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A real-valued stochastic process f0, fl, has a rise of size y if i, j with
i < j such that f fi >_ y. This note obtains sharp upper bounds to the
probability of a rise of size y for certain natural classes of stochastic processes.

Let 0 be a class of probability measures on the real line. If, for every n,
given any partial history f0, f,, the conditional distribution 0 of the in-
crement f,+l f is in O, then {f} is a O-process. If, in addition, f0 x,
then {f} is an (x, O)-process. One can think of an (x, O)-process as the suc-
cessive fortunes of a gambler whose initial fortune is x, and who chooses his
.successive lotteries from O.

Let p(x, y) p(x, y, O) be the least upper bound over all nonnegative
(x, O)-processes (including not necessarily countably additive processes) to
the probability that the process experiences a rise of size y. The determina-
tion of p can sometimes be reduced to solving a simpler problem, namely that
of determining U, where U(x, y) U(x, y,O) is the least upper bound over
all nonnegative (x, O)-processes {f} to the probability that there is j with

As will soon be evident, there are interesting 0 for which

(1) U(x m, y m) U(x, y) U(m, y)
1 U(m, y)

whenever 0 < m x, and m y.
Incidentally, for every 0, the left side of (1) is maiorized by the right side.

This inequality is quite simple to establish and is analogous to Theorem 4.2.1,
p. 64 in [2].

I do not investigate the regularity conditions that U perhaps automatically
satisfies once it satisfies (1), but, at least in interesting examples,

(2)
aad

U(x, y) is convex in x for 0 _< x _< y,

(3) U(x, y) is continuously differentiable in x and y for 0 _< x _< y.

Let

THEOREM

OUX (y) - (0, y).

If U satisfies 1 ), (2) and (3), then

p(x, y) 1- e-x.
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For an interesting example of a 0 whose p can be calculated with the help
of Theorem 1, let t. and be the mean and variance of , let a > 0, and
letO consist of all such that

_
-az. Then, as is shown in (Theorem

9.4.1, p. 182 in [2]),

(5) U(x, y) x. 1
y 1 q-a(y-x)"

In view of Theorem 1,

(6) p,(x, y) 1 e-/(1+).

The instance of (6) in which a 0 was established in [1]. Interest in evaluat-
ing the left side of (6) for general a led me to Theorem 1.
As a second example, for each > 0, let Os be the set of all 8 such that
edS(z) _< 1. As in (8.7.8) p. 166 in [2], the U associated with (R)s--there

will be no confusion if it is here designated by U--satisfies

(7) U(x y)
e-(-) e-

1 e-
Again, the hypotheses of Theorem 1 apply to Us, as is verified by an easy

calculation, so

(S) p(x, y) 1 e-,
where /(e 1).
For a third example, see Chap. 9, Sec. 3 in [2].
Incidentally, if is a Borel set of probability measures which are countably

additive on the Borel subsets of the line, then U and p would not change if the
suprema were taken over countably additive processes only, as follows from [3].

Since finitely additive stochastic processes or, more precisely, strategies, as.
defined in [2], are not familiar objects, the essential ideas of the proof
of Theorem 1 will be given in a countably additive setting.

Proof of Theorem 1. The proof that p(x, y) _< 1 e-x is basically an
application of [2, Theorem 2.12.1] and will use two lemmas.

LEMMA 1. Let uo, ul,’." and so, al,.., be two real-valued stochastic
processes and o be an increasing sequence of sigma fields which satisfy

(i) u 0or 1;
(ii) 0<.<;
(iii) if u, 0 and u,/ 1, then ,+ 1;
(iv) u, and ,, are ,,-measurable.

Then, if , al,.., is an expectation-decreasing semimartingale relative to
io, i, "’, o i u + (1 u).

Proof of Lemma 1. Let Q, u, -[- (1 u,)a. If Q, 1,
then Q,

_
E[Q,+II .], since Q.+I is everywhere maiorized by 1.
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If Q < 1, then u O. Verify that whenever u O, Q am and
Q+I .+1. Consequently, on the event {u 0},

(9) Q. . > E[.+ i.l
The final equality holds because the event {u, 0} is ia
As preliminary to the next lemmn, definition is needed.
Let a be (mensurable) renl-vlued function defined oa the ertesin

product of two sets M had F (endowed with a-fields), let f0, ]x, be
stochastic process with vlues ia F, nd let y, be the eoaditioanl distribution
of fn+ given f, f,, which is here nssumed to exist. If, for nll n,

(10) a(m, f,,) >_ f a(m, z)

except possibly for an event of probability ero which does not vary with m,
then a(m, f0 ), a(m,f ), is an expectation-decreasing, semimartingalefamily.

LEMMX 2. Suppose that a(m, f), a(m, fx), is an expectation-decreasing
semimartingale family and that m,, is measurable with respect to f,,...
Then

(11) c(m,, f,) > E[(m,, f,+) lfo,
If, in addition, a(m, f,+ majorizes a(m,+l, f,+l) almost certainly, then
a( mo, fo), a(m fl), is an expectation-decreasing semimartingale.

Proof of Lemma 2. Outside the null event where (10) fnils to hold,
a(m,, f) majorizes f a(m,, z) d,,(z). Since m, is measurable with respect
to f0, f,, the latter is easily seen to be a version of the right side of (11).

(It is important in Lemma 2 that a(m, f,) be a semimartingale family; if
this assumption is replaced by the weaker one that for each m,
expectation-decreasing semimartingale then 11 can fail to hold.

Proof that p(x, y) _< i e-x. Let
(12) q(f q(f y) I e-.
As in (12), the functional dependence on y will often not be indicated.

Let U(m, x, y) be the right-hand side of (1), which is meaningful even for
0 x m, and define

a(m, f) q(m) + (1 q(m))U(m, f, m + y).

Let f0, f, be a nonnegative (x, O)-process and let m. be the minimum
of (fo, ,f,).
The immediate goal is to indicate that the hypotheses, and hence the con-

clusion, of Lemma 2 are satisfied. That a(m, f0), a(m, f), is an expecta-
tion-decreasing semimartingale family can be verified directly, or with the
help of (Theorem 2.14.1, p. 32 ia [2]). To check that

(m., A+) > (m.+,



52 LESTER E. DUBINS

almost surely, it certainly suffices that a(m, f) >_ a(m/k f, f) where m/% f
is the minimum of m and f. So suppose m/k f if < m. To be verified is
that a(m, f) :> a(f, f), or

(13) q(m) + (1 q(m) )U(m, f, m + y) >_ q(f)

for 0 _< f

_
m. In this region, the left side of (13) is convex in f, the right

side concave in f, and both sides equal at if m. So for (13), to hold, it
suffices that

(14) OU (m, m, m + y) <
1

(l(m)
-$f- q(m)

In evaluating the left side of (14), it is most convenient to consider the
derivative on the fight at f m, and hence to shift attention to the interval
m

_
f; for there, according to (1),

(15) U(m,f, m + y) U(f m, y).

Hence the left side of (14) also is h, according to (4). So the conclusion of
Lemma 2 holds.
Now let u 1 or 0 according as there is or there is not an i, j with 0

_
i <

j_ nsuchthatf-f_> y, andletQ, u + (1 -u,)a,. Then

Eu,, <_ EQ, <_ EQo Eao a(mo fo
(16)

q(x) 1 e-x for all n,

where the second inequality is justified by Lemma 1. Plainly, lira E. is the
probability, P, that the process {f,} experience a rise of size y. So ia view of
(16), P <_ 1 e-x. Except for the need to attend to processes {f.} that are
not countably additive, the proof that p(x, y) _< 1 e-x would be complete.
But the above proof does apply ia the general finitely additive case, which is
easily checked with the help of [2, Chap. 2].
That the bound ia Theorem 1 cannot be improved does not require hy-

potheses 1 and (2); only (3) will be used. Consider a gambler who divides
his fortune x into N equal parts. He constructs aa (x, O)-process which
gains y before losing x/N with probability U(x/N, y + x/N) -[- o(1/N). By
N repetitions, he constructs a (x, O)-process which fails to have a rise of size
y with a probability of at most

(17) [1 U(x/N, y + x/N) + o(1/N)] [(1 ),:r/N) + o(1/N)].
The equality in (17) holds because

0u(0, )=0
Ox Oy

and U has a differential at (0, y). Take the limit as N -o o to see that there
is a normegative (x, O)-process for which the probability of a rise of size y
is arbitrarily close to 1 e-x. This completes the proof of Theorem 1.
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If the U associated withO does not satisfy 1 ), I do not see how to calculate
p, nor even interesting lower bounds for p. On the other hand, nontrivail
upper bounds, perhaps not very sharp, can typically be found with the help
of any of the three examples above.
For instance, let w be a fixed positive number less than 1/2, let 0 gain 1 with

probability w and lose 1 with probability 1 w, and let 0 consist of all positive
multiples of 0. The U associated with this 0 is essentially the U of the red-
and-black casino in [2], and certainly does not satisfy (1). But setting a

equal to (1 2w)/y or even (1 2w)/4w(1 w)y, the right-hand side of
(6) majorizes p(x, y ).
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