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AN OPENNESS THEOREM FOR HARMONIC 2-FORMS ON
4-MANIFOLDS

Ko HoNDA

ABSTRACT. Let M be a closed, oriented 4-manifold with bg‘ > 0. In this paper we show that the space
of transverse intrinsically harmonic 2-forms in a fixed cohomology class is open in the space of closed
2-forms, subject to a condition which arises from cohomological considerations of a singular differential
ideal.

1. Introduction

In this paper we address the following question: When is a closed i-form w on a
closed manifold M of dimension n intrinsically harmonic, that is, when does there
exist a Riemannian metric g with respect to which w is harmonic? In the case of
1-forms, an answer was given by Calabi in [2]:

THEOREM 1 (Calabi). Let w be a closed 1-form on M. Assume that it is transverse
to the zero section of T*M. Then w is intrinsically harmonic if and only if (i) w does
not have any zeros of index O or n, and (ii) given any two points p, q € M which are
not zeros of w, there exists a path y: [0, 1] - M with y(0) = p and y (1) = q, such
that @(y (1)) (y () > O for all t € [0, 1].

Let Q/ (M) be the space of i-forms, and Qi (M) the subspace consisting of i-forms
in the cohomology class @ € H!(M;R). Denote by H:, C Q(M) the space of
intrinsically harmonic i-forms in the class «, and let H' C 'H:, be the harmonic i-
forms in & which are transverse to all the strata of N (R")* under the action of SO (n).
Call elements in ’H’ transverse. For transversality results for harmonic forms we refer
the reader to [8]. Calabl s theorem implies the following:

PROPOSITION 1. H! C QL(M) is an open subset.

In the case of 2-forms, the situation is quite subtle. There is no known analog of
Calabi’s theorem for 2-forms, and an intrinsic characterization of harmonic 2-forms
is rather elusive. In this paper we prove an openness theorem for transverse harmonic
2-forms on a 4-manifold, which will illustrate some of the obstructions which may
arise in the general case.
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Let M be a closed, oriented 4-manifold with bzi > 0. Then the generic harmonic
2-form o in the class @ € H2(M;R) (generic in the space of metrics) is neither
self-dual (SD) nor anti-self-dual (ASD) (cf. Section 4.3 of [3]), and is transverse. In
particular, recalling the stratification of /\2(R4)* under the action of SO (4), we have
the following:

(i) w has no zeros.
(ii) The locus where w is SD/ASD consists of a union of circles C = | J S'.
(iii) The locus where w has rank 2 is a 3-manifold N (possibly disconnected).

Note that C and N are disjoint. For a proof, we refer to [8].
In order to state the theorem, it would be convenient to introduce the following:

Connectivity Condition. Let {N; };=1 be the set of connected components of N.
We call w semi-contact on Nj if the pullback to N; of xw is zero. Let N’ be the union
of all the semi-contact N;. Then w satisfies the connectivity condition if M — N’ is
connected.

We then have the following result.

THEOREM 2. 'H2 C Q2 is open on the set of transverse intrinsically harmonic
2-forms w satisfying the connectivity condition.

On the way to proving this theorem we encounter the cohomology of the singular
differential ideal Z = (*w), which gives rise naturally to our connectivity condition.
We will compute the infinitesimal harmonic perturbations of a harmonic form w (see
Section 2), via the singular differential ideal, and pass from infinitesimal to local
using the Nash-Moser iteration technique.

We remark that the SD harmonic 2-forms are quite interesting in their own right—
for a discussion see [9].

2. Infinitesimal harmonic perturbations

Let Met(M) be the space of C®-metrics on an n-dimensional manifold M,
T Met(M) = F(Symz(TM ) be its tangent space at g € Met(M), and ' (M) consist
of C* i-forms. Then define

®,: Met(M) — Qi,(M),

which sends the metric g to the i-form w with A,w = 0 and [0w] = .
The derivative of ®, is the infinitesimal harmonic perturbation map

d®u(g): T(Sym*(TM)) — dQ'~' (M),

which we shall now compute.
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Consider a 1-parameter family (wy, g;) of harmonic i-forms on M, with go = g,
[w] €, h = f;gtlt=o, andn = ;%w,l,=o exact. We differentiate

dw, = 0, d*a), =0

to obtain

@i dn=0,
(il) d*n = Ld*(vkgw).

The Hodge decomposition gives
Qi = in—l @d*Qi-H @Hi,

so we find that n = = (%, w), where m; is the projection onto the dQ~! factor.
Hence, d ®,(g) is the composite map
*k@w

C(Sym*(TM)) =5 QI (M) 2> dQi—'\(M)
h > ¥k iy > T (KK 1h ).
Hence, in order to compute the image of d®,(g), we solve the equation
N+ +p = skgpo, M
where the exact form 7 is the given candidate for an infinitesimal harmonic perturba-

tion, and we determine n’ exact, i harmonic, and A, the metric perturbation.

3. Infinitesimal computation for non-self-dual (or anti-self-dual) harmonic
2-forms on a 4-manifold

Let us now specialize to the 4-manifold M with b2=E > 0. We prove the following
microlocal result:

THEOREM 3. Let (w, g) be a transverse harmonic 2-form on M* in the class
a € H?(M; R). If w satisfies the connectivity condition, then d®(g) is surjective,
i.e., all the exact 2-forms on M are infinitesimal harmonic perturbations.

Observe that a transverse harmonic 2-form must necessarily be non-SD/ASD,
when both b} > 0and b; > 0.

In order to make use of Equation 1, we must first compute the image of the map

v S > \2RY*,

h > x%g o (x),
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where S is the set of symmetric n X n matrices, and we assume that the bundle 7*M
has been trivialized near x. In [8] we computed

1. Imiyy =0,ifwx) =0.
2. Im iy ) = {ASD (SD) 2-forms}, if w(x) is SD (ASD).
3. Im iy = (xw(x))*, otherwise.

For a transverse 2-form there are no points x where w(x) = 0. The primary
difficulty with the transverse non-SD/ASD harmonic 2-form on a 4-manifold is that
Im i, () is never surjective.

It is most convenient to rewrite Equation (1) as follows: Noting that Im i, ) C
(xw(x))* whenever w(x) # 0, and, in particular, Im i,y = (*w(x))* when w(x)
is not SD/ASD, after taking % we obtain

n+*n+uplo, @)

where L is the pointwise inner product with respect to g, and u is some harmonic
2-form which may not be the same u as in Equation (1). This can be rephrased as

(" 4+ *n 4 p) A %o = 0. 3)

We will thus compute the image of d®,(g) in the following fashion: Fix n €
dQ2' (M), and solve for n’ = d& and w harmonic in Equation (3), where on each
component S' of C we additionally require that (n’ + *n + w)|s: be ASD whenever
w|s is SD (and vice versa). If there exist such n’ and u, then, by linear algebra, we
can find an £ solving Equation (1). Neighborhoods of C require a little care when
solving for A.

3.1. Singular differential ideal.
We want to compute the image of the composite map

Q' (M) 2 3M) L Q4(M)
E EN*w > d(E A *w) =dE A *o.
We shall relate the image of this map to the cohomology H*(M, Z) of a singular
differential ideal, and compute it in this section. Let Z = (xw) be the differential
ideal generated by *w. The ideal has the chain complex

0> =0>T"'=0>T2 > TP > T > 0.

Observe that 7# = Q*: As long as *w has no zeros, there exists a 2-form £ such that
£ A xw = Fw A % for given F. Also noting that Z* = {£ A xw|& € Q'}, we have:

LEMMA 1. H*M,T) = Q*(M)/Imd o A.
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Hence, our problem is equivalent to computing H*(M, T) of a singular differential
ideal.

PROPOSITION 2. H*(U,T) = H*(U,R), ifU C {x € M|w?*(x) # 0}.

Proof. This follows from observing that if w is symplectic at x, then & > & A *xw
gives an isomorphism /\1 (RH* ~ /\3 RH*. O

COROLLARY 1. If w is symplectic, then H*(M,T) = R.

COROLLARY 2. Ifw(x) is of generic type (i.e., nondegenerate and non-SD/ASD)
forall x € M, then d®,(g) is surjective.

Proof. Note that ¥n A xw = n A w, with n exact. Hence [¥n A xw] = 0 €
H*(M:R). That is, we can let 1 = 0 and solve for d& A *w = *n A *w, which has
a solution d& by the proposition. O

Let us now examine Z = (kw) near the rank 2 submanifold N. Let I x N be a
neighborhood of N, with coordinates (¢, x). We can write

o= (1 +dt A i) + t(w; +dt A D),

with @1, w; 2-forms, and fi,, @, 1-forms, all without a d¢-term. Here 1, i, do not
depend on ¢.

On I x N, we can solve for ¢ in da = *n A *w. Since o must satisfy o = § A xw
for some 1-form &, we require a|y = 0. Let us then modify & — o — So so that
(@ — da)|y = 0. We write

a = a1(t, x) +dt Aax(t, x) 4
= a1(0,x) +dt Ay(0,x) + h.o. int. 5)

Here, «; is a 3-form and &, is a 2-form, both without dz-terms.

If we let Sa(f, x) = o1 (0, x) + d(ta2(0, x)), then (¢ — da)|y = 0; since S is
closed, we still have d (@ — §a) = *n A*w. Itis notdifficult to see that (@ —da)|y = 0
is sufficient to ensure the existence of a £ such that £ A xw = o — da. This follows
from the transversality of w near N. Summarizing, we have:

PROPOSITION 3. H*(I x N,T) =0.

Having taken care of the local aspects, we can pass from local to global. As before,
let {N; }j'.=1 be the set of connected components of N. We say that w is semi-contact
on Nj if w = p; + t(wy + dt A @), with u; nonsingular and closed on N}, i.e.,
iy, (*w) = 0, where iy,: N; — M is the inclusion. Let N’ be the union of all the
semi-contact N;. Then we have the following theorem:
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THEOREM 4. dim H*(M, I) = # of connected components of M — N'.
Proof. If [8] = 0 € H*(M; R), then there exists a global o such that da = 8.
CLAIM 1. Ifi}(,l [@]=0¢€ H3(Nj; R), then we can modify a so that ct|n, = 0.

Proof of Claim 1. Recall Equation (4) in the proof of Proposition 3. Ifi X’/ [a] =0,
then we can write (0, x) = dzy; on N;. Extend y; to I x N; so that y;(¢, x) =
¥j (0, x), and damp y; +t& (0, x) out outside of I x N;. Finally, modify & > o —dcx,
where 8o = d(y; +ta(0,x)). O

CLAIM 2. If M — N’ is connected, then we can modify o — o + Sa with S €
H3(M; R) so that iy le+8a]=0¢ H3(N;; R) for all N; semi-contact.

Proof of Claim 2. Consider the exact sequence
H*(M) - H*(N') — H*(M, N') — H*(M) — 0. (6)

Since M — N’ is connected, H*(M, N') ~ Hy(M — N') >~ R. This implies that i
is surjective, and that there exists a o € H 3(M; R) such that i;‘,} [ +da] =0 €
H3(Nj; R) for all N; semi-contact. O

CLAM 3. Ifiy [a] = O for all N; semi-contact, then there exists an & = § A *w
such that da = B.

Proof of Claim 3. Let o satisfy de = B, with the additional condition that
iy, [e] = 0 for all N; which are semi-contact. By Claim 1, we may also assume
that «|y, = O for all N; semi-contact. Now assume Nj is not semi-contact. Then we
can write

w = (U1 +dt A i) + t(w +dt Awy),
with i, not identically zero. Then,
*w (0, x) = (k3fy + dt A *x3u1)(0, x),

and there exist &; (¢, x) = c; fj{12(0, x) on N; such that

f ijjﬂzf\*3/7«2=f .
N; N

We then damp §; outside of I x Nj, and solve for £ A xw = a — ) & A xw, where
the sum runs over all non-semi-contact N;. Here, we may need to modify o using
Claim 1, so that (@ — )_&; A *w)|n, = O for every component N; of N. Finally, we
canwrittr = (§ + )_§)) Axw. O
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We will now complete the proof of Theorem 4. Refer back to Equation (6). Observe
that iy, [ A*w] =0€ H 3(N'") if N’ is the union of the semi-contact components.
Hence, given B with [8] = 0 € H*(M; R), for B = da witha = £ Axw to be satisfied,
we need iy, [a] = 0 € H3(N')/i(H*(M)). This condition is also sufficient, since
il =0€e H 3(N")/i(H?*(M)) implies that there exists a representative o with
i;‘vj [] = 0 € H3(N;) for all N; semi-contact, and we can apply Claim 3. Finally,
dim H3(N")/i(H3(M)) = dim H*(M, N') — dim H*(M) = (# of components of
M — N') — 1. Thus, dim H*(M, T) = # of connected components of M — N’. O

Remark 1. 'We have two differential ideals, 7 = (*xw) and J = (w), whose fates
seem interconnected. It would be interesting to find out how they are related.

Remark 2. 'The computations of the singular differential ideals seem generaliz-
able to higher dimensions, provided we have sufficient genericity.

Let us finally close this section with the following:

Conjecture. The connectivity condition is non-vacuous, i.e. there exists a trans-
verse intrinsically harmonic form @ on a manifold M which does not satisfy the
connectivity condition. Although we know of no explicit examples where the con-
nectivity condition is necessary, the condition arises in such a natural fashion as a
necessary condition for the surjectivity of the derivative map that we suspect that
there indeed exist examples.

3.2. Analysis near |J S'.

In the previous section we saw that, if the connectivity condition is met, then we
have a solution to (n’ + *1n + @) A *w = 0. Note that we can set £ = 0 since
*N A %@ = n A w is exact on M. Under the conditions of Theorem 3, we find that
there exists a 1-form & such that d(§ A *w) = *n A *w by Theorem 4, and hence we
can set n’ = d&.

Now we need to perform a more careful analysis near C = |JS! in order to
finish the proof of Theorem 3. Consider a connected component S' of C and let
N(S") = S! x D? have coordinates 6, x;, x5, x3, which are orthonormal at S x {0}.
Without loss of generality, let w be SD on S. Fix an exact , and we will solve for n’
satisfying (7’ 4+ *1) A xw = 0 on S! x D3, with the additional constraint that 7’ + xn
be ASD on S'.

LEMMA 2. There exists an exact ny such that n| + xn is ASD on St
Proof. Letn] = —n. Then n is exactand —n + xnis ASD. 0O
Next, consider

QUN(SY) B> BINSH) -5 Q4N (SY)
E> EAxw > d(E A *w) = dE A xw.
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LEMMA 3. Given Fo A xw € Q*(N(S')) with F|g = 0, there exists a £ €
QUN(SY)) with E|g1 = 0and dé|gr = 0 such thatd o A(E) = Fo A xo.

Proof. Thekeyistofinda = & Axwofthe forma = G AdO with®@ = ), a;dx(y,
such that

9 9
2(8,0) =0, 7=0;(6,0) =0, and 505, 0) =0,

where 1 < i,j <3,and 0 € S'. do = da A df = ds& A dB, where ds is the
differential with respect to {x;}; on the other hand, Fw A x» = fdx;dx,dx3d6 for
some f with f|s1 = 0. Thus solving for do = Fw A *w is equivalent to solving for

i %%,-L = f. Itis clearly advantageous to us that this partial differential equation is

very underdetermined. Let oy = a3 = 0 on N(S'). Then g—‘;ll = f can be solved
with initial condition a; (0, 0, x3, x3) = 0. Since f|gs1 = 0, we can choose o with
20,00 = 546,00 =0.

Thus, o = & A %o has «(6, 0) and all of its first partials vanish on S'. Under the
linear map A~!, o will get sent to £, with £(6, 0) and all of the first partials of & equal
to zero on S!. Thus, £|gg =0anddé|g =0. O

We find an 77} asin Lemma 2 and an }, as in Lemma 3 such that (3 +n} +*n) Axw =
0on N(S'). Let Myt = M + 3. This proves the following proposition:

PROPOSITION 4.  Given any exact 2-form n, there exists an exact ), (s1y on N(SYH
such that n;\,(s,) + xn is ASD on S' and (’7;V(s1) +%n) A *w = 0 on N(S1).

Let 1 be an exact 2-form on M as before. On M we have n’ = d& such that
' + *n) A xw = 0, and on N(C) there exists an n’N(C) such that nj,,(c) + *n is
SD/ASD on the various S' as appropriate, and satisfies (njv(c) + %n) A *w = 0 on
N(C).

Now write n' = d§ and ny, = dénc). Then, d((§ — &n(c)) N *w) = 0,
and (§ — &En(c)) A *w must be exact on N(C). Write (§ — Ey(c)) A *w = dy on
N(C), with y defined on N(C). Extend y to all of M by damping out outside of
N(C). Since w is symplectic on Supp(y), we can write dy = &’ A *w, and modify
n = n —d& =d(E — §'). Summarizing, we have:

PROPOSITION 5.  Assume w satisfies the connectivity condition. Then given an
exact 2-form n on M, there exists an ' = d€ on M such that ' + *n is SD/ASD on
Cand (' +*n) Axw =00n M.

It remains to obtain a section h with k., = 1’ + xn. We use the following
proposition with 8 = n' 4 %1 to complete our argument for Theorem 3.
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PROPOSITION 6. There exists a smooth solution h to the equation i,(h) = B,
provided B is ASD and B A xw = 0on N(S') = S! x D3,

Proof. Decompose w = w; + w_ and 8 = B, + B_ into the SD and ASD parts.
If i, (h) = B, then
iw+ h) = ,B—
lo_(h) = B4

We expand i = w, to a basis {0, @], ®f} for the SD forms near S'. Since
T,Met(M) =~ Hom(A", A7), in order to specify h it suffices to specify

+ p—
w] = B =B-
+ —_—
w, = B,
+ p—
w3 = By

in a manner consistent with w_ — B.

CLam. h: NT@ A~ = A" @ AT satisfies (h(ay), a-) = —(oy, h(a)),
where ax € N\*.

The claim is an easy exercise. We then see that the consistency condition is
(BT, w-) = —(w], B4), or, equivalently, B7 A w_ = o] A By. We check that
B A *w = 0 implies (B+ + B-) A (w4 —w-) = B+ Awy — B- Aw_ =0, giving us
ﬁ_/\w.. =Cl)+/\ﬁ+.

Let us now show that there exist 8, , B, satisfying the consistency conditions.
Write o =}, xjo; and B = 3, bjjw;, i = 2,3, where {0], @, , w3} is a basis
for A™ on N(S"), 0] A w] = a;jdvy s, and duy st is the volume form on N(SYH.
Then

B ANo_ = Zbijw]._ AXjw] = Zbijaﬂxldv,v(sx)
Jt jt
wf ABy = Z riuxidvy sy for some ryy,
1
and solving for B in B A w_ = w; A B+ would be tantamount to solving for b;; in
3", bijaji = ri;. Buthere g;; is invertible since {w] , ®; , 3 } is a basis for A~. O
This completes the proof of Theorem 3.

3.3. Analysis near N.

Although it is not necessary for our theorem, it is instructive to study the neighbor-
hood I x N of N. Assume N is connected and the metric g on I x N is the product
metric for simplicity. Take coordinates (¢, x) on I x N. Write

® = (U1 +dt A x3p2) + t(wr +dt A x302),
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where u;, u2 do not depend on ¢, wy, w> depend on ¢, and u;, w; are all 2-forms
without a dz-term. Write d, * on N as ds, *3.

It turns out that w; and w, are completely determined by w1 and u, because of the
harmonicity (dw = 0, d * w = 0).

PROPOSITION 7. w; and w; are given by

1 [ @)t 4 p=(daxa)t 1 [ W)t _ o—(d3xa)t
w1 (¢, x) —(————-———1)11«14-?(——)#2,

t 2 2

1 [ exa)t __ p—(d3xa)t 1 [ eWsxa)t + e—(dzxa)t
wy (2, x) Pl e — IL1+; ‘—2—--1 M2,

(1) and eX@*) (11,) make sense.

provided e*@*)!

Proof. (A) dw = 0 implies

(1) dspy = —tdsoy,
(2) twg + w1 = ds *3 o + tds *3 wy,

(B) d * w = 0 implies

(3) d3pr = —tdzws,
(4) twn + wy = d3 *3 uy + tds *3 ;.

Observe that (1) and (3) imply that dsi; = d3uy = dsw; = dswy = 0 because the
wu; are t-independent.

Let us first integrate (2) and (4) using (¢f) = tf'(t) + f(¢t) = h(¢) as the model,
with f(¢) = } (c + f(; h(s)ds) as its general solution. If we require that f(0) be

finite, ¢ = 0, and we have f(t) = % fot h(s)ds. Thus,

1 t
wi(t,x) = —t.fo [ds *3 pa(s, x) + sds *3 wa(s, x)]ds

1 t
ds *3 n2(0, x) + " / sds *3 wy (s, x)ds,
0

1 t
wy(t, x) = dy*3 (0, x) + ?/ sd3 x3 w1 (s, x)ds.
0

Plugging w; into the right-hand side of w, (and vice versa), and iterating, we obtain
t 12
wi(t,x) = (dsx3)uz + E(da*s)zm + E'(d3*3)3ll-z +--

1 e(ds*s)t+e—(d3*3)1 1 [ e@*)t _ o—(dsxa)
=i Ymr )

1 [ eld*)t _ p—(dsx3)t 1 [ et 4 p—(dsxs)
oa(t,7) = ~ (————5————— it (———2———-——

-1
; )Mz O
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Example (Contact case). Thisisthe situation where w = p+t (w1 +dt Ax3ws),
with %347 = &, a contact 1-form, and d3 *3 u; = d& = . Then we obtain

® = (e"+e N+ (e —e™Ndt A xa3uy
= d((e' +e7"E).

4. Local considerations

In this section, Met(M) and Qg(M ) are Fréchet spaces of smooth sections, with
a grading given by Holder norms | - |¢c«. With the help of the Nash-Moser iteration
technique, we now pass from the microlocal computation to a local statement:

THEOREM 5. @, is surjective near an (w, g) which satisfies the connectivity
condition.

It is evident that Theorem 5 implies Theorem 2. Theorem 5, in turn, follows from
the following:

THEOREM 6. Let gg € Met(M) be a metric for which (wy = Py(80), go) satisfies
the connectivity condition. Then there exist constants C, > 0 and § > 0 with
the following property: Given n € dQ' and |g — goly < 8, there exists an h €
T'(Sym*(T M) such that d D4 (g)(h) = n and |hlk—2 < Ce(Inlk + [nlolgle)-

Theorem 6 implies Theorem 5 by the Nash-Moser iteration process, which we describe
in the next two sections.

4.1. Tame maps.

We will use the notion of tame maps between tame Fréchet manifolds, following
R. Hamilton [7]. We refer the reader to [7] for definitions and a thorough discussion.
Note that a smooth tame map L: F — G of tame Fréchet manifolds is a tame map
all of whose derivatives are tame.

Let V, W be vector bundles over M, and I'(V), I'(W) be tame Fréchet spaces of
C°-sections over M. Consider D" (V, W), whose sections are differential operators
of degree r from V to W. Locally we can write a differential operator of degree r as

L@)(f) =) ¢a(Dof).

lelzr

Here « is a multiindex (¢4, ..., ®,) and D, = 3% -- - 3%. We can think of ¢ = {¢,}
as a section of D"(V, W). Then we have a map

L: T(D"(V,W)) x T(V) > I'(W),
(@, ) = L))
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PROPOSITION 8. L is a smooth tame map.

Now consider an open set U C I'(D"(V, W)) consisting of ¢ = {¢,} such that
L(¢) is elliptic and invertible. Then we have

L™": U x (W) = T(V),
(¢,8) > [L@]7' ().

PROPOSITION 9. L~! is a smooth tame map of degree —r.
PROPOSITION 10.  ®,: Met(M) — 2, (M) is a smooth tame map of degree 0.

Proof. By the previous proposition,
L™ U x QM) - QM)

is a smooth tame map of degree —2, where U C T'(D*(A\!, A\’)) consists of elliptic
and invertible degree 2 operators.
Now, consider the inclusion

Metd) x € > T (D> (\', ).
&AM Ag+ 2,

which is a smooth tame map of degree 2. Since the composition of tame maps is
tame, it follows that

G: ((Met(M) x O U) % Q' (M) — Q (M),

def

[(gv )")’ C()] [ Gg(k)w = (Ag + )\.)_lw

is a smooth tame map of degree 0. Next, consider
I1: Met(M) x Q' (M) — QI (M),
(&, w) > (),
where my: Q'/(M) — ’H; is the orthogonal projection onto the harmonic space 'H;.

IT is a smooth tame map because

1
ﬂg(w) = —E—Tt—i‘/(;Gg(k)wdx’

and C C C can be fixed on a small neighborhood of g. Finally, composing IT with
i Met(M) — Met(M) x Q' (M),
8§ (g ) wO)v

we find that @, is a smooth tame map of degree 0. [
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4.2. Nash-Moser iteration scheme.
The following is the version of Nash-Moser that we will use:

THEOREM 7 (Nash-Moser). Let F, G be tame Fréchet spaces and U C F an open
set. Suppose L. U — G is a smooth tame map, dL(f) is surjective for all f € U,
and there exists a family of right inverses (dL)™': U x G — F which is a tame map.
Then L is locally surjective.

We already know that &,: Met(M) — Qg(M ) is a smooth tame map and that
d®,, is surjective near (wo, go). The conditions

|hlk—2 < C(nlk + Inlolgli) Q)

would assure us that (L)~ is tame. Applying the Nash-Moser iteration process, we
see that Theorem 6 would imply Theorem 5.

4.3. Estimates.

We will prove Estimates 7 above by carefully retracing the argument in Theorem 3.
Keep in mind that |g — go|; < § throughout.

The following interpolation lemma is useful in our estimates:

LEMMA 4 (Interpolation). If fi, f» are functions on a compact manifold X , then

| fifale < CU Aol 2l + 1 filk] f2lo).

In the proof of Theorem 4, we first solve for doe = *n A *w. Noting that |w|; <
C(1 4+ |glx) since @, is smooth tame of degree 0, we obtain bounds

ldale < C(Inlklglo + Iglklnlo) = C(Inlk + Inlolglk)

by interpolation.

LEMMA 5. Given an exact i-form B on a compact manifold X, there exists an
a € QY(X) such that da = B and |a|x+1 < C|Blk.

Proof. We make use of the Green’s function G, at go, and write & = d* G .
da = 8, and

|atlit1 = 1dG g Blris1 < ClGgBlig2 < ClBlk. O
Thus, there exists an « such that da = *n A xw and |a|x+1 < C(|nlk + Inlolglk)-

Claim 2 bounds. Next, we bound the o modified as in Claim 2 of Theorem 4.
Observe that, as long as |g — go|1 < §, for & small, | —wp]; is small, and the harmonic
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form remains transverse. Hence, the rank 2 subsets N remain submanifolds, and are
close together, provided the |g — gol; are kept small.

Take a basis {[dvy,]} for H 3(N"), with dvy, a volume form of unit volume on N;.
Let [y;] € H3(M) satisfy iy [l = [8ijdvn,]. Fix representatives y; € [y;]. Then
da = — )", a;y;, with |y;|x41 fixed constants, and a; = f N, O Hence,

Betlesr < C Y letlolyilesr < Clerlo < CInl + Inlolgli)-
i

Claim 3 bounds. 'We now have bounds for o, where da = *nA*w andi,’t,i [@]=0
for all N; semi-contact. Take N; not semi-contact, and we first estimate §; on I x N;.
& (t, x) = cj fjil2(0, x), with fN} £ A *3flp = fN, o, where we are using the same

fii2(0, x) = fjii2(go)(0, x) for all |g — go| < 8, and we are simply varying the
scaling factor c¢;. Thus,

1€ lk+1 < Clalolwoli+1 < Clelo,

onl x Nj.

We now give bounds for the damping out process. Let ¢ (¢) be a smooth function
on R such that

_fr on(zh 1)
@) = {0 outside [2-—1, 1},

and0 < ¢(#) <lon[-1, :l]U[%, 1].
Then, modify & — &;¢. We find that

1&iblkr1 < CUEjlkr11dlo + 1@lrs11j10) < Cl&jlkr1s

since ¢ is fixed throughout. With this new &;,
e = Y& A%l < CUnl + Inlolgle)-

Claim 1 bounds. 'We may now assume that i;‘,’, [a] = Oforall N;. We then modify
o > a — du so that (¢ — dar)|n, = 0. If we write 1 (0, x) = d3y; on Nj, then

[Vilks2.n < Clotliqn

by Lemma 5. However, we can only bound |y; + t@(0, x)|x+1 < Clet|g4) because
of the term ta;,—we lose one derivative here unless we are careful.
Instead, use ¥ ()2 (0, x), where

on [—eg, &]

t
Ye(t) = {0 outside [—1, 1],
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and ¥, damps out slowly to 0 on [—1, —&] [, 1]. It is not difficult to see that for &
small, there exist ¥, with || arbitrarily small, and ||; < |¥|;, fori > 1, where

on[—1,1]

t
Y@ = {0 outside [—1, 1],

and ¥ damps out slowly to O on [—1, —%] U[-;-, 11. ¥ ()20, x) will clearly do the
job of ¢ (0, x), with the advantage that we can find an & (dependent on g) with

[¥e@a (0, X) k12 < Clatlgsrs
[8ctlks1 = (¥ + Ye(®)@(0, X)) k41 < Clatlgsr.

As before, we do not lose any derivatives by damping out y; + ¥ (£)%(0, x).
Thus,

loe — Satleg1 < CUnlk + Inlolgle)-

Bounds for n'.  Finally, «|y, = O for all N;, and we solve for £ A xw = o. We
do not lose any derivatives where .4 is an isomorphism. However, near the N;’s we
lose one derivative, i.e.,

1§k < C(Inlx + Inlolgle),
and

7' lk=1 < Cld& k=1 < C(Inlk + Inlolgl)-
Estimates near S'.  On N(S'), we have bounds

1n'lk < 1&lk+1 < CUnle + Inlolgle).

Let us compute bounds on 1y, iy and &n(s1y. nj = —n, 50 [0}l < Clnlx. For bounds
on 7} satisfying n5 A x@ = — (7] + *n) A *w on N(S') and —(n] + *n) A *w|s1 =
FoAxw|g = 0, welook to the proof of Lemma 3. Clearly, |Fly < C(Inle+1nlolglk)-
Solving for o = & A df with da = Fw A xw, we have

laly < CIFlx < C(Inlk + Inlolgle),

and hence

[Envesyle = Cnlx + Inlolgle)-

Note that we have lost one derivative—had we worked a bit harder, that would not
have been necessary, unlike the loss of derivative near N;, which seems inherent to
the problem.

Finally, we write dy = (£ —&n(c)) A *w on N(C). By compactifying S' x D3 to
ST x 83, for example, we can use Lemma 3 and obtain a y satisfying

[¥lk+1 < ClE = Enicy) Aol < C(nlk + Inlolgle).



494 KO HONDA
Damping y out, we do not lose any derivatives, and hence

In" —d€ k=1 < C(Inlk + Inlolglx)-

In order the complete the proof of Theorem 6, we are left to prove:
LEMMA 6. There exists an h on M such that |kl < C(Inlx + nlolglk)-

Proof. Consider h away from N (S'). Since n+x*n’ = {h, w}, the anticommutator
of h and w viewed as matrices, and i, has constant rank throughout, we are able to
bound

[hlk—1 < C(In + *n'k=1lwlo + |7 + *1"lolwlk-1) < Cnlk + Inlolglk),

by interpolation.
We next find & on N(S!). Writing 8 = ' + *n and 8 = B, + B-,

1B1 k=1 = 1B-lk=1 < |Bli—1 = C(Inlk + nlolgle)-

B, By come from solving B A w_ = o] A B;. Hence,

[Fitlk-2 < Clowf A Bilk=1 < (nlk + Inlolgli),

and we lose a derivative. Since b;;aj; = r;;, we have

1B lk-2 < CInlk + Inlolglk)-

Hence |hli—2 < C(Inlk + Inlolglk) on N(S'). We finally interpolate the 4 that
we find on N(S!) to the » on M — N(S'), while keeping |hlr—2» <
C(nlk + Inlolgl). O
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