.

According to Lemma 2.2, the parametrization provided by Theorem B is WQH
when I' is bounded turning (and, by Fact 2.3, quasihomogeneous when I is also dou-
bling). It turns out that bilipschitz homogeneous plane Jordan curves are necessarily
bounded turning, a significant result just established by Chris Bishop [B, Thm. 1.1].
(We learned of this as we were completing our manuscript; in subsection 4.D we
sketch our proof of this for the special case where the curve is bilipschitz homoge-
neous with respect to a group.) This, in conjunction with Theorem E and other results
of Bishop’s [B, Cor. 1.2], gives a long list of equivalent conditions for certain Jordan
plane curves.
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Thus the class of plane Jordan curves which are homogeneous with respect to
uniformly bilipschitz self-homeomorphisms is precisely the class of plane curves
which are homogeneous with respect to a family (or group) of uniformly bilipschitz
homeomorphisms acting on the whole plane. In fact, not only are these the same

curves, but one can also extend any group action on the curve to a group action on
the whole plane.

THEOREM C. Let G be any L-bilipschitz group acting on a K -bilipschitz homo-
geneous Jordan curve in the plane R, Then one can extend G to an M-bilipschitz
group acting on the plane, with M depending only on K, L and the quasicircle
constant.

Our proof of the above is based on the next result, which has its own interest. Here
we let I"'! denote either the real line R or the circle S!, and we call T a line or a circle
if I has a parametrization ¥: T'! — TI" which is an isometry.

THEOREM D. Let I" be a line or a circle in any metric space. Suppose G is
an L-bilipschitz group acting on I". Then there is an L-bilipschitz self-map f of T
such that f G f~' is a group of isometries of T'. (Thus ¥~' fGf~' is a group of
translations when T'' = R and a group of rotations when T'' = 8!

Since bilipschitz groups are convergence groups, we already know that there is
a topological conjugacy [Ga]. The new information here is that we can choose a
bilipschitz conjugacy. There are similar results for quasisymmetric groups, due to
Hinkkanen [H], and for strongly quasisymmetric groups, due to Mayer and Zinsmeis-
ter [MZ]. Of course such a result is false for bilipschitz groups acting on the plane,
since there are non-chordarc, even fractal, bilipschitz homogeneous curves.

We draw attention to the special cases in Theorems C,D where G is a non-discrete
group. When such a G acts on a line or a circle, then the parametrization given by
Theorem B—which conjugates G to an isometry group—is in fact bilipschitz. When
G acts on a quasicircle in R?, we can extend its action to all of R? simply by extending
the (quasihomogeneous) parametrization obtained via Theorem B.

In contrast with the situation described above for plane curves, there are no such
results for bilipschitz homogeneous curves in R” when n > 3. For example, a helix
in R? is a 1-bilipschitz homogeneous curve whose bounded turning constant can be
arbitrarily large. In fact there are bilipschitz homogeneous curves in R* which are
not bounded turning; see Example 5.6 and also [B, Example 4.1].

Now we turn to the general problem of understanding bilipschitz homogeneous
Jordan curves in arbitrary metric spaces. We remind the reader of the basic problem
as to whether or not such curves have VWQH parametrizations. Our final result pro-
vides some basic information about these curve (see [B] also), and demonstrates, in
particular, that quasihomogeneous circles (curves which have a quasihomogeneous
parametrization) are precisely the curves which are simultaneously bilipschitz homo-
geneous, bounded turning, and doubling.
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THEOREM E. For a Jordan curve T, in a doubling metric space, the following
assertions are quantitatively equivalent.

(a) T is bilipschitz homogeneous and bounded turning.
(b) T admits a quasihomogeneous parametrization.

(c) T enjoys a bounded covering property.

(d) T supports a geometric measure.

(e) T satisfies a generalized chordarc condition.

Again we observe that when the bilipschitz homogeneity in (a) is with respect to a
group, then (b) follows from Theorem B in conjunction with Lemma 2.2 and Fact 2.3.
We verify these characterizations for bilipschitz homogeneous curves in Section 3,
where we also define and explain the above terminology. Note that conditions (b)
through (e) all imply that I" is bounded turning; as mentioned above, this hypothesis
is essential in (a). Also, as Examples 5.4, 5.5 illustrate, the doubling hypothesis is
necessary, and in fact an integral ingredient in our proofs. We point out that there
is no similar result for higher dimensional bilipschitz homogeneous sets: There are
bilipschitz homogeneous surfaces in R* which even fail to admit quasisymmetric
parametrizations. Rickman showed that I' x R, with I" a snowflake curve, cannot be
the image of R? under a quasisymmetric map, and Tukia [T] established the bilipschitz
homogeneity of this surface.

Mayer proved the equivalence of conditions (b), (c), (d) for plane curves [M,
Thm. 1.1]. Gamshari and Herron established the equivalence of (a) and (b) for curves
in R" which have positive finite Hausdorff measure [GH;, Thms. C,4.6]. However,
there are bilipschitz homogeneous curves which fail to satisfy this criterion; e.g., see
[M. p. 160] or [GH5, 5.3]. Thus we are forced to use generalized Hausdorff measures;
it turns out that we can always associate a ‘natural’ generalized Hausdorff measure to
a given bilipschitz homogeneous bounded turning I" and then (e) holds. This result
has two important applications. First, there is an easy way to calculate the Hausdorff
dimension of such a curve: it coincides with the lower Minkowski or box dimension
(see Corollary 3.8). Second, we can classify these curves modulo bilipschitz maps
(see Corollary 3.9); this extends a corresponding result of Falconer and Marsh [FM]
concerning quasi-self-similar circles.

This paper is organized as follows: We examine bilipschitz group actions in Sec-
tion 4 and corroborate Theorems A,B,C,D in subsections 4.B, 4.C, 4.F, 4.E respec-
tively. Section 3 is devoted to explaining and substantiating Theorem E. We conclude
with Section 5 where we exhibit illustrative examples.

2. Preliminaries

Our notation is relatively standard. We let B(x;r) = {y: |x — y| < r} and
S(x; r) = dB(x; r) denote the open ball and sphere of radius r centered at the point
x. We write ¢ = c(a, ...) to indicate a constant ¢ which depends only on g, .. .;

.9
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typically ¢ will depend on various parameters, and we try to make this as clear as
possible often giving explicit values. We write a = b to mean there exists a positive
finite constant ¢, depending only on the given data, witha/c < b < ac.
A metric space X is said to be doubling if there is a constant vy such that any ball
B in X can be covered with at most v balls each having radius half the radius of B.
In other words, N(r; B(x; 2r)) <y forall r > 0 and all x € X, where
N(r; E) =min{n € N: E C U'_ B(x;; r)}.

i=1

Examples of doubling spaces include R", the Heisenberg groups, and Ahlfors regular
spaces [DS]. Every complete doubling metric space carries a doubling measure [LS].

We utilize the fact that every subspace of a doubling space is itself doubling, and
especially the trivial, but crucial, observation that in a doubling metric space there
exists an increasing function v: [1, 00) — [1, 0o) such that for every compact set E

N@r; E)<N(@;,E)<v(o)N(or; E) forallr >0ando > 1.

In fact v(o) = v} *+ works where p = log, 0. Henceforth v always denotes this

associated ‘doubling function’ in our ambient doubling space.

As indicated in the Introduction, we are primarily interested in Jordan curves which
live in some ambient doubling space. For the record, by a Jordan curve I' we mean a
homeomorphic image of either the circle S' (the compact case) or the real line R (the
non-compact case). We let I'(x, y) denote the component of I"\ {x, y} with minimal
diameter. We say that I' satisfies a bounded turning condition provided there is a
constant a such that forall x, y € T,

diam(T'(x, y)) < alx — y|.

In the sequel we say that I" is a-BT when the above holds. Thanks to Ahlfors, we
know that the bounded turning plane Jordan curves are precisely the quasicircles (i.e.,
images of a circle or line under a quasiconformal self-homeomorphism of the plane).

There is an alternative way of estimating N (r; I') for a bounded turning Jordan
curve I" in a doubling spaces. An r-chain of length £ along I" from x to y is an ordered
sequence of points x = xg, Xy, ..., x¢ = y on I" with the property that |x;_ —x;| =r
forl <i<fand|x —x|| <r,|y —xe_y| <r.

2.1. LEMMA. Lety = I'(x, y) be a subarc of an a-BT Jordan curve in a doubling
metric space. Then any r-chain x = xg, Xy, ..., X¢ = y on y satisfies

—]—N(r; y) <€ <2v(2)v(Ba)N(r; y).
v(a)

Proof. Put y; = y(xi_,x;). Since I' is a-BT, N(ar; y;) = 1, from which
we deduce the lower bound on £. To verify the upper bound, we can assume that
£ > 2. Fix distinct points x;, x; different from xo, x; and from x,_y, x,. Then there
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is an index k, 1 < k < £, such that the subarc y; lies between x; and x;. Hence
|xi — xj| = r/a, and we see that the balls B(x;;r/3a) (i = 1,2,...,£ — 1) are
disjoint. Thus N(r/6a; y) > £ — 1 and so

£<2(8—1) < 2N@/3a;y) <2v2Qv@Ba)N(r; y). O

In addition to the quasihomogeneous maps defined in the Introduction, we also
require several related classes of homeomorphisms. An embedding 4: X — Y is
called weakly quasisymmetric, or H—WQS, provided

|h(x) —h(»)| < H|h(x) — h(z)| when |x —y| <|x —z].
Next, h is weakly quasihomogeneous, or K —WQH, provided
|h(x) —h(Y)| < K|h(u) —h(v)] when |x—y| <|u—v|
Finally, we say that & is K—VWQH, or very weakly quasihomogeneous, if
|h(x) — h(»)| < K|h(u) — h(v)| when |x — y| = |u —v].

We remind the reader that a Jordan curve is bounded turning if and only if it has a
WQS parametrization.

We mention that a K-VWQH map need not be K-WQH [GH;, Example 4.2]. In
fact a VWQH homeomorphism may not be WQH; see Example 4.2. The following
result furnishes a useful criterion for determining when a VWQH map is WQH; we
utilize it to verify that certain parametrizations are WQH.

2.2. LEMMA. Any K-VWQH H-WQS embedding h of a connected space X is
HK-WQH.

Proof. Fixx,y,u,v € X with [x —y| < |u — v|. Choose z € X with |[x — y| =
|u —z| < |u—v|. Then |h(x) —h(y)| < K|h(u) —h(z)| < HK|h(u) —h(v)|. O

Next we point out that there are WQH homeomorphisms which fail to be QH; see
Examples 5.4,5.5. Since the inverse of a WQH map may not be WQH, we consider
the more general class of QH maps. Fortunately, in many important cases a WQH
homeomorphism is QH; the following result, in the quasisymmetric case, is due to
Tukia and Viiséld [TV, 2.15],[V, 2.9].

2.3. FACT. Every K-weakly quasihomogeneous homeomorphism between dou-

bling metric spaces is n-quasihomogeneous, where 1 depends only on K and the
doubling constant.

On several occasions we require the following information [GH, 2.5].

2.4. FACT. If C is a K-BLH Jordan curve, then there is a K2-BL family of
orientation preserving self-homeomorphisms acting transitively on C. When C is
K -BLH with respect to a group, we can assume each group element is orientation
preserving.
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3. Bilipschitz Homogeneous Curves

Here we prove Theorem E. It is easy to see that a curve with a QH parametrization
is BLH: just conjugate rotations of the circle or translations of the line; thus (b) implies
(a). We present the remaining implications as Propositions 3.1, 3.3, 3.6, 3.7. Since
the bounded turning hypothesis is crucial here, we recall that each of the conditions
in Theorem E implies that I is BT; see [M, Lemme 2.1].

3.A. Bounded covering property. We say that I" enjoys a bounded covering property
provided there is a constant x such that

N@r;T(x,y)) <kN(@r;T(z,w)) forallr >0

whenever x, y, z, w € T satisfy |x — y| < |z — w|. We abbreviate this by writing I"
is k-BC. Such curves are a-BT with a = 2«. First we verify that (a) implies (c) in
Theorem E.

3.1. PROPOSITION. Suppose I is a K-BLH, a-BT, v-doubling Jordan curve. Then
T is k-BC with k = 2v(2Q)v(Ba)v(2K*)v(a?K?).

Proof. Fix x,y,z,w € "' with [x —y| < |z—w| = R. Puty = I'(x, y) and
o =TI(z,w). Letr > 0. Set m = N(r; a) and choose balls By, ..., By, of radius r
which cover a. Put p = R/aK? and let x = x, ..., x, = y be any p-chain joining
x,y along y. Since I' is a—BT, N(aR; y) = 1, and thus by Lemma 2.1 we see that

n < 2v2)v(3a)N(p; ¥) < 2v(2)v(3a)v(a*K?).

Let y; = y(x;—1, x;) and use Fact 2.4 to select K 2.BL homeomorphisms f;: I' —
I' with f;(z) = x;—; and so that 8; = fi(«x) and y; overlap (i = 1,...,n). As
diam(y;) < ap < diam(x)/K? < diam(B;), we must have y; C B;. Now a C
U'l" Bj,sothem sets fi(@NB;) (j =1,...,m)cover B; D y;, and each has diameter
at most 2K 2r; therefore N(2K?r; ¥;) <mfori = 1,...,n. We conclude that

n
N(r;y) < ) NG;v) < vRKHnm < kN(r ). m
1
Next we confirm that (c) implies (b) in Theorem E. We require the following
information from [M, Lemme 2.3,2 4].

3.2. FACT. Let T be a k-BC Jordan curve in a v-doubling metric space. Write
y =T(x,y) and B = I'(u, v) for points u, v, x,y € I". Then there exists a constant
uw = u(k, v) > 0 such that:

@ If0<r <R=|u—v|<|x—y|,then

1
—/;N(r; Y) S NQR;Y)N(r; B) S uN@; y).



BILIPSCHITZ GROUPS AND JORDAN CURVES 777

®) If N(r; y) < AN(r; B) for some A > 0and 0 < r < |u — v|, then

lx —y| < 2Aplu —v].

3.3. Proposition. Let I be a k-BC v-doubling Jordan curve. Then T has an
n-QH parametrization where 1 depends only on k and v.

Proof. 'We consider the non-compact case; so I" has a parametrizationg: R — T'.
See [M, p. 154] for details on adapting our argument for compact curves. We use
the bounded covering property and ¢ to obtain parametrizations ¢,. We confirm
that {¢,} is pointwise bounded and equicontinuous, and that any limit ¢ is a QH
parametrization of I.

Let xo = ¢(0), yo = ¢(1); assume |xo — yo| = 1 and put yy = I'(x0, yo0),
'y = ¢([0, +00)). By relabeling a sequence of positive integers, we may assume
that for each n € N there exists an r = r, > 0 with N(r; yo) = n.

Fix n and r = r,. Let {x": i € Z)} be a doubly infinite r-chain along ' with
x” = xoand x € Ty fori > 0. Let T = [£7, 11 = 7' (C(x,, x)) and
define ¢,: R — T by mapping A"™ = [(i — 1)/n, i/n] affinely onto T, and then
using ¢; thus ¢, (i /n) = x™ and on Ag") (sohere0 <o < 1),

i

i—1 AN 0 o
On (a . + (1 —a);) —<p(at,._l + (1 -o0) )

Then each ¢,: R — T is a homeomorphism and ¢, (Af.”)) = l"(x,-(f)l, x,.(")).

Our goal is to produce a convergent subsequence of {¢,} with limit a WQH
parametrization of I'; the proposition then follows from Fact 2.3. Our primary tools
in this endeavor are the following two inequalities:

o — x1 < Mxy — x| @, j.k,l € Zwith0 <k <), (3.4)

and

Ix™ — xol < MIx{" —xo| (m>nwith0 <i/m < 1/n). (3.5)
Here m,n € Nand M = M(«, v). Let us indicate why these inequalities are valid.
Notice that l"(x,.(”), x,.(fr)k) contains an r-chain of length k. Thus when 0 < k < I,

Lemma 2.1 asserts that N (r; l"(x,.(”), x,.(i)k)) and N(r; F(x;”), ;:’,),)) are comparable,
and then (3.4) is a consequence of Fact 3.2(b). The proof of (3.5) is similar; see [M,
pp- 152-153] for more details.

Using these inequalities we easily infer that ¢, (p) —xo| < |p|M?r forany p € Z.
From this we deduce that {¢,} is pointwise bounded: If ¢ € [0, p] for some p € Z,
then @, (1) € T'(xo, ¢x(p)) and 50 |, (1) — xo| < diamI (xo, ¢ (p)) < 2«|p|M?ry.

Next we explain why {¢,} is equicontinuous. Fix #, € R and let ¢ > O be given.
Fix n sufficiently large so that 2k M?r, < &. We consider m > 10n. Selecti € Z so
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that i /n is a number of this form closest to #5. Choose the largest, smallest j, k in Z
with j/m <t —1/10nand k/m > ty + 1/10n. Notice that (k — j)/m < 1/n, so by
3.5 |x,§'f)j — xo| < Mr,. Suppose |t — ty| < 1/10n. Then ¢, (t) and @, (ty) belong
to l"(x;'"), x,ﬁm)) and thus according to (3.4),

lom (1) — @m(t0)| < 2uclx™ — x| < 2 M|x™; = x0| < 2 M?r, <.

Thus {¢,} is pointwise bounded and equicontinuous, so the Arzela-Ascoli theorem
provides a subsequence which converges on compact subsets of R to some limit .
It follows from (3.4) that ¢ is M-WQH. We claim that ¥ is non-constant and maps
R onto I', hence by Fact 2.3, ¢ is an n-QH parametrization of I', and n depends only
on k and v.

To justify that v is non-constant it suffices to exhibit a constant § > 0 with
|x™ — x| > & forall n € N. Since T, = I'(xo, x) contains an r,-chain of
length n, Lemma 2.1 asserts that N(r,; y9) = n < 2v(6k)N (r,; I'y). We thus have
|x" — xo| > ra/2k = r and N(r; yo) < 4kv(6K)N(r; T,); therefore Fact 3.2(b)
permits us to conclude that

1= |xo — yol < 8kpuv(6r)|x( — xol.

Thus ¢ is a QH homeomorphism from R to I'. If ¢ were not onto, then we could
find an infinite length r-chain, r =~ |y (1) — x|, along a bounded subarc of I', which
is impossible. O

3.B. Hausdorff measures and chordarc conditions. The upshot of Propositions 3.1,
3.3 is that every bilipschitz homogeneous bounded turning curve has a quasihomo-
geneous parametrization. Here we investigate a natural method for obtaining such a
map. We begin by reformulating the problem in terms of certain measures, since a
‘nice’ measure 1 on a curve furnishes a ‘nice’ parametrization via w-arclength.

We say that a Jordan curve I" supports a geometric measure p if @ is a positive
o -finite Borel measure on I' and there is a constant ¢ > 1 such that

uT(x,y)) <cul(z,w)) forallx,y,z,weTl with|x —y| <|z—w|

Since such curves are a-BT with a = 2c¢ (cf. [M, Lemme 2.1]), we see that a
geometric measure assigns essentially the same mass to comparably sized subarcs.
Next we substantiate the equivalence of (b) and (d) in Theorem E.

3.6. PROPOSITION. There is a QH parametrization of T if and only if T supports
a geometric measure.

Proof. We assume that I" is compact; the non-compact case is handled in a
similar manner. Suppose u is a geometric measure on I'. Define ¢: S' — T by the
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requirement that u (Y (1)) = (u(I")/27)£(I) for each subarc I of S'; thus ¥ is a ‘u-
arclength’ parametrization. Employing the homogeneous property of u, we deduce
that w“ is K-WQH with K = mc/2; since I' is BT and doubling, Fact 2.3 permits
us to conclude that ¢ is n-QH with n depending only on ¢ and v. Conversely, when
¥: 8! — T is QH, the measure u defined by w(E) = H'(y~'(E) is a geometric
measureon I'. O

For many examples (chordarc curves, classical snowflakes, and quasi-self-similar
curves) the appropriate Hausdorff measure is a geometric measure. Moreover, these
curves all satisfy the chordarc condition H*(I'(x,y)) ~ |x — y|® for x,y € T,
where § is the Hausdorff dimension of I'; this is simply an alternative way of saying
that these curves have parametrizations i which satisfy | (t) — ¥ (s)|® = |s —¢|.
However, for general bilipschitz homogeneous curves the corresponding Hausdorff
measure can be trivial or infinite; cf. [M, p. 160] or [GH3, 5.3]. Moreover, even when
the appropriate Hausdorff measure is positive and finite, there may not exist such
a nice parametrization; see [GH,, Thm. E]. Consequently it is necessary to utilize
generalized Hausdorff measures.

We call a non-decreasing §: (0, +00) — (0, +00) with lim,,¢8(r) = 0 a di-
mension function, and associate with § the generalized Hausdorff measure defined
by

A = lin}) [inf[ZS(diam(U,-)): AC U U;, diam(U;) < r” .
r— ‘ ‘

Now we explain how to specify canonical dimension functions for bilipschitz
homogeneous bounded turning curves. If I is compact, then we simply take §(r) =
1/N(r; T) forr > 0. Assume that I" is non-compact. Fix a point xy € ', let "y be
one of the subarcs of I'\ {x¢}, and put y, = I'(xg, x,) for r > 1, where x, is the first
point of I'y with |x, — x| = r. Then define

5(r) = 1/N(r,y1) whenO<r <1,
N,y whenr > 1.

Obviously in the non-compact case the definition of § depends on the choice of the
arcs y,, but when I satisfies a bounded covering property (i.e., when I' is a bilipschitz
homogeneous bounded turning curve) and &’ is a dimension function corresponding to
some other choice of arcs, then § &~ §’ and so the corresponding Hausdorff measures
are comparable (having the same null sets, the same sets of infinite measure, and
assigning comparable measures to sets of positive finite measure). Thus our definition
gives rise to a canonical equivalence class of dimension functions where § and &’ are
equivalent exactly when § ~ §'—here the constant involved depends only on the
bounded covering constant ¥ and the doubling constant vy. Henceforth § always
denotes the above defined canonical dimension function associated with I". Note that
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§ satisfies the doubling condition §(or) < p(0)8(r) forallo > 1,r > 0 where, e.g.
p(0) = uvyv(o) and u is the constant from Fact 3.2.

Our next goal is to elucidate the equivalence of conditions (d) and (e) in Theorem E.
We say that I satisfies a generalized chordarc condition if

1
55(|x —y) < A3(C(x,y)) <b8(x —y|) forallx,yel

for some constant b > 1. For rectifiable curves I' this is the usual notion of chordarc,
and for curves with positive o-finite o-dimensional Hausdorff measure this corre-
sponds to the a-dimensional chordarc curves studied in [GH,]. It is immediate that
w = Alisa geometric measure on I' if the above holds, which proves one of the
following implications.

3.7. PROPOSITION. There is a geometric measure supported on I' if and only if
I" satisfies a generalized chordarc condition.

For curves in R? this is [M, Lemme 4.2], and for rectifiable curves in R” this is
[GH,, Thm. B] (see also [GH;, Thm. 4.6]). The arguments given in [M] are readily
modified to verify the above as well as the following two corollaries; the crucial
ingredient involves confirming that I' satisfies a chordarc type condition with respect
to ;0 and § whenever u is a geometric measure on I'.

Proposition 3.7 furnishes two important applications. First, there is an easy way
to calculate the Hausdorff dimension of a BLH BT doubling curve via the lower
box-counting or Minkowski dimension.

3.8. COROLLARY. For a bilipschitz homogeneous bounded turning Jordan curve
T in a doubling space, dimy (") = dim , ,(T").

There are examples (see [M, p. 160]) showing that the lower and upper Minkowski
dimensions, of a BLH BT doubling curve, may not be equal. Also, there are examples
(see [GH,, Thm E]) of BLH BT doubling curves which have lower §-dimensional
density zero (§ = dim (I")).

Our second application is a classification of BLH BT doubling curves according
to bilipschitz equivalence.

3.9. COROLLARY. Let 'y and Ty be two bilipschitz homogeneous bounded turn-
ing Jordan curves which live in ambient doubling metric spaces. Suppose I'y, 'y
are either both compact or both non-compact. Then there exists a bilipschitz ho-

meomorphism between I'| and T'; if and only if both curves have the same canonical
dimension class.

This result has its origin in the paper [FM] of Falconer and Marsh who verified
the analog for quasi-self-similar curves. In view of this bilipschitz classification it
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would be nice to have a solution to the following problem: Is there a reasonable
description of all classes of dimension functions that can occur? This should describe
all representative bilipschitz homogeneous curves I'® (with, for example, I'? the usual
von Koch Snowflake curve when 8(r) = r®). With such a ‘dictionary’ we would
obtain: Every BLH BT Jordan curve T is bilipschitz equivalent to some curve I'’.

4. Bilipschitz Group Actions

In this section we analyze bilipschitz group actions on Jordan curves and corrob-
orate Theorems A,B,C,D in subsections 4.B, 4.C, 4.F, 4.E respectively. In addition,
in 4.D we explain why Jordan plane curves which are bilipschitz homogeneous with
respect to a group action must be quasicircles.

4.A. Bilipschitz groups. Here we collect some miscellaneous information regarding
bilipschitz groups acting on Jordan curves in arbitrary metric spaces. Our methods
were inspired by Hinkkanen’s work [H] concerning quasisymmetric groups.

We begin with a result which asserts that the orientation preserving elements of
such groups behave like rotations.

4.1. LEMMA. Suppose g generates a bilipschitz group G =< g > acting on a
Jordan curve T'. Then g has no fixed points, unless it is the identity.

Proof. Assume G is a K —BL group, g is not the identity, but g(x) = x for some
x € TI". Suppose first that g"(y) — oo for some y € I'. Then

Kix =yl =18"x) = g"MI=lx —g"O| = o0

as n — oo, which is impossible. Now suppose {g"(y)} is bounded forall y € T’

Since the set of fixed points of g is closed in I', we can select a subarc A of I’
whose endpoints are fixed points of g and such that g has no fixed points in the interior
of A; here we include the cases where A is unbounded or A = I'\{x}. Lety € A.
Since g is orientation preserving and {g"(y)} is bounded, we see that lim,_, -, g" ()
exists and is a finite point of I". Thus

1
0<2ly—gM < 1g"M - "I -0
as n — 00, which is another contradiction. O

4.2. COROLLARY. Suppose g, h are elements of a bilipschitz group G acting on
a Jordan curve I'. If g(x) = h(x) for some x € T', then g = h.

According to the above, there is an injection from G into I', g — g(x), where
x is any given point of I'.  When G acts transitively, this provides a one-to-one
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correspondence between the points of I' and the elements of G. In addition, G
inherits an ordering from an orientation on I': g < h for g, h € G if g(x) precedes
h(x) on I', where x is any given point of T'".

4.3. LEMMA. Forabilipschitz group G acting on a Jordan curve T, the following
are equivalent.

(a) G iscyclic.

(b) G is discrete.

(c) Forallx e T, T # G(x).
(d) Forsomex € I',T # G(x).

Proof. That (a) implies (b) implies (c) implies (d) is straightfoward; we validate
the remaining implication. The crucial idea is that G is generated by any g with the
property that the subarc from a given point x € I' to g(x) contains no other points of
the orbit G(x).

Assume there is some x € I with I'\G (x) # @. Since G is closed, so is G(x) and
thus "\ G (x) consists of open subarcs of I'. We may assume that G(x) contains at
least three distinct points. Let y be a bounded component of I'\ G (x) with endpoints
u,v € G(x). Choose f € G withu = f(x). Leta = f~!(y). Thena N G(x) =@
and o has endpoints x, y = f~'(v). Since y € G(x), there exists g € G with
g(x) = y. Weclaim that I' = U,czg8”(@), hence G(x) = {g”(x): p € Z} and so
G=<g>. 0O

4.4. LEMMA. Let G be a non-discrete bilipschitz group acting on a Jordan curve
T'. Then for every g € G there existsan h € G with h> = g.

Proof. Fix g € G and x¢ € I". Since G is non-discrete, Lemma 4.3 guarantees
that G acts transitively, so for each x € T there is a unique 4, € G with h,(xg) = x.
Notice that the map x — h,(x) = hi (xo) is continuous in x. Consider what happens
as x varies from x = xgtox = yp = g(xp): Atx = xo we have h,(xg) = xo because
h,, is the identity. Atx = yo we have h,(x) = h,,(y0) = g(yo) because h,, = g.
Since g(yo) lies beyond yy, we conclude that there is some x between x( and yp so
that 72 (xo) = h,(x) = yo = g(xo); then Lemma 4.1 asserts that g = h2 as desired.

O

4.B. Proof of Theorem A. We recall that G is a one-parameter group provided we
can write G = {g,} with (¢,x) — g,(x) continuous where ¢ is a real parameter,
x € T, and t — g, is a homomorhpism. Here G is a closed group of orientation
preserving uniformly bilipschitz homeomorphisms acting on a Jordan curve I and
we must verify that G is either cyclic (hence finite in the case of a compact curve)
or a one-parameter group. According to Lemma 4.3, it suffices to consider the case
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when G is a non-discrete group. To demonstrate that G is a one-parameter group, we
construct an increasing sequence of cyclic subgroups of G whose union has closure G.

Fix g € G\{id} and let g/, denote the element of G satisfying g? 12 = &1. Now
choose gi/» € G inductively such that gf/zn = g/ and let G, be the group
generated by g,-». The sequence {G,} is increasing; we claim that G is the closure
of H = U{°G,. Notice that H is a closed non-discrete group acting on I', so by
Lemma 4.3 the action is transitive. Thus given x € I" and g € G, we can choose
h € H with h(x) = g(x); since h € G, an appeal to Corollary 4.2 yields g = A.

We write G as a one-parameter family as follows: Suppose that ¢ is the limit of an
increasing sequence of dyadic rationals {k,/2"}. Then lim,_ g'l"/’2” exists and we
denote this element of G by g,. This is independent of the approximating sequence,
t — g, is continuous, and g; o g; = g/+.

4.C. Proof of Theorem B. Here we suppose our Jordan curve I' is K-bilipschitz
homogeneous with respect to a group G. Thanks to Theorem A we can assume that
G = {g;} is a one-parameter group. We let I'! denote either S', if I is compact, or R,
otherwise, and we set z; = e’ or z; = t respectively. Fix any point xq in I". Define
¥: I'' > T by ¥ (z/) = g (x0). Since

K™ xo — g (xo)| < 1¥(21,) — ¥(24,)| < K |x0 — g (x0)|

for all ¢, t, where T = |t — #;|, we see that ¥ is K-VWQH. Clearly  conjugates G
to a group of isometries of "',

4.D. Homogeneity with respect to a group. Although the following weaker result
is subsumed by Bishop’s work [B, Thm. 1.1] (he does not assume homogeneity with
respect to a group action) we include it because our proof, which is based on an
exercise in plane topology together with Theorem A, is quite natural and in addition
provides an estimate for the bounded turning constant of the quasicircle in terms of
the bilipschitz constant.

4.5. THEOREM. A Jordan curve in the plane which is bilipschitz homogeneous
with respect to a group is a quasicircle.

We sketch a brief outline for our proof. Thanks to Fact 2.4, we can assume each
group element is orientation preserving. According to Lemma 4.3 and Theorem A,
we may further assume that our plane Jordan curve I' is homogeneous with respect
to a one-parameter group G = {g;} of K-BL homeomorphisms g,: ' — TI'. Let
x,y € I'. Putd = |x — y| and assume that I" N [x, y] = {x, y}. We demonstrate that
dist(z, [x, y]) < cd for any point z € I'(x, y), where ¢ = coK* and ¢y is an absolute
constant.

Fix u € I'(x, y) and suppose dist(u, [x, y]) > cd. Assume u = g, (x) fort > 0
and put v = g, (y). Choose x’, y’ € ' N[u, vl sothat C = [x, yJUXUY U[x', y']is
a Jordan curve, where X = ', (x,x") and Y = " (y, y'). Let D denote the interior
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of C. Then either ' (x’, y) or [';(y’, x) is a Jordan arc, say Z, in D which joins
[x’, ¥y} to [x, y]. (Here I'.(p, q) denotes the oriented subarc of T" from p to g, where
the orientation is given by “from x to y through I'(x, y)”.) Let {z, w} = {x/, y'}
where z is the initial point of Z.

Notice that X and Y are ‘long parallel’ Jordan arcs which stay close together;
in fact x(¢) = g;(x), y(t) = g:(y) are nearby points on X, Y resp. Now the arc
Z travels between X and Y, so there is a time ¢ when g,(z) meets the segment
I(t) = [g(x), g ()], which gives our claim with ¢ = 2K? implying the sharp
result that " is a—BT with a = ¢oK2. However, we have been unable to validate
our algorithm for determining such a time. In lieu of this we outline the following
argument which makes stronger use of the BLH property but only gives a = coK*.

Put E = B([x, y]; Kd) = {¢: dist(¢, [x, y]) < Kd}, E' = B([x',y']; Kd), and
set T = min{§, n} where x’ = x(§), ' = y(n). Let oy be the last time 7,0 <t < 1,
with

ENBU(t); Kd) # 0.

Then 0 < 0y << 7. Let gy be the first time ¢, t > oy, with
E'NBU(t); Kd) # 0.
Then 0 < 0y << 01 < 1, and for all oy < t < o7 we have
(EUE"YNBU(); Kd) =9,

which gives useful information about ‘topological pictures’ for C and I

Let xo = x(09), yo = y(o1) and ‘renormalize’ so that gy, oy correspond to 0,
1 respectively. For 0 < t < 1 define E(t) = B(I(t); Kd) and let z(t) = g:(z0),
w(t) = g (wyp), where zp (= g.(x) say) is the last point of Z in 10E(1) and wg =
g:(y); thus w(t) € B(t) = B(z(t); Kd). Now we explain why B(¢) N cEt)# 0
forsomet,0 <t < 1.

Let 1o be the first time ¢, 0 < ¢ < 1, with ¢ E(¢) separating the points z(t), zo
in D. Then E(tp) N D contains arcs Ay, Co with the following properties: A is a
crosscut of D which joins X, Y and separates z(7p) from E N D in D; Cy separates
z(70), zo in D. There are two possibilities for Cy: it may be a crosscut joining X,
Y; or it may be a sidecut joining a point of X (or Y) to some ‘later’ point of X (or
Y resp.) In all cases we have z(tp) ‘trapped’. (For example, when Ag, Cy are both
crosscuts, z(7g) lies inside Ag U Xo U Yo U Cy where X, Yy are the subarcs of X,
Y joining the endpoints of Ay, Co; when Cy is, say, a Y-sidecut z(tp) lies inside
Co U Yy where Y is the subarc of Y joining the endpoints of Cy.) Then by selecting
an appropriate set of times 7y < t; < #, < - - - we find, after a finite number of steps,
some ¢ with B(¢) N ¢ E(t) # . (For example, there is a time 71, Tp << 7; < 1 such
that B(tp) ~ E(t;). Then 1, is the last time ¢, 7o < ¢t < 1;, with E(t) N E(1o) # 9,
and then for i > 1¢; is the first time ¢, ¢ > ¢;_;, withc E(¢t) Nc E(t;—y) = 0. Instead
of B(t) we consider B(t — t; + 1p).)
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The difficulties in the above proof stem from an apparently non-trivial plane topol-
ogy problem. As we mentioned, one should be able to use this approach to obtain a
sharp estimate for the bounded turning constant.

4.E. Conjugation of ‘one-dimensional’ groups. Recall that G is an L-BL group
acting on a Jordan curve I" isometric to I'! which is either R or S'. There is no harm
in assuming that I' = I'!. Now according to Theorem A, G is either cyclic or a
one-parameter group. When I'! = S! we view the action of g € G as g: €/ > /8@
where g: R — R is L-BL and 27 -periodic. Thus in all cases g’ exists a.e. with
1/L <g <L.

Suppose we discover a locally integrable function ¢ with 1/L < ¢ < L a.e. and

(pog)g =¢ forallg eG.

A homeomorphism f with derivative f' = ¢ a.e. then conjugates G to a group of
isometries f o G o f~! and is L-BL. Thus it remains to construct such a ¢ in each
of the four possible cases given by Theorem A (I" compact or not and G cyclic or a
one-parameter group); it is not difficult to verify that the given ¢ enjoys the desired
conditions.

First consider the compact case I'' = S!. When G =< g > is a cyclic group, in
particular a finite group of order say n, then we putp = % ZZ_I &Y. IfG = (g} isa

one-parameter group, we define ¢(x) = 02 " g/(x) dt; note that ¢ is locally integrable
thanks to Tonelli’s theorem.

Now look at the situation I'' = R. In both cases we let ¢ be any weak limit point
of either {¢,: n € N} or {¢;: T > 0}. Here ¢, = %Zk;(')(g")’ ifG =< g >is
cyclic, or ¢, (x) = % 0’ 8, (x)dt when G = {g,} is a one-parameter group; in the
latter case we also require that 7; — oo when ¢, is the convergent sequence. Note
that {¢,: n € N} and {¢,: T > 0} are contained in a closed ball (hence weakly
compact) in L (R).

We remark that when G is a one-parameter group, the conjugating function is
unique up to post-composition with either a rotation in the case of the circle or an
affine map in the case of the line. Also, in this case we can easily verify that the
VWQH parametrization given by Theorem B is in fact bilipschitz, thus avoiding the
above argument.

4.F. Extension of group action. Recall that G is an L-BL group acting on a K-
BLH curve I' in R%. According to Bishop’s result [B, Thm. 1.1] T is BT and so by
Theorem E, I" admits a QH parametrization ¥: I'! — TI" where I'! is either S! or R.
Hence the group H = ¥~! G ¢ is a BL group acting on I'!, so by Theorem D, there
is a BL self-homeomorphism f of I'! which conjugates H to a group of isometries
k = foho f~! of I'!; in particular, each k is an isometry of the entire plane R?.
On the other hand, the BL map f has an extension to a BL map f: R? — R?, so we
may assume that H is a BL group acting on the whole plane; here h = f~' ok o f.
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Next, the usual Ahlfors—Beurling—Tukia extension of ¥ gives a quasiconformal
map W: R? — R? which is bilipschitz with respect to the hyperbolic metrics in the
appropriate components of RZ\T'! and R2\T'. Finally, eachmap g = W o h o ¥~!
is an extension of g (here h = ¥~! o g o ¥) which is bilipschitz with respect to
the hyperbolic metrics in the complementary components of I', so an idea due to
Gehring [Ge, Thm. 2.11] guarantees that g is M-BL where M = M(a, K, L). Thus
W conjugates H to an M-BL group acting on R? whose restriction to I' is G.

5. Examples

Here we present examples which illustrate our results. See Bishop’s paper also
[B, §4]. First we mention that for any 1 < @ < n, there are a-dimensional chordarc
curves in R” which in particular are bilipschitz homogeneous; see [GH;, Thm. A].
Next we point out that there are plenty of doubling metric spaces with BLH curves.
For example, consider the plane R? with the distance induced by the norm ||(x, y)|| =
lx| + |y]'/* where & > 1. It is easy to see that this defines a doubling metric on the
plane, and the y-axis is a 1-BLH 1-BT Jordan curve with Hausdorff dimension «.

5.A. Heisenberg snowflakes. The (first) Heisenberg group is H = C x R equipped
with the Lie group product

z, Dw,s) =@+ w,t+s —23(W)).
The Heisenberg distance is defined by the homogeneous norm
Iz Ol = (zI* + 1'%
This induces a left-invariant doubling metric on H,
d(h, g) =In"gll,

and as above we find that the ¢-axis is a [-BLH 1-BT Jordan curve with Hausdorff
dimension 2. Next we explain how to construct a snowflake type curve in H which is
the limit of a sequence of rectifiable arcs analagous to the von Koch snowflake. Our
ideas originate in discussions with Seppo Rickman.

We find that
0 d 0 a d
X=—+4+2y—, Y=—-2x—, T=—
ax o oy ot ot
form a basis of left-invariant vector fieldson H, and [ X, Y] = —4T. A vectoris called

horizontal if it belongs to the 2-dimensional horizontal plane spanned by X, Y. A
(smooth) curve y = (x, y, u) is horizontal provided y = (x, y, u) is horizontal,
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which is true if and only if # = 2yx — 2xy. The length of a horizontal curve
y(®) = (x(1), y(©), u(r)) (@ <7 < P) is

A . . 172
) = f (@) + 572() " de

and we define the Carnot-Carathéodory distance between two points i, g in H by
dc(h, g) = inf{€(y): y ahorizontal curve joining A, g}.

The Heisenberg and Carnot-Carathéodory distances are bilipschitz equivalent, but
different, and both are compatible with the euclidean topology on H.

We will take piecewise linear arcs in the plane and lift them to piecewise hor-
izontals arcs in H. In order to do the usual ‘snowflake iteration’ we require that
the r-components return to their original values. The following information is
useful.

5.1. LEMMA. Let A = [z, 23] be the line segment from z| to z, in C. Let a be
the signed area of the oriented triangle [0, ] U A U [z2, 0]. Choose any u,, us with
uy —u; = a. Let y be the dc-geodesic joining the points h; = (z;, u;) in H. Then
the projection of y onto C is A.

For example, the piecewise horizontal arc
It = [ho, 11U [h1, h2] U [ha, h3] U [h3, hs] U [ha, hs] U [hs, hel
projects down to the piecewise linear arc

A = [z0, 211U [21, 22] U [22, 23] U [23, 4] U [24, 251 U (25, 26]

where

20=1-v2 zi=1, 2=2+i, z3=3,
=4—i, z5=5 z26=5++2
and

ho = (1=v2,0), hy=(1,0, hy=Q+i,-2), hi=(3,4),
ha=(4—1i,10), hs=(50), he=(5++20,0).
Notice that the t-components of kg, &, hs, hg are all zero. Of course we could replace

A by other configurations as long as we keep the ‘area cancellation’ property. Thanks
to this ‘cancellation’ property, we can iterate the above process.
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5.2. EXAMPLE. There exist a self-similar, hence BLH, BT snowflake in H.

Proof. Rescale A and I'; above so that their endpoints are 0, 1. Thus z; =r =
1/2(1 + +/2). Mimicking the usual von Koch snowflake construction we obtain a
self-similar arc A = lim,,_, o, A, where

6 6 6
Ar=Joiao), An=Joitn) = Joi...i,(A0);
i=1 i=1

ij=1

here Ag = [0, 11, 0y,,....i, = 0i, 0+ - -00;,, and o; are similarities of C with contraction
factors r. In addition,

6 6
A =Ja) =Jai...., ().
i=1

ij=|

When we lift A, to the piecewise horizontal arc I',, C H we get a similar result:

6 6
T, =Jvi@n) = {J ¥ir,..., (To)
i=1

ij=1

where l-10 = [09 l] = [(0, O)’ (],0)] C H’ 1//il i, — Vi 00 ‘/’i,,, and ll,i are
similarities of H with contraction factors r. Also

6 6
= tim I, = Jwi@ = J ir...i, .
i=1

ij=1

A routine argument employing the self-similarity of I' shows that for each subarc
y C T there is a similarity ¢ of H with ¢(y) C T and diam(¢(y)) > r?. Utilizing
this we deduce that I' is a—BT for some absolute constant a. Next we claim that
d(g, h) =~ r™ whenever g, h € I, and I',,(g, k) contains at least two adjacent vertices
of I'y,, and m is minimal with respect to this condition. Finally, this permits us to
conclude that the natural parametrization : [0, 1] — T satisfies (d(¥ (s), ¥ (¢))* =~
|s — t| where ¢ = dimy(I") = log(1/6)/log(r). O

S5.B. WQH does not imply QH. As an application of Theorem E we obtain the
ensuing characterization for QH-circles; these are the Jordan curves which possess
quasihomogeneous parametrizations.

5.3. COROLLARY. A Jordan curve is a QH-circle if and only if it is simultaneously
bounded turning, bilipschitz homogeneous, and doubling.
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In this subsection we exhibit two examples of weakly quasihomogeneous maps
which fail to be quasihomogeneous. Thus the doubling hypotheses in Fact 2.3 is
essential. In addition our examples produce BLH, BT Jordan curves which are not
doubling; we conclude that Corollary 5.3 is best possible in the sense that any two of
the conditions BT, BLH, doubling need not imply the third.

First we construct a non-compact BLH, BT, bounded Jordan curve. Our ideas here
were influenced by [TV, 4.12].

5.4. EXAMPLE. Let X be the space of all doubly infinite sequences {x,}ncz With
x, € Rand x, # 0 for at most finitely many n. Consider the distance function
on X induced by the £o, norm |x| = ||x|lco. Let {e,} be the ‘usual basis’ for X,
let A, be the line segment A, = [en, eny1], and put T = |J,cz An. Then T is
bilipschitz homogeneous and bounded turning, but not doubling. In fact, the natural
parametrization ¢: R — T is 4-WQH but not QH.

Proof. To see that ¢ is not QH we notice that for distinct k, [, m, n € Z we have
lex — el = 1 = |e,, — e,| whereas |k — [| and |[m — n| need not be comparable, so
¢~ is not WQH. One way to see that ¢ is 4-WQH is to show that it is both 2-VWQH
and 2-WQS, and then appeal to Lemma 2.2. O

Next we present a compact example which enjoys the same properties as above.
Mimicking the usual snowflake construction, we obtain our Jordan arc as a limit of
piecewise linear arcs: A = lim,_, o, A,. The crucial idea is to make A, look more
and more like the curve in Example 5.4. We obtain the n™-generation arc A, from
A, as follows: Let [x, y] be any maximal straight line segment in A,_;. Consider
the n points x; = z+(1/2")ex (k = 1, ..., n) where z = (x + y)/2 is the midpoint of
[x,ylandey, ..., e, are “unit orthogonal basis vectors” which have not already been
used. We replace the segment [x, y] with Ug[xk, xx41] where xo = x and x,41 = y.
The arc A, is constructed by modifying every single maximal line segment of A,_,
in this manner. More details are presented below.

5.5. EXAMPLE. Let X be the space cq of all infinite sequences {x,}nen, With
x, € R, which converge to zero. Consider the distance function on X induced by the
Loo norm |x| = ||x||0o. There is a snowflake curve T in X which is bilipschitz homo-
geneous and bounded turning, but not doubling. In fact, the natural parametrization
¢: S' = T is WQH but not QH.

Proof. Let & be the set of ‘usual basis’ vectors for X. Let Ag be the line segment
from the origin to ey where ey is any fixed vectorin £. Letx} = 0, x] = zo+(1/2)e],
x) = eg where zg = (1/2)ep. Put Ay = I} U I} where I} = [x},x},,]. Assume
we have constructed A, = Up];'; where 11'; = [x;,x;+], p = (ky, ka, ..., k,) with
0 <k; <i,and p+ = (ky, k3, ..., k, +1). Define z, = (x, +x;+)/2 (the midpoint
of I') and setx{';,i) - z;‘,+(1/2"+')e;';,1) fork =1,...,n+1where e{';,'() are vectors
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: ; . Loentl _on o ntd — yn
in €& which have not already been used; also: x(,’) = xp, x(, 1) = X,,.. Thus each

n-cell (maximal line segment) in A, gives rise to n + 2 new (n + 1)-cells I ntl =

(p.k) —
1 1
[x?;:k), x?;k+l)]’ O<k<n+1l,and A, = UqI‘;H'l where g = (ky, k2, ..., knt1)

with O < k; < i. Notice that A4 consists of (n + 2)! (n + 1)-cells each of diameter
1 /2n+l.

Since X is complete, a standard argument reveals that there is a limit arc A =
lim,_, o Ap. In fact, the natural parametrizations of A, converge uniformly to the
natural parametrization ¥: [0, 1] — A. We claim that v is WQH but not QH (because
¥~ is not WQH). In a similar manner we can construct a Jordan curve which is BLH
and BT but not doubling.

To see that ¥ ~! is not WQH we look at the points x(no,...,o,k) = Yk/(n+ 1Y)
fork =0,1,...,n. Forexample, x4 )| = Ix{ x> butthe ratio 1/(n + 1)!
divided by n/(n + 1)! tends to zero; thus ¥ is not even QS. It remains to demonstrate
that ¢ is WQH; again we utilize Lemma 2.2.

We employ the following terminology. The points x;; are called n-vertex points
(or n-vertices) of A; each n-vertex is an m-vertex for all m > n, but very few (n 4 1)-
vertices are also n-vertices. Note that the vertices are dense in A. An n-arc is a subarc
of A which joins two adjacent n-vertices; the n-arcs J; = A(xy, x,,) are ‘supported
by’ the n-cells ;.

We require the following crucial estimates concerning the distances between ver-
tices. (The earnest reader can calculate |w| = k/2" as w traverses through the
n-vertices.) First, if u and w are both n-vertices with u between 0 and w, then
|u| < |w|. Next, if w is any vertex on the first m-arc but w is not on the first (m + 1)-
arc, then 1/2"+! < |w| < 1/2™. Finally, if x, y and 0, w are equally spaced vertices
(meaning that all points are n-vertices for some n and there are the same number of
n-arcs separating each pair), then

1/Hlw] < [x — y| < 2wl

That ¢ is 8-VWQH follows at once from this last estimate.

Finally, we show that ¢ is 8-WQS. Fix ¢, s, £ with |t — €| < |t — s|. Assume that
x =Y¥(@),y = ¥(s) and z = (&) are all n-vertices. Choose n-vertex points u# and
w so that 0, u and x, z are equally spaced and also 0, w and x, y are equally spaced.
Then u lies between 0 and w, so by the above we obtain

lx —z| < 2lu| <2|w| < 8x —y|. 0

5.C.BLH not BT. Here we explain how to construct a bilipschitz homogeneous Jordan
curve in R which fails to be bounded turning. See Bishop’s paper [B, Example 4.1]
for an elegant compact version of our example, as well as numerous other interesting
examples. The idea is simple, although the details are tedious to verify. We start
with the usual helix I'; in R? parametrized by x; () = (cost, sint, t). Then we take
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a much smaller ‘helix’ and wrap it around I"} to obtain I';. Now we iterate this idea.
Provided the ‘size’ of I'; | is geometrically smaller than that of I';, the usual argument
shows that we get a limit curve I'. By making the ‘coils’ wrap around tighter and

tighter, I will not be BT, but the natural parametrization will be VWQH so I" will be
BLH.

5.6. EXAMPLE. There is a Jordan curve in R® which is BLH but not BT,

Proof. We start with the helix I'| parametrized by x(t) = (cos?, sint, t). Next,
', is given by x,(¢) = x(¢) + £;z;(t) where &; > 0 is chosen sufficiently small so
that x; is injective and smooth, and z,(t) = cos(t/?)N;(t) + sin(t/e?) B, (t); here
T\, N, B; denotes the Frenet frame for I';. Notice that I'; wraps around I'; 81_2 times
as ¢t goes from t = 0 to t = 2. Now we iterate this construction.

In general, T'; is parametrized by

Xip1(t) = x:(t) + &izi(t) ,  zi(t) = cos(t/e?)Ni(t) + sin(t/e?) B; (t)

where T;, N;, B; is the Frenet frame for I'; and 0 < & << g_;. By standard
techniques we get a limit curve I'. Now I';;; wraps around I'; one time for 0 <
t < 2ns?, so the diameter/distance ratio for the points x;1;(0) and x;4 (8,227r) is
approximately

diamT (x;1(0), Xi41(6727))/|xi41(0) — xi11(6727)| ~ 26 /27 ]

(the distance is essentially the vertical distance which is given by the change in ¢) and
thus we see that the limit curve I" is not bounded turning.

We verify that I' is BLH by checking that each x; (¢) is K-VWQH with K inde-
pendentofi. [
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