THE AUTOMORPHISMS OF CERTAIN SUBGROUPS
OF PGL,(V)

BY
RoBERT Sorazzi

Let M be an n-dimensional free module over the integral domain o, n > 2.
One may define GL, (M) to be the group of matrices with entries from o which
have determinant a unit. SL, (M) is then the subgroup of GL, (M) of ele-
ments of determinant one. Denote by TL, (M) the group generated by the
transvections in SL, (M). When o is a field, the automorphisms of GL, (M)
and SL, (M) were determined by Dieudonné (3] and Rickart [13].

When o is an integral domain not a field, O’Meara [8] found the auto-
morphisms of GL, (M), SL,(M ), and TL, (M ); the ideas he used were based
on a study of double centralizers of involutions in GL, (). He did not deter-
mine the automorphisms of the corresponding projective groups. Such an
investigation would have encountered the familiar problem of distinguishing
group theoretically between the projective involutions of the first and second
kinds. When o is a field, Dieudonné [3] was able to overcome this problem and
find the automorphisms of the projective groups because he had available the
structure theory of the classical groups over fields; of course no such structure
theory exists for arbitrary integral domains. However in [10], O’Meara intro-
duced involution-free methods in the automorphism theory of the general
linear group. In this paper we adapt those ideas to the projective linear groups.
The old difficulties associated in distinguishing between projective involutions
of the first and second kind are avoided.

More specifically, for n > 2 let GL, (V') be the group of all non-singular
linear transformations of a vector space V and let RL (V') be its center. Let

denote the natural map of GL (V') onto GL(V)/RL (V). We say an element
& of GL (V) is a projective transvection if it is the image under the ~ map of a
unique transvection o. We let G be any subgroup of GL (V) such that for
any line L and any hyperplane H with L C H there is a non-trivial projective
transvection in G having proper spaces L  H. We are able to show that an
automorphism of G must carry any projective transvection of G into another
projective transvection. In other words, an automorphism of @ preserves all
projective transvections (Theorem 1.14). A standard application of the
fundamental theorem of projective geometry then shows that every auto-
morphism of G has one of two familiar forms, ¢, or ¥,. (Theorem 3.3).

The class of such subgroups G is very extensive. For any o module M
which is bounded in the sense of Section 4, the integral projective groups
PGL, (M), PSL,(M), PTL, (M) satisfy the above condition; so do the pro-
jective congruence subgroups PGL, (M ; o), PSL,(M; a), PTL,(M; o) over
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any integral domain o. In Section 4 we discuss the special features of the
automorphism theory of these groups. In Section 5 we give necessary and
sufficient conditions for ¢, and ¥ to be automorphisms of PTL, (M ), PGL, (M),
or PSL, (M), M a free module of finite rank.

0. Preliminaries

Let V be an n-dimensional vector space over the field F'; V’ denotes the dual
space of V. We shall always assume our vector space V has dimension = 2.
We let “iff”” denote “if and only if,” and let ¥ denote the non-zero elements of
F. Welet C denote inclusion and C proper inclusion. If o and b are mem-
bers of a group G, let [a; b] denote aba'b™" and DG denote the commutator
subgroup of G. D*G, fork = 1,is defined by D'G = DG and D*G = D (D*'@).

Recall for o ¢ GL, (V'), the residual space R and fixed space P of ¢ are defined
by

R = (¢ — 1)V, P = ker (¢ — 1y);

clearly oR = R, and ¢P = P. And we define res ¢ = dim R; res o is called
the residual index of ¢. By a transvection, we mean an element of SL, (V)
whose fixed space contains a hyperplane. By the proper line of a transvection
r # 1y, we mean the residual space of 7; by the proper hyperplane of the
transvection > 1, we mean the fixed space of 7. We consider 1, as a trans-
vection having any line as proper line and having any hyperplane as proper
hyperplane.

We denote the scalar transformations (radiations) of GL, (V) by RL(V)
or RL,(V), i.e., those elements of GL, (V) of the form a- 1 for some non-zero
ain F. Following are four simple lemmas from [10] we use.

0.1. Let oy and o3 be in GL(V). Put o = g1 0:. Then R C R; + R,,
PDOPinP;,rescio: S resoy +resoy. And oy and o7 have the same residual
and fixed spaces.

0.2. Let oy, o2 and o be as in 0.1. Then
1) V=Pi+P,=>R=R + R,
(2) R1NR2=O:P=P10P2.

0.3. Let o1 and o, be non-trivial transvections in GL, (V). Then o109 = 03 01
ZﬁRl Q PzandRz g P1.

04. Leto ¢ GL,(V) have residual space R. Then det ¢ = det o | R.
The next proposition is 1-11 of [8].

0.5. Let X be a subgroup of GL.(V) consisting entirely of transvections.
Then all transvections in X have the same proper line or the same proper hyper-
plane.

For any a ¢ V and p € V' such that p(a) = 0, let
Ta,p (x) =z 4+ (Px)af
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forallze V. 7,,isa transvection with hyperplane p* (0) if p 5 0 and proper
line Fa if a ## 0. Clearly rapp = Tra,p -

0.6. Let o # 1y be a transvection with spaces L & H. If p is a non-zero
linear functional for which pH = 0, then there is an a € L such that ¢ = 7,,,.

Proof. pis given. Pick ue V — H with pu = 1. Puta = ou — ue L.
Then 7,,, and o agree on H. They also agree on usince 7,,, () = u + (ou)a =

u + a = ou. Therefore 7,,, and o agree on all of the space V. Q.E.D.

By an elementary transvection with respect to a base 1, - -+ , z, we mean a
transvection of the form 7\;;,ap; With \, @in F, 2 5% j. Here p1, * - - , p, denotes
the dual base to z;1, +--, 2,. It is well known, and easy to verify, that

[Taei.n; 3 Tazj.on] = Tades,e, fOr distinet 7, 7, k and for o, X in F.

Let S be a subgroup of GL, (V). Asin [10], we say 8 is full of transvections
if for any line L and hyperplane H such that L. & H, there is a non-trivial
transvection in S with spaces L and H. Observe that if S is full of transvec-
tions, then the center of Sis RL(V) n S.

0.7. Letn = 2, 7 atransvection tn SL, (V). If a e RL(V), and ar is also a
transvection, then a = 1.

Proof. Apply 1.9 of [8]. Q.E.D.

Now denote by ~ the natural map (projection) of GL(V) onto
GL(V)/RL(V) = PGL(V). For any subset X C GL (V), X denotes the
image of X in PGL(V) = GL(V)/RL(V). For any ¢ ¢ GL(V), & denotes
the coset of ¢ modulo RL(V). Thus GL(V) = GL (V)/RL (V) = PGL(V).
So GL (V) is the n-dimensional projective general linear group of V, PGL (V).

DerINITION. Given 6 e GL(V)/RL(V), we say & is a (projective) trans-
vection iff at least one coset representative of & is a transvection.

Remark. Tt follows from 0.7 that if & e GL,(V), n = 2, and & is a (projec-
tive) transvection, then only one coset representative of & can be a transvec-
tion. Thus if & e GL(V) and & is a (projective) transvection, we may define
the proper line and proper hyperplane of & to be the proper line and proper
hyperplane of the unique coset representative of & that is a transvection.

DerinmrioN. Let G be a subgroup of PGL(V). We will say G is full of
projective transvections if for any line L and any hyperplane H such that
L C H, there is a nontrivial projective transvection in G with proper spaces
L C H. Inallthatfollows we will always assume @ to be a subgroup of PGL, (V')
that is full of projective transvections. It is our purpose to determine the auto-
morphisms of G when n > 2.

Put A = {c e GL(V) [ & € G}. Then A is full of transvections, A is a sub-
group of GL(V), RL(V) € A, and A = G. Whenever we refer to the group
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A in Section 0 through Section 3 inclusive, we will always understand A to be
defined as above. That ig, A is the pre-image of G under the " map. We will
use C' (X) to denote the centralizer in A of a non-void subset X of A. We use
C (X) to denotethe centralizer in G of a non-void subset X of G. We use
Cv(X) to denote the centralizer of X in GL, (V).

Given L € H, define T (L, H), T (L), T (H) to be the group of all projective
transvections in G having proper spaces L & H, having proper line L, having
proper hyperplane H, respectively. These groups are non-trivial since G is
full of projective transvections. Given L & H, define T (L, H), T(L), T (H)
to be the group of all transvections in GL (V') having proper spaces L C H,
having proper line L, having proper hyperplane H respectively. For any two
subspaces U and W of V, we define

E(U,W) = {ceGL,(V)| RS U, P 2 W}
where R and P are the residual and fixed spaces of o.

0.8. Let X be a subgroup of PGL (V') consisting entirely of projective trans-
vections. Let n = 3. Then all elements of X have the same line or have the
same hyperplane.

Proof. Pull-back and apply 0.5. Q.E.D.
The following proposition is 3.2 of [10].

0.9. Let o be a non-tnvolution in A n SL, (V) with R a plane and R q; P.
Then E(R, P) n A € CDC (v).

DeriNiTiON. Let 01, 02, ¢ GL, (V) ; we say that o; and o, anti-commute iff
01 02 = Toy 01, where r is a radiation, r ¢ RL, (V), r % 1y.

0.10. Let V havedimn, c e GL(V), U S V. Let o act on U as a radiation.
If 2-dim (U) > n, then no ¢ ¢ GL(V') can anti-commute with o.

Proof. Suppose ¢o = ro¢, r ¢ RL(V). Then we have ¢o¢ ' = r0. We
know ¢ acts on U as a radiation, ie., o | U = a1y | U; and « 5 0 since
o e GL(V). Thus

$0¢ " |6(U) = a-1v| 6(U).

Since dim U + dim ¢(U) = 2-dim U > n, there is a non-zero vector x in
Un¢U. Forthisz, wehavea -z = ¢po¢p ' (z) = rox = ra-x. Soa-z = ra-z,
z# 0. Thusa = ra,orr = 1y. Q.E.D.

0.11. Letn = 4, and let o be a non-involution in SL (V') of residue 2. Then
no 2 e GL(V') can anti-commute with o.

Proof. Suppose 8262~ = o, for some 8 ¢ RL(V). We claim P n 2P 5 0,
where P is the fixed space of o.

For suppose PnZP = 0. Then P ® P = V. Nowo | P = 1, and
o | ZP = 8. So ¢ hasa diagonal matrix (a;;) withay = 1 = apand ap = 8 =
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@y in an appropriate base of V. Since det ¢ = 1,8 = 1808 = +1. But
B = =1 implies ¢ is an involution, a contradiction. So P n ZP = 0.

Let x be a non-zero vector in P n ZP. Thenz = oz = 262 ' (z) = Bz
which implies 8 = 1. Q.E.D.

0.12. (2.9, [10]). Letn = 2 and let oy and o2 be non-trivial transvections in A
having proper lines Ly , Ly and proper hyperplanes Hy, Hs. Then C (1) = C (02)
if and only if Ly = Ly and Hy = H,.

0.13. Let 7., be a non-trivial transvection with spaces Ly & H;. Let
2 eGL(V). Let x(F) = 2, and suppose Fa = L, € ZH;. Then 2 does not

. ~1 —1 -1 _—1
commute with both 7., 27 7., and 7, 2 7_a,,.

Proof. A straight-forward computation which we omit, Q.E.D.

0.14. With the same hypotheses as 0.12, C (1) = C(a:) iff In = Ly and
Hl = Hz.

Proor. By 0.7, C(¢:) = C(o;)” since o1 and o, are transvections. So
C (1) = C(52) iff C (01)” = C(o2)” ¢ff C (01) = C (03) iff Ly = Ly, Hy = H, .
Q.ED

0.15 (3.1, [10]). Let L be a line, H a hyperplane, and L < H. Suppose
n23,0# ly,andoe E(L,H)nA. Then E(L, H)n DC(c) # 1v.

Now let ¢ : V — W, where V and W are two vector spaces over the same
field F. Define a map ‘o : W’ — V' as follows:
's(p) (@) = po(x),forall pe W,z e V. Then ‘o (o) is an element of V’, and
' is linear transformation from W’ to V. We have ‘(¢ + 7) = ‘o + 'r,
*(ac) = a'o, for scalars . We have ‘c = ‘7iff ¢ = 7, and *(r0) = ‘o'r.

For any bijection ¢, ¢ ¢ GL,(V), we use ¢ for the contragredient, (‘z)™".
So ov is in GL,(V’). We use X° for the annihilator in V’ of any subset X of
V. Noteif ¢ € GL(V) then ov has fixed space R° and residual space P°.

0.16. Let o € GL (V) have residual space R. Then o = 1y iff o ] R=-1;.

Proof. o = lyiffe(oz — ) = — (ox — z) forallzin V, iff oy = —y for
all y in R. Q.E.D.

0.17. Letn = 2 and S be any subgroup of GL, (V') that ¢s full of transvections.
Then DS contains a o with res ¢ = n.

Proof. Apply 2.5 of [10]. Q.E.D.

0.18 (24, [10]). If 8 is any subgroup of GL,(V), n = 3, and 8 s full of
transvections, then DS is full of transvections.

0.19 (3.4, [10]). Letn = 3 and let S be any subgroup of GL, (V') that is full
of transvections. Let T be a nontrivial transvection in S with residual and fixed
spaces R, P. Then CC(r) € RL,(V)-E(R, P)
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1. Action of an automorphism on projective transvections

DeriniTiON. Let o € SL, (V). We say ¢ is a plane rotation if res ¢ = 2
and RnP = 0.
1.1. Letn > 3. Let o2 be a non-involution in A n SL(V) with res o3 = 2

and R, € P,. Then (E(R,, Py) n A)~ S CDC ().

Proof. Apply the ~ map to both sides of 0.9, noting that 0.10 and 0.11 im-
ply C(o2)” = C(52). Thus

(E(R:, P3) n A)” € (CDC(s2))” € CD(C(02))” = CDC(52). QE.D.

1.2. Letn > 3. Let o be a non-trivial transvection in A with spaces L & H,
A an autom?rphism of G. Then there is a plane rotation os € A such that
A € CDC (52).

Proof. LetZ = Ag. Then thereisaline Fa = L,in V such that ZL; = L, ;
for otherwise £ = I, and we know & > I,. Pick a hyperplane H; of V such
that I, € H,,2L, € H,, 7Ly © Hy. Let 7,4, be a non-trivial transvection
in A with spaces Ly = Fa and H, = ker p. If x (F) # 2, we can assume 2 and
Tap = 'Tap do not commute.

One also sees they cannot anti-commute either, by a dimension argument
sincen > 3. Put T = 7,,;then £ and 72T~ don’t commute if x (F) = 2.
Now let 7 € A be such that A7 = T, and put o2 = o7 7", 03 = ZTZ T
Clearly Aoz = o05. One easily sees that the spaces of the transvections
ST and T are 2L, € ZHy; and I, € H,. But V = H, + ZH, so
Ry = Ly + =L by 0.2. And we have P; = H, n ZH; by 0.2; clearly

RinP; =[(In+ ZLy) n Hi)n2H, = Lyn ZH; = 0.

Thus o» is a plane rotation. In fact o, will turn out to be such that & e CDC (5.).
This will imply Aé¢ ¢ CDC (Ag:) = CDC (62) , which is our desired conclusion.
So the rest of this proof is devoted to showing & ¢ CDC (,).

Now ZIZ™ = 734,2-1and T = 7,,. From these formulas it followsthat
=T and T act on Ry. Therefore ZT=™" and T induce non-trivial trans-
vections with different residual spaces on Ry=Li+2L,. Soos|Ry 5 — 1z, ;
80 o3 is not an involution by 0.16. We also have that since oz | Py = 15,7,
(02)* # a, @ a radiation. So (33)* # Iy. So o is not an involution.

Now let us compute the fixed and residual space of s.. We know
R, C L+ rLand P, D HnrH,by0.l. We will show

tH#H, 1L#L Ry=L++L Py=HnrH, R EP,.
If x(F) = 2 all this follows from the fact that o3 = 1, and that transvections
are invglutic_ms in characteristic 2. If x(F) = 2, we showed above that
S and TE™'T™" do not commute. Hence, applying A, & and 757" do not

commute. So ¢ and 7o 7" do not commute. Their spaces.are L & H and
rL C 7H respectively. Hence L & 7H or 7L Q; H by 0.3;in particular 7L = L
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and 7H # H. So Ry, = L + 7L and P, = 7H n Hby 0.2. Finally
Ry =L+ L $HnrH = P,. We have now shown that os satisfies the
hypotheses of 1.1, 80 6 ¢ (E(Rz, P,) n A)” & CDC (5;) as required. Q.E.D.

1.3. Let o € A be a plane rotation with spaces B and P. Let n > 4. Then
CD*C(5) S (GL:(R) ® RL,-2(P))™, for any k = 0.

Proof. Let Ap be the subgroup of GL,_»(P) defined by
Ap = {¢ € GL,o(P) I 1z ® ¢eAl.

By definition 1, @ Apr © A; and Apis full of transvections since A is: just restrict
the transvections in A to P. Now

1 @ D*Ar C D*(1z @ A7) S D*C (o).
So
(1z ® D*Ap)™ C D*C (¢)~ C D*C (5).
Now since Ap is full of transvections, and dim P = 3, 0.18 implies D*Ap is
full of transvections.

So for any line L in P, we have a transvection r in D*Ap with line L. Then
1z @ 7 is a transvection, and

(1z ® 7)7 € (1 ® D*Az)” C D*C(5).
Now let £ ¢ CD*C (5). Then 2 commutes with 1z @ 7 by 0.10 and 80 2L = L.
Hence = acts on every line of P, and so 2 [ P = @-1p for some a ¢ F.

Now choose a base 21, « -+, . for P, and define the hyperplanes H; of V
by H; = R @ &;, where

£ =Fr;+ -+ + Fpuy + Frpn + -+ + Fa,s.

Then N;=f (H;) = R. Since D*Ap is full of transvections, we can choose non-
trivial transvections r; e D*Ap such that 1z ® ; is a transvection with hyper-
plane H;. We see

(1z @ )" € (1 ®@ D*Ap)” € D*C (3);

go = commutes with 1, @ 7;, and so ZH; = H;. So 2R =2 N; H; =
N;ZH; = R. Thus = acts on R. Q.E.D.

Recall from linear algebra that ¢ ¢ GL (V) is called unipotent iff ¢ — 1y is
nilpotent. It then follows that ¢ is unipotent iff there is a base for ¥ in which
the matrix of ¢ is upper triangular with all 1’s on the main diagonal iff all
characteristic roots of o are 1.

Propositions 1.4 to 1.6 can now be easgily proved.
14. Letn = 2. If o and ac are both unipotent, and a e RL(V'), then a = 1.
1.5. Letn = 2. If o is unipotent and = ¢ GL(V'), then Zo= " is unipotent.

1.6. Letn = 2. If o is unipotent then no = in GL(V') can anti-commute
with o.
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We say a co-plane is a subspace of V of codimension 2. Now we have the
following theorem, basic to our approach to the automorphism question.

1.7. Let n > 4, and let A be an automorphism of G. Let v be a non-trivial
transvection in A, and T a coset representative of A*. (i.e.,E = Ar). Then there
isaplane B C V, and a coplane P C V, such thatZR = R,ZP = P,RnP = 0,
and 2 | P = a-1p for some a ¢ F.

Proof. Apply 1.2 and 1.3. Q.E.D.

1.8. Letn = 2. Let 2 be an element of A such that Z ¢ DC(Z). Then =™
18 unipotent.

Proof. Apply 4.1 of [10]. Q.E.D.

DerinmmioN. Let £ ¢ G. We say 2 is projectively unipotent if at least one
coset representative of £ is unipotent. It follows from 1.4 that at most one
coset representative of £ is unipotent, for any = ¢ PGL, (V).

19. Letn=2. LetSeAbesuchthatS eDC(E). Then E™™ is projectively
unipotent.

Proof. £ = [Lsn[d:, Bi, Ai, Bie CE). Puto = [[in [4:, Bd. We
have A; 0A7" = (a;1v)-ocfora;eF. Sincedetos = 1,af = det (a;-1y) = 1.
So A4; ¢"A7' = ¢". Hence A;eC (¢"). Similarly B; ¢ C(¢"). So

o = ([Lsn [4:, B])" e DC(a™).

_nen!

So 1.8 implies (¢")™ is unipotent. Hence ™™ = "™ is projectively uni-
potent. Q.E.D.

1.10. Let A be an automorphism of G, suppose n = 3, and L & H 1s given.
Then there is a non-trivial projective transvection # ¢ G with spaces L & H such
that A7 s projectively unipotent.

Proof. First suppose x(F) = 0andn = 3. Fix a non-trivial transvection
rin E(L, H) n A. By 0.15 there is a non-trivial transvection = in E(L, H) n
DC(r). But C(Z) = C(r) by 0.12. So X ¢ DC(Z). Hence £ ¢ DC(Z).
Hence A ¢ DC(AS). So 1.9 implies (AS)™™ = AZ™™ is projectively unip-
otent. So Z™"! does the job.

Now suppose x (F) = p > 0and n > 4. Take a non-trivial transvection o
inE(@,H)nA;6” = 1y. SoAs® =1y. PutZ = A¢. Then2’ =a-ly,
aeF. By 1.7, we know 2 i a radiation on some co-plane U of the space V.
So2| U = p1y,Be¢F. Sop” = a Hence=” = (8:1y) % or (Z—B)"
= 0. Thus = | 8 is unipotent. So (= l B)” = Aé is projectively unipotent.

Now suppose p > Oand p = 3andn = 3;0orp > 0andp # 2andn = 4.
By 0.18, A full of transvections implies DA full of transvections. Thus
(DA)™ (= DA = DQ@) is full of projective transvections. So choose a non-
trivial projective transvection 7 ¢ DG with proper spaces L & H. So Ar ¢ DG,
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and (A7)” = Iy. Thus
Ar = JTen [4s, Bd, A4;, BieG.

Put 0 = ] [4:, Bi; & = A%,80 6" = Iy ;hence o® = a1y, a e F. But
" =det a-ly = (det o)” = 1.

Hence ¢™ = 1y. So (" — 1y)* = 0. SoA#" = (¢")” is projectively unip-
otent, and surely 7" is a non-trivial projective transvection with proper spaces
LC H. (# s 1,since x(F) does not divide n.)

Finallylet p = 3andn = 3;orp = 2andn = 4. As above, choose a non-
trivial projective transvection # ¢ DG with spaces L € H. So Ar ¢ DG and
(A7)? = 1y,. Now A7 = [Jsa [4:, Bd. Put ¢ = ]t [4i, Bi]. Then
=A%, 6 =Iy,ore” = a-ly,aeF. Buto® = det a1y ¢® = 1. Hence
o™ =1; (¢ — 1) = ¢™ — 1 = 0, since pn is 8 when p = 2 and 9 when
p = 3. 8o ¢ is unipotent, and A7 = ¢ is projectively unipotent. Q.E.D.

1.11. Let S be any subgroup of GL,(V) that is full of transvections, with
n = 2. If o is a unipotent element of Cv(DS), then ¢ = 1y.

Proof. Apply 2.8 of [10]. Q.E.D.

1.12. Letn > 2. Let L & H be given, and let A be an automorphism of G.
Then there is a non-trivial projective transvection & tn G having spaces L & H such
that A vs a projective transvection.

Proof. First assume that n > 4. By 1.10 we may choose a non-trivial
transvection ¢ in E (L, H) n A such that A is projectively unipotent. Let
3 = A&, Z being unipotent. By 1.7, there is a plane R and coplane P such
that 5P = P,2R = R,RnP = 0,andZ | P = a'1,,a¢F. SinceZ|Pis
unipotent, « = 1. Now 2 [ R is unipotent, and is therefore a transvection.
So Z is a transvection.

Now let n = 3. By 1.10 we may again choose a non-trivial transvection o
in E(L, H) n A such that A is projectively unipotent. Let £ = Ag, Z being
unipotent; we may assume Z is not a transvection so the residual space R of
T isaplane. By 0.15 there is a non-trivial transvection 7 in E (L, H) n DC (o).
We have 7 ¢ DC (¢) so A# ¢ DC (Z) or A# = [t [4:, B where A;, B;e C (Z)
and in fact A;, B; ¢ C(2) by 1.6. Put f = []s [4:, Bil; then f e DC ().
It is clear that 2R = R, A;(R) = R, B;(R) = R, and that
= ] ReSLy;(R) — RLy(R). Weknow feDC (Z); therefore fR = R and we see
f| R eDCy (2| R), where C denotes Cormy. By 2.6 of [10], DCr (Z | R) = 1,.
Thusfl R = 1zandresf = 1. Butdetf = 1sincefeDC(Z) and thus fis a
transvection and A? = fis a projective transvection.

Finally let n = 4. TUsing 1.10 we can choose a nontrivial transvection r ¢ A
with spaces L & H such that Az is projectively unipotent. By 1.2 there is a
plane rotation o € A such that A7 e CDC(3). We may write £ = A#, Z unip-
otent. Let o have spaces R, P both planesand R @ P = V. Let Ap be the
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subgroup of GL,(P) defined by
Ap = {¢ e GLy(P) I 1z @ ¢ €A}

It is clear 1; @ Apr & A and that Ap is full of transvection in GL, (P). (Just
restrict the transvections in A to P.) Also

1z ® DA S D(1x @ Ap) € DC (o).

So (1 @ DAp)” € DC(e)” € DC (). Now DAp contains an element ¢ of
residual index 2 by 0.17. Hence (1 ® ¢)~ € DC (). SoZand (1 ® o)~
commute. Since = is unipotent, 2 and 1z @ ¢ cannot anti-commute by 1.6.
So 2 and 1; @ ¢ commute. R is the fixed space of 1 @ ¢ and P is its residual
space. So ZR = R, 2P = P. Since

(13 @ DAP)— < DC(&);

wehave S eC (1 @ DAp)”. Since T is unipotent, 1.6 implies T ¢ C (1z ® DAp).
Since TR = Rand ZP = P, 2 | P e Cp(DAp). But = | P ig unipotent so
| P = 1, by 1.11. Now 2 | B is a transvection since it is unipotent and
dim R = 2. Since V = R @ P, Z is a transvection. Q.E.D.

1.13. Letn = 3 G full of projective transvections and # a non-trivial projective
transvection in G with proper spaces L & H. Then CC(7) = T(L, H).

Proof. Write # so that = is a transvection, r ¢ A. First we show
CC(r) S CC(r).” LetZeCC(r)and Ly aline in H. Choose a hyperplane
H, containing L and L, , and a transvection oy in A with proper spaces L; < H;.
By 0.3,01¢C(r)andsod1e C (7). ThusZ and & commute and 0.10 implies =
and ¢; commute. Thus 2L, = L; and T stabilizes all lines of H. So
2|H =a,ae RL(H). LetoeC(r). Itisenough toshow = and ¢ commute,
since £ ¢ CC(7), £ and & commute. But = |H = a;so0 0.10 implies = and
o commute. Thus CC(7) € CC(r)". But by 0.19 CC(r)~ < T(L, H).
So CC(7) € T(L, H).

Now we prove the reverse inclusion; let £ e 7 (L, H). We can assume =
is a non-trivial transvection with proper spaces L & H. By 0.14,
CE) = C(). So ZeCC(E) = €CC(+). Thus T(L, H) S CC(r) and
cC() = T, H). QED,

1.14. Letn > 2, and let A be an automorphism of G. Let 7 ¢ G be any non-
trivial projective transvection. Then A% is also a projective transvection.

Proof. Using 1.12 and 0.14 we see that there is a projective transvection
& ¢ @ such that C(6) = C(#) and such that A is a projective transvection.
Then 7 e CC () = CC(5). Hence A7 e CC (A¢) and by 1.13 every element of
CC (Ad) is a projective transvection. Q.E.D.

2. The automorphisms ¢, and ¢,
Let g be a semi-linear isomorphism of V onto V; for o e GL,(V) let
¢,(c) = gog . Let h be a semi-linear isomorphism of V onto its dual space
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V’; for o € GL, (V) let Y4 (o) = h~lovh, where ov denotes the contragredient
of . One sees ¢, and ¢, are automorphisms of GL,(V). We have
Ggo¥n = ¥ng-1; and ¢y, ° ¢y, = Pgyg,. Note ¢y_, = ¢p-1 and ¥n' = Yu where
h' is the transpose of 4 [4, p. 13].

Since ¢, and ¥ act on the center of GL,(V), we may define in a natural
way automorphisms ¢, and ¢» of PGL,(V). The defining equation of
&y 18 ¢,(5) = ¢,(c)”. Similarly for §,. Observe ¢;* = ¢,~1 and ¥;" = Pne.

We shall need to know the residual spaces and fixed spaces of the elements
¢,(c), v, and Yu(c). These are (gR, gP), (P°, R*) and (A'P°, h'R")
respectively, where (R, P) are the residual and fixed spaces of ¢. In Section
2, 8 denotes any subgroup of PGL, (V) that is full of transvections.

2.1.  Let S be full of transvections,n = 3. Then the equation ¢, (¢)” = Yn(s)~
Jor all o € S s impossible.

Progf. Take non-trivial transvections = and =’ in S having the same line
but different hyperplanes. Then ¢,(r) and ¢, (') have the same line, while
Yi(r) and ¢, (r") donot. But now ¢,(r) = agu(r) and ¢, (z') = Ba(r’),
where o, 8¢ RL(V). Therefore « = 1 = 8, by 0.7, since n = 2 (r and ar
cannot both be transvections when n = 2, unlessa = 1, by 0.7).

But then ¥4 () and ¥4 () have the same line, a contradiction. So the
equation ¢, ()™ = yu (o)~ for all o ¢ 8 is indeed impossible. Q.E.D.

2.2. Suppose that n = 2. Then the following are equivalent

(1) ¢4, (0) = ¢g,(0) foralloeS
(2) ¢g,(0) = ¢y, () forall e ¢ S
(B) g1 = rgs for some r e RL, (V).

Proof. First we prove (1) = (3). Consider any line L in V. Since S is
full of transvections, there is a non-trivial transvection 7 in S with proper
line L. Then ¢4, ()" = ¢4, (r)7, 80 ¢g, () = ady,(r), a e RL(V). But
¢, (7) and ¢,,(r) are transvections. Thus ¢,,(r) is a transvection and
ady, (1) is also a transvection; thus @ = 1. So

T = Ggy-1 ¢y, (r) = bos—10; (7).
Sogitogi=r,reRL(V). Thusg; = go-r = r*-gs, u the field automorphism
of g2. The implications (3) = (2) = (1) are trivial. Q.E.D.

2.3. Suppose that n = 2. Then the following are equivalent.

1) ¥u, (@) = ¥n,(a) forall ce S
(2) n, (o) = ¢, (o) forall o e S
(8) M1 = heor for some r e RL, (V).

Proof. First we prove (1) = (3). Putg = hz'hy. Then g is a semi-linear
isomorphism of V onto V, and ¢,0¢n, = i, .
Thus for o € S,

(617 (@)™ = Pnyo i, (@) = P oty (@) = @p(0)".
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And so by 2.2, 9 = 7, re RL(V). Thus by = hor, r¢ RL(V). The implica-
tions (3) = (2) = (1) are trivial. Q.E.D.

24. Let S be any subgroup of GL.(V') that is full of transvections, n 2 2.
Let ¢, be an automorphism of S. Suppose ae DS. Then ¢,(¢) e DS and
¢o-1(c) e DS.

Proof. Let oy be any element of S. ¢,(61) = #, where we may assume
7eS. Thus ¢,(01)” = 7,80 ¢y(01) = ar, e e RL(V). Let

-1 1
0 = 010201 03, 01,02€R8.

By the above, ¢,(01) = ar, 7eS and a e RL(V). Also ¢, (62) = Bh, heS
and Be RL(V). Thus

$6(0) = o(010201°03") = g (01), (02) [y (01)] [ (0)]

= arfhr o K B = rhr 'k e DS.
So we showed ¢, (¢) € DS for all short commutators ¢ e DS. Hence ¢, (c) e DS
for all ¢ ¢ DS.

Now since ¢, is an automorphism of S, so is ¢, = ¢,-1. Thus what we
have proved above shows ¢,-1(a) € DS if o ¢ DS. Q.E.D.

3. Determination of the automorphisms of any subgroup @
full of projective transvections

3.1. Let A be an isomorphism of G into PGL, (V') such that A (T (L)) S T (L)~
for all lines Lin V. Suppose n = 2. Then A equals the identity map on G.

Proof. TakeatypicalceAandaline Lin V. PickrinT(L)nA, 7 1y
So 7 is a projective transvection with line L. Hence A7 is a projective trans-
vection with line L. But 76 ' is a projective transvection with line oL.
Let&@ = Aé. Then &A7é’™" = A(675 ') is a projective transvection with
line ¢L. Butone also sees 6'A7' ' is a projective transvection with line
o'L. Hence oL = ¢'L for all lines L. So there is a scalar o ¢ RL (V') such
that 0 = ao’. Hence 3 = & = A& for all ¢ e A, Q.E.D.

Let Ly = lines of V, Hy = set of hyperplanes of V .

3.2. Let V be an n-dimensional vector space over F, n > 2. Let G be a sub-
group of PGL, (V) thatis full of projective transvections, and let A be an auto-
morphism of G. Then forall X ¢ Ly u Hx, there exists a unique X '€ Ly u Hx
such that AT (X) = T(X').

Andthe map X — X' is a bijection of Lx U Hy onto Ly u Hy such that:

() XSYaxYCX)if XX CY or Y CX)
(i) Lk = Ly and Hx = Hy;or, Lk = Hy and Hx = Lx.

Proof. Let X ¢ Lxu Hx. By 1.14 every element of AT (X) is a_transvec-
tion. Since T(X) is a maximal group of transvections in G, AT (X) is a
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maximal group of transvections in G. Since the groups T (X),
where X e Ly u Hy, are the only maximal groups of transvections in @, there
will exist a unique X’ e Ly u Hy such that AT (X) = T(X’). The same
reasoning that showed X’ is unique will show the map X — X’ is 1-1. By con-
sidering A one easily sees X — X’ is surjective. So we have shown that
X — X’ is a bijection of Ly u Hx onto Ly u Hyx. The defining equation of
the bijection X — X’ is AT(X) = T(X’). Observe also T(X) n T(Y) =
I,iff X C Yor Y C X, and therefore

XCYorYCX) iff XXCYox¥Y CX).

So we have proved assertion (i).

Let us show either Lk = Ly and Hx = Hy;or, Ly = Hy and Hx = Ly .
Suppose Lo € Ly for some line Lo e L. Let L be any line of V,L # Ly,. Pick
a hyperplane H containing Ly and L. Then Ly C H and hence Ly  H’ by
the above assertion (i); hence H’ is a hyperplane, and hence L' C H’, again
by (). So L’is a line, and so L« S L«. Nowlet Hbea typical element of
H*. Fixaline Lin H. Then since L C H and L' is a line, the above asser-
tion (i) shows L’ € H’ and so H' is a hyperplane. Hence L« C Ly and
Hi C H, , and therefore Ly =Lyand Hy = Hy. If L' eHyforall LeLy ,
we show Ly = Hy and Hx = Ly in a similar way. Q.E.D‘

Remark. Given an automorphism A of G, we shall refer to the bijection
X — X’ defined above in 3.2 as the bijection induced by A.

Now suppose A is an automorphism of G. By 3.2 A induces a bijection
X — X’ of Ly u Hy onto Ly u Hy such that Ly = Ly and Hx = Hy ; or, such
that Lx = Hy and Hx = Ly. We will use the same symbol &, for the map
¢, having domain all of PGL, (V') and also for the restriction of &, to G. We
do the same thing with ¢, . Of course we do not know a priori that ¢, (G) = @
or that ¥» (@) = G.

3.3. Theorem. Let V be an n-dimensional vector space over the field F,
n > 2. Let G be a subgroup of PGL, (V') full of projective transvections, and
let A be an automorphism of G. Then A may be expressed in one and only one of
the following two ways:

@) A = ¢, for some semi-linear tsomorphism g of V onto V,
(i) A = n, for some semi-linear isomorphism h of V onto V.

Proof. By 2.1 it is clear that we cannot have both A = ¢, for some g,
and also A = {4, for some h. So the possibilities (i) and (ii) above are
mutually exclusive.

To show that one of (i) and (ii) must hold, consider the bijection X — X’
that A induces by 3.2. Let us suppose L« = Ly and Hx = Hy. Using 3.2(1),
we can deduce that L < H implies L' < H’. Thus the Fundamental Theorem
of Projective Geometry yields a semi-linear isomorphism g of V onto V'
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such that gL = L’ for alllines L € V. Then
. oAT (L) € T(L);

it follows from 3.1 that A = &,, or A™" = &,~1.

Now suppose Lx = Hy and Hyx = Ls. Using 3.2(i) again, we can deduce
L C H implies H' € I’. Define a map L — (L')°, (I')° being the annihilator
in V' of L’.  The map L — (L’)°is a bijection of the lines of ¥ onto those of V”,
which satisfies the hypotheses of the Fundamental Theorem of Projective
Geometry. So we obtain a semi-linear isomorphism 4 of ¥ onto ¥V’ such that
R(L) = (L')". Then

WoA(T(L) € T(L);

so by 3.1 we have y5oA = id (A). So from this equation it follows that
A" = y». We have proved the theorem for A™, so we have therefore proved
it for any A. Q.E.D.

Remark. 1t follows from 2.2 and 2.3 that the semi-linear isomorphism ¢
and & in the statement of 3.3 are uniquely determined by the automorphism A
of G up to a scalar factor.

The following proposition is an immediate corollary to 3.3.

34. Letn > 2 and let S be any subgroup of GL, (V') that s full of transvec-
tions. Let A be an automorphism of S. Then A may be expressed in one and
only one of the following two ways:

(i) Ao = x(0)-¢y(c) forall o €8,
() Ao = x(o)-yu(c) forall o €S,

where x denotes a homomorphism of S into RL(V').

4. The avtomorphism theory of PGL,(M), PSL.(M), PTL,(M),
and their congruence subgroups

By a fractional ideal a of an integral domain o we mean a non-zero subset
a of o + o which is an o-module in the natural way and which has the property
M C o for some non-zero A in 0. We let F denote the quotient field, o =+ o,
of 0. Recall any two bases of a free module over a commutative ring have
the same cardinality and that this cardinality is called the dimension of the
free module.

By a lattice M over the integral domain o we mean an o-module which
can be written M = M, @ -+ @ M, in which each M; is isomorphic as an
o-module to some invertible fractional ideal a; of 0. We say an o-module M
is bounded if there is an o-linear isomorphism of M into a free module of finite
dimension. So any submodule of a bounded module is bounded. For any
non-zero module M it is easy to verify the following implications:

M is free of finite dimension = M is a lattice

= M is bounded.
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In all of Sections 4 and 5 we assume M is a bounded o-module contained in
an n-dimensional vector space V over the quotient field F of 0. And we also
assume M spans V over F; ie., FM = V where FM is {Zox | aeF, x e M.}

We define

GL.(M) = {0 eGL, (V)| oM = M},
SL,(M) = GL, (M) n SL,(V),

TL,(M) = the subgroup of SL (M) generated by all
transvections = in SL (),

RL,(M) = GL,(M) n RL, (V).

Consider the bounded o-module M. For any non-zero vector x in FM we
define the coefficient of x with respect to M to be the set

¢ = {aeF|axeM};

¢ 18 a fractional ideal of 0. And for any non-zero linear functional p on V>
p(M) is a fractional ideal of o.
Define the linear congruence groups as follows for any non-zero ideal ain o :

GL(M;a) = {ceGLWM)| (¢ — 1y)M < oM},
SL(M;a) = GL(M;a)n SL(M)

and TL (M ; a) is defined to be the group generated by all the transvections
in GL(M; a). We see that

TL(M;a) S SL(M;a) S GL(M;a)
are normal subgroups of GL (M ). And
SL(M; o) = SL(M), TL(M;o) = TL(M), GL(M;0o) = GL(M).

If we consider any non-trivial transvection 7., in SL(V), we easily see
that
p(M) S ace=pM)a S a-M = 1,,eGL(M; a).

41. Forn = dim (FM) = 2 and M a bounded o module, TL, (M ; a) s
Sull of transvections.

Proof. Let L & H be given. Write L = Fa. Let p be a non-zero linear
functional such that pH = 0. Now p (M) is a fractional ideal so choose a
non-zero \ in F such that N\(oM) € a-¢,. Then the above remarks show
Tapp € TL, (M ; 00). Q.E.D.

Now let PTL,(M; o), PSL,(M; a), PGL,(M; a) denote respectively
TL.(M;a)",SL,(M;a)", GL,(M;a)”, where ~ is the natural map of GL, (V)
onto PGL, (V); the groups PTL,(M; a), PSL,(M; a), PGL,(M; a) are the
projective congruence groups.
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4.2, Let M be a bounded o-module with dim V = 3, where V.= FM. Let G
be one of the projective congruence groups

PTL,(M;a), PSL,(M;a), PGL.(M;a),

and let A be an automorphism of G. Then A can be expressed in exactly one of
the following two ways:

1) A = ¢, for some semi-linear isomorphism g of V onto V,
@il) A = ¥ for some semi-linear isomorphism h of V onto V',

Proof. 4.1 implies G is full of projective transvections. Now apply 3.3.
Q.E.D.

Remark. 4.1 shows each of the groups TL, (M;a), SL,(M; a), GL,(M; a)
i full of transvections for M a non-zero bounded o-module. So all the
automorphisms of the congruence groups T'L, (M ; &), SL.(M; a), GL. (M ; a)
for dim FM = 3 and M any bounded o-module are given by 3.4.

5. The automorphisms ¢, and ¢, of PGL(M, »)

By 4.2, if A is an automorphism of PGL (M ; o) then A equals ¢, or ¥ for
some g or k. In this section we give necessary and sufficient conditions for
&, or ¥, to be automorphisms of PGL (M ; o).

Let 7,,, be a transvection in GL, (V). The following proposition is clear.

51. 70,(M) = Miff 10.,,(M) S M iff (obM)-a & M.
DeriNmrioN. Let M be a bounded o-module. Let
M* = {QeV'|QM) C o).

If oM = M, ¢ ¢ GL,(V), then ¢*(M*) = M*. For any o ¢ GL,(V), we
say cison M iff eM = M.

Remark. Let M be a free o-module, and 2; --- z, a bage for M. So
M = @iaz;0. Let {Q; be the dual base to {z;}. Let ma,0;, ¢ ¥ J,
be an elementary transvection with respect to the base {z;} of FM = V.
Then it is easy to see that 7s;,e; is on M iff X eo.

5.2. Let M be a free o module, let V. = FM, and let S be one of the groups
GL(M), SL(M), TL(M). Supposen = dimV = 3, ¢, is an automorphism
of S. Then 0" = o where u s the field automorphism of g.

Proof. Write M = ox; + --+ + ox, with {x;} a base for V and let {Q}
denote the dual base of {z;}. To begin, notice that if 7,,¢ is any transvection
on M then (QM)a & M, hence (QM ) a & M for any X e0; and 80 74,0 €S
implies 7xq,¢ € S for all X € o.

Put y; = geifor 1 <4 < n,and ¢; = uQ;g ' forl < j < n. Sincegisa
semi-linear isomorphism, it follows y1, -+, y, are a bagis for V, and that
¢1, * -, ¢, are linear functionals which constitute the dual basis of the y,’s.
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Now by 5.1, 74;,q; €S for 2 5% j, and hence
Toi,0; = [Tog.an 5 T, ] €DS b 5 4, k 5 j.
Hence 7y,,6; = 972;.0; g eS by 2.4 so
Twig; = [Mwisn s Tune;] €DS if Neo.
Hence g (Trvi0;)g 18 on M by 2.4. 80 7y, 4, is on gM whenever A eo. Now
agM =o'y + -+ + 0'ya.

So by the remark immediately before the statement of 5.2, since o* + o* = F
and gM is a free 0 module, we have Neo®. Thus o € o*. By considering
&, instead of ¢, we get 0 < 0 . Hence 0 = o". Q.E.D.

Recall #;;(\) denotes the matrix with X in (¢, j) position, 7 # j, 1’s on the
main diagonal, and zeroes everywhere else. EL,(0) equals the group gen-
erated by all the #;;(\), Neo. Note EL,(0) & SL.(0).

53. Letebeino; " = 1. Then the n by n matrix diag (¢, -+, €) s in
EL, (o).
Proof. A computation using elementary row and column operations.
Q.E.D.

5.4. Let M be a free module over the integral domain o, where o <+ o = F,
FM = V. Let h be a linear isomorphism of V onto V' such that hM = M*. ¥
Then Y1 is an automorphism of S where S equals one of the groups TL, (M),
SL.(M) or GL.(M).

Proof. One need only show ¢»(S) = 8. Clearly ¢4 (S) & S since
KM = M¥. Since h'M* = (M*)* = M we have similarly

¥ (S) = yne(S) S 8. Q.ED.

55. Let AeGL,(0) and a e F. Suppose trace (aB; AB,) ¢ whenever B,
and B, are in EL,(0). Then ae€o.

Proof. Apply 5.1 of [8]. Q.E.D.

5.6. Let M be a free o module, let V.= FM,n = dim V = 3 and let S be one
of the groups TL(M), SL(M), GL(M). Let ¢, be an automorphism of S
then ¢, is an automorphism of S.

Proof. To show ¢, is an automorphism of 8, it is clearly enough to show
¢, (8) € 8. For ¢;* = $,-1 is an automorphism of S, and if we have shown
¢, (S) € 8, we can show ¢,-1(S) & S. So ¢,(8) = S and ¢, is an automor-
phism of S.

So let us show ¢,(S) & 8. Take o eS. Since ¢,(¢) €S there is a (fixed)
7. €8 such that ¢,() = 7. 8o ¢;(¢)” = 7, or x(¢)-¢,(c) = 7, for a
scalar x(o) e RL(V).



AUTOMORPHISMS OF CERTAIN SUBGROUPS 347

To show ¢, (S) € S it is enough to show ¢, (¢) € 8, and this will be true if we
can show x (o) € S.

So let us show x(¢) ¢S. It is enough to show x(¢) e RL,(M), for if
S = GL(M), surely x(¢) e RL(M) will imply x(c) eS. If S = SL(M)
or TL(M) then det ¢ = 1 and det 7, = 1. This impliesdet x(¢) = 1. Let
x(@) = &'ly, € in F. Then & = 1, and hence by 54 the matrix
diag (¢, -+, ¢)isin EL,(0). Taking a basgis ¢, - - -, z, for the free module
M then shows

x(@) =¢e1lyeTL(M) Z 8.

So x(¢) e RL(M) implies x (o) ¢S in all cases.

It follows immediately from 2.4 that ¢ ¢ DS implies x (¢) ¢S and ¢,(c) € S.
Now consider a typical o in 8. We wish to show x(¢) e RL,(M ). Express
x (¢) in the form x(¢) = a-1y for some a ¢ F. It is enough to prove this a
is in 0. For then the equation x(¢)-¢,(c) = 7, shows that det x(c) is a
unit. (To see this, use the fact gog™ has matrix PS*P™" in the base X of V
where S is the matrix of o, P that of g.) But we are assuming o ¢ 0. Hence
a is a unit, and so x(¢) € RL, (M ) as required. So it is indeed enough to show
aeo.

Write @« = 8. We will show Beo. Let ¢ ~ A in X; so 4 eGL,(0).
Consider matrices By and B in EL,(0). If tr (8B1AB:) ¢ 0 we are done by
5.5. Take 7, and 72 in S with 7; ~ B; and 7, ~ B; in the base X. Now it
follows tr ¢, (Z) = (tr )" for all = in GL,.(V). Hence it is enough to show
tr ¢, (Brio7m2) en. But this follows from the fact

by (Brioms) = a (1) o(0) b6 (1) = ¢g(11) 7o by(mz) eS.  QE.D.

5.7. Let the hypotheses on n, S and M be as in 5.6. Suppose the mapping
¥ 1 an automorphism of S. Then ¥4(S) = S.

Proof. Take a fixed linear isomorphism % of V onto V' such that kM = M*.
By 5.4, Y is an automorphism of S, and so ¢ is an automorphism of S. Put
g = k7h. So g is a semi-linear isomorphism of ¥V onto V. We have
dso¥n = Y, 80 ¥ is on S iff ¢, iB-_ But ¢;° ¥ = (¢a°‘l’h)_l = Y-t = Yi.
Therefore ¢ is an automorphism of S. By 5.6, ¢, (S) = S. Hence ¢ (S) = 8.

Q.ED.

Assume M to be a free 9-module of dim = 3 and let S be as in 5.6. By
5.6 and 5.7 we see that if ¢, (respectively ¥») is an automorphism of S, then
¢, (respectively ¥) is an automorphism of S. But surely if ¢, (respectively
¥, ) is an automorphism of S, then @, (respectively ¥ ) is an automorphism of S.

Hence we conclude that

&, (respectively ¢4) is an automorphism of S iff ¢, (respectively y») is an
automorphism of S.

Now in 5.5 and 5.6 of [8], O’Meara has given the following necessary and
sufficient conditions for ¢, (respectively ¥») to be an automorphism of S:
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(1) o“ = o for u the field automorphism of g (respectively u the field auto-
morphism of 4), and (i) g¢M = aM for some invertible fractional ideal a of
o (vespectively hM = aM™ for some invertible fractional ideal a of o). Hence
we conclude the above two conditions are also necessary and sufficient condi-
tions for ¢, (respectively ¥4) to be an automorphism of S when M is free.

REFERENCES

—

. E. ArTIN, Geometric algebra, Interscience, New York, 1957.
. P. M. ConnN, On the structure of the GL. of a ring, Publ. Math., Inst. Hautes Etudes
Sci., France, vol. 30 (1966), pp. 5-53.

3. J. DIEUDONNE, On the automorphisms of the classical groups, Mem. Amer. Math. Soc.,
New York, 1951.

4, ——— La Geometrie des groupes Classtques, second edition, Springer-Verlag, Berlin,
1963.

5. L. K. Hua anp 1. REINER, Automorphisms of the projective unimodular group, Trans.
Amer. Math. Soc., vol. 72 (1952), pp. 467-473.

6. J. HumMPHREYS, On the automorphisms of infinite Chevalley groups, Canad. J. Math.,
vol. XXT (1969), pp. 908-911.

7. J. LANDIN AND I. REINER, Automorphisms of the two-dimensional general linear group
over a BEuclidean ring, Proc. Amer. Math. Soc., vol. 9 (1958), pp. 209-216.

8. 0. T. O'MEARA, The automorphisms of the linear groups over any integral domain,

J. Reine Angew. Math., vol. 223 (1966), pp. 56-100.

n

9. , Automorphisms of the orthogonal groups Q.(V) over fields, Amer. J. Math.,
vol. 90 (1968), pp. 1260-1306.

10. ———, Group theoretic characterization of transvections using CDC, Math. Zeitschrift,
vol. 110 (1969), pp. 385-394.

11. ——— anDp H. ZassENHAUS, The automorphisms of the linear congruence groups over

dedekind domains, J. Number Theory, vol. 1 (1969), pp. 211-221.

12. 1. REINER, A new type of automorphism of the general linear group over a ring, Ann.
of Math., vol. 66 (1957), pp. 461-466

13. C. E. RickART, Isomorphic groups of linear transformations, Amer. J. Math., vol. 72
(1950), pp. 451-464.

14. , Isomorphic groups of linear transformations, II., Amer. J. Math., vol. 73
(1951), pp. 697-716.
15. , Isomorphisms of infinite dimensional analogues of the classical groups, Bull.

Amer. Math. Soc., vol. 57 (1951), pp. 435-448.
16. R. STEINBERG, Automorphisms of finite linear groups, Canad. J. Math., vol. 12 (1960),
np. 606-615.

INDIANA UNIVERSITY
BLooMINGTON, INDIANA



