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AN OPENNESS THEOREM FOR HARMONIC 2-FORMS ON
4-MANIFOLDS

Ko HONDA

ABSTRACT. Let M be a closed, oriented 4-manifold with b > 0. In this paper we show that the space
of transverse intrinsically harmonic 2-forms in a fixed cohomology class is open in the space of closed
2-forms, subject to a condition which arises from cohomological considerations of a singular differential
ideal.

1. Introduction

In this paper we address the following question: When is a closed/-form o9 on a
closed manifold M of dimension n intrinsically harmonic, that is, when does there
exist a Riemannian metric g with respect to which o9 is harmonic? In the case of
1-forms, an answer was given by Calabi in [2]:

THEOREM (Calabi). Let o9 be a closed 1-form on M. Assume that it is transverse
to the zero section of T*M. Then 09 is intrinsically harmonic ifand only if(i) 09 does
not have any zeros ofindex 0 or n, and (ii) given any two points p, q M which are
not zeros of09, there exists a path )," [0, --+ M with , (0) p and , (1) q, such"
that (,(t))((t)) > Ofor all [0, 1].

Let "2 (M) be the space of/-forms, and f2/ (M) the subspace consisting of/-forms
in the cohomology class t e H (M; R). Denote by~.7"// C i(M) the space of
intrinsically harmonic/-forms in the class , and let 7-/ C / be the harmonic i-
forms in ct which are transverse to all the strata of/i (Rn). under the action of S O(n).
Call elements in transverse. For transversality results for harmonic forms we refer
the reader to [8]. Calabi’s theorem implies the following"

PROPOSITION 1. 71 C f21a (M) is an open subset.

In the case of 2-forms, the situation is quite subtle. There is no known analog of
Calabi’s theorem for 2-forms, and an intrinsic characterization of harmonic 2-forms
is rather elusive. In this paper we prove an openness theorem for transverse harmonic
2-forms on a 4-manifold, which will illustrate some of the obstructions which may
arise in the general case.
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Let M be a closed, oriented 4-manifold with b > 0. Then the generic harmonic
2-form co in the class u H2(M; R) (generic in the space of metrics) is neither
self-dual (SD) nor anti-self-dual (ASD) (cf. Section 4.3 of [3]), and is transverse. In
particular, recalling the stratification of/2(R4)* under the action of SO(4), we have
the following:

(i) co has no zeros.
(ii) The locus where co is SD/ASD consists of a union of circles C J S
(iii) The locus where co has rank 2 is a 3-manifold N (possibly disconnected).

Note that C and N are disjoint. For a proof, we refer to [8].
In order to state the theorem, it would be convenient to introduce the following:

Connectivity Condition. Let Nj };--1 be the set of connected components of N.
We call co semi-contact on Nj if the pullback to Nj of ,o9 is zero. Let N’ be the union
of all the semi-contact Nj. Then co satisfies the connectivity condition if M N’ is
connected.

We then have the following result.

THEOREM 2. 7 C f22 is open on the set of transverse intrinsically harmonic

2-forms co satisfying the connectivity condition.

On the way to proving this theorem we encounter the cohomology of the singular
differential ideal 2 (.co), which gives rise naturally to our connectivity condition.
We will compute the infinitesimal harmonic perturbations of a harmonic form co (see
Section 2), via the singular differential ideal, and pass from infinitesimal to local
using the Nash-Moser iteration technique.
We remark that the SD harmonic 2-forms are quite interesting in their own right--

for a discussion see [9].

2. Infinitesimal harmonic perturbations

Let Met(M) be the space of C-metrics on an n-dimensional manifold M,
TgMet(M) I-’(Sym2(TM)) be its tangent space at g 6 Met(M), and f2 (M) consist
of C/-forms. Then define

qa" Met(M) f2/a(M),
which sends the metric g to the/-form co with AgO) 0 and [co] c.

The derivative of a is the infinitesimal harmonic perturbation map

da(g): 1-’(Sym2(TM)) df2i-l(M),

which we shall now compute.
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Consider a 1-parameter family (o)t, gt) of harmonic/-forms on M, with go g,
do)[o)t] c, h gt It-o, and r/= - tit--0 exact. We differentiate

do)t O, d’oat 0

to obtain

(i) do O,
(ii) d*0 = +/-d*(.;g,o)).

The Hodge decomposition gives

so we find that r/= 4-Zrl (.,kgto)), where rrl is the projection onto the di-1 factor.
Hence, dpa(g) is the composite map

I-,(Sym2(TM)) _L f2i (M) _. dff,li-l (M

h w- *+g+tho) >" 7t’l (*+g-l-tho))"

Hence, in order to compute the image ofda(g), we solve the equation

(1)

where the exact form r/is the given candidate for an infinitesimal harmonic perturba-
tion, and we determine r/’ exact,/x harmonic, and h, the metric perturbation.

3. Infinitesimal computation for non-self-dual (or anti.self-dual) harmonic
2-forms on a 4-manifold

Let us now specialize to the 4-manifold M with b > 0. We prove the following
microlocal result:

THEOREM 3. Let (w, g) be a transverse harmonic 2-form on M4 in the class
ot H2(M; R). If o) satisfies the connectivity condition, then da(g) is surjective,
i.e., all the exact 2-forms on M are infinitesimal harmonic perturbations.

Observe that a transverse harmonic 2-form must necessarily be non-SD/ASD,
when both b- > 0 and b > 0.

In order to make use of EquatiOn 1, we must first compute the image of the map

io(x)" S --+ A2(R4)*,

h - *g+tho)(X),
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where 6’ is the set of symmetric n x n matrices, and we assume that the bundle T*M
has been trivialized near x. In [8] we computed

1. Im i,o(x} 0, if co(x) O.
2. Im io)(x) {ASD (SD) 2-forms}, if co(x) is SD (ASD).
3. Im io(x) (*co(x)) +/-, otherwise.

For a transverse 2-form there are no points x where co(x) 0. The primary
difficulty with the transverse non-SD/ASD harmonic 2-form on a 4-manifold is that
Im io(x is never surjective.

It is most convenient to rewrite Equation (1) as follows: Noting that Im io)(x} C
(,co(x)) +/- whenever co(x) 76 O, and, in particular, Im ioo(x) (*w(x))+/- when co(x)
is not SD/ASD, after taking we obtain

0’ + ,r/+/z J_ co, (2)

where 2_ is the pointwise inner product with respect to g, and/z is some harmonic
2-form which may not be the same/x as in Equation (1). This can be rephrased as

(r/+ ,r/+/z) A ,w 0. (3)

We will thus compute the image of d@a(g) in the following fashion: Fix r/ e
dr21 (M), and solve for t/ d and/z harmonic in Equation (3), where on each
component S of C we additionally require that (r/+ ,r/+/x)ls be ASD whenever
co]s is SD (and vice versa). If there exist such r/and/z, then, by linear algebra, we
can find an h solving Equation (1). Neighborhoods of C require a little care when
solving for h.

3.1. Singular differential ideal.
We want to compute the image of the composite map

a(M f23(M) d_ f24(M)- A ,co - d( A ,w)= d A ,co.

We shall relate the image of this map to the cohomology H4(M, Z) of a singular
differential ideal, and compute it in this section. Let 27 (,co) be the differential
ideal generated by ,co. The ideal has the chain complex

Observe that 2-4 ,-4: As long as ,co has no zeros, there exists a 2-form such that
A ,co Fco A ,co for given F. Also noting that 2-3 { A *col f21 }, we have:

LEMMA 1. H4(M, 2") Q4(M)/Im d o,4.
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Hence, our problem is equivalent to computing H4(M, 2") of a singular differential
ideal.

PROPOSITION 2. H4(U, 2") H4(U, R), ifU C {x e Mlco2(x) 0}.

Proof. This follows from observing that if co is symplectic at x, then - A ,co

gives an isomorphism/1 (R4), ...,/k3 (R4),. I’-!

COROLLARY 1. If co is symplectic, then H4(M, 2") R.

COROLLARY 2. Ifco(x) is ofgeneric type (i.e., nondegenerate and non-SD/ASD)
for all x M, then da(g) is surjective.

Proof. Note that ,r/A ,co

H4(M; R). That is, we can let/z 0 and solve for d A ,co ,r/A ,co, which has
a solution d by the proposition.

Let us now examine 2" (,co) near the rank 2 submanifold N. Let I x N be a
neighborhood of N, with coordinates (t, x). We can write

CO (]Z1 -t- dt A/2) -1- t(col q" dt A 2),

with/Xl, col 2-forms, and/22, 2 1-forms, all without a dt-term. Here #1,/22 do not
depend on t.

On 1 x N, we can solve for oe in dct *0/x .co. Since o must satisfy ot /x ,co

for some 1-form , we require ctlv 0. Let us then modify oe -, ot ac so that
(ct ;ct)lv 0. We write

c Otl (t, x) + dt A 2(t, x) (4)

Otl (0, x) + dt/x 2(0, x) + h.o. in t. (5)

Here, Otl is a 3-form and 2 is a 2-form, both without dt-terms.
If we let 3or(t, x) Otl (0, x) + d(t2(0, x)), then (or 3or)IN 0; since 3or is

closed, we still have d(ot-&) ,r//x ,co. It is not difficult to see that (or ;ot) IN 0
is sufficient to ensure the existence of a such that A ,co ot 3ct. This follows
from the transversality of co near N. Summarizing, we have:

PROPOSITION 3. H4(I x N, Z) O.

Having taken care of the local aspects, we can pass from local to global. As before,
let Nj }=1 be the set of connected components of N. We say that co is semi-contact
on Nj if co /Zl + t(col +dt/x 2), with/Zl nonsingular and closed on Nj, i.e.,

iv (,co) 0, where ilv" Nj --+ M is the inclusion. Let N’ be the union of all the
semi-contact Nj. Then we have the following theorem:
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THEOREM 4. dim H4(M,2") # ofconnected components ofM N’.

Proof. If [/5] 0 6 H4(M; R), then there exists a global ot such that dot =/5.

CLAIM 1. If iTv [ot] 0 6 n3 (Nj; R), then we can modify ot so that otllvj O.

Proofof Claim 1. RecallEquation (4) in the proofofProposition 3. Ifiv [od 0,
then we can write otl (0, x) d3?’j on Nj. Extend ,j to I x Nj so that ,j(t, x)
?’j (0, x), and damp ?’j + t&z(0, x) out outside of I x Nj. Finally, modify c - ot -dot,
where dot d(gj + t&2(O, x)).

CLAIM 2. IfM N’ is connected, then we can modify ot - ot + dot with dot e.,H3(M; R) so that tN [ot + dot] 0 Ha(Nj; R)forall Nj semi-contact.

Proofof Claim 2. Consider the exact sequence

H3(M) H3(N’) H4(M, N’) ----+ H4(M) 0. (6)

Since M N’ is connected, H4(M, N’)
_
Ho(M N’) R. This implies that

is surjective, and that there exists a dot

Ha(Nj;R) for all Nj semi-contact.

CLAIM 3. If iTv,[ot] Ofor all Ni semi-contact, then there exists an ot /x .o9

such that dot .
Proofof Claim 3. Let ot satisfy dot /, with the additional condition that

tv, lot] 0 for all Ni which are semi-contact. By Claim 1, we may also assume
that ot Ni 0 for all Ni semi-contact. Now assume Nj is not semi-contact. Then we
can write

o9 (/.L +dt m/2) -- t(og +dt m 2),

with/22 not identically zero. Then,

*o9(0, X) (’3/2 -+- dt/x ,3/1)(0, x),

and there exist j(t, x) cj h/2(0,X) on Nj such that

We then damp j outside of I Nj, and solve for m .o9 ot j/x .o9, where
the sum runs over all non-semi-contact Nj. Here, we may need to modify ot using
Claim 1, so that (ot j A *og)lvi 0 for every component Ni of N. Finally, we
can write ot ( + ’ j)/x ,o9. El
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We will now complete the proofofTheorem 4. Referbackto Equation (6). Observe
that iv,[ A ,co] 0 e H3(N’) if N’ is the union of the semi-contact components.
Hence, given/3 with [/3] 0 H4(M; R), for/3 dot with a A,co to be satisfied,
we need iv,[t] 0 H3(N’)/i(H3(M)). This condition is also sufficient, since
iv,[Ot] 0 H3(N’)/i(Ha(M)) implies that there exists a representative ct with

iv [ct] 0 e H3(Nj) for all Nj semi-contact, and we can apply Claim 3. Finally,
dim Ha(N’)/i(H3(M)) dim Ha(M, N’) dim Ha(M) (# of components of
M N’) 1. Thus, dim Ha(M, 2") # of connected components of M N’. El

Remark 1. We have two differential ideals, 2 (,co) and ff (co), whose fates
seem interconnected, it would be interesting to find out how they are related.

Remark 2. The computations of the singular differential ideals seem generaliz-
able to higher dimensions, provided we have sufficient genericity.

Let us finally close this section with the following:

Conjecture. The connectivity condition is non-vacuous, i.e. there exists a trans-
verse intrinsically harmonic form co on a manifold M which does not satisfy the
connectivity condition. Although we know of no explicit examples where the con-
nectivity condition is necessary, the condition arises in such a natural fashion as a
necessary condition for the surjectivity of the derivative map that we suspect that
there indeed exist examples.

3.2. Analysis near S.
In the previous section we saw that, if the connectivity condition is met, then we

have a solution to (r/’ / *O //x)/ ,w 0. Note that we can set/z 0 since
,0/x ,09 r/A co is exact on M. Under the conditions of Theorem 3, we find that
there exists a 1-form such that d( A ,09) , A ,09 by Theorem 4, and hence we
can set O’ d.
Now we need to perform a more careful analysis near C [,.J S in order to

finish the proof of Theorem 3. Consider a connected component S of C and let
N(S S D3 have coordinates 0, Xl, x2, x3, which are orthonormal at S x {0}.
Without loss of generality, let co be SD on S Fix an exact r/, and we will solve for
satisfying (r/’ / ,r/)/ ,co 0 on S x D3, with the additional constraint that ’ / ,be ASD on S

LEMMA 2. There exists an exact 0’1 such that ’ + *0 is ASD on S

Proof Let 7’1 -r/. Then 0 is exact and -r/+ ,r/is ASD. r"l

Next, consider

(N(S) f23(N(S)) d 24(N(S1))- /X ,co - d(/x ,co) d/x ,co.
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LEMMA 3. Given Fw /x .o9 4(N(S1)) with Fls, O, them exists a
f21 (N(SI)) with ls 0 and dls, 0 such that d o A() Fco /x .co.

Proof. The key is to find ot A,co ofthe form ct AdO with Y.i otidx(i),
such that

(o o)= o, --.
Oxi

(0, O) O, and -otj(O, O) O,

where _< i,j _< 3, andO . S. dot dAdO dAdO, whered is the
differential with respect to {Xi}; on the other hand, Fco A ,co fdxldx2dx3dO for
some f with flsl 0. Thus solving for dc Fco A ,0 is equivalent to solving for
]-i 0/ f. It is clearly advantageous to us that this partial differential equation is

very underdetermined. Let Ot2 Ot3 0 on N(S Then - f can be solved
with initial condition Otl (0, 0, x2, x3) 0. Since fls, 0, we can choose ct with

(o o) (o, o) o.
Oxj

Thus, ot /x .w has or(0, 0) and all of its first partials vanish on S1. Under the
linear map 4-1, c will get sent to , with (0, 0) and all of the first partials of equal
to zero on S. Thus, Is, 0 and d

We find an 0’1 as in Lemma2 and an O’2 as in Lemma 3 such that (/’]2--1 --*/’) A,CO
0 on N(S1). Let r/(s r/’l + . This proves the following proposition:

PROPOSITION 4. Given any exact 2-form , there exists an exact ON(S) on N(S)
such that N(S1) + *0 is ASD on S and (ON(S) + *0) /x ,co 0 on N(S1).

Let 0 be an exact 2-form on M as before On M we have r/’ d such that
such that r/v + ,r/is(0" + *)/ *co 0, and on N(C) there exists an ON(C) (C)

SD/ASD on the various S as appropriate, and satisfies (ON(c) + ,r/)/x .co 0 on
N(C).
Now write 0’ d and O(c) dN(c). Then, d(( -N(c))/x .co) 0,

and ( u(c))/x ,co must be exact on N(C). Write ( N(c))/x ,co d?’ on
N(C), with y defined on N(C). Extend y to all of M by damping out outside of
N(C). Since co.is symplectic on Supp(y), we can write d?’ ’/x .co, and modify
0’ 0’ d’ d( ’). Summarizing, we have:

PROPOSITION 5. Assume o9 satisfies the connectivity condition. Then given an
exact 2-form on M, there exists an ’ d on M such that O + , is SD/ASD on
C and (0’ + *)/x ,co 0 on M.

It remains to obtain a section h with *+g+thco "Jr" *0. We use the following
proposition with/ r/’ + *0 to complete our argument for Theorem 3.
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PROPOSITION 6. Them exists a smooth solution h to the equation ion(h) = ,
provided ]s is ASD and A .oo 0 on N(Sl) S x D3.

Proof. Decompose o) o9+ + a)_ and/ + +

_
into the SD and ASD parts.

If io (h) , then

io+(h)
io_(h) +.

+We expand o+ o+ to a basis {o+, o-, o) for the SD forms near S Since
TgMet(M) Hom(/+,/-), in order to specify h it suffices to specify

)l+ i- -
in a manner consistent with o_ -/3+.

CLAIM. h" /+ /- /- /+ satisfies (h(ot+), or_) -(or+, h(a_)),
Awhere or+/-

The claim is an easy exercise. We then see that the consistency condition is

(/,:-, w_) -(w/+, +), or, equivalently, //- /x w_ w/+/x/+. We check that
1/x .w 0 implies (/+ + 1_)/x (o9+ w_) =/+ A w+ _/x to_ 0, giving us
_/ o_ o+/ +.

Let us now show that there exist fl-,/- satisfying the consistency conditions.
Write w_ ],t xtw and//- YO bija)-f-, 2, 3, where {w-, w, w-} is a basis

for/- on N(S1), w-/x w)- aijdVN(s), and dvN(s is the volume form on N(S1).
Then

7- /x o_ _. bioo7 /x x,o; , bijajlXldVN(S,)
jt jt

097 /X i+ rilXldl)N(S for some ril,

and solving for 1/- in 1/-/x o_ oi/x t+ would be tantamount to solving for bij in
-,t bijaj rit. But here aij is invertible since {oi-, o, o9} is a basis for/-, t"l

This completes the proof of Theorem 3.

3.3. Analysis near N.
Although it is not necessary for our theorem, it is instructive to study the neighbor-

hood I x N of N. Assume N is connected and the metric g on I x N is the product
metric for simplicity. Take coordinates (t, x) on I x N. Write

O) (/Z1 -{" dt A ,3/z2) --}- t(oo + dt A .3w2),
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where/z,//,2 do not depend on t, wl, w2 depend on t, and/,/,i, 0)i are all 2-forms
without a dt-term. Write d, on N as d3, *3.

It turns out that Wl and w2 are completely determined by/Zl and//,2 because of the
harmonicity (do9 O, d w 0).

PROPOSITION 7. o91 and 0)2 are given by

l(e(d3*a)t+e-(da*a)t) l(e(d3*a)t--e-(d.*a)t )0)1 x) -[ 2 lz + -[ 2 lz2

l(e(d.*3)t--e-(d3*3)t) l(e(d3*3)t+e-(da*a)t )w2(t, x) - 2
/xl +- 2

1

provided e+(d-*a)t (/L1) rtd e+(d3*3)t (//,2) make sense.

Proof (A) do) 0 implies

(1) d3/Zl =-td30)l,
(2) t691 + 0)1 d3 *3//,2 3

t- td3 *3 0)2,

(B) d o9 0 implies

(3) 63//,2 =-td30)2,
(4) t&2 + w2 *3/Zl + td3 "3 0)1"

Observe that (1) and (3) imply that d3/z d3//,2 d30)1 d30)2 0 because the
/zi are t-independent.

Let us first integrate (2) and (4) using (tf)’ tf’ (t) + f (t) h(t) as the model,

with f(t) "i c + fo h(s)ds as its general solution. If we require that f(0) be

finite, c 0, and we have f(t) 7 fo h(s)ds. Thus,

0)1 (t, x) " [d3 *3 ]2(S, X) -[" sd3 *3 0)2(s, x)] ds

d3 *3/z2(0, x) + -[ sd3 *3 0)2(s, x)ds,

(.02(t, X) d3 *3/Xl (0, x) + - sd3 *30)l(S, x)ds.

Plugging 0)1 into the right-hand side of 0)2 (and vice versa), and iterating, we obtain
2

0)1(t, x) (d3"3)2 + (d3*3)2N1 + -’(d3"3)3/,2 +""

=-tl(e’d3"3’t+e-d’3’’)2-1 lz+-[l(e’d3"3’’-e-d3"3’t)2 lz2,

0)2(t, x) 71( e(’*lt-e-(d3*3)t)2 /21 +Ttl( e(d3*3lt+e-(d3*3)t)21 2 1"-I



AN OPENNESS THEOREM FOR HARMONIC 2-FORMS 489

Example (Contact case). This is the situation where w Il+t(OOl+dt/x,30)2)
with *3/Zl , a contact 1-form, and d3 *3/Zl d =/Zl. Then we obtain

co (e -nt- e-t)ixl q- (e e-t)dt A
d((e’ + e-’)).

4. Local considerations

In this section, Met(M) and f2 (M) are Fr6chet spaces of smooth sections, with
a grading given by H61der norms [c. With the help of the Nash-Moser iteration
technique, we now pass from the microlocal computation to a local statement:

THEOREM 5. a is surjective near an (co, g) which satisfies the connectivity
condition.

It is evident that Theorem 5 implies Theorem 2. Theorem 5, in turn, follows from
the following:

THEOREM 6. Let go Met(M) be a metricforwhich (w0 a(go), go) satisfies
the connectivity condition. Then there exist constants Ck > 0 and > 0 with
the following property: Given 0 d21 and Ig go[l < 3, there exists an h
I"(Sym2(TM)) such that da(g)(h) and Ihl-= _< C(Ir/l / Ir/101gl).

Theorem 6 implies Theorem 5 by the Nash-Moser iteration process, which we describe
in the next two sections.

4.1. Tame maps.
We will use the notion of tame maps between tame Fr6chet manifolds, following

R. Hamilton [7]. We refer the reader to [7] for definitions and a thorough discussion.
Note that a smooth tame map L: F --+ G of tame Fr6chet manifolds is a tame map
all of whose derivatives are tame.

Let V, W be vector bundles over M, and 1-’(V), 1-’(W) be tame Fr6chet spaces of
C-sections over M. Consider D (V, W), whose sections are differential operators
of degree r from V to W. Locally we can write a differential operator of degree r as

L(qb)(f) E cp(Of).
Iotl<r

Here ct is a multiindex (cl c,) and Da 0a 0a" We can think of q {4a}
as a section of D (V, W). Then we have a map

L: I"(Dr(V, W)) x I"(V) I"(W),

(, f) - L()(f).
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PROPOSITION 8. L is a smooth tame map.

Now consider an open set U C [’(Dr(V, W)) consisting of 4 {q} such that
L(b) is elliptic and invertible. Then we have

L-: U x 1-’(W) -+ r’(v),
(b, g) - [L(b)]-1 (g).

PROPOSITION 9. L- is a smooth tame map ofdegree -r.

PROPOSITION 10. (I)a" Met(M) --+ /(M) is a smooth tame map ofdegree O.

Proof By the previous proposition,

L-l: U X ’2 (M) -+ f2 (M)

is a smooth tame map of degree -2, where U C 1-’(D2(/ ,/i)) consists of elliptic
and invertible degree 2 operators.

Now, consider the inclusion

Met(M) x C --- I(D2(Ai, Ai))
(g, .) w- Ag -Jr- ,

which is a smooth tame map of degree 2. Since the composition of tame maps is
tame, it follows that

G" ((Met(M) x C)’ U) x f2i(M)--+ ff2i(M),

[(g, )), co] ag().)o) de2 (Ag
is a smooth tame map of degree 0. Next, consider

I-I: Met(M) x f2 (M) --+ f2 (M),

(g, co) Zrg(W),

where zrg" f2 (M) --+ 7-/ is the orthogonal projection onto the harmonic space 7-(.
1-I is a smooth tame map because

fc Gg(X)wd)zrg(w)
2ri

and C C C can be fixed on a small neighborhood of g. Finally, composing 1-I with

i: Met(M) ---> Met(M) x f2i(M),
g --+ (g, wo),

we find that q is a smooth tame map of degree 0.
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4.2. Nash-Moser iteration scheme.
The following is the version of Nash-Moser that we will use"

THEOREM 7 (Nash-Moser). Let F, G be tame Frchet spaces and U C F an open
set. Suppose L: U --+ G is a smooth tame map, dL(f) is surjective for all f U,
and there exists afamily ofright inverses (dL)-I U G --+ F which is a tame map.
Then L is locally surjective.

We already know that qa" Met(M) -- f2](M) is a smooth tame map and that
dq is surjective near (coo, go). The conditions

Ihlg-= C(101k -+-10101glk) (7)

would assure us that (dL)-1 is tame. Applying the Nash-Moser iteration process, we
see that Theorem 6 would imply Theorem 5.

4.3. Estimates.
We will prove Estimates 7 above by carefully retracing the argument in Theorem 3.

Keep in mind that Ig goll < 8 throughout.
The following interpolation lemma is useful in our estimates:

LEMMA 4 (Interpolation). If fl, f2 are functions on a compact manifold X, then

In the proof of Theorem 4, we first solve for dot ,r/A ,co. Noting that
C(1 -t- Iglk) since qc is smooth tame of degree 0, we obtain bounds

Idoel C(101lglo -t-Igl101o) C(101 + Irlolgl)

by interpolation.

LEMMA 5. Given an exact i-form 13 on a compact manifold X, there exists an
ot f2i-1 (X) such that dot and Ioel/ _< CI/l,

Proof We make use of the Green’s function Ggo at go, and write ot d*Ggo.
dot =/3, and

Io1+ Id*Ggollk+ CIGgol+2 CI/31.

Thus, there exists an oe such that dot *0 A ,co and Iotlk+l C(Ir/Ik -1- 10lolglg).

Claim 2 bounds. Next, we bound the ot modified as in Claim 2 of Theorem 4.
Observe that, as long as Ig-goll < 3, for 3 small, Io-o9oll is small, and the harmonic
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form remains transverse. Hence, the rank 2 subsets N remain submanifolds, and are
close together, provided the Ig g01 are kept small.

Take a basis {[dYNe]} for H3(N’), with dvNi a volume form of unit volume on Ni.
Let [’i ( H3 (M) satisfy i*Ni[’j] [ijdUNi ]. Fix representatives ?’i [’i] Then
ot -,i ai Yi, with I’/l/l fixed constants, and ai fNi or. Hence,

IOlk+l C IololYilk+l CIclo C(101g + 101olglk),

Claim 3 bounds. We now have bounds for ct, wheredot ,r/m.wandiv[U] 0
for all Ni semi-contact. Take Nj not semi-contact, and we first estimate j on I x Nj.
j(t,x) cjfjL2(O,x), with f j/x ,3/2 f c, where we are using the same

/29_(0, x) /22 (go) (0, x) for all Ig gol < 3, and we are simply varying the
scaling factor cj. Thus,

Ijlk/l CIololwolk/l CIolo,

on l Nj.
We now give bounds for the damping out process. Let (t) be a smooth function

on R such that

4(t)
on [, 1
outside [- 1, 1 ],

and 0 < p(t) < on [-1, -] [..J[7, 1].
Then, modify j -> jcp. We find that

since p is fixed throughout. With this new j,

"* lot] 0 for all Ni We then modifyClaim bounds. We may now assume that t2vi
-> ot ,ot so that (or *c)lvi 0. If we write Otl (0, x) d39/j on Nj, then

lg/jlk+Z,N CIoelk+l

by Lemma 5. However, we can only bound I?’j + t2(0, X)lk+ ClCXlk+l because
of the term tff2--we lose one derivative here unless we are careful.

Instead, use ap(t)2(0, x), where

on [-e, e]gr, (t) 0 outside [- 1, 1],
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and ape damps out slowly to 0 on [-1, -e] I,.J[e, 1 ]. It is not difficult to see that for e
small, there exist gre with Ilo arbitrarily small, and [greli _< I1i, for > 1, where

/ on [-7, 7](t) 0 outside [- 1, 1],

and damps out slowly to 0 on [-1, -7] [7, 1]. O(t)2(O, x) will clearly do the
job of t2(0, x), with the advantage that we can find an e (dependent on g) with

Ie2(0, X)lk+2 < Clotlk+l,
I’Slk/l Id(’ / @(t)(0, x))lk+ _< CIclk+l.

As before, we do not lose any derivatives by damping out ?’j + e(t)2(0, x).
Thus,

ot --ot-lk/l < C(Irlk / Ir/lolglk).

Boundsfor 0’. Finally, alvi 0 for all Ni, and we solve for A ,o9 ot. We
do not lose any derivatives where A is an isomorphism. However, near the Ni’s we
lose one derivative, i.e:,

Ilk < C(101k / 10101gig),

and

10’lk-1 CIdlk- C(101k / Ir/Iolglk).

Estimates near S. On N(S1), we have bounds

Ir’lk _< Ilk/l _< C(Irlk / Iololglk).

Let us compute bounds on Os> and s). r/’ -0, so [r/’ [k <-- C[]Ik. For bounds
on 0 satisfying A ,o9 -(0’1 + *) A ,o9 on N(S1) and -(rfl + ,r/) A *ogls
Fogm*ogls 0, we look to the proofofLemma 3 Clearly, [F[k
Solving for ot A dO with dot Fo9 A ,o9, we have

and hence

IV<S>Ik C(101 + 10101glk).

Note that we have lost one derivative--had we worked a bit harder, that would not
have been necessary, unlike the loss of derivative near Ni, which seems inherent to
the problem.

Finally, we write d, ( v(c)) A ,o9 on N(C). By compactifying S D to
S S3, for example, we can use Lemma 3 and obtain a 9/satisfying
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Damping ?’ out, we do not lose any derivatives, and hence

In order the complete the proof of Theorem 6, we are left to prove:

LEMMA 6. There exists an h on M such that Ihl-9. C(101 + 101olgl).

Proof. Consider h away from N(S1). Since 0+*0’ {h, w}, the anticommutator
of h and co viewed as matrices, and i,o has constant rank throughout, we are able to
bound

Ihlk-1 C(10 + *r/Ik-11colo + 17 + *0’lololk-) C(Ir/lk + Irlolglk),

by interpolation.
We next find h on N(S1). Writing fl r/+ *0 and fl fl+ + fl_,

fl-, fl come from solving fl/-/ co_ co/+/ fl+. Hence,

Iriilg-2 < Clco- A fl+lk-1 _< (Ir/Ik + 1Ololglk),

and we lose a derivative. Since bijajl ril, we have

I//-Ik- < C(Irlk + 10101glk).

Hence Ihlg-2 C(Iolg + Iololglk) on N(S1). We finally interpolate the h that
we find on N(S1) to the h on M- N(S1), while keeping ]hlk-2 <
C(Irlk + Ir101glk). t3
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