
THE AUTOMORPHISMS OF CERTAIN SUBGROUPS
OF PGL,( v)

Roa So,zz

Let M be n n-dimensional free module over the integral domain o, n > 2.
One my define GL, (M) to be the group of matrices with entries from D which
have determinant a unit. SLn (M) is then the subgroup of GL, (M) of ele-
ments of determinant one. Denote by TL, (M) the group generated by the
transvections in SL, (M). When D is a field, the automorphisms of GL, (M)
and SLn (M) were determined by Dieudonn [3] and Rickrt [13].
When o is n integral domain not a field, O’Mera [8] found the auto-

morphisms of GLn (M), SL. (M), and TL (M);the ideas he used were bsed
on study of double centralizers of involutions in GL (M). He did not deter-
mine the automorphisms of the corresponding projective groups. Such an
investigation would have encountered the fmiliar problem of distinguishing
group theoretically between the projective involutions of the first and second
kinds. When o is field, Dieudonn [3] ws ble to overcome this problem and
find the automorphisms of the projective groups because he had available the
structure theory of the classical groups over fields; of course no such structure
theory exists for rbitrary integral domains. However in [10], O’Mera intro-
duced involution-free methods in the automorphism theory of the general
linear group. In this paper we adpt those ideas to the projective linear groups.
The old difficulties ssocited in distinguishing between projective involutions
of the first and second kind are avoided.
More specifically, for n > 2 let GL, (V) be the group of all non-singular

linear transformations of vector spce V and let RL (V) be its center. Let
denote the nturl mp of GL(V) onto GL(V)/RL(V). We sy n element
of (L (V) is u proiective tmnsvection if it is the image under the- mp of

unique transvection z. We let G be any subgroup of L(V) such that for
any line L and any hyperplne H with L c H there is non-trivial projective
transvection in G hving proper spces L c H. We re ble to show that n
automorphism of G must crry any projective transvection of G into nother
projective transvection. In other words, an utomorphism of G preserves ll
projective trnsvections (Theorem 1.14). A standard ppliction of the
fundamental theorem of projective geometry then shows that every auto-
morphism of G hs one of two familiar forms, g or h. (Theorem 3.3).
The class of such subgroups G is very extensive. For ny module M

which is bounded in the sense of Section 4, the integral projective groups
PGLn(M), PSL,(M), PTL(M) satisfy the above condition; so do the pro-
jective congruence subgroups PGL,(M; ), PSL,(M; a), PTLn(M; a) over
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any integral domain 0. In Section 4 we discuss the special features of the
automorphism theory of these groups. In Section 5 we give necessary and
sufficient conditions for 5g andh to be automorphisms of PTL, (M), PGL, (M),
or PSL, (M), M a free module of finite rank.

O. Preliminaries

Let V be an n-dimensional vector space over the field F; V denotes the dual
space of V. We shall always assume our vector space V has dimension 2.
We let "iff" denote "if and only if," and let/ denote the non-zero elements of
F. We let denote inclusion and c proper inclusion. If a and b are mem-
bers of a group G, let [a; b] denote aba-lb-1 and DG denote the commutator
subgroup of G. DG, for ] -> 1, is defined by D1G DG andDG D (D-IG).

Recall for a e GLn (V), the residual space R and fixed space P of a are defined
by

R (- lv)V, P ker (- 1v);

clearly aR R, and zP P. And we define res dim R; res is called
the residual index of . By a transvection, we mean an element of SL, (V)
whose fixed space contains a hyperplane. By the proper line of a transvection
r lv, we mean the residual space of r; by the proper hyperplane of the
transvection r lv we mean the fixed space of r. We consider lv as a trans-
vection having any line as proper line and having any hyperplane as proper
hyperplane.
We denote the scalar transformations (radiations) of GL,(V) by RL(V)

or RL, (V), i.e., those elements of GL, (V) of the form a. 1, for some non-zero
a in F. Following are four simple lemmas from [10] we use.

0.1. Let (r and z. be in GL(V). Put a r a.. Then R R1 - R.,
P _D P1 n P, res as

_
res at - res . And (r and (r- have the same residual

and fixed spaces.

0.2. Let (r (r. and (r be as in 0.1. Then
(1) V PWP==R R1WR.
(2) RR: 0P PP.
0.3. Let and a be non-trivial transvections in GL, (V). Then (r. (r

iff R P and R P.
0.4. Let a e GL (V have residual space R. Then det a det a[ R.

The next proposition is 1.11 of [8].

0.5. Let X be a subgroup of GL (V) consisting entirely of transvections.
Then all transvections in X have the same proper line or the same proper hyper-
plane.

For any a e V and o e V such that p (a) 0, let

’, (x x " (px )a,
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for all x V. Ta,p is a transvection with hyperplane p-1 (0) if p 0 and proper
line Fa if a 0. Clearly ra,Xp ’Xa,p.

0.6. Let ( 1 v be a transvection with spaces L

_
H. If p is a non-zero

linear functional for which pH O, then there is an a e L such that r ra,p.

Proof. pisgiven. Pickge V- Hwithpg 1. Puta a- geL.
Then ra,p and a agree on H. They also agree on g since . (g) =/ q- (pg)a
g - a ag. Therefore ra,p and agree on all of the space V. Q.E.D.

By an elementary transvection with respect to a base xl, ..., x we mean a
transvection of the form rxx,,, with ,, a in F, i j. Here pl, , p. denotes
the dual base to x, ..., x. It is well known, and easy to verify, that
[rx,i r..] r,p for distinct i, j, ]c and for a, ), in F.
Let S be a subgroup of GL (V). As in [10], we say S is full of transvections

if for any line L and hyperplane H such that L

_
H, there is a non-trivial

transvection in S with spaces L and H. Observe that if S is full of transvec-
tions, then the center of S is RL (V) n S.

0.7. Let n >= 2, r a transvection in SL, (V). If a e RL(V), and ar is also a
transvection, then c 1.

Proof. Apply 1.9 of [8]. Q.E.D.

Now denote by the natural map (projection) of GL(V) onto
GL(V)/RL(V) PGL(V). For any subset X

_
GL (V), f( denotes the

image of X in PGL(V) GL(V)/RL(V). For any a e GL(V), denotes
the coset of modulo RL(V). Thus OL(V) GL (V)/RL (V) PGL(V).
So OL (V) is the n-dimensional projective general linear group of V, PGL (V).

DEFINITION. Given e e GL(V)/RL(V), we say e is a (projective) trans-
vection iff at least one coset representative of e is a transvection.

Remark. It follows from 0.7 that if e e OL (V), n -> 2, and e is a (projec-
tive) transvection, then only one coset representative of e can be a transvec-
tion. Thus if e e OL (V) and e is a (projective) transvection, we may define
the proper line and proper hyperplane of e to be the proper line and proper
hyperplane of the unique coset representative of e that is a transvection.

DEfinITIOn. Let G be a subgroup of PGL (V). We will say G is full of
projective transvections if for any line L and any hyperplane H such that
L

_
H, there is a nontrivial projective transvection in G with proper spaces

L H. In all thatfollows we will always assume G to be a subgroup of PGL,, (V)
that is full of projective transvections. It is our purpose to determine the auto-
morphisms of G when n > 2.

Put A {a e GL (V) e G}. Then A is full of transvections, A is a sub-
group of GL(V), RL(V) , and A G. Whenever we refer to the group
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A in Section 0 through Section 3 inclusive, we will always understand A to be
defined as above. That is, A is the pre-image of G under the- map. We will
use C (X) to denote the centralizer in A of a non-void subset X of A. We use
C () to denote the centralizer in G of a non-void subset of G. We use
Cv(X) to denote the centralizer of X in GLn (V).
Given L H, define (L, H), P (L), P (H) to be the group of all projective

transvections in G having proper spaces L H, having proper line L, having
proper hyperplane H, respectively. These groups are non-trivial since G is
full of projective transvections. Given L H, define T (L, H), T (L), T (H)
to be the group of all transvections in GL (V) having proper spaces L H,
having proper line L, having proper hyperplane H respectively. For any two
subspaces U and W of V, we define

E(U, W) { GL,(V) R U, P W}

where R and P are the residual and fixed spaces of .
0.8. Let X be a subgroup of PGL (V) consisting entirely of projective trans-

vections. Let n >= 3. Then all elements of X have the same line or have the
same hyperplane.

Proof. Pull-back and apply 0.5.
The following proposition is 3.2 of [10].

Q.E.D.

0.9. Let be a non-involution in A n SL, (V) with R a plane and R P.
Then E (R, P) A G CDC( ).

DEFINITION. Let 1, 2, e GLn (V); we say that 1 and 2 anti-commute iff
a2 ra. al, where r is a radiation, r RL, (V), r lv.

0.10. Let V have dim n, e GL (V), U C__ V. Let act on U as a radiation.
If 2. dim (U) > n, then no GL (V) can anti-commute with .

Proof. Suppose r, r e RL (V). Then we have -1 r. We
know acts on U as a radiation, i.e., U a.lv[ U; and a 0 since
eGL(V). Thus

4q-1 4,(U) a. lv 4(U).

Since dim U + dim (U) 2.dim U > n, there is a non-zero vector x in
U n OU. For this x, we have .x epoch- (x) rex ra. x. So .x ra.x,
x 0. Thusa ra, orr lv. Q.E.D.

0.1 1. Let n 4, and let (7 be a non-involution in SL (V) of residue 2.
no Z GL (V) can anti-commute with (7.

Then

Proof. Suppose (7Z--1 (7, for some/ e RL (V). We claim P ZP 0,
where P is the fixed space of a.

For supposePoZP 0. ThenP 2P V. Nowa P 1pand

[ ZP . So has a diagonal matrix (a) with n 1 a22 and a
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a44 in an appropriate base of V. Sincedeta 1, lso 4.1. But
4.1 implies a is an involution, a contradiction. So P n 2P 0.

Let x be a non-zero vector in P n 2P. Then x ax B2a2-l(x) x
which implies f 1. Q.E.D.

0.12. (2.9, [10]). Let n 2 and let al and a. be non-trivial transvections in
having proper lines L1, Ls and proper hyperplanes H1, Hs Then C (al) C (a.)
if and only if L1 Ls and H1

0.13. Let ra.p be a non-trivial transvection with spaces L1

_
H1. Let

GL (V). Let x (F) 2, and suppose Fa 51 ZHI. Th.u 2 does not
-i -I -I -I

’-acommute with both Ta,p Ta,p and r_,

Proof. A straight-forward computation which we omit. Q.E.D.

0.14. With the same hypotheses as 0.12, C (al) C (s) iff L1 L. and
H1
PROOF. By 0.7, C () C (a)- since a and as are transvections. So

C (1) C (.) iff C (al)- C (as)- iff C (al) C (as) iff L1 Ls, H1 H,
Q.E.D"

0.15 (3.1, [10]). Let L be a line, H a hyperplane, and L

_
H. Suppose

n >= 3, a l.,andaeE(L,H)zl. ThenE(L,H) nDC

Now let a V - W, where V and W are two vector spaces over the same
field F. Define a map ta W’ - V as follows:
a (p)(x) pa (x), for all p e W’, x e V. Then % (p) is an element of W, and
ta is linear transformation from W’ to V’. We have (a -t-
(aa) aa, for scalars . We have ta r iff a r, and
For any bijection a, a e GL,,(V), we use a for the contragredient,

So a is in GL (V’). We use X for the annihilator in V’ of any subset X of
V. Note if a e GL (V) then a has fixed space R and residual space p0.

0.16. Let a e GL (V) have residual space R. Then a l r iff a R 1

Proof. a lriffa(ax-x) -(ax-x) forallxinV, iffay -yfor
all y in R. Q.E.D.

O. 17. Let n ->- 2 and S be any subgroup of GL (V) that is full of transvections.
Then DS contains a a with res a n.

Proof. Apply 2.5 of [10]. Q.E.D.

0.18 (2.4, [10]). If S is any subgroup of GL,, (V), n >= 3, and S is full of
transvections, then DS is full of transvections.

0.19 (3.4, [10]). Let n ->- 3 and let S be any subgroup of GL,, (V) that is full
of transvections. Let r be a nontrivial transvection in S with residual and fixed
spaces R, P. Then CC (r)

_
RL, (V E (R, P)
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1. Action of an automorphism on projective transvections
DEFINITION. Let a e SL, (V). We say is a plane rotation if res 2

and R n P 0.

1.1. Let n > 3. Let . be a non-involution in A n SL(V) with res as 2
and R P. Then (E (R. P n A )- CDC().

Proof. Apply the map to both sides of 0.9, noting that 0.10 and 0.11 im-
ply C (a)- C (). Thus

(E(R, P)n A)- (CDC(a))- CD(C(a))- CDC(). Q.E.D.

1.2. Let n 3. Let be a non-trivial transection in A with spaces L H,
A an automorphism of G. Then there is a plane rotation e A such that
A# e CDC (a ).

Proof. Let A. Then there is a line Fa L in V such that ZL L
for otherwise i z and we know i. Pick a hyperplane H of V such
that L H, ZL H, Z-L H. Let ra, be a non-trivial transvection
in with spaces L Fa and H ker p. If x (F) 2, we can assume Z and
r, r, do not commute.

One also sees they cannot anti-commute either, by a dimension argument
since n > 3. Put T r. then and -*T- don’t commute if x (F) 2.
Now let r e a be such that A , and put r-r-, T-T-.
Clearly Aae ae. One easily sees that the spaces of the transvections
ZT- and T-1 are %L H and L H. But V H ZH so
R L, W ZL by 0.2. And we have P H H by 0.2; clearly

nP, [(L+ZL)H]nZH L,ZH 0.

Thus a s a plane rotation. In fact a, will turn out to be such that e CDC ().
This will imply A e CDC (h#,) CDC (), which is our desired conclusion.
So the rest of this proof is devoted to showing e CDC ().
Now ZI-* rz,z- and T r,.. From these formulas it followsthat

ZT-* and T act On R. Therefore T-* and T induce non-trivial trans-
,Jvections with different residual spaces onR L L. So R 1,,

so a, s not an involution by 0.16. We also have that since a, P le,’,
(a)" a, a a radiation. So ()" i z. So a is not an involution.
Now let us compute the ed and residual space of a,. We know

R L W rL and P, H n rH, by 0.1. We will show

rH H, rL L, R, LW rL, P, HrH, R P.
If x (F) 2 all this follows from the fact that a: 1, and that transvections
are involutio in charteristic 2. If x(F) 2, we showed above that
and -1- do not commute. Hence, applying A-*, and -- do not

commute. So a and rq-r- do not commute. Their spaces.are L H and
rL rH respectively. Hence L rH or rL H by 0.3; in particular rL L
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and rH H. So R L + rL and P rH o H by 0.2. Finally
R. L + rL H n rH P.. We hve now shown that , satisfies the
hypotheses of 1.1, so (E (R, P.) a)-

_
CDC (a) as required. Q.E.D.

1.3. Let A be a plane rotation with spaces R and P.
CDkC (3) (GL2(R) @ RL,_2(P))-, for any k >- O.

Let n > 4. Then

Proof. Let Ap be the subgroup of GLn_2 (P) defined by

Ap { GL,_2(P) 1 @ A}.

By definition 1. @ Ae A; and Ae is full of transvections since A is" just restrict
the transvections in A to P. Now

1. DAe D (1 Ae) DC ().
So

(1, D*Ae) DC(z) D*C(a).
Now since Ae is full of trnsvections, nd dim P 3, 0.18 implies Dae is

full of trnsvections.
So for ny line L in P, we hve trnsvection r in D’he with line L. Then

1 r is a transvection, and

(1. )- ( Da) DC(a).
Now let e CDC (). Then Z commutes with 1 r by 0.10 and so L L.
Hence acts on every line of P, and so P a. le for some a .
Now choose a be x, ..., x._ for P, and define the herplanes H of V

by H R 2, where

2i Fxl + + Fx_l + Fxi+ + + Fx,_.

li- (Hi) R. Since DkAe is full of transvections, we can choose non-Then
trivial transvections ri e DAe such that 1 ri is a transvection with hyper-
plane Hi. We see

(1. @ ri)-e (1 @ D*,e) __. DC(e);
so 2 commutes with 1 ri, and so 21Hi Hi. So 21R 21 liHi
Fl 21H R. Thus 21 acts on R. Q.E.D.

Recall from linear algebra that z e GL(V) is called unipotent iff z 1 is
nilpotent. It then follows that is unipotent iff there is a base for V in which
the matrix of z is upper triangular with all l’s on the main diagonal iff all
characteristic roots of z are 1.

Propositions 1.4 to 1.6 can now be easily proved.

1.4. Let n >= 2. If r and ar are both unipotent, and a e RL (V), then a 1.

1.5. Let n >- 2. If is unipotent and GL (V), then ZrZ- is unipotent.

1.6. Let n >- 2. If r is unipotent then no in GL (V) can anti-commute
with .
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We say a co-plane is a subspace of V of codimension 2. Now we have the
following theorem, basic to our approach to the automorphism question.

1.7. Let n > 4, and let A be an automorphism of G. Let r be a non-trivial
transvection in 4, and 2: a coset representative of A. (i.e., A ). Then there
is a plane R V, and a coplane P V, such that 2:R R, ZP P, R n P O,
and 2: P a. 1, for some a e .

Proof. Apply 1.2 and 1.3. Q.E.D.

1.8. Let n >- 2. Let 2: be an element of A such that 2: DC (2: ). Then
is unipotent.

Proof. Apply 4.1 of [101. Q.E.D.

DEFINITION. Let e G. We say 2 is projectively unipotent if at least one
coset representative of , is unipotent. It follows from 1.4 that at most one
coset representative of , is unipotent, for any e PGLn (V).

1.9. Let n >= 2. Let e h be such that DC( ). Then n.n! is projectively
unipotent.

Proof. IIn,, [li, ], , c( ). Put a IIfin [A, S]. We
have Ai aA7 (a 1). for a e F. Since det 1, a det (. lv) 1.

--ISoAaA a. HenceAeC(a). SimilarlyBeC(an). So

e DC (a’).
_n.n! n.n!So 1.8 implies (a")"! is unipotent. Hence a is projectively uni-

potent. Q.E.D.

1.10. Let A be an automorphism of G, suppose n >= 3, and L H is given.
Then there is a non-trivial projective transvection G with spaces L H such
that A is projectively unipotent.

Proof. First suppose x (F) 0 and n _-> 3. Fix a non-trivial transvection
r in E (L, H) a 4. By 0.15 there is u nomtrivial transvection 2: in E (L, H) n
DC(r). But C(2:) C(r) by 0.12. So Z e DC(Z). Hence 2 eDC().
Hence A, e DC (A,). So 1.9 implies (A,)n’! A,n.n! is projectively unip-
otent. So 2’n: does the job.
Now suppose x (F) p > 0 and n > 4. Take a non-trivial transvection a

inE(L,H) n4;a lv. SoA v. Put, A. Then 2? =a.lv,
a e F. By 1.7, we know 2: is a radiation on some co-plane U of the space V.
So 2: U /.lv, /3 e F. So /3 a. Hence2= (/3.1v),or(2:-/3)

0. Thus 2 is unipotent. So (2 I/3)- A is projectively unipotent.
Now supposep > 0andp 3andn 3; orp > 0andp 2andn 4.

By 0.18, A full of transvections implies DA full of transvections. Thus
(DA)- (= D DG) is full of projective transvections. So choose a non-
trivial projective transvection e e DG with proper spaces L

_
H. So A’ e DG,
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and(A)T iv. Thus

Put a IIi [A, B]; A, so T iv hence aT a.lv, a e F. But

(det z)T 1.a det a. lv

Hence aT" lv. So (" 1 v)T 0. So A" (")- is projectively unip-
otent, and surely r" is a non-trivial projective transvection with proper spaces
L H. (" i v since x (F) does not divide n.)

Finally let p 3 and n 3; or p 2 and n 4. As above, choose a non-
trivial projective transvection ’ DG with spaces L H. So h e DG and
(h)T iv. Now

_
]I [2:,/]. Put H [A, B,]. Then

aT 1. Henceh’, T iv, or T a. lv, a e F. But a

aT" 1; (a 1)Tn aT- 1 0, sincepnisSwhenp 2and9when
p 3. So a is unipotent, and Ar is projectively unipotent. Q.E.D.

1.11.
n_>2.

Let S be any subgroup of GL, (V) that is full of transvections, with
If a is a unipotent element of Cr(DS), then lv.

Proof. Apply 2.8 of [10]. Q.E.D.

1.12. Let n > 2. Let L

_
H be given, and let A be an automorphism of G.

Then there is a non-trivial projective transvection 3 in G having spaces L H such
that A3 is a projective transvection.

Proof. First assume that n > 4. By 1.10 we may choose a non-trivial
transvection a in E (L, H) n A such that A3 is projectively unipotent. Let, A3, 2 being unipotent. By 1.7, there is a plane R and coplane P such
that2;P P, 2R R, RnP 0, and2;I P a.l,aeF. Since2l Pis
unipotent, a 1. Now 2; R is unipotent, and is therefore a transvection.
So 2; is a transvection.
Now let n 3. By 1.10 we may again choose a non-trivial transvection a

in E (L, H) A such that A3 is projectively unipotent. Let , A3, 2 being
unipotent; we may assume 2 is not a transvection so the residual space R of
2: is a plane. By 0.15 there is a non-trivial transvection r in E (L, H) n DC ().
We have r e DC (3) so A’ e DC () or A IIin [2:,/] where 2:, e C (,)
and in fact A, B e C(2;) by 1.6. Put f IInn [A, B]; then f e DC(%).
It is clear that R R, A(R) R, B(R) R, and that
R e SLy. (R) RL (R). We knowf e DC (2); therefore fR R and we see

f ReDC ( R), where C denotes Ca(). By 2.6 of [10], DC (2; R) 1.
Thus f R 14 and res f 1. But det f 1 since f e DC () and thus f is a
transvection and A ] is a projective transvection.

Finally let n 4. Using 1.10 we can choose a nontrivial transvection r e

with spaces L H such that hr is projectively unipotent. By 1.2 there is a
plane rotation a e A such that Are CDC (3). We may write , A’, 2 unip-
otent. Let have spaces R, P both. planes and R @ P V. Let Ae be the
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subgroup of GL. (P) defined by

It is clear 1R Ae A and that ae is full of transvection in GL2 (P).
restrict the transvections in a to P.) Also

(Just

1 DAe

_
D (14 @ Ae) DC (r).

So (1 DA,)-

_
DC (r)- DC (r). Now DAe contains an element of

residual index 2 by 0.17. Hence (1 @ )-

_
DC (e). So 2 and (1 )-

commute. Since Z is unipotent, 2 and 1R @ cannot anti-commute by 1.6.
So 2: and 1 commute. R is the fixed space of 1 and P is its residual
space. So2;R R, ZP P. Since

(14 DA,)- DC (’),
we have 2, C (1 DAe)-. Since 2 is unipotent, 1.6 implies Z C (1 DAe).
Since ZR R and ZP P, F, P Ce(DAe). But 2 P is unipotent so
Z P le by 1.11. Now 2 R is a transvection since it is unipotent and
dim R 2. Since V R P, 2 is a transvection. Q.E.D.

1.13. Let n >- 3 G full of projective transvections and a non-trivial projective
transvection in G with proper spaces L H. Then CC( T (L, H ).

Proof. Write e so that r is a transvection, r e A. First we show
CC ()

_
CC (r).- Let 2 e CC () and L1 a line in H. Choose a hyperplane

H1 containing L and L, and a transvection 1 in A with proper spaces L H.
By 0.3, aa e C (r) and so el e C (’). Thus 2 and e commute and 0.10 implies 2
and al commute. Thus 2:L L and 2 stabilizes all lines of H. So
H a, RL(H). Let e C(r). It is enough to show 2 and commute,

since 2 CC(), and e commute. But 2 H a; so 0.10 implies Z and
a commute. Thus CC() CC(r)-. But by 0.19 CC(r)- (L, H).
So CC() T(L, H).
Now we prove the reverse inclusion; let 2 e (L, H). We can assume 2

is a non-trivial transvection with proper spaces L H. By 0.14,
C(2,) C(). So ,CC() CC(’). Thus (L, H)

_
CCO’) and

CC () (L, H ). Q.E.D.
1.14. Let n > 2, and let A be an automorphism of G. Let e G be any non-

trivial projective transvection. Then A is also a projective transvection.

Proof. Using 1.12 and 0.14 we see that there is a projective transvection
e e G such that C (e) C (e) and such that Ae is a projective transvection.
Then e e CC () CC (r). Hence Aee CC (Ae) and by 1.13 every element of
CC (Ae) is a projective transvection. Q.E.D.

2. The automorphisms and
Let g be a semi-linear isomorphism of V onto V; for e GL,(V) let

o (r) gag-1. Let h be a semi-linear isomorphism of V onto its dual space
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V’; for e GLn (V) let () h-lr"h, where av denotes the contragredient
of . One sees and a are automorphisms of GL,(V). We have

o a- and gl O g2 g1@ Note

_ - and[ where
h is the transpose of h [4, p. 13].

Since and a act on the center of GL (V), we my define in natural
way automorphisms and of PGL(V). The defining equation of
5 is 5 () ()-. Silarly for . Observe i

_
and .

We shall need to know the residual spaces and ed spaces of the elements
(), , and (). These are (gR, gP), (pO, Ro) and (h-P, h-iR)
respectively, where (R, P) are the residual and fixed spaces of z. In Section
2, S denotes any subgroup of PGL (V) that is full of transvections.

2.1. Let S be full of transvections, n >- 3. Then the equation ( )- b (a )-
for all S is impossible.

Proof. Take non-trivial transvections r and r’ in S having the same line
but different hyperplanes. Then () and (r’) have the same line, while
b (r) and b (’) do not. But now () a (r) and (r’) a (7.’),
where a, B e RL(V). Therefore a 1 , by 0.7, since n _-> 2 ( and aT.

cannot both be transvections when n => 2, unless a 1, by 0.7).
But then (7.) and b (7.’) have the same line, u contradiction. So the

equation ()- h ()- for all a e S is indeed impossible. Q.E.D.

2.2. Suppose that n >= 2. Then the following are equivalent

(1) 1 ((r)- g,. ()- for all r S
(2) () (a) for all (r S
(3) g rg. for some r RL,, (V).

Proof. First we prove (1) (3). Consider any line L in V. Since S is
full of transvections, there is a non-trivial transvection 7. in S with proper
line L. Then (7.)- Og (7.)-, so () a (), a e RL (V). But

(7.) and (7.) are transvections. Thus (7.) is a transvection and
aO (r) is also transvection; thus a 1. So

7. )g2-1 (gl (7.) g2--1gl (7’),
So g- o g r, r e RL (V). Thus g g. r r". g, the field automorphism
of g. The implications (3) (2) (1) are trivial. Q.E.D.

2.3. Suppose that n >- 2. Then the following are equivalent.

(1) ()- ()- for all a S
(2) hl (0") h (0") for all a e S
(3) hi hr for some r e RL (V).

Proof. First we prove (1) (3). Put g hhl. Then g is a semi-linear
isomorphism of V onto V, and
Thus for a e S,
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And so by 2.2, g r, reRL(V). Thushl hr, reRL(V).
tions (3) (2) (1)are trivial.

The implica-
Q.E.D.

2.4. Let S be any subgroup of GLn (V) that is full of transvections, n >= 2.
Let $g be an automorphism of . Suppose 0-e DS. Then (0-) DS and
-1 (0-) DS.

Proof. Let al be any element of S. (1) ’, where we may assume
e S. Thus (0-1)- e, so (0-1) a-, a RL (V). Let

--1 --1
0- 0-1 0"2 0-1 0"2 0-1 0"2 {! ..

By the above, g (0-1) at, r e S and a e RL (V). Also (0-3) h, h e S
and B e RL (V). Thus

--1 --1() ( ()()[()]-[()]-
rhr-h-l-= rhv-h- e DS.

So we showed (0-) e DS for all short commutators 0- e DS. Hence (0-) e DS
for all 0- DS.
Now since g is an automorphism of , so is [1 _1. Thus what we

have proved above shows g-1 (0-) e DS if 0- e DS. Q.E.D.

3. Determination of the automorphisms of any subgroup G
full of projective transvections

3.1. Let A be an isomorphism ofG into PGL,, (V) such that A( (L T (L)-
for all lines L in V. Suppose n >= 2. Then A equals the identity map on G.

Proof. Take a typical 0- e A and a line L in V. Pick in T (L) n 4, 1"So e is a projective transvection with line L. Hence A is a projective trans-
vection with line L. But e-i is a projective transvection with line 0-L.
Let’ A. Then ’Ae-1 A(e-1) is a projective transvection with
line 0-L. But one also sees ’Aer’-1 is a projective transvection with line
0-L. Hence 0-L 0-’L for all lines L. So there is a scalar a e RL(V) such
that 0- a0-’. Hence 3’ A for all 0- e 4. Q.E.D.

Let L, lines of V, H, set of hyperplanes of V.

3.2. Let V be an n-dimensional vector space over F, n > 2. Let G be a sub-
group of PGL,, (V) that is full of projective transvections, and let A be an auto-
morphism of G. Then for all X L, u H,, there exists a unique X L, u H,
such that A (X (X ).

X’And the map X --+ is a bijection of L, u H, onto L, u H, such that:

(i)
(ii)

(X Yor Y X) iff (X’ Y’ or Y’ X’)
L’, L, and H’, H, ;or, L’, H, and H’, L,.

Proof. Let X e L, u H,. By 1.14 every element of AT (X) is a transvec-
tion. Since T (X) is a maximal group of transvections in G, AT(X) is a
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maximal group of transvections in G. Since the groups (X),
where X L, t H,, are the only maximal groups of transvections in G, there
will exist a unique X’e L, t H, such that A(X) P (X’). The same
reasoning that showed X is unique will show the map X -- X is 1-1. By con-
sidering A-1 one easily sees X -- X’ is surjective. So we have shown that
X --, X’ is a bijection of L, t H, onto L, t H,. The defining equation of
the bijection X - is AP(X) (X’) Observe also (X) n T(Y)
i v iff X

___
Y or Y X, and therefore

(X_ YorY_CX) iff (X’C Y’orY’__cX’).

So we have proved assertion (i).
Let us show either L L, and H H, or, L H, and H L,.

Suppose Lo L, for some line Lo L,. Let L be any line of V, L L0. Pick
a hyperplane H containing L0 and L. Then L0 c H and hence Lro c H’ by
the above assertion (i); hence H is a hyperplane, and hence L c H, again
by (i). So L is a line, and so L’, L,. Now let H be a typical element of
H*. Fix a line L in H. Then since L c H and L is a line, the above asser-
tion (i) shows L’ H and so H’ is a hyperplane. Hence L,

_
L, and

H’, H, and therefore L L, and H H, If L H, for all L L,,
we show L H, and H L, in a similar way. Q.E.D

Remark. Given an automorphism R of G, we shall refer to the bijection
ZX - defined above in 3.2 as the bijection induced by A

Now suppose h is an automorphism of G. By 3.2 A induces a bijection
X -- X’ of L, u H, onto L, u H, such that L L, andH H, or, such
that L H, and H L,. We will use the same symbol ; for the map

having domain all of PGL, (V) and also for the restriction of to G. We
do the same thing with a. Of course we do not know a priori that 4] (G) G
or that h(G) G.

3.3. Theorem. Let V be an n-dimensional vector space over the field F,
n > 2. Let G be a subgroup of PGL, (V) full of projective transvections, and
let A be an automorphism of G. Then A may be expressed in one and only one of
the following two ways:

(i)
(ii)

A $g, for some semi-linear isomorphism g of V onto V.
A bh, for some semi-linear isomorphism h of V onto Vr.

Proof. By 2.1 it is clear that we cannot have both A 5g for some g,
and also A a, for some h. So the possibilities (i) and (ii) above are
mutually exclusive.
To show that one of (i) and (ii) must hold, consider the bijection X -- Xthat A induces by 3.2. Let us suppose L L, andH H,. Using 3.2 (i),

we can deduce that L H implies L Hr. Thus the Fundamental Theorem
of Projective Geometry yields a semi-linear isomorphism g of V onto V
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such that gL L’ for all lines L c V. Then

;1 oA(L) T (L)-;
it follows from 3.1 that
Now suppose L H, and H L,. Using 3.2 (i) again, we can deduce

L c H implies H’ L’. Define a map L --+ (L’), (L’) being the annihilator
in V’ of L’. The map L (L’) is a bijection of the lines of V onto those of V’,
which satisfies the hypotheses of the Fundamental Theorem of Projective
Geometry. So we obtain a semi-linear isomorphism h of V onto V’ such that
h (L (L’ ). Then

hoA((L) T(L)-;

so by 3.1 we have h o A id (). So from this equation it follows that
h-1 a. We have proved the theorem for A-, so we have therefore proved
it for any A. Q.E.D.

Remark. It follows from 2.2 and 2.3 that the semi-linear isomorphism g
and h in the statement of 3.3 are uniquely determined by the automorphism A
of G up to a scalar factor.
The following proposition is an immediate corollary to 3.3.

3.4. Let n > 2 and let S be any subgroup of GL, (V) that is full of transvec-
tions. Let A be an automorphism of S. Then A may be expressed in one and
only one of the following two ways:

(i) Aa x ()" () for all e S,
(ii) Aa x (a)"h (z) for all ( S,

where x denotes a homomorphism of S into RL (V).

4. The automorphism theory of PGL,,(M), PSL,,(M), PTL,(M),
and their congruence subgroups

By a fractional ideal a of an integral domain o we mean a non-zero subset
a of o / o which is an -module in the natural way and which has the property
ha

___
for some non-zero ), in . We let F denote the quotient field, + o,

of . Recall any two bases of a free module over a commutative ring have
the same cardinality and that this cardinality is called the dimension of the
free module.
By a lattice M over the integral domain we mean an -module which

can be written M M1 Mr in which each M is isomorphic as an
o-module to some invertible fractional ideal a of . We say an o-module M
is bounded if there is an -linear isomorphism of M into a free module of finite
dimension. So any submodule of a bounded module is bounded. For any
non-zero module M it is easy to verify the following implications:

M is free of finite dimension M is a lattice

M is bounded.
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In all of Sections 4 and 5 we assume M is a bounded s-module contained in
an n-dimensional vector space V over the quotient field F of . And we also
assume M spans V over F; i.e., FM V where FM is {Zax a e F, x e M.
We define

GL(M {e GL(V M M},

SL, (M) GL, (M) SL (V),

TL, (M) the subgroup of SL (M) generated by all
transvections r in SL (M),

RL,(M) GL,,(M) r RL,(V).

Consider the bounded -module M. For any non-zero vector x in FM we
define the coefficient of x with respect to M to be the set

c {aeF]xeM};

is a fractional ideal of o. And for any non-zero linear functional p on V,
p(M) is a fractional ideal of .

Define the linear congruence groups as follows for any non-zero ideal a in o

GL(M; a) { eGL(M) ( I)M aM},

SL(M; a) GL(M; a) n SL(M)

and TL (M; a) is defined to be the group generated by all the transvections
in GL(M; a). We see that

TL(M; a) SL(M; a) GL(M; a)

are normal subgroups of GL (M). And

SL(M; ) SL(M), TL(M; ) TL(M), GL(M; ) GL(M).

If we consider any non-trivial transvection r. in SL(V), we easily see
that

(M)

_ . (M)a a.M , L(M; ).

4.1. For n dim (FM) >= 2 and M a bounded module, TL, (M; a) is

full of transvections.

Proof. Let L H be given. Write L Fa. Let p be a non-zero linear
functional such that pH O. Now p (M) is a fractional ideal so choose a
non-zero ), in F such that h (pM)

_
a.. Then the above remarks show

r. TL(M; a). Q.E.D.
Now let PTL,(M; a), PSL,(M; a), PGL(M; a) denote respectively

TL (M; a)-, SL (M; a)-, GL, (M; a)-, where is the natural map of GL (V)
onto PGL, (V); the groups PTL, (M; a), PSL, (M; a), PGL, (M; a) are the
projective congruence groups.
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4.2. Let M be a bounded o-module with dim V _>- 3, where V FM. Let G
be one of the projective congruence groups

PTL,(M; a), PSL,,(M; a), PGL,,(M; a),

and let A be an automorphism of G. Then A can be expressed in exactly one of
the following two ways"

(i) A g for some semi-linear isomorphism g of V onto V,
(ii) A h for some semi-linear isomorphism h of V onto V’.

Proof. 4.1 implies G is full of projective transvections. Now apply 3.3.
Q.E.D.

Remar]c. 4.1 shows each of the groups TL. (M; a), SL. (M; a), GL, (M; a)
is full of transvections for M a non-zero bounded o-module. So all the
automorphisms of the congruence groups TL. (M; a), SL, (M; a), GL, (M; a)
for dim FM __> 3 and M any bounded o-module are given by 3.4.

5. The automorphisms and of PGL(M, o)
By 4.2, if A is an automorphism of PGL (M; o) then A equals g or h for

some g or h. In this section we give necessary and sufficient conditions for
$ or to be automorphisms of PGL (M; o).

Let r, be a transvection in GL, (V). The following proposition is clear.

5.1. ra,p(M) M iff r.o(M) M iff (pM).a

_
M.

DEFINITION. Let M be a bounded o-module. Let

M IQeV’IQ(M)

If aM M, aeGL,(V), then a(M) M. For any a e GL,(V), we
say a is on M iff aM M.

Remark. Let M be a free o-module, and xl x, a base for M. So
M "=lxo. Let {Q} be the dual base to {x}. Let rx,ej, i j,
be an elementary transvection with respect to the base {x} of FM V.
Then it is easy to see that rxx.j is on M iff e o.

5.2. Let M be a free o module, let V FM, and let S be one of the groups
GL (M ), SL (M ), TL (M ). Suppose n dim V >- 3, is an automorphism
of S. Then o where u is the field automorphism of g.

Proof. Write M oxl -- -- ox, with {x} a base for V and let {Q}
denote the dual base of {x}. To begin, notice that if r, is any transvection
on M then (QM)a M, hence (QM)ha

_
M for any ), e o; and so r.q e S

implies rx,q e S for all e o.
Puty gxforl =< i =< n, and Qg-lforl -<j =< n. Sincegisu

semi-linear isomorphism, it follows y, ..., y. are a basis for V, and that, are linear functionals which constitute the dual basis of the ys.’
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Now by 5.1, r,o for , and hence

r, [r,, r,] D , .
Hence r. gr,. g-1 e S by 2.4 so

r,, [rx, r,,] DS if X o.

Hence g- (rxu,,)g is on M by 2.4. So rx,** is on gM whenever X e o.

gM o y + +
Now

So by the remark immediately before the statement of 5.2, since o" + o" F
and gM is a free o" module, we have e o. Thus o". By considering
1 instead of g we get ,-1. Hence o . Q.E.D.

Recall t (,) denotes the matrix with h in (i, j) position, i j, l’s on the
main diagonal, and zeroes everywhere else. EL, () equals the group gen-
erated by all the t (),), e . Note EL, () SL, ().

Letebeino;e" 1. Then the n by n matrix diag (e, e) is in

A computation using elementary row and column operations.
Q.E.D.

5.4. Let M be a free module over the integral domain o, where o + o F,
FM V. Let h be a linear isomorphism of V onto V such that hM M.
Then ba is an automorphism of S where S equals one of the groups TL, (M),
SL, (M or GL, (M ).

Proof. One need only show #(S) S. Clearly #(S) S since
hM M. Since him (M ) M we have similarly

Q.E.D.

5.5. Let A GL (o) and a F.
and B. are in EL, (o). Then a o.

Suppose trace (aB ABe) e o whenever B

Proof. Apply 5.1 of [8]. Q.E.D.

5.6. Let M be a free module, let V FM, n dim V ->_ 3 and let S be one

of the groups TL(M), SL(M), GL (M). Let be an automorphism of S;
then is an automorphism of S.

Proof. To show is an automorphism of S, it is clearly enough to show
b(S) S. For 1 -1 is an automorphism of , and if we have shown

(S) S, we can show g- (S) S. So (S) S and is an automor-
phism of S.

So let us show (S) S. Take a e S. Since (a) e S there is a (fixed)
reS such that 5() . So (a)- ,, or x(a)’(a) r, for a
scalar x(a) e RL(V).
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To show g (S) S it is enough to show g (a) e S, and this will be true if we
can show x () S.
So let us show x(a)e S. It is enough to show x(a)e RL, (M), for if

S GL(M), surely X(a) eRL(M) will imply x(g) eS. If S SL(M)
or TL (M) then det a 1 and det r 1. This implies det x (a) 1. Let
x(a) e.lv, e in F. Then e" 1, and hence by 5.4 the matrix
diag (e, e) is in EL, (). Taking a basis xl, x, for the free module
M then shows

x() e.lv TL(M) S.

So x () e RL (M) implies x (a) e S in all cases.
It follows immediately from 2.4 that a e DS implies x (a) e S and Cg () e S.

Now consider a typical in S. We wish to show x (a) e RL, (M). Express
x () in the form x () a. 1 r for some a e . It is enough to prove this a

is in . For then the equation x()’() r shows that det x () is a
unit. (To see this, use the fact gag-1 has matrix PS"P-1 in the base X of V
where S is the matrix of , P that of g.) But we are assuming a e 0. Hence
a is a unit, and so x () e RL, (M) as required. So it is indeed enough to show
aeO.

Write /. We will show /. Let A in X; so AGL,().
Consider matrices B1 and B2 in EL, (o). If tr (BABe) o we are done by
5.5. Take and r in S with r B and r. B in the base X. Now it
follows tr bg (2) (tr 2) for all 2: in GL, (V). Hence it is enough to show
tr (fir1)e . But this follows from the fact

Q.E.D.

5.7. Let the hypotheses on n, S and M be as in 5.6.
is an automorphism of . Then b (S) S.

Suppose the mapping

Proof. Take a fixed linear isomorphism k of V onto V’ such that kM M.
By 5.4, k is an automorphism of S, and so is an automorphism of . Put
g /-h. So g is a semi-linear isomorphism of V onto V. We have
g o h k, so is on S iff is. But g o ( o )-1 k- .
Therefore $ is an automorphism of . By 5.6, (S) S. Hence ka (S) S.

Q.E.D.

Assume M to be a free o-module of dim => 3 and let S be as in 5.6. By
5.6 and 5.7 we see that if $ (respectively a) is an automorphism of , then, (respectively k) is an automorphism of S. But surely if b (respectively
,) is an automorphism of S, then Sg (respectively ) is an automorphism of.
Hence we conclude that

(respectively ) is an automorphism of iff (respectively h) is an
automorphism of S.

Now in 5.5 nd 5.6 of [8], O’Mear has given the following necessary and
sufficient conditions for (respectively ka) to be an automorphism of S"
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(i) for u the field automorphism of g (respectively u the field auto-
morphism of h), and (ii) gM aM for some invertible fractional ideal a of

(respectively hM aMa for some invertible fractional ideal of ). Hence
we conclude the above two conditions are also necessary and sufficient condi-
tions for (respectively a) to be an uutomorphism of when M is free.
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