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I. Relative convexity
The purpose of this paper is to generalize the idea of convexity in Euclidean

space and study the properties of those sets, which we call totally concave,
which are in some sense as non-convex as possible.

If p, p, p, are points of E" (Euclidean n-space), 1 _-< n, we will denote
the closed convex cell spanned by these points by pp p,. The dimen-
sion of this cell may of course be less than s 1. The complemen of a set
T in E will be denoted by cT. If S and T are sets in E, S o T [Js,qr (pq).
DEFINITION 1.1. If S and T are sets in E", S will be said to be convex with

respect to T if and only if, given p, p, p, s -<_ n -t- 1; p e S n T, the
convex cell pp p S u cT.

This is a generalization of convexity in the sense that if p and q are points of
S n T, those points of the line segment pq which are in T are also in S. A set
S E is convex if and only if it is convex with respect to E". Any set is
convex with respect to itself. The empty set is convex with respect to any set.
A convex set is convex with respect to any set. If T is convex, Bd (T) is
convex with respect to c Int (T).
PROPOSITION 1.2. If T is convex and S is convex with respect to T, then S T

is convex.

Proof. If p, p e S n T, then p p S u cT and by convexity pp T.
Hence pp S T.
Example 1.3. In Figure la, S is convex with respect to T, R S, but R

is not convex with respect to T. In Figure lb, S is convex with respect to T,
T is convex with respect to R, but S is not convex with respect to R.

PROPOSITION 1.4. If A is an index set and S, is convex with respect to T for
all a A, then ,S, is convex with respect to T.

Proof. If p, p, p e (, S) T the cell

pp p, , S, u cT) , S,) u cT.

PROPOSITION 1.5. If S is convex with respect to R, T R, then S is convex
with respect to T.

Proof. Letp,p,...,p, eSaT SR. Then

p p. p, S u cR S u cT.
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COROLLARY 1.6. If A is an index set and S is convex with respect to T, for all
a A then S is convex with respect to ,A T.

COROLLARY 1.7. T is convex with respect to T.

Example 1.8. In Figure 2a, S is convex with respect to both T1 and T but
not with respect to T1 u T. In Figure 2b, both S and S are convex with
respect to T but S u S is not.

PROeOSITION 1.9. S is convex with respect to T if and only if S [ T is convex
with respect to T.

Proof. Ifp,p.,...,pse(SnT) nT SaTthen

p p p8 c S t cT S a T) t cT.

PROPOSITION 1.10. S is convex with respect to T if and only if
S T H(Sn T) n T.

H( T) is the convex cover of T.)

FURE la

B’

FIGURE lb

A B

FIGURE 2a FI(UR 2b
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Proof. SnTcH(SnT)T. Ifpe[H(ST) nT]- [ST],byCar-
atheodory’s theorem [2] there exist pl, p., ps, s =< n -t- 1, p e S n T,
and p e pl p p8 If S is convex with respect to T, pl p p, S t cT.
Hence

p e [H(S T) T] c[S T] IS t cT]

[H(S T) T] {[cS t ,cT] IS t cT]}

H(SnT)TcT .
Since H(S T) is convex it is convex with respect to T. By Proposition

1.9, H(S T) T S T is convex with respect to T, and by the same
proposition S is convex with respect to T.

Example 1.11. If Figure 3a below S is open, T closed and S is convex with
respect to T, but S T H(S) a T. This example also shows that neither
nor T need be convex with respect to T. In Figure 3b, S is open, S n T

is open, but the closed segment pq T. S is convex with respect to T, but
none of , S T, S T [ T, S T n , N(S, ) (a -neighborhood of S) is con-
vex with respect to T. Hence none is convex with respect to .

In fact, about all that can be said about closures is that if S is convex with
respect to T, then so is S .
Example 1.12. S and T are open, S is convex with respect to T, but S

is not convex with respect to T, Also note that Int (S) is not convex with
respect to T.

PROPOSITION 1.13. If S is convex with respect to T, then Int (S) is convex
with respect to Int (T).

Proof. Let pl, p, p+ e Int (S) Int (T), and for each i, pick a
neighborhood N(p) Int (S) Int (T). Let R H( (J.-+ N(P) ). If
x e R, we can, by Caratheodory’s theorem, pick qo, q, q, qi e N(p),

FIGURE 3a FGURE 3b
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FIGURE 4

where each p is some pk, so that qi0 ql qs is a convex cell containing x.
Each q:. e S n Int (T), so that

xeqi0qi.., qs cSucInt(T)

It follows that
R cSucInt(T) and plp2""p+l R cStcInt(T).

,Now let p e p p..., p+I We wish to show that

p e Int (S) u c Int (T).

If p e Int (T), p e Int (R) n Int (T) and there is a neighborhood

N(p) cInt(R)Int(T) (ScInt(T))Int(T) SInt(T) S.

Hence p e Int (S) and the theorem is proved.

DEFINITION 1.14. The relative convex cover of a set S with respect to
another set T is denoted by Hr(S), and defined to be H(S T) n T. Note
that Propositon 1.10 states that S is convex with respect to T if and only if
Hr(S) ST.

PROPOSITION 1.15. If R is convex with respect to T and S R, then

Hr(S) R T Hr(R).

Proof. S n T R T implies H(S n T) H(R T). Hence

HT(S) H(Sn T) T H(R T) [ T R T Hr(R).

PROPOSITION 1.16. If S C R then Hs( T) H( T).

PROeOSTION 1.17. If S is compact and T closed then Hr( S) is compact.

DEFINITION 1.18. A point p of a convex set S is called an extreme point of
S provided that p does not lie on the interior of any interval in S. The set of
extreme points of S will be denoted by E(S). If S is convex with respect to T
and p e S n T, p is extreme in S with respect to T provided p e E(H(S T) ).
The set of extreme points of S with respect to T is denoted by Er(S).
Er(S) E(H(S n T) (S n T).
LEMMA 1.19. If S is compact, then

H(S) H(E(H(S) H(E(H(S) S).
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Proof. The first equality is well known and the inclusion

H(E(H(S) S) H(E(H(S)

is clear. If p e H(S) S, there exist points q, q, q, q e S; s <_- n -t- 1
with p e q q q H(S). Since p q for any i, p is on the interior of
some face of q q q, and cannot be an extreme point. Hence

E(H(S) E(H(S) n S,

and the lemma is established by taking convex covers.

PROPOSiTiON 1.20. If S is convex with respect to T, and S n T is compact
then Hr(S) Hr(Er(S) ).

Proof.
Hr(S) H(ST)T

H(E(H(S T)) n (S n T)) T by the previous lemma

H(Er(S)) T S(Sr(S) n T) T St(St(S)).

THEOREM 1.21 (Helly’s theorem for relatively convex sets). If S,
S:, ..., S, are sets, relatively convex with respect to T E’*, and if every
n + 1 of them intersect in a point of T, and S T is convex, then "- (S T)
is not empty.

Proof. Let S, S, Si.+ be n -t- 1 of the sets S. Since Si is con-
vex wih respect to T, S. T H(S n T) T. By hypothesis there is a
point

n+ r’l+ H(S n T)

By Helly’s theorem, there is a point x e lH(S T). Since S T is con-
vex, xeH(ST) ST T. Hence

x e lH(S T) T l (H(S T) T) 1% (S T).

COROLlaRY 1.22. If S S S, are subsets of T E’, which are con-
vex with respect to T and if every n + 1 of them have a non-empty intersection, and
if S is convex, then S is not empty.

Example 1.23. The condition that S be convex cannot be removed in the
above theorem. In Figure 5, S, S., Sa, and S are all convex with respect to
the annulus T, und intersect in threes, but have an empty intersection.

It is easy to generalize Caratheodory’s theorem to relative covers and rela-
tively convex cells.

PROeOSTON 1.24. If p e Hr(S), Su T E’*, then there exist points
p,p,...,p,;s-< n-t- 1;peSnTsuchthatpepp...p, SucT.
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FIGURE 5

]]. $ot]] concave

DEFINITION II.1. A set T in E is said to be totally concave if and only if S
is convex with respect to T for any subset S of T and T is not convex.

There are many examples of totally concave sets; the vertices of a simplex,
the unit sphere, the rational points of a circle, and the vertices of a cube are a
few.

PROPOSITION II.2. A totally concave set has no non-degenerate convex subsets.

Proof. If S, convex, is contained in T, totally concave, and S contains more
than one point, it contains a segment whose endpoints form a subset of T
which is not convex with respect to T.
The converse of this proposition is clearly false. The unit sphere plus its

center has no non-degenerate convex subsets and is not totally concave.

PROPOSITION II.3. Any non-degenerate subset of a totally oncave set is totally
concave.

Proof. If T is totally concave and S c R c T and

then
pl,p2,"" ,pseSnR SnT,

pl p2 p8 S t cT S t cR

and R is totally concave.

PROPOSITION II.4. T is totally concave if and only if it is convex with respect
to any set of k points, ]c <- n -- 1, contained in it.



622 BRUCE B. PETERSON

Proof. Necessity is trivial. If T is not totally concave it has a subset S
which is not convex with respect to T. Hence, in S, there are /c points
pl, p., pk ;/ -< n W 1; such that pl p2 pk is not contained in S u cT.
It now follows that the points p, p2, p form a subset of T which is not
convex with respect to T.

PROPOSITION II.5. The only totally concave sets on the line are sets consisting
of exactly two points.

Proof. If T is totally concave and contains three points, the two farthest
apart form a subset of T which is not convex with respect to T.

PROPOSITION II.6. The extreme points of a convex set form a totally concave
set. (Provided, of course, there is more than one.)

Proof. If E(T) is convex and p and p2E(T), then the segment
p p2 c E(T), and is an interior point of the segment. Since E(T) c T, this
cannot happen.
LetSE(T),S {p,p,...,p};/c -<n+l. We must show that

pl p p S t cE( T).

pl p p T by convexity. Hence if p is a point of pl p2 p0 which is
not in S, it is sufficient to prove that p is not an extreme point of T. Since
p S, p p and hence is on the interior ofsome face of p p, pk. Thus p
is on the interior of an interval in T and not extreme in T.

PROPOSITION II.7. A totally concave set in the plane contains no triod.

Proof. It is sufficient to show that a triod cannot be totally concave in the
plane. We may assume, without loss of generality, that the triod in question
lies in a circular disk, has its center at the center of the disk, and has its three
endpoints on the circumference of the disk. Let v be the center of the triod.
Let R be the triangle formed by p, p, and p3, the endpoints of the triod T.
If v R, the set S IP, P2, P3} is not convex with respect to T. If v c R,
p, p2, and p, lie on a semi-circle and may be numbered so that p lies between
p and p,. The arc vp must intersect the segment p p, in a point of T. Thus
the set S /P, P,} is not convex with respect to T.
Note that in E we can find collections of arbitrarily many arcs having a

common endpoint which lie on a sphere and hence form a totally concave set.
Since any compact convex set is the convex cover of its extreme points, it is

of interest to ask whether there is any intrinsic property of the set of extreme-
points which characterizes it. The following theorem, together with Propo-
sition II.6, gives a complete answer to this question.

THEOREM II.8. If T is totally concave, T E(H( T) ).

Proof. E(H(T)) T for any set T. If T c E is totally concave and
p e T E(H(T) ), p is in the relative interior of some cell H(S) where S T
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and S has at most n -t- i points. This means that S is not convex with respect
to T. This contradiction establishes the theorem.

COROLLARY II.9. Any totally concave set lies on the boundary of a convex set.

COROLLARY II.10. If T is totally concave in En, dim T <- n 1.

Proof. The boundary of a convex set in E is topologically a/c-sphere S,
a k-hyperplane E, or a product S X E-r, I _-< /c _<_ n 1.
Note that for each/c, 0 _-< /c __< n 1, the unit/c-sphere is a totally concave

set of dimension/c.

COROLLARY II.11. If T is totally concave, it is convex with respect to H(T).

We can now generalize Proposition II.7.

PROPOSITION II.12. If T is a totally concave set in E and if A is an n 2
distc on T, then A is on at most two n I dislcs in T.

Proof. There is nothing to prove if dim T < n 1. If dim T n 1,
we need only note that the desired property holds on the boundary of any
convex set of dimension n 1 in E.

II!. Totally convex sets

DEFINITION III.1. A convex set S is called totally convex if and only if
Bd (S) is totally concave.

PROPOSITION III.2. A non-degenerate convex set S in E is totally convex if
and only if Bd (S) E(S).

Proof. If Bd (S) is totally concave, Bd (S) E(H(Bd (S))) E().
If Bd (S) E(), Bd (S) is totally concave by Proposition II.6.

It is not difficult to see that all sets of constant width are totally convex.
Recall that a compact convex set has constant width if and only if the distance
between parallel support planes is constant. Since S and E(S) c Bd (S),
it is only necessary to see that E(S) Bd (S). If p e Bd (S) E(S), there
is a segment pl p in S with p Int (pl p). Let r be a support plane at p.
Since S lies on one side of r, pl p c r n S c Bd (S). Parallel to r there
is another support plane rq with rq n Bd (S) q and p(r, rq) a (the width
of the set S). Hence p(p, q) >-_ a. If p(p, q) > a, the diameter of S,
t(S) > a, which is impossible. If p(p, q) a, either p(p, q) > a or
p(p q) > a and again/i(S) > a.

PROPOSITION III.3. If T and T are totally convex and T n T is non-
degenerate, then TI n T is totally convex.

Proof. Let p e Bd T n T) Bd (T) u Bd (T). If p e Bd (T1), p is an
extreme point of T. Since p e T n T, p E( T n T).

If we let Tx be a circle and inscribe in it an equilateral triangle, we may con-
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struct a new totally convex set T. by replacing each arc of the circle, cut off by
two vertices of the triangle, by a new arc, with the same end points, but closer
to the side of the triangle in question. We will in particular pick T so that the
perpendicular distance from a point of the triangle to T is exactly half the
distance from the point to T1. It is now easy to see how to construct a
sequence of totally convex sets whose intersection is not totally convex.

DEFINITION III.4. If S is convex and p Bd (S), there is an n 1 support
plane to S at p. If there is only one such plane, p is called a regular point of S,
and Bd (S) is said to be differentiable at p. Otherwise, p is called a corner of
S. The set of corners of S is denoted by C(S).

Before considering the relation of the set C(S) to the set S itself in the case
where S is totally convex, it is worthwhile to note a few things about corners
in general. An interior point of a 1-face of a 3-simplex is a corner but not an
extreme point; any point on the boundary of a circular disk in E is an extreme
point but not a corner. If S E, C( S) E(S).

If S is a convex set in E, C(S) is the set of points where Bd (S) is not differ-
entiable. It is known that the measure of such a set is always zero [1]. Since
C(S) is contained in Bd (S), which is an n- 1 sphere or a cylinder,
dimC(S) <-_ n 1. If dimC(S) n- 1, C(S) contains an open set in
Bd (S), [3], and C(S) has positive measure. Hence dim C(S) -< n 2.

If S is a compact convex set in E, we may construct two horizontal and two
vertical support lines to S. These lines intersect Bd (S) in single points or
intervals; we will suppose the intersections are points for simplicity, although
this is not necessary. The four points so defined divide Bd (S) into four arcs.
Suppose one of these arcs, pl p, has uncountably many corners on it; and
suppose pl lies on the lower support line and p on the right hand support line.
Let the intersection of these lines be q. If x is a corner of S lying on pl p,
the two limiting support lines to S at x form a positive angle which intersects
the segment p q in an interval of positive length. Moreover, for different
corners x, and x2, these intervals are disjoint. This is impossible, and the set
of comers of S is therefore at most countable.

Example III.5. Let S be the unit disk in E and consider the sequence of
points {x}, where x has polar coordinates 1, /2). x. --* (1, 0). For each
n, we replace the arc xx+ by a straight line interval. The resulting set T
has a corner at each point x., but no corner at (1, 0). If we do the same
thing on a semi-circle we get a corner at (1, 0). It is not hard to see that by
replacing the arcs by other arcs, we can get the same sort of examples with
the sets involved being totally convex. Hence C(T) may be infinite, and it
may or may not be closed.

THEOREM III.6. If S is a compact totally convex set in E’, there is a convex
set K(S) c S with C(S) E(K(S) ).
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Proof. Since S is closed C(S) c S. We define K(S) H(C(S)). That
K(S) c S is clear. If peK(S) E(K(S)) then pE(S) and
E(S) a K(S) c E(K(S) ).

If p e K(S) E(S) there are, in C(S), points p, p., p ;/c __< n -b 1;
with p e pp p. By the total convexity C(S) c E(S) and p p for
any i. Hence p is on the interior of a face of pp...p K(S) and
p E(K(S) ). Hence E(K(S) E(S) a K(S) and

(1) E(K(S) E(S) n K(S).

Now C(S) K(S) n E(S), and if p [K(S) a E(S)] C(S), there are,
inC(S),pointspl,p2,...,pl,;/c-<n+ 1;withpeplp2...pk. As before
p pi and p is not extreme in K(S) and therefore not extreme in S. Hence
K(S) n E(S) C(S) and

(2) E(S) n g(s) C(S).

Equations (1) and (2) give the desired result.
We now concern ourselves with the converse problem. If T is a given closed

convex set, can we find a totally convex set S, containing T, with C(S) E(T).
If T is compact, we will have

g(s) H(C(S)) H(E(T)) T.

Example III.7. Let T be the set in the plane consisting of a square with
semicircular disks on two opposite sides. In this case it is not possible to find
a set S as described above. T has no corners but a corner p of the rectangle
is an extreme point of T. Hence, the desired set S must have p as a corner.
However, each support plane to S at p must contain the unique support line
to T at p. This support line contains an interval on Bd (T), which must then
be an interval on Bd (S), contradicting the total convexity of S.

THEOREM III.8. If T is a compact convex set in E with Bd (E(T) C(T),
then there is a totally convex set S in E, S T, with

C( S) C( T) and Bd(S) nBd(T) E(T).

Proof. If T consists of a single point a teardrop shape with the point
as vertex will suffice. Now assume T is non-degenerate and let
p e Bd (T) E(T) so that p is on the interior of an interval x x: on Bd (T),
with xx and x e Bd (E(T) C( T); x x is on a support line to T.

Since xl and x are corners we may construct a circle C through xl and x
and containing T. We let Tx be the circular segment bounded by the interval
xl x. and that arc of C which is on the opposite side of x x from T. Let
$1 T u T1. S is convex and since xl and x are corners the construction
may be carried out in such a way as to leave x and x corners of S. The
interior of Xl x, which consisted entirely of non-extreme points, has been re-
placed by an arc consisting 6f extreme points which are not corners.
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We now let p’ be point of Bd ($1) E(S1). Since no intervals have been
added in the construction of $1, pr is on the interior of an interval which must
be on Bd (T). The endpoints of this interval are corners of T and therefore
corners of $1. We repet the above construction, defining T as a segment of a
circle nd S $1 u T2. In this manner we get sequence {Si}, (possibly
infinite), of sets with C(Si) C( T); S S_t T. S [JS.

If p and p2 e S, let/ be the first integer for which p nd p are both in Sk
p p C Sk C S. It is now easy to see that S is totally convex. Each corner
of T is the endpoint of t most two intervals of non-extreme points. The
support lines, after diustments corresponding to these intervals, remain
support lines at each succeeding stage and re support lines to S. Hence,
C(T) C(S). Since S T, each support line to S, which intersects T, is
support line to T. No corners re dded in constructing T, each corner of S
is in T, so that C(S) C(T). Hence C(S) C(T). That Bd (S) n Bd (T)

E(T) is clear from the construction.
If we insist only that T be bounded, we cn perform the same construction

on T, replacing interwls by open pieces T. We will not, of course, get the
last condition in this case.

CORO..ARV III.9. If T is compact and convex in E, and E( T) C( T),
there is a totally convex set S in E, S T, with C(S) E( T). (In fact,
Bd(S) nBd(T) E(T) C(S) C(T).)

Proof. Since E(T) is closed in E, we cn pick S by the theorem with
C(S) C(T). Sincee(T) E(T) inE,C(S) C(T) E(T).

It is clear that the set S in Theorem III.8 can be chosen so that p(Bd (S), T)
is urbitrarily small simply by taking the circles C large enough.

THEOREM III.10. If T is compact and convex in E, in order that there shall
exist a totally convex set S T, S c E, and K( S) T, it is necessary and su-
cient that E(T) C(T).

Proof. Corollary III.9 proves sufficiency. If the set S exists, E(T) C(S).
If p e C(S) c T, there re distinct support lines to S at p and, since S T
these are support lines to T as well. Hence, p e C(T) and C(S) C(T).
However, in E, C(T) E(T). Hence C(T) E(T) C(S) C(T) and
E( T) C(W).

It may be possible, given the set T in E, to find the set S in some higher
dimensional Euclidean space, without the condition of the above theorem.
If T is a circular disk, we can tke lozenge shaped set in E to be the set S;
K(S) T although T has no corners at all.
One is tempted to prllel Theorem III.10 with a necessary and sufficient

condition for the existence of a set S a E, with C(S) C(T). If this
be done the condition is not that of Theorem III.8. In Example III.5 the
point 1, 0) e Bd (E(T) C(T). It is clear, however, that the construction
of Theorem III.8 works in this case lso.
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We have used the facts that C(S) E(S) and that E(S) is closed in Bd (S)
in n essential way in these theorems. Being peculiar to E*, these properties
make generalizations to higher dimensions appear quite difficult at this time.
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